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FEASIBILITY INVESTIGATION OF

GENERAL TIME-DOMAIN UNSTEADY AERODYNAMICS OF ROTORS

SUMMARY

The feasibility of a general theory for the time-domain unsteady

aerodynamics of helicopter rotors is investigated. The wake theory gives a

linearized relation between the downwash and the wing bound circulation, in terms

of the impulse response obtained directly in the time domain. This approach makes

it possible to treat general wake configurations, including discrete wake vorticity

with rolled-up and distorted geometry. The investigation establishes the approach

for model order reduction; determines when a constrained identification method is

needed; verifies the formulation of the theory for rolled-up, distorted trim wake

geometry; and verifies the formulation of the theory for wake geometry

perturbations. The basic soundness of the approach is demonstrated by the results

presented. A research program to complete the development of the method is

outlined. The result of this activity will be an approach for analyzing the aeroelastic

stability and response of helicopter rotors, while retaining the important influence

of the complicated rotor wake configuration.





1. INTRODUCTION

1.1 Background

With current computational techniques, there is increased interest in the

aeroelastic behavior of general rotary-wing configurations undergoing arbitrary

motion. For such problems, a time-domain model of the aerodynamics is required,

preferably in the form of ordinary differential equations, from which the rotor

stability and response can be calculated. To be consistent with the sophistication of

these problems and computational methods, an aerodynamic theory is needed that

does not require significant approximations for the wake configuration.

The unsteady aerodynamic loading of wings has traditionally been analyzed

in the frequency domain, usually with the objective of relating the wing loading to

the wing motion. That approach is found in both traditional work, such as

Theodorsen's and Wagner's functions (Bisplinghoff, Ashley, and Halfman, 1955),
and in recent work. Moreover, much of the recent work is still focused on the

frequency domain (Laplace form in general), notably analytic continuation of

solutions from harmonic to arbitrary motion (Vepa, 1977; Edwards, 1977; Edwards,

Ashley, and Breakwell, 1979; Venkatesan and Friedmann, 1986; Brase and

Eversman, 1987), although there are time domain aerodynamic analyses as well

(Stark, 1984; Miyazawa and Washizu, 1983). To obtain the loading response to

motion, it is necessary to completely solve for the influence of the wake. With this

approach it is possible to make much progress analytically, particularly in the

frequency domain, but the derivation and results are complicated and it is usually

necessary to make significant approximations regarding the wake configuration.

Rotary wing aerodynamics has a long history of dealing with wake-induced

velocities directly (Johnson, 1980), yet unsteady aerodynamic analyses for rotors

have still required simplified models, such as an actuator disk (Miller, 1964; Pitt and

Peters, 1981) or use of the acceleration potential (Peters and He, 1987).

The present work takes a different approach. The unsteady aerodynamic

problem is split into separate wing and wake analyses. The wing theory must be

formulated in terms of the wake-induced velocity (and include the non-circulatory

loads). The wake analysis must obtain the induced downwash at the wing, from the

wing circulatory loading. A linear relation between the downwash and the bound

circulation will be obtained directly in the time domain, in terms of an impulse

response. With this approach it is possible to treat general wake configurations, for

example: (a) not just planar wake sheets, but also distorted wake geometry, rolled-

up tip vortices, and multiple wings (such as wing-tail-canard, or multi-blade rotors);

(b) not just time-invariant wake geometry (straight flight of fixed wings, or hovering

rotors), but also arbitrary motion (including the periodic geometry of rotors in

forward flight); (c) not just prescribed wake geometry, but also perturbations to the

wake geometry produced by the unsteady loading (important for multiple wings,

and for rotors at hover and low speed). Moreover, with this approach it is possible
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to make direct use of wake models developed for the trim loading problem. Such

models are generally much more sophisticated than those used for aeroelasticity

analyses. By making use of existing trim wake models, both the development effort

and the computation time can be significantly reduced.

The principal assumption of the work so far is that an incompressible wake of

concentrated vorticity is being dealt with. The objective is to derive a linearized
relation between the downwash and circulation, that can be used in aeroelastic

analyses of the perturbed wing motion. The restriction to an incompressible wake

does not preclude incorporating compressible effects in the wing model in some

fashion; a compressible version of the theory is one of the areas requiring research.

After obtaining a linear model in terms of the impulse response, there remains the

task of identifying an approximate differential equation representation, probably
with model order reduction.

1.2 Research Requirements

This section outlines the research required to complete the development of

the analysis, including research to extend the theory, establish methods for

implementing the theory, and develop unsteady aerodynamic models for particular

rotorcraft problems.

a) Wake theory

The manner in which rolled-up and distorted trim wake geometry can be

treated must be established, in particular the relation of the strength of the rolled-up

wake to the wing bound circulation. Wake geometry perturbations are produced by

both loading and flight speed changes. The formulation of the theory to account for

wake geometry perturbations must be completed. The theory can also be extended

to a compressible wake (consistent with a compressible wing model), and to a lifting-

surface or panel model for the wing

b) Model order reduction

The functional form of the downwash series must be established (the answer

may be problem dependent). The downwash series must be consistent with the

aerodynamics of the wake model. The objective is to find a series that produces
accurate results with a small number of modes.

c) Identification

The identification method must be developed. Entirely new techniques are

probably not needed for this theory, but it must be determined how existing

techniques can be applied. Identification in the frequency domain is probably best.



The proper use of the parameters must be established: order of the differential

equations, maximum time, time step, and identification frequency range.

Least-squared-error identification is simplest, if the occurrence of positive

(unstable) roots can be avoided. If the occurrence of positive roots can not be

avoided by proper selection of parameters (including frequency weighting in the

identification), a constrained identification method will be required.

The identification methods must be developed for time-varying systems.

Specifically, for helicopter rotors the periodic case must be considered, including a

constant coefficient approximation.

d) Applications

Rotary wing problems where the wake configuration is important in

determining aeroelastic behavior must be identified. The stability and response

results must be compared with experiment, with the objectives of verifying the

theory; establishing how to perform the model order reduction and identification

tasks; and determining when such features as wake geometry perturbations and

rolled-up wakes are required.

Differential equation models for standard problems may be developed. Such

models could be used directly, without repeating the calculation of the impulse

response and the identification for each new application. The method must be

implemented in computer programs for calculation of aeroelastic stability and

response. In particular, use should be made of existing complicated models for the
trim wake.

1.3 Objectives of the Feasibility Investigation

The purpose of the present investigation was to establish the feasibility and

soundness of the approach. Specific objectives included the following: (a) establish

the approach for model order reduction; (b) determine whether a constrained

identification method is needed; (c) verify the formulation of the theory for rolled-

up, distorted trim wake geometry; (d) verify the formulation of the theory for wake

geometry perturbations.

The report first outlines the theory, and then presents results. The theory

section reviews the general development; presents the equations for the flap and

pitch-flap dynamics problems to be investigated; and discusses the wake equations,

including model order reduction, multiblade coordinates, and the identification of a

differential equation model. Finally the theory section presents the equations for

various wake models, including undistorted and rolled-up wake geometry, and

wake geometry perturbations produced by loading and flight speed changes. The

results section presents the calculated impulse response, system function,
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eigenvalues, and response for various flap and pitch-flap rotor problems. These

applications are specifically directed at the objectives described in the preceding

paragraph.
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2. THEORY

2.1 General Theory

The initial development of the theoretical basis for a time-domain analysis of

the unsteady aerodynamics of general rotary-wing configurations undergoing

arbitrary motion has been documented by Johnson (1987, 1988). The downwash

induced by a wake can be evaluated by integrating over the wake vorticity at time t:

v(x,t) - 4jr1 f $ s3x-------_dA(y)

wake (1)

where v is the velocity at point x on a wing; rodA is the vortex sheet strength at

point y on the wake surface; and s = x - y. In general, the wake can consist of line,

sheet, and volume distributions of vorticity. Equation 1 relates the downwash at

time t to the wake position and strength at the same time. For unsteady

aerodynamics, the relation required is between the downwash at the current time,

and the loading at all earlier times (which created the current wake). For simple

configurations, this relation can be obtained from equation 1 by a coordinate
transform from streamwise distance in the wake to the time at which the wake

elements were created. For complicated configurations, the relation can be obtained
from the trim downwash influence coefficients.

Define the wake surface and vorticity at t in terms of two variables: past time

;, and some wing spanwise coordinate _1. An element in the wake is identified by

(t - 0, the time it was created. A wake element has shed circulation strength

proportional to the time derivative of the bound circulation, i_; and trailed

circulation strength proportional to the spanwise derivative F'. Hence equation 1

gives the downwash ;t as follows:

_(x,t) = hs(z,t-z) + F '(t-z) ht(z,t-_)] drl dz

(2)

The first term (subscript s) is the shed wake, and the second term (subscript t) is the

trailed wake. Discretizing the bound circulation over the wing span gives:

SO c_

+ Ft(t-z) hu(z,t-r) 1 dz

(3)
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Hence the integral over the wake surface becomes a convolution integral relating ;t

to F. From linear system theory, h is recognized as the impulse response, which

completely describes this relation, directly in the time domain. The objective of the

wake theory is to obtain h for specific cases, which is a relatively simple task, even

for complicated wake configurations. For time-invariant configurations (fixed

wings and hovering rotors), h = h(0.

Consider the case where the wake model, theory, and software have been

developed to calculate the wake-induced downwash for trim flight conditions. The

discretization of equation 1, both spanwise and streamwise, gives an influence
coefficient formulation:

,_(x,t) = _ F(yl,_k) Ctk(x,t)

l,k (4)

The trim wake model can include tip vortex rollup, and self-induced distortion of

the geometry. Both the impulse response and the influence coefficients are the

downwash produced by unit circulation in the wake, but the trim wake has been

discretized streamwise. A piecewise-constant bound circulation distribution means

a vortex-lattice wake model. The trim wake shed lines are integrated spanwise and

impulsive streamwise, hence hs = Cs. The trim wake trailed lines are impulsive

spanwise and integrated streamwise, hence Ct = average of ht over the time step.

The correct ht is obtained from the integrand of the line vortex element.

The wake geometry will vary during the unsteady motion of the wing,

because of the self-induced velocities at the wake surface produced by the

perturbation loading. An additional contribution to the impulse response can be

found, in terms of the downwash at the wake surface and the effect of the geometry

perturbations on the downwash at the wing. Velocity perturbations of the wing will

also produce perturbations of the wake geometry. An analysis of this effects leads to

an impulse response relating the downwash to the velocity perturbations.

The convolution integral relates the downwash and circulation of all points

on all the wings (a vector equation), with the wake coupling the wings. It is

frequently useful to transform to global downwash and circulation variables. An

example is the use of multiblade coordinates for rotors. With the downwash

evaluated at many points on the wing, there may be too many degrees of freedom

for an efficient differential equation model. To minimize the number of states, the

downwash and circulation can be expanded as series in a small number of

generalized coordinates. The downwash coordinates may be interpreted as weighted

averages over the wing, and the circulation coordinates as integrated loads or

perhaps generalized forces.

This wake theory is to be used in the calculation of time-domain stability and

response. Although it is possible to make use of the impulse "response directly,

using equivalent differential equations is probably of most general interest. Hence



the next step is to use the information contained in hs and ht to define approximate

differential equations relating the downwash variables to the circulation variables.

The wing theory is formulated in terms of the downwash, so the aeroelastic

equations of the aircraft are coupled with these wake equations. The wing theory

also gives the circulation, for the wake equations, in terms of the downwash and the

wing motion.

Calculating the impulse response may conclude the wake analysis, but there

remains the task of identifying a model for use in time-domain aeroelastic stability

and response calculations. The preferred model is a set of ordinary differential

equations relating the downwash and circulation (or the appropriate reduced order

variables). There are other possibilities: Laplace transform (Edwards, 1977); time-

domain approximation using functions other than exponentials (Stark, 1984); direct

application of the convolution integral; or transformation of the impulse response

to a discrete-time equation. A differential equation representation probably offers

the most flexibility for incorporating unsteady aerodynamics in aeroelasticity
calculations.

Calculation of the wake aerodynamics, in terms of the impulse response, is

performed in the time domain. The identification task however can be performed

in the frequency domain (although not necessarily on the imaginary axis). Thus h

can be numerically transformed (by FFT) to obtain the system function H:

H(c0) = S0 n
h(,r) e-i_ d'c

(5)

(for a time-invariant system; a generalization is required for time-varying systems).

At this point the shed and trailed wake response can be combined. Representing the

wake aerodynamics by a differential equation implies approximating H by a ratio of

polynomials in i_o (i.e. a rational function, or Pade approximant). Before proceeding

with the identification task, it is necessary to consider whether a ratio of

polynomials is the appropriate functional form, either in terms of the actual

behavior of the aerodynamic solutions (Vepa, 1977; Edwards, Ashley, and Breakwell,

1979), or in terms of the accuracy of the resulting approximate aeroelastic behavior

(Edwards, Ashley, and Breakwell, 1979). For three-dimensional problems, a rational

function should be a good approximation, with the numerator and denominator

polynomials having the same order. Note that the shed wake alone would have the

constant term of the numerator equal to zero; while the trailed wake alone would
have the numerator order one less than the denominator order.

Assuming that a rational function is the appropriate form for an

approximation, it is necessary to identify the coefficients of the numerator and

denominator polynomials. This identification problem has received considerable

attention in recent work on unsteady aerodynamics. Substituting the actual linear

relation into the assumed differential equation D(s)_, = N(s)F (where D and N are
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polynomials in the Laplace variable s), produces D(ira)H(ra) = N(ira). This is a linear

equation for the polynomial coefficients at a given set of frequencies, which can be

solved by the method of weighted least-squared-error (Vepa, 1977). Several other

identification methods have been developed (Dunn, 1980; Dowell, 1980; Roger, 1978;

Karpel, 1982; Miyazawa and Washizu, 1983), including application of nonlinear

programming techniques (Tiffany and Adams, 1987). Important considerations are

identifying a common set of poles using matrix representations (Vepa, 1979);

ensuring that all the poles are stable (Dunn, 1980); and obtaining a minimum order

approximation, i.e. minimum number of augmented states (Tiffany and Adams,

1987). For the general case considered here, the aerodynamic model may not be

time-invariant, hence the differential equation representation will have time-

varying coefficients. For the case of periodic coefficients, methods similar to those

for the constant coefficient case are applicable.

In summary, a general theory for the time-domain unsteady aerodynamics of

rotors has been described. The wing theory must be formulated in terms of the

wake-induced downwash. Then the wake theory gives a linear relation between the

downwash and the wing bound circulation, in terms of the impulse response. This

is in contrast to the traditional approach, which relates the wing loading directly to

the wing motion. The present approach permits calculation of aeroelastic behavior

of wings without requiring simplifications of the wake configuration. It is possible

to include distorted wake geometry (trim and perturbations), tip vortex rollup,

multiple wings, and time varying wake geometry. Moreover, if a wake model is

available for the trim loading problem, it can be used as a basis for calculating the

perturbation impulse response with little more development effort or computation

time. Consider the assumptions and approximations involved in this approach.

a) Incompressible wake of concentrated vorticity. Concentrated vorticity implies

wings rather than general bodies, but there is no restriction on the wake

configuration. The wing theory can include compressible effects in some fashion.

This time-domain approach should still be possible with a compressible wake.

b) The examples investigated so far have used lifting line theory. However, the

wake theory is not restricted to lifting line wing models (although these are

important cases for rotors).

c) Wake discretization. Spanwise discretization of the wing bound circulation

(typically piecewise constant, implying a vortex-lattice wake model) is required for

may applications, particularly with arbitrary wing and wake geometry. The effect of

such discretization is the subject of numerous investigations. Note that while the

impulse response is evaluated at a set of discrete times, that does not imply here a

timewise discretization of the wing bound circulation.

d) Model order reduction. Many practical applications of the theory will require

expansion of the downwash as series, which will be truncated at a small number of

generalized coordinates. Significant approximations can be introduced by both the
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functional form of the series, and by the truncation. It will be important to establish
minimum model requirements (probably problem and configuration dependent) so

that efficiency does not compromise accuracy.

e) Representation by differential equations. This identification task assumes that

the response can be correctly represented by a sum of exponentials (time-domain) or

ratio of polynomials (frequency-domain). The degree of approximation can be

controlled by the resolution and extent of the wake (frequency range and resolution)

and the order of the polynomials. Again it will be important to establish minimum

model requirements. Also, there are alternatives to the differential equation

representation.

The model order reduction and identification are major aspects of the development

of a practical unsteady aerodynamics representation. It is expected that the level of

approximation will be controllable, so it should be possible to achieve good accuracy,

only perhaps at the cost of increased number of states. Most importantly, the

aerodynamic theory is not constrained to simplified wake configurations in order to

obtain a practical model.

2.2 Rotor Aeroelastic Problems

The feasibility of the rotor wake analysis will be assessed in the context of two

rotor aeroelastic problems: flap motion and pitch-flap motion. The eigenvalues

and the response to control and hub motion for these two problems will be

examined. The flap motion is considered since it is fundamental to the behavior of

helicopter rotors. Moreover, the flap motion produces a direct lift change, and

hence will be strongly coupled with the wake. The flap-pitch problem is considered

in order to examine higher frequency dynamic behavior. These problems are both

involve primarily linear aerodynamic and dynamic forces, so developing the

perturbation equations of motion is trivial. Only hovering flight conditions are
considered.

The equations of motion are derived by Johnson (1980; pages 381,390, 429, 435,

556, 564, 579, 583 for the flap equation; pages 403, 598, 638 for the flap-pitch motion).

The principal extension required here is a rotor induced velocity that varies with
both radial station and time.

2.2.1 Flap Equation

Consider a rotor with N blades, at azimuth station Cm = V + may, where _ = fn,

m = 1 to N, and a¢ = 2_/N. Rigid flap motion/_ is assumed (positive flap up). For

simplicity, hinge offset and tip loss factor are ignored in the aerodynamics, but an

arbitrary flap natural frequency v is allowed (containing the effects of hinge offset
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and spring, as well as centrifugal stiffening). The equation of motion for the mth
blade is:

"°m

/J + v2/1"= y M_' - Sb_ (6)

where r is the blade Lock number; MF is the aerodynamic flap moment; Sb (= 1.5 for

a uniform blade) is the ratio of the first moment and second moments of inertia

about the flap hinge; and z is the hub vertical motion (positive up). This equation is

dimensionless, based on the rotor rotational speed _, rotor radius R, and air density

p. Assuming constant chord and small angles, and ignoring stall, the aerodynamic

flap moment is:

"m

= MoO m + MJ3 + M_. + M;_ m
(7)

where 0 is the blade pitch control (positive nose up), and ;t is a vector of the inflow

ratio ;t(rk) at the aerodynamic radial stations rk along the length of the blade. The

blade span is divided into M aerodynamic panels (k = 1 to M, from the root to the

tip), with panel widths ark, and rk at the midpoints of the panels. Aerodynamic

quantities, including the induced velocity and the bound circulation, are assumed to

have constant value over the length of each panel. Under the present assumptions,

the aerodynamic coefficients are:

Ma= 1 (8)

(9)

M_ = 1
6 (10)

(11)

Model order reduction will normally be used, in which the inflow is expanded as a

series with radial mode shapes pi and generalized coordinates li:

A.(rk, t) = Y_ pi(rt) li(t)
i (12)

or ;t = PI, where l is a vector of the generalize coordinates li. The same modes shapes

pi are used for each blade, so P is the same for each blade. Hence

12



•"m y'ra __ y±+-8fl + v2_m-yMxplm= Ore- Sbz--6 (13)

is the rotating frame equation for the flap motion of the mth blade.

Next, multiblade coordinates will be introduced. It is assumed that the rotor

has 3 or more blades (most of the results will be for N = 3). Without the wake

model, equation 13 for the mth blade is independent of the other blades. With the

wake model, the equations and response of the N blades are coupled to each other.

As usual, multiblade coordinates are the natural representation of the coupled

motion of rotor blades. In hover, introducing multiblade coordinates decouples the

N equations into independent sets, consisting of the collective motions (fl0 and 10),

cyclic motions (fllo Ills, llo lls), reactionless motions (/]no fins, lno Ins), and differential

collective motions (/JN/2 and/N/2). Additionally, multiblade coordinates offer the

usual benefits in representing the coupled motion of the rotor with shaft motion or

gusts. Hence

( s2+ 8y-s+ v2)rio- YM_.Plo Y--O=8 o + (- Sb s -_Y)±
(14)

I ll lCl+E- :ll
--(2S+_/ $ 2+8_---8+ V2-1 ]_ls -_M_P /is) = 8 - 01 s

(15)

are the nonrotating frame equations for the collective and cyclic flap and inflow

modes (in Laplace form). As required, expressions for the hub reactions can also be

derived. For example,

(16)

is the rotor thrust reaction on the hub. For the aerodynamic thrust force, only the

terms containing the Lock number y are retained in equation 16.

The wake equations give the inflow at the blade in terms of the blade bound

circulation F(r). Hence to complete the equations it is necessary to obtain an

expression for P(r) in terms of the blade motion. For the motion and aerodynamic
model considered here, the bound circulation is:

F(r) : _ (rO- dr-rf3+ _.)
(17)
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(This expression will be different for each rotor aeroelastic problem considered.) Let

r be the vector of the bound circulation F(rk) at the aerodynamic radial stations rk.

Then

• m

F m = G/_]3 + G_.Plm + Go Om+ G_ _m (18)

where the coefficient matrices are

Ge =
I acr/2 t

(19)

F
= L- acr/2

L (20)

(21)

f °lG;_ = - ac /2

0 ". (22)

Model order reduction can be applied to the circulation as well, although it will not

normally be used here. The circulation can be expanded as a series with radial mode

shapes qi and generalized coordinates or forces gi:

V(rk, t) = _,, qi(rk) gi(t)
i (23)

or F = Qg, where g is the vector of the generalize coordinates gi. Model order

reduction is not required for the circulation in order to reduce the system states.

Also, finding the inverse g = QinvG which is needed to express g in terms of the

motion (replacing equation 18), presents some difficulties (for example, Qinv is not

unique). For these reasons, model order reduction is generally not used here for the

bound circulation (Q = I). The multiblade coordinate transformation of equation 18

is easily obtained, since the coefficient matrices are constants.

2.2.2 Flap-Pitch Equations

Consider a rotor with rigid flap motion/_ and rigid pitch motion e (positive

nose up). The pitch motion has nonrotating natural frequency ¢0, representing the
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flexibility of the control system. The input pitch control is 0con. The equations of
motion for the ruth blade are:

• "'m )• m _m+ v2_ m - Ix( O + = _'M_ (24)

if(_m+ (092+1)0m)_ix('_ m + _m) _'M? + If0920 m= co,, (25)

where Mf is the aerodynamic pitch moment; If is the blade pitch moment of inertia;

and Ix (= 1.5 xl/R for a uniform blade, where xI is the chordwise offset of the blade

center-of-gravity, aft of the pitch axis) is the inertial coupling between the flap and

pitch motion. Unsteady aerodynamic theory must be used when the blade pitch

degree of freedom is included. Assuming that the blade pitch axis is at the

aerodynamic center (quarter-chord), the aerodynamic flap and pitch moments are:

"m "m

M'fi = MoOre+ M_3 + M i_m+ MO o + M##m (26)

"m

M_ = moo + mflflm (27)

Under the present assumptions, the new aerodynamic coefficients (obtained from

unsteady aerodynamic theory) are:

M0 _ c
- 8 (28)

M_ - c
12 (29)

m 0 - C2
32 (30)

m_ - c2
64 (31)

Since here there is no chordwise offset of the pitch axis from the quarter-chord,

there is no direct effect of the wake (inflow l) on the aerodynamic pitch moment.

However, the pitch motion is strongly coupled with flap motion, so even these

equations will exhibit a strong wake influence on the behavior. In Laplace form, the

rotating frame flap-pitch equations for the mth blade are:
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Application of the multiblade coordinate transform to these equations is

straightforward, since the coefficients are constant.

m,

(32)

2.3 Rotor Wake Equations

This section presents the general wake equations, applicable to all the

aerodynamic wake models considered in the investigation. The trim operating
condition is assumed to be hover.

2.3.1 Integral Equation

Consider a rotor with N blades, at azimuth stations Cm = ¢ + n_¢, where _, =

nt, m = 1 to N, and a¢ = 2u/N. The wake model provides a relation between the

inflow ratio ;fit) at rk on the nth blade and the bound circulation r(t-0 at pl on the

mth blade. The blade aerodynamic parameters are discretized radially, assuming

that the inflow and bound circulation are piecewise constant. Then the wake theory

(see section 2.1) provides the impulse response hs (shed) and ht (trailed) relating the
inflow and circulation:

oo

+h,(r) d':
(33)

In hover the relation between inflow and circulation is time invariant and the trim

wake geometry is axisymmetric. It follows that h is a function of T, j = m-n, rk, and

Pl. The impulse response h depends on the particular wake model used. The form

of the integral equation remains the same however, and the transformations and

identification required are the same.

Equation 33 implies that the inflow ratio at each of the M aerodynamic radial

stations on each of the N blades is a degree of freedom. The order of the differential

equation equivalent to equation 33 must be large for accuracy. Hence in general the

wake model requires a very large number of states. Model order reduction is
therefore desirable for the inflow variables, to limit the number of states in a
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particular problem. Let ;tn and vm be vectors of the inflow and circulation at all

radial stations on the nth and mth blades, respectively. The inflow is expanded as a

series with radial mode shapes pi(rk) and generalized coordinates li(t): ;tn = PIn. If

the order is indeed being reduced, there are more equations than variables after

substituting this relation into equation 33. Hence it is necessary to transform the

equations as well, which will be accomplished by multiplying by pTw, where W is a

suitable weighting matrix. To interpret this transformation, assume that equation

33 is solved for _., and then the task is to find l such that PI is a best estimate of _.. If

"best" means a weighted least-squared-error estimate, then l = (pTwp)'IpTw;t,

which can also be obtained by transforming the equations and solving for l. The

transformation pTw can also be interpreted as a weighted integral of the inflow _.(r)

over the blade span:

pTWA, = 2 Pi(rk ) Wk X(rk)
k

pi(r) _(r) X(r) dr

(34)

Letting Pi be a polynomial of order i gives a general representation of the spanwise

distribution of the inflow, and p = 1 (uniform) or p = r (linear) are commonly used

in dynamic inflow theories. Orthogonal polynomials (i.e. shifted Legendre

polynomials, with an appropriate weight W) offer some advantages, but are not

essential to the theory.

A similar variable transformation can be applied to the circulation as well,

although it will not normally be used here. The circulation can be expanded as a

series with radial mode shapes qi(pl) and generalized forces gi(t): F = Qg. While

such a transformation is commonly used for dynamic inflow theories, with the

generalized force being either the rotor thrust or moment, it is not suitable for a

general theory. The circulation variables (at M radial stations on each of N blades)

are not degrees of freedom, but rather are the interface between the wake model and

the rotor dynamics. So reducing the number of circulation variables means that

information is lost at that interface, but has no effect on the size of the coupled wake

and blade equations. This loss of information is reflected in the task of finding the

(nonunique) inverse g = QinvF, which is needed to express g in terms of the motion.

The wake differential equation is identified in terms of the circulation variables, so

the identification task is smaller and perhaps easier with model order reduction

applied to the circulation. In the absence of problems with the identification, that

consideration does not outweigh the loss of information. Additionally, care would

be required to keep the radial mode shape qi consistent with the wake structure. For
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example, q = r gives a nonzero circulation at the tip of the blade, which requires a
fully rolled-up, line tip vortex in the wake directly behind the blade.

Introducing transformations of both the inflow and circulation variables
(though usually Q = I here) gives the integral equation relating l on the nth blade to

g on the ruth blade:

In(t)=_ lhJ(o gm(t-_:)
+ h[('r) gin(t-O] d'r

(35)

where j = m-n. The transformation of the (matrix) impulse response is

h = D-1pTWhQ (36)

where D = pTwp (diagonal for an orthogonal inflow transformation).

That in hover h only depends on T means that the system is time invariant,

and a constant coefficient differential-equation form of equation 33 can be

considered. (In forward flight, h is a periodic function of t-_: as well, implying a

periodic coefficient differential-equation.) Even though the equations have constant

coefficients, they couple all the blades. Hence it is best to introduce the multiblade

coordinate transform, which is the natural representation of the coupled motion of

rotor blades. Reorder the variables in equation 35, to obtain the inflow for all blades

at radial station rk, in terms of the circulation for all blades at radial station p/:

[hkls( V) gl(t-Z) + hklt( _) gl(t-r) 1 dz

(37)

where for hover

hkl(_) = [hnm('r)3kl = [h J=m-n('r)]k I (38)

(n = 1 to N, m = 1 to N). Multiblade coordinates are obtained by a time-varying
transformation of the inflow and circulation variable at each radial station, from the

rotating to nonrotating frame: (lk)rot = T(lk)non and (g/)rot = T(gl)non. The equations

are transformed by multiplying by DT T, where DTTT = I. Hence the (matrix)

impulse response (for each k, l) transforms as follows:

hsnon('r) = D TT(t) hsrot('c) T(t-_) (39)

htnon('D = D TT(t) htrot(V) T(t-'¢) + D TT(t) hsrot('t') T(t-r) (40)
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Note that the static response is given by the integral of the trailed wake impulse

response over _ = 0 to _; the shed wake gives a response to the rate of change of

circulation, hence does not contribute to the static response. Equation 40 shows

however that the rotating frame shed impulse response contributes to the

nonrotating frame trailed impulse response, and hence to the nonrotating frame
static response.

The multiblade coordinates are/non = (10 lkc /ks lN/2) T and gnon = (go gkc gks

gN/2) T (k = 1 to K, with K such that the total number of coordinates is N), and the
transformation is

T 1 cosklff m sinkCm (-1)"

(41)

where W = f_t + maw, m = 1 to N, and DTT_'= E. Since in hover the rotating frame

impulse response has the form shown in equation 38, it follows that the

nonrotating frame impulse response is:

N-I

h ('r) = _., hd(r) CT(_j)
ST'IOn

j=o (42)

N-1

htno,(r) = E h/(Ocr(_ ) + h_(v)cT(_)E
j=o (43)

where N = nr-jaw, and

C T =
cos k_ -sin k_

sin klffj cos k_

(-1)/
(44)
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0

CTE =

(45)

(see Johnson, 1988). For each radial station (k,l), the N values of the rotating frame

impulse response give the NxN nonrotating frame matrix impulse response. The

form of C T (equation 44) shows that as usual in hover the 0, kc/ks, and N/2

multiblade coordinates are decoupled from each other.

The final form of the integral equation describing the aerodynamics of the

wake is:

l(t) = _o[hs(_) g(t-_) + ht(O g(t-O] d_

where l and g are the generalized coordinates for the inflow and circulation (all

modes, or all radial stations if model order reduction is not used). In hover,

decoupled equations of this form are obtained for the collective (0), cyclic (lc/ls),
reactionless (nc/ns), and differential collective (N/2) multiblade coordinates.

(46)

2.3.2 Differential Equations

The wake analysis produces a convolution integral equation relating the

induced velocity to the bound circulation, in terms of an impulse response

calculated in the time domain. For use with rotor stability and response

calculations, a differential equation is preferable to an integral equation. Hence the

next task is to identify a differential equation that is a good approximation to the

integral equation. The integral equation implies a linear, time-invariant model of

the wake response. A differential equation implies additionally that the impulse

response can be represented by a sum of exponentials with real or complex

conjugate eigenvalues. In the frequency domain, a differential equation implies

that the system function can be represented by a ratio of polynomials. In fact

however, the impulse response or system function given by the wake analysis has

different behavior. For example, the impulse response always decays with 1A to

some integer power (see Johnson, 1987, 1988). Hence a finite-order differential

equation must always be an approximation to the integral equation, and obtaining a

good approximation (for a particular problem) is a key objective of the identification
task.
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The impulse response is calculated directly in the time domain, but the

identification task can be performed in the frequency domain. Thus h can be

transformed to the system function H:

H(¢0) =

(47)

The shed and trailed impulse response are transformed to Hs and Ht, respectively,

and combined in the frequency domain to give a total system function H = l(ro)/g(ro)

= iroHs+Ht. Identification of the differential equation in the frequency domain is

chosen because (a) it leads to a linear parameter identification problem; (b) it allows

the shed and trailed wake effects to be combined; and (c) it allows the identification

to focus on the frequency range of interest.

Transformation of the impulse response h(0 to the system function H(ro) is

performed numerically using the FFT. The impulse response is evaluated at a

specified sample rate (per rev) for a specified length of time (revs). The result is a

system function with a bandwidth (per rev, equal to one-half the sample rate) and

resolution (per rev, equal to the inverse of the length in revs). The sample rate and

length must be large enough so that the resolution is adequate in the time and

frequency domains, so the bandwidth covers the range of interest, and most

especially so aliasing is minimized over the frequency range of interest. However,

computation efficiency requires that the sample rate and length be no larger than

necessary for accuracy.

Assuming that the integral equation is equivalent to a differential equation

means that the system function H can be approximated by a rational function. The

differential equation, of order N, is:

N N

Y_ Anl(n) = _ Bag(n)
n=0 n--0 (48)

The equation is linear, so A0 = I is assumed, without loss of generality. The presence

of three-dimensional trailed wake means that H approaches a nonzero constant at

low frequency, i.e. B0 _ 0. The low frequency (3D trailed wake) response will here be

matched exactly by always setting B0 = H(0). The static response is affected by the

accuracy of the FFT, but the identification then introduces no further

approximation. The presence of the shed wake means that H approaches a constant

value at high frequency, i.e. the order (highest derivative) is the same (N) for both l

and g (the number of zeros equals the number of poles). The system function at ro =

0- could be obtained from hs at r = 0, but the identification will usually be restricted

to a finite frequency range. The frequency domain version of equation 48 is

D(ito) l = NOr.o) g (49)
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where D and N are the denominator and numerator matrix polynomials in ira.

Substituting l = Hg, where H is the calculated system function, gives (for arbitrary g)

D(ico) H(co) - N(ira) = 0 (50)

The task is to identify the coefficient matrices An and Bn in the polynomials D and

N, so that equation 50 is best satisfied over the required frequency range. This

equation is linear in An and Bn, so least-squared-error methods can be applied,

which gives a direct and efficient calculation of the parameters.

There are additional assumptions implied by the form of equation 48. Let Nk

and Nt be the number of inflow and circulation variables, respectively. The system

response H is an Nk x NI matrix, the Hkl element giving the response of lk to gl. It

would be possible to separately identify a differential equation for each Hkz, but the

resulting equations would not be convenient. The form of equation 48 means that a

common set of poles is being used to describe all elements of H. Equation 48 has

NIN poles, and if the An matrices are full it means that each Hkl is being described

these poles and its own NzN zeros. Alternatively, if the An matrices are diagonal, it

means that each lk equation is being identified separately -- there are N poles for

each equation, and Hkl is being described by these poles and its own N zeros. It

might seem that full An matrices, with more poles and zeros for each Hkl, would

produce a better identification. However, there are not enough free parameters in

the off-diagonal elements of An to provide the extra zeros, so it is required that the

An matrices be diagonal. Hence the identification is performed separately for each lk

(scalar D and row-matrix N in equation 50).

A least-squared-error identification of equation 50 proceeds as follows (since

an objective of this investigation is to determine whether least-squared-error

identification is sufficient, more sophisticated techniques are not considered).

Considering separately the response of Ik to g (i.e. diagonal An), equatio n 48 becomes

N N

__, anl(kn) + l k = _._ bug(n)+ bog
n=l n=l (51)

where an are scalars, bn are row matrices, and b0 = Hk(0). With Hk the kth row of H,

equation 50 becomes, for one frequency ra
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[aN. . . al btv. . . bl ]

( i co)NH k

--( i (.o)l

= [ Hk(O) - H k ]

(52)

or @Xro = Y_ Concatonating all frequencies in the desired range for identification

gives OX = Y, which has the weighted least-squared-error solution

@ = (Re YWY(T) (Re Xwy_T) -1 (53)

Note that X and Y are complex (the overbar denotes complex conjugate); but only

positive frequencies need be included. W is a diagonal weighting matrix, so

x T = w(o )  r,o
,_ (54)

xw 2 w(o) x ,o
(55)

The weight over frequency, woo), is used to control the identification results.

The differential equations are developed in terms of the generalized

coordinates I. For a arbitrary transformation P in the model order reduction,

different results will be obtained if the modal truncation is performed before or after

the identification. However, if the transformation is orthogonal (i.e. pTwp

diagonal), the identification and modal truncation are independent. Hence it is

possible to investigate the effects of modal truncation by first obtaining a single set of

equations for the maximum number of modes, and then deleting modes from the

differential equations.

It is preferable to find solutions to the equations in standard form, hence

equation 48 for the wake response is transformed to first order form:

L+ AL = Bg (56)

l = CL + Dg (57)
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where the state vector L contains NkN variables. A static wake model can be

obtained by neglecting the time derivatives in equation 48 or 56, or more simply by

introducing a factor of about 0.001 on the time derivative in equation 56. Coupling

equations 56 and 57 with the equations of the rotor motion (equations 14, 15, or 32)

and circulation (equation 18) produces the differential equations for the complete

aeroelastic and wake system.

2.4 Wake Aerodynamic Models

A wake aerodynamic model is required to derive the impulse response h that

characterizes the behavior. Various levels of sophistication are possible in the wake

model. Here an N-bladed rotor is considered, but only hovering operating

conditions. To investigate the identification and model-order-reduction tasks, the

simplest possible wake model is used: helical sheets of vorticity, with no distortion

or rollup, and no wake geometry perturbation because of the loading changes.

Next a rolled-up, distorted trim wake is considered. In this wake model, the

rolled-up tip vortex contains all the trailed vorticity outboard of the peak bound
circulation; and for hover the trim distortion consists of radial contraction and

vertical convection. The objective is to establish the proper formulation of the

theory, and examine the influence of the rolled-up wake on the identification and
model-order-reduction.

Finally, wake geometry perturbations produced by loading and velocity

changes are considered. Again the objective is to verify the formulation of the

theory. Hence only perturbations from the undistorted trim wake geometry are
considered.

2.4.1 Undistorted Wake

Consider an N-bladed hovering rotor, with the wake modeled by undistorted

helical sheets behind each blade (Johnson, 1988). The Biot-Savart law (equation 1)

gives the downwash at radial station r on the nth blade, as the sum of contributions

from the wakes of the mth blades:

_"(r,t) = Y_ 1 r sinO Y_s +(rc°sO-p) 6 t p dC dp

m=l L, S3 (58)

S2 = (r sinO) 2 + (p- r ¢OSO)2 + Z2 (59)

where _ and p are the helical and radial coordinates in the wake; the shed and trailed

vorticity strength is p_ = -dr/dt and & = dr/dp, evaluated at the time the wake
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element was created; 0 = _m-_n-O = (m-n)a¢--#; and ¢ = _+c/4p (shed) or ¢ = r

(trailed). The vertical wake position z equals v0# for uniform convection by the

mean induced velocity v0 (no distortion of the helix). For an undistorted wake, the

radial integration can be performed analytically.

The inflow is required at discrete radial stations rk, from piecewise constant

bound circulation evaluated at pt (extending from PL to PR). The impulse response,

required for equation 33, is:

hs(0 _ 1 -rsinO(p-rcosO)_i
4_: ((r sin0) 2 + z2) s (60)

ht(0 - 14g p(p-rcoSO)s3 _i
(61)

Note that for hover, h is a function of .c, j = m-n, rk, and pl.

2.4.2 Rolled Up Wake

For this model, the trim wake of the rotor has rolled-up tip vortices and

distorted geometry (prescribed convection and contraction for hover). Perturbations

of the wake geometry produced by the loading changes are not yet considered. As in

developing wake models for trim (Johnson, 1990), it is here necessary to assume the

structure of the wake rollup process. The trim circulation distribution has a peak at

r . It is assumed that the trim wake rolls up into a tip vortex with strength equal to
t_e bound circulation at rp (errors in this assumption must be compensated for in

the choice of the vortex core size). The inboard wake sheet is stretched and distorted

by the rollup process, but the exact distribution of vorticity along the sheet is not

calculated. Hence in the modeled wake structure, the strength of the inboard sheet

also depends only on F(rp). This same model is used for the unsteady aerodynamic

model, which calculates the perturbation inflow produced by changes in the bound

circulation. Furthermore, it is assumed that the change of the radial location of the

peak bound circulation during the unsteady motion is a higher order effect. Then

the perturbed strength of the rolled-up tip vortex can be obtained from the perturbed

bound circulation at rp. For hover at normal loading, the core size and other factors

that are important for close blade-vortex interactions can be ignored.

Divide the wake into two parts, with a boundary at a wake age of 0bound = _/N

(half-way between the blades). For the wake directly behind the blade, it is the

detailed distribution of the trailed and shed vorticity that is important. Hence for

< _ound, the result for the undistorted wake is used (equations 60 and 61).

When the wake encounters the following blades (_ > _oound), the rollup and

distorted geometry are important. The impulse response required is the inflow at rk
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from the circulation at pl. In the rolled-up wake the strength depends only on the

bound circulation at rp, so hk/= 0 except for l corresponding to rp. The rolled-up tip
vortex is modeled as a line, so the Biot-Savart law for a line rather than a sheet must

be used. Let Zr(_) and pT(_) define the vertical and radial position of the tip vortex, as

function of the wake age _ (helix angle, measured aft from the present blade

position; with no distortion, zT = -v0¢ and PT = 1). The contribution of the tip vortex

to the trailed impulse response is then:

Aht(,c) = __1_ PT (PT - r cos0) + PT r sin0
4_ S3 (62)

where s is given by equation 59; a = _¢m-_Cn-O = (m-n)a¢-_; and _ = _'. This is similar

to the undistorted wake result for PR, with additionally the p_.' = dpT/d¢ term,

produced by contraction of the wake. Since the distortion and rollup eliminates

detailed information about the trailed and shed vorticity strength in the inboard

sheet, a modeling assumption is required. As for the trim wake, it is assumed that

the strength of the inboard trailed vorticity is constant over the span of the sheet.

This is the strength that would be produced if the bound circulation varied linearly

from zero at the root (r = rroot) to F(rp) at the tip (r = 1). The wake geometry is

defined by z(_) and p(_) at the inside and outside edges of the sheet, with linear

interpolation between. The Biot-Savart result for this sheet is not used here, since

the tip vortex dominates the downwash. Instead, the impulse response from the

undistorted wake model (equations 60 and 61) is used, with z(_) and p(_) of the

rolled-up geometry (it is necessary to use z = (ZL+ZR)/2, since the radial tilt of the

inboard sheet is not being properly accounted for). The wake from all radial stations

pl contribute to ah from the bound circulation at rp. Hence the contribution of the

inboard wake to the shed and trailed impulse response is"

Ah(_') = Z hi _Pl-l'root I

(63)

where hl is from equation 60 or 61, excluding the ht term from PR at the tip segment

(which is already accounted for by equation 62).

Hover loading calculations show that the trim bound circulation has a peak at

typically 90 to 95% radius (with a rolled-up, contracted wake). For the calculations

presented here, rp = .93 is used. The standard prescribed wake model for hover is
used, consisting of exponential radial contraction and two-stage vertical convection.

The parameters for this prescribed geometry depend on the rotor thrust coefficient,

twist, and number of blades; and are obtained from Kocurek and Tangler (1977).
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2.4.3 Wake Geometry Perturbations

The wake has a geometry and strength in trim, and the unsteady aerodynamic

theory considers the inflow change produced by circulation changes, because of

perturbations to this trim wake. A loading change produces an inflow change

(described by equation 33) through two mechanisms:

1) The loading change produces a perturbation of the wake strength (for fixed

geometry), which induces a velocity change at the rotor blade. This is the effect

considered so far, e.g. equations 60 and 61 for an undistorted trim wake.

2) The loading change produces a perturbation of the wake geometry (for fixed

strength), which changes the velocity induced by the trim strength at the rotor

blades. This is the effect considered in the present section, contributing an

increment in the impulse response, Ah, to equation 33.

The second contribution can be substantial; for example, for the low frequency

response to thrust changes in hover, it reduces the inflow by a factor of 2. The

objective is to verify the formulation of the theory, so assumptions are made: the

operating condition is hover; only the vertical perturbation of the geometry is

used; the trim geometry is undistorted (a constant-pitch helix, hence the geometry is

time-invariant).

The mechanisms involved in the wake geometry perturbations are as

follows. The loading change produces a change in the strength of the wake. This

strength change induces a perturbation velocity on the wake itself (as well as on the

wing). The wake convects with the local velocity, so the perturbation velocity is

integrated in time to get the perturbation geometry. A perturbation of the geometry

of the wake with trim strength produces a change in the velocity induced at the

wing. The result for this velocity at the wing is reordered as required to get the

convolution form (equation 33), and the incremental impulse response identified.

Consider the wake at time t. To evaluate the wake geometry perturbation, the

velocity is required at a wake element with age _w, produced by the vorticity of a

wake element with age T. Note that _ = t-Tw and t-T are the times that these two

wake elements were created; and T-Tw = T+6-t is the time (or helix angle) between

the two points. Analogous to equation 33, the induced velocity at ri on the pth

wake, from a bound circulation changes at rt on the mth blade, is:

_0 °° ° m

The h for this velocity depends on ri, rl, j = m-p, and _-_w- In general, h would

depend on T-Tw, t-r, and t. Since the trim geometry of the wake is here time-

invariant (hover, with no distortion; so the vertical separation between the two

(64)
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wake points depends only on r-_w), h depends only on T-,w. This impulse response

can be calculated as for the velocities on the wing surface. If the distorted wake

geometry is calculated for the trim problem, then the impulse response will be

available with little more computation. As usual with wake geometry calculations,

evaluating the velocity at a wake point that is produced by the vorticity at that same

point requires special attention.

The geometry perturbation of the wake element at S is given by the time

integral of the velocity. The vertical position change (positive down) at ri on the

pth wake is"

Az P.(t,6) = (0,6) do

(65)

The integration is over the velocity on a specific wake element, which is identified

by a value of 8 (that is why equation 64 is written in terms of t and _, and has existed

from time t-Tw (= 6) to t. If the geometry perturbations are significant in all three

directions, the equations 64 and 65 are for vector velocity and displacement.

The velocity change at the wing produced by a geometry perturbation at a

single point is D, and the total velocity change is given by the integral of D over the
entire wake. The inflow increment at rk on the nth blade is:

A_'_k(t) = p_ _. fj_ d az i(t,@
(66)

where D is a function of rk, ri, j = p-n, and rw = t-,5. D is the influence of the

geometry on the trim downwash, which can be obtained from numerical or

analytical perturbation of the trim influence coefficients.

Substituting equations 64 and 65 into equation 66, and reordering the

integrations, produces the required convolution form, and the increment to the

impulse response for equation 33 can be identified. Here the wake geometry is time-

invariant, so the integral over a produces a factor min(Tw,0, which is the time that

the velocity (constant for time-invariant geometry) from the wake at _ has been

acting on the wake at _w. The result is

ahL, o=E E [min(_,O D[i(_) hJ-r(z-zw) ] d_

i p=o (67)

for the shed and trailed wake. The integration over _w must be discretized, e.g.

using trapezoidal integration. Evaluating ah using equation 67 is very expensive
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compared to the direct contribution (equations 60 and 61). Both D and h in equation

67 have wide variations in magnitude (they are large only when s is small), so it

should be possible to develop an efficient computation procedure (perhaps in

parallel with the calculation of the trim free wake geometry).

As a specific example, consider the case of undistorted trim wake geometry.

The contributions of the wake strength perturbations to the impulse response are

given by equations 60 and 61. The same wake model is used to derive the impulse

response required by equation 64, which is the velocity on the wake surface rather

than on the wing. The result is

hs(,r)- 41_rr,-rsinO(p-rcosO) _i
((r sinO)2 + z2) s (68)

ht('r) - 14_: p(p-rcosO)s3 _i
(69)

where s is given by equation 59; 0 = gm-_gp-C_-q_v = (m-p)ac-(_-_w); and z = v0(r-_w).

Care is required to evaluate the velocity induced by a vortex sheet or line on itself.

Here the cutoff method is used: the velocity contribution (hence h) is zero from

vortex elements within a small distance e from the point where the velocity is

calculated. The other quantity required by equation 66 is the function D. Integrating

over the trailed wake produced by the trim loading gives the trim induced velocity
at the nth blade:

"1

p (p- r cosO) &[
dG

S 3 PLJ (70)

where s is given by equation 59; 0 = gp-_'n-Gv = (p-n)AC-rw; and Ztrim = V0Ow.

Perturbing z in equation 70 gives the function D of equation 66:

13 1
(71)

This expression requires the trim bound circulation. For the present purposes, F(pi)

is assumed to vary linearly from zero at the root, to a maximum at rp, to zero at the
tip; and the maximum trim bound circulation is estimated from the rotor thrust

using ['max = 9.8 CT/N (for rp = .93).
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2.4.4 Rotor Velocity Perturbations

A perturbation of the velocity of the rotor relative to the air, from either rotor

hub motion or gusts, with change the loading on the rotor and therefore change the

induced velocity, as described by equation 33 (including wake geometry perturbation

produced by the loading change). In addition, such rotor velocity perturbations will

directly change the wake geometry, and thereby produce further inflow changes.

Thus a new term must be added to equation 33:

fA_,Vk(t) = hv(_) Ia(t-T) dT
(72)

where a is a vector of variables describing the rotor velocity perturbations; and hv is

a function of rk, n, and _. This effect can be substantial; for example, for the low

frequency response to vertical hub motion in hover, it reduces the inflow by a factor

of 2. The formulation of the theory for equation 72 parallels what has been derived

so far.

Consider hover, and the vertical geometry perturbations produced by vertical

velocity perturbations on the wake. The vertical velocity (of the air relative to the

rotor, positive downward) at ri on the pth wake can be written:

/aP(t,6) = M.P(6),/_(t) (73)

For example, vertical velocity, pitch rate, and roll rate of the hub give

/_(t,6") = [ 1 -ricos_ rising]

(74)

where ¢ = Cp-_v = t-_'w+pa¢ = _+pa¢ (actually this is the velocity at the rotor disk,
which will be close for the near wake). Then the vertical position change produced

by this velocity is given by equation 65 (with az used in place of ;-w), and the inflow

increment produced by the geometry perturbation is given by equation 66 (giving

a;tV here instead of a;IG).

Substituting equations 74 and 65 into equation 66, and reordering the

integrations, produces the required convolution form, and the impulse response for

equation 72 can be identified. The result is
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(75)

Evaluation of equation 75 will follow the methods for equation 67.

After equation 72 is introduced as a new term on the right-hand side of

equation 33, it is necessary to follow the steps discussed in section 3. Model order

reduction for the inflow variables will transform the impulse response as follows:

hv n = D-1pT Why n (76)

The multiblade coordinates are introduced, transforming the impulse response as
follows:

hvnon('C) = DTT(t) hVrot('c)

It can be shown that the form of hVrot is such that (for hover) hVnon is only a

function of v, and that the equations are decoupled as usual by the multiblade

coordinates (e.g. vertical velocity only affects the collective modes, and hub pitch

rate and roll rate only affect the cyclic modes).

Including now the rotor velocity effects, equation 46 is replaced by:

(77)

l(t) =
SO °°

[hs(_') g(t-_') + ht( O g(t-O + hv( O p(t-_)] d_

(78)

or in terms of the system function, l = Hg + HV_. The equivalent differential

equation is obtained by approximating the system functions as ratios of polynomials,

hence equation 49 becomes

D(ica) l = N(ico) g + Nv(iCo) p

Then the identification task must simply consider more input variables, i.e. _ as

well as g for each inflow equation. Since there will normally be many more

variables in g than in _, the identification accuracy should not be degraded too

much. Finally, the differential equations describing the wake become

L+ AL = Bg + BvP

(79)

(80)

l = CL + Dg + D vP (81)
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3. RESULTS

This section presents results directed at establishing the feasibility of the

theory developed above. Key aspects to be investigated are the model order

reduction, identification, wake rollup model, and wake geometry perturbations.

Most of the results are calculated for a hovering rotor with three blades,

solidity ratio cr = 0.075, and blade loading CT/a = 0.08. The blade is divided into 19

aerodynamic panels, from r/R = .14 to 1.00, with the panel width ranging from 0.02R

at the tip to 0.08R at the root.

3.1 Previous Results

Several examples of the impulse response are presented by Johnson (1987,

1988). The wing model used for these examples was lifting line theory, which

allows direct interpretation of the downwash without chordwise integration. The

impulse response was examined for the following cases.

a) Two-dimensional airfoils. Two-dimensional problems have the advantage of

analytical solutions, but the behavior is very different from that of three-

dimensional wings. Theodorsen's problem provided a way to examine the manner

in which the shed wake was treated in the unsteady lifting-line theory used. More

complicated cases were an airfoil in a time-varying (periodic) free stream, and with

the returning shed wake (wake sheets below the airfoil, similar to Loewy's model).

These results were quite simple: the impulse response is just the downwash

produced by an element of wake vorticity. In contrast, the lift deficiency functions

for these two problems are complicated in derivation and form.

b) Three-dimensional wings. These problems showed the influence of three

dimensions on the impulse response; and showed the functional form in the time

domain and frequency domain, as a guide to the identification task. The wake for

these cases was undistorted sheets. The bound circulation was piecewise constant

spanwise. Then it is possible to integrate the shed vorticity spanwise, and thus

obtain analytical expressions for the impulse response of the shed and trailed wake.

A fixed wing at constant flight speed is such a case. Another case is a helicopter

rotor in hover, or even in forward flight. In contrast with other methods, the

helical geometry of the rotor caused no additional problems with this approach.

c) Hovering rotor. These problems showed the method in use for multiple wings

(an N-bladed rotor, using multiblade coordinates), with prescribed wake geometry

(contraction and two-stage vertical convection), and with model order reduction.
The wake consisted of undistorted helical sheets (no rollup). The generalized

coordinates used were uniform downwash response to blade thrust, and linearly-

varying downwash response to blade flap moment. These are the conventional

variables of simple rotor wake models, but are not truly proper for the aerodynamics
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of the problem. These examples showed the mathematics of the model order

reduction were correctly formulated, but did not establish the correct generalized
coordinates to use.

d) Rotor in forward flight. This problem has time-varying wake geometry, so the

impulse response depends on the blade azimuth when the wake element was
created, as well as on the time since it was created.

e) Computational example. This case illustrated a complicated configuration, and

the calculation of the impulse response in parallel with computation of the trim

wake influence coefficients. The case was a three-bladed single main-rotor

helicopter in forward flight. The wake model had rolled-up tip vortices, and self-

induced distortion of the trim wake geometry. The calculation of the impulse

response was added to an existing computer program for the trim wake model. The

computation time was increased by only 5%.

3.2 Undistorted Wake

3.2.1 Impulse Response

The identification and model order reduction will be investigated using the

undistorted wake model (section 2.4.1). Figures 1-3 show the impulse response as a

function of time (wake age in revs). Figure 1 shows the effect of the wake directly

behind the blade. The inflow at 0.77R from the trailed and shed wake produced by

bound circulation at 0.77, 0.81, and 0.845R is shown. The near wake effect is

comparable to that on fixed wings (Johnson, 1988), and exists only for about 0.01

revs. Figure 2 shows the impulse response from the far wake as well. The trailed

wake generates pulses and the shed wake generates doublets at intervals of 1/rev as

the blade rotates over it. The magnitude of h at the peaks (including T = 0) depends

strongly on the width of the aerodynamic panels. Figures 1 and 2 show the effect of

the wake of blade 1 on blade 1. Figure 3 shows the impulse response from the wake

of all three blades (at 0.77R), acting on blade 1 (at 0.77R). The impulse response

appears as a succession of pulses, because of the returning wake of a hovering rotor.

Figures 4 and 5 show the impulse response with the transformations of

model order reduction applied to both inflow and circulation. A single inflow and a

single circulation mode are used, uniform for figure 4 and linear (proportional to r)

for figure 5. Model order reduction has the effect of broadening the peaks in the

impulse response, implying less high frequency content in the system function.

(Model order reduction is only used for the inflow, not the circulation, for the

remainder of the investigation.)

Figures 6 and 7 show the impulse response with the multiblade coordinate

transformation applied (but not model order reduction). The inflow at 0.77R from
the circulation at 0.77R is shown for the various multiblade coordinates. Note that
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for a hovering rotor, the axisymmetry implies lnc/gnc =/ns/gns and lnc/gns = --/ns/gnc.

Figure 7 is for a four-bladed rotor, to show the differential collective mode.

Comparing figures 3 and 6, it is evident that the multiblade coordinate

transformation primarily just adds the responses from all the blades (with some

sign changes at longer times). Specifically, the transformation multiplies the

rotating frame hJ by one of the factors (1, cosk_, sink_j, (-1)J), where _ = T-ja_,.

Hence the collective mode (/0/g0) indeed just sums the rotating frame impulse

responses, and the differential collective mode (IN/2/gN/2) sums them with

alternating signs (figure 7). For the hovering rotor, the rotating frame impulse

response hJ is large only near the peaks at r = ja_+nJr (n = 0 to oo). So where hJ is

large, cosk_ _=+1 and sink_ _=0. Hence the direct cyclic and reactionless modes

(/nc/gnc,/ns/gns) also primarily sum hJ (with sign changes at larger time than shown

in figure 6), and the off-diagonal cyclic and reactionless modes (/nc/gns,/ns/gnc) are
small.

Figure 8 shows the impulse response with model order reduction (for the

inflow modes only) and multiblade coordinates. The response of a single, uniform
inflow mode to the circulation at 0.77R is shown. The model order reduction

broadens the peaks, but still the collective and direct cyclic modes (/o/g0, llc/glc,

lls/gls) are similar, and the off-diagonal cyclic modes (/lc/gls,/ls/glc) are small. It

follows that for the present feasibility investigation, focusing on the identification

and model order reduction, it will be sufficient to consider just the collective modes.

Of course, for the aerodynamic and dynamic behavior of rotors, the cyclic modes are

important as well.

3.2.2 System Function

The behavior of the system function will be examined for the collective,

uniform inflow mode from circulation at 0.77R. The FFT applied to the impulse

response produces the system function. It is necessary to establish the sample rate r

(per rev) and length Tmax (rev) in the time domain that will give an accurate system

function. The time step is at = 360/r degrees of azimuth. The system function will

have a bandwidth of rOmax = r/2 (per rev) and a resolution of aro = 1/Tmax (per rev).

Small r and Tmax are desired, to minimize the computation time. Note that

calculations of the trim wake-induced velocity typically use an azimuthal step of 10-

15 deg (r = 36-24/rev), and 2-4 revs of wake (with an inexpensive far wake model in

hover, to extend the wake to 20 revs or so). If Tmax is too small, the resolution in

the frequency domain will be too large. If the sample rate is too small, the peaks of

the impulse response will not be resolved well, and the bandwidth of the system

function will not be large enough. The rotor dynamics suggest that the required

bandwidth is perhaps 3/rev for problems involving the flap motion, and at most

about 10/rev in general. The identification of the wake differential equations will

consider such a frequency range. It is found that the primary factor determining the

sample rate is the need to avoid significant aliasing in the system function over the

frequency range of the rotor dynamics.

34



Figure 9 shows the impulse response of the trailed and shed wake, for sample

rates from 256/rev to 32/rev. Even 32/rev gives a reasonable resolution of the peaks

in the time domain, losing little information compared to 256/rev.

Consider the behavior of the system function implied by the form of the

impulse response in figure 9. Since h(0) is finite and nonzero, it follows that H

behaves like h(0)/s at large s (Laplace form), for both the shed and trailed h. Since

H(0) (equal to the integral of h(0 from 0 to _) is finite, it follows that H approaches a

constant at small s, for both the shed and trailed h. The total system function is H =

Ht+i_Hs. The shed wake contribution to H (iroHs) is proportional to s at small s and

approaches a constant at large s. So the total system function H has a constant,

nonzero value at low frequency, from the static trailed wake influence (three-

dimensional wing); and a constant, nonzero value at high frequency, from the

unsteady shed wake influence (lift deficiency function). Such behavior can be

approximated by a polynomial system function, with equal number of poles and
zeros.

Figure 10 shows the system function: Ht and Hs, obtained by FFT of the

impulse response; iroHs; and the total H = Ht+ir0Hs. With a sample rate of 256/rev,

rOrnax = 128/rev, but the results in figure 10 are significantly affected by aliasing above

about 40/rev (figure 9 gives hs(0) = 0.374, hence H(_,) should be 0.374). Figure 11

shows the system function for only the near wake part of the impulse response (_ <

1/6 rev in figure 9). The high frequency behavior comes from near shed wake,

while the oscillations in H are the effect of the far wake. The near wake part of the

impulse response is a pulse at T = 0. This pulse has a width of about 0.006 rev, which

implies a break frequency in the system function of around 25/rev. This is a typical

frequency range for two-dimensional shed wake effects (25/rev corresponds to a

reduced frequency k of around 0.8). Note that H is the induced velocity produced by

the circulation change, so a positive phase for H gives a phase lag in the lift-

deficiency function. A two-dimensional wing would have no static effect of the

wake (H(0) = 0). The nonzero value of H(0) here is the static induced velocity of a

three-dimensional wing. It is necessary to consider the bound circulation over the

entire span (not just 0.77R as in figures 9-11) to determine the relative effects of the
trailed and shed wake.

The far wake contribution to the trailed impulse response ht is roughly a

train of pulses, occurring at N/rev:

Ah t = _., hn(_-nA_)
_--1 (82)

where hn is a single pulse at r = 0. The system function for equation 82 is

AH t = _ Hne-iamA_u
,=1 (83)
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Hn is the system function of hn, so it has a slow variation over a wide frequency

range (like the near wake term). The exponential factor in equation 83 has unit

magnitude and a phase that increases linearly with frequency. The exponential

factor has the effect of rotating the complex vector Hn with a period (in frequency) of

(N/n) per-rev. If the near wake pulse is dominant, then the effect of the first far

wake pulse in ht (at T = 1/N rev) is to produce an oscillation in the magnitude and

phase of the total system function, with a period in ro of N/rev. This case is

illustrated in figure 10 (N = 3 here). The oscillation decays in amplitude as

frequency increases because of the reduction in amplitude of H1; this decay has a

bandwidth roughly the same as the near wake term. If instead the first far wake

pulse is dominant, the system function will have a magnitude varying slowly with

frequency, while the phase varies linearly with frequency, changing by 2_ when ra

increases by N/rev. The far wake contribution to the shed impulse response hs has

a similar behavior, except that it is roughly a train of doublets instead of pulses.

Figure 12 shows the system function over the range 0 to 10/rev, for Tmax = 4

rev and sample rates from 256/rev to 32/rev. The corresponding time step,

frequency resolution, and bandwidth are shown in the following table.

r Tmax At Ara ahnax

256/rev 4 rev 1.4 deg 0.250/rev 128/rev
128 4 2.8 0.250 64

64 4 5.6 0.250 32

32 4 11.2 0.250 16

128 8 2.8 0.125 64

Aliasing demands a higher sample rate than indicated by the time domain

resolution of the peaks. Up to 10/rev a sample rate of 128/rev is good, while 64/rev

gives a noticeable effect of aliasing, and 32/rev may not be acceptable. Figure 13

shows the effect of increasing the sample length to 8 rev. The smaller frequency

resolution has a minor effect. While reducing aro produces a smoother looking

system function, it does not introduce more information, and so can not help the

identification process.

For the remainder of this investigation, Tmax = 4 rev and r = 128/rev are used,

to avoid any possibility that errors caused by aliasing would produce misleading

results in the identification task. A wake azimuthal increment of 2.8 deg is much

smaller than desired for computational efficiency however. When the

development of this method is completed, one objective must be to establish

practical minimums for the sample rate and length (e.g. 2 rev of wake, padded with

2 rev of zeros, and r = 32/rev), in the context of specific rotor problems.
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For a quantitative assessment of the system function, consider the response of

the inflow to rotor thrust changes. A single inflow mode is used (uniform over the

blade span), but model order reduction is not used to replace the circulation as a

function of radius by a generalized force equivalent to the thrust. Instead, the rotor

frequency response during collective pitch input is calculated. Omitting the flap and

hub velocity terms, equations 16 and 18 give the rotor thrust CT and bound

circulation in terms of collective pitch and the inflow mode/u0 (uniform,

collective). The calculated system function relates lu0 to the bound circulation (at all

radial locations). Eliminating the bound circulation from these equations gives Ol/Oo

and 0CT/O0, and their ratio gives the inflow response to thrust OI/3CT (during

collective pitch input). Figure 14 shows these three quantities for a three-bladed

rotor. Vortex theory (i.e. with fixed wake geometry) gives a static response of Ol/OCT

= 9.1, while figure 14 shows a value of 7.1, confirming the magnitude of the

calculated system function. The difference is likely caused by the assumption of

uniform inflow for collective pitch changes with a discrete wake model. (Note that

momentum theory, which includes the static effects of wake geometry changes,

gives Ol/OCT = 4.6. ) In form figure 14 is similar to figure 12, so the inflow response to

the bound circulation at 0.77R does reflect the global behavior of the rotor.

Figure 15 shows the inflow response to thrust as the number of blades varies

from 3 to 8. Increasing the number of blades moves the peaks of the system

function to higher frequency (multiples of N/rev), resulting in a simpler variation

of H over the frequency range of interest (but more multiblade coordinates). The

identification task will be examined only for the worst case, of a three-bladed rotor.

3.2.3 Identification

The identification task approximates the calculated system function by a ratio

of polynomials, thereby defining a differential equation that approximates the

integral equation. Figure 16 shows the calculated system function for uniform

inflow from the bound circulation at several radial stations along the blade. There

are some interesting differences between radial stations, also reflected in the radial

variation of the impulse response (as in figure 17; the oscillation is a result of

integrating along the span for the inflow model order reduction), but generally the

system function behaves in a similar fashion along the blade. This is the case that

will be used to investigate the identification and model order reduction tasks. Least-

squared-error identification is used (as described in section 2.3.2), with weighting as a

function of frequency. The basic frequency range of the identification means a

weight of 1 within that range and a weight of 0 outside it. The frequency range of

interest for rotor dynamics extends from zero (static) to some maximum that

depends on the problem, but is usually less than 10/rev. Selection of this basic

frequency range serves to focus the identified wake model for a specific problem. A

further use of the weighting over frequency will be to control the placement of the

poles produced by the least-squared-error solution.
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It is important to remember that a rational function representation of the

system function, i.e. a discrete set of poles and zeros, must always be an

approximation. A pole-zero representation implies that the impulse response

decays exponentially with _-, but in fact the wake model will always produce a decay

with 1/_ to some power. In addition, a common problem of finite-state aerodynamic

theories with unconstrained identification is the appearance of positive (unstable)

roots in the wake model. When they occur here, these roots are very large (outside

the frequency range of the identification). Such large roots (positive or negative)

imply that the functional form of the approximation has a limited ability to match

the correct response. For stability and frequency response calculations the positive

roots could be ignored, but for most purposes they are not acceptable, and a key

question is the ability of the least-squared-error method to avoid this problem.

The form of the system function (figure 16) suggests what pole-zero

representation will be required. The drop in magnitude and the phase shift at low

frequency, produced primarily by the trailed wake (see figure 12), imply at least one

small pole (on the order of .1/rev). The near shed wake effect (see figure 11) will

require at least one large pole (on the order of 20/rev, probably outside the

identification frequency range). The combination of these two effects requires a

minimum of two poles and two zeros. The magnitude change and phase shift

occurring near N/rev, 2N/rev, etc (see figure 12) will require at least two complex

poles and two complex zeros for each peak, with a frequency around N/rev, etc.

Hence the basic character of the system function determines the minimum order,

which is twice the number of peaks (including the static peak) within the

identification frequency range. Additional poles and zeros should improve the

identification. However, as the order is increased the least-squared-error method

tends to place the new poles and zeros well outside the identification frequency

range, in order to produce just a slight improvement within the range. The sign of

these large roots is not constrained by the response within the identification range,
hence the method allows unstable roots to occur.

Consider first the identification of the system function for uniform inflow

response to the bound circulation at a single radial station, r = 0.77R (figure 12, with

4 revs of wake and 128/rev sample rate). Figure 18 shows the influence of the

assumed frequency range and order on the identification. The results show that the

minimum order is indeed twice the number of peaks with the identification

frequency range. That minimum order provides a fair fit, and one more pole-zero

pair gives a good fit. Two more pole-zero pairs beyond the minimum order (i.e. the

maximum order shown in figure 18 for each frequency range) give a good fit, but

with a large positive (unstable) pole. The identified poles and zeros are listed in

table 1. At frequencies beyond the specified range of identification, the identified

system function has very different behavior than the calculated H. It is assumed

that the content of the rotor dynamics will make this behavior unimportant.

The complete identification considers the inflow modes separately (see

section 2.3.2), but the bound circulation at all radial stations simultaneously. Hence
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the system functions are identified with separate zeros for each bound circulation
variable, but a common set of poles. Requiring the same set of poles to provide a fit
for several system functions (here 19 radial stations are used) degrades the

identification. Figure 19 shows the calculated and identified system function for

uniform inflow from circulation at 0.77R, when the identification covers all radial

stations. Comparing figures 18 and 19, it is observed that for a fixed order the fit is

indeed worse in figure 19. The identified poles, and the zeros for 0.77R, are listed in

table 2. A problem introduced by considering all radial stations is the erratic

appearance of positive roots. It is not practical to plot the system function for all

modes and all radial stations. Instead, the accuracy of the identification will be

assessed in terms of the rms system function error E for each Ik and g/combination,
defined as:

e2 = l _'j I H-Hid_K (84)

where the sum is over the K frequency points within the identification frequency

range. Note that the least-squared-error method minimizes a different quantity,

namely

Zlox-rl =El Dn-Nf= EID I
¢0 CO a/ (85)

(see equation 52). The error t is not normalized, so its magnitude is not directly

meaningful. Hence a value of e is given for the plotted system function, to provide

a reference for judging the values at other radial stations. Table 2 presents the rms

error for 0.77R, and the minimum and maximum values among the other radial

stations. Generally, the fit at 0.77R is characteristic of the entire span, and the fit

steadily decreases as the order is increased. Note however that the appearance of

unstable poles at low order is also accompanied by increased identification error.

With the objective of eliminating the positive poles, several schemes for

choosing the frequency weighting in the identification were tried. Introducing a

small weight for frequencies above the basic identification range helped control the

appearance of positive poles for one radial station (figure 18), but did not improve

the fit much (the additional poles tend to be wasted on a poor fit at high frequency)

and did not help control the positive poles for all radial stations (figure 19).

Observing that the fit in figure 19 is particularly worse at low frequency, compared to

figure 18, an increased weight was tried for the low frequencies within the basic

identification range. Figure 20 and table 3 show the results for an identification

range of 0 to 4.5/rev (basic weight = 1), with the weight increased to 4 and to 16 over

the range 0 to 1.5/rev. The fit is improved with this scheme, and the appearance of

positive roots is more consistent and is delayed to higher order.

The next step is to perform the identification for more than one inflow mode.

For the model order reduction, the inflow is represented by a series of polynomials.
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The series begins with uniform inflow, and is orthogonal when integrated with unit

weight from the root to the tip (i.e. shifted Legendre polynomials). By using

orthogonal functions, the first (uniform) mode has the same system function

regardless of the total number of modes retained. Figure 21 shows the system

function of the first three inflow modes, from the circulation at 0.77R. The three

modes exhibit similar behavior, so similar results of the identification process are

expected. The identification is accomplished separately for each inflow mode. So

each inflow mode has its own poles, which are common to the system functions for

the circulation at all radial stations. Figure 22 and table 4 show the influence of the

order and frequency weighting on the identified system function, poles, and rms

error for three inflow modes. The fit is somewhat worse for the higher modes, but

the weighting that improved the identification for the first mode works for the

higher modes as well.

For investigation of the effects of model order reduction, the wake equations

were constructed for the following case: collective modes of a three-bladed rotor;

identification frequency range of 0 to 4.5/rev (with weight = 16 for 0 to 1.5/rev) and

order = 6; six inflow modes; and CT/cr = 0.08 and 0.02. Figures 23 and 24 show the

system function, and table 5 lists the poles and rms error. The other multiblade

coordinates are important for rotor aerodynamic and dynamic behavior, but not this

feasibility investigation, since the form of the system function is similar for all

degrees of freedom. This frequency range includes the first peak of the system

function, and is enough to examine rotor flap and pitch-flap dynamics. The order

provides good identification (although how good a fit is required is not established

yet). Six inflow modes will be enough to investigate convergence of the model

order reduction. With six inflow modes and sixth order equations, the wake model

has a total of 36 states. A relatively low value of thrust, CT/rr = 0.02, is examined in

order to check for different behavior associated with increased magnitude of the

induced velocity (as shown in figure 24).

3.2.4 Model Order Reduction

A model order reduction transformation is applied to the inflow variables in

order to minimize the number of states introduced by the time-domain model of

the wake. It is necessary to establish how few modes can be used, while retaining an

accurate representation of the unsteady aerodynamics. This issue is examined by

varying the number of inflow modes and looking at (a) the convergence of the rotor

eigenvalues and response; and (b) the radial variation of the inflow during the rotor
motion.

Two aeroelastic problems are considered: flap and flap-pitch motion of a

rotor blade. The eigenvalues of the coupled blade-wake system are examined, as

well as the response of the rotor motion to collective pitch input (and the response

to vertical hub motion for the flap problem). Only collective motions are analyzed.

The blade parameters required are flap frequency v = 1.05/rev; Lock number r-" 8;
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pitch frequency ra0 = 3.0/rev (resonant with the wake effect for a three-bladed rotor);

pitch inertia If/Ib = 0.1(c/R) 2 (dimensionless, with c the rotor chord); and the center-

of-gravity 3% chord aft of the pitch axis (stable, but near enough to flutter and

divergence to provide significant coupling of flap and pitch).

Figure 25 and table 6 show the roots of the coupled flap motion and wake

model. The static wake model neglects all the time derivatives of the inflow states.

The uncoupled flap root has a magnitude (natural frequency) equal to the flap

frequency v, and a real part of-_,/16. With a static wake model, the only change is to

replace the Lock number by an effective values, _,* = C_,, where C is a lift deficiency
function, and a static value of O;t/0CT (dl/dT in table 6) can be calculated from C. The

momentum theory result ;t = _ C_CT/2 gives 3;t/OCT = f/G, f = _/2 (where _ is the

mean induced velocity). It is more appropriate to compare the present results with

vortex theory, which by assuming fixed wake geometry gives twice the induced

velocity perturbation as momentum theory: f = _/4. The factor f is given in table 6.
Table 6 shows that two inflow modes are sufficient to define the static root.

Moreover, the values of C and f deduced from the wake model results are close to

the vortex theory values, confirming the magnitude of the calculated wake effect

(the differences may be caused by the assumption of uniform inflow in the vortex
theory result). Table 6 shows that three to four inflow modes are needed for

convergence of the flap roots when the dynamics of the wake are retained.

Figure 26 shows the frequency response of the flap motion to collective pitch

and vertical hub motion input, for CT/a = 0.08 and 0.02. Two to three inflow modes

are needed for convergence of the response. It must be remembered that the static

response (at least) in these figures is affected too much by the wake, because wake

geometry perturbations have not been accounted for. Regarding the wake

aerodynamics illustrated by figure 26, it is clear that the static wake model is not

appropriate. The phase shows more of an influence of the returning wake (near

3/rev) because with a flap frequency near 1/rev the magnitude of the response is
small at the high frequencies. The wake effect near 3/rev is increased for the lower
thrust value.

For the flap-pitch motion, the pitch frequency is set to 3/rev and the center-of-

gravity moved aft of the pitch axis, in order to produce a significant amount of

motion at high frequency. Table 7 lists the flap and pitch roots (for the blade center-

of-gravity 0% as well as 3% chord aft of the pitch axis). Figure 27 shows the

frequency response of the flap and the pitch motion to collective pitch input. Two

to four inflow modes are needed for convergence. The influence of the wake roots

near 3/rev is evident in the response, especially for low thrust.

While the blade motion is being excited in these models, the wake model

produces an induced velocity along the span of the blade. Figures 28 and 29 show

the radial variation of the inflow response at frequencies of 0, 0.40, and 2.25/rev; for

the rotor with flap motion at CT/a = 0.08. Similar results are obtained for the inflow

response at CT/cr = 0.02, and for the rotor with flap-pitch motion. Plotted is the
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cumulative effect of the modes, using the wake model with six inflow modes. Two

modes give the magnitude well out to about 85% radius, but three or four modes are

needed for the magnitude at the tip. Note that this variation at the tip is obtained

without rollup or contraction in the wake. The static response however might be

well represented by a single, simple mode; but the mode shape required is different

for collective and vertical hub motion input (linear and constant inflow

respectively). Two or three modes are needed to define the phase variation over the

span of the blade. Note that one mode can never give a phase shift that varies with

radius. So the significant phase shift over the span (90 to 180 deg) shown in figures

28 and 29 means that one mode (even with the correct magnitude variation) is not
sufficient.

3.3 Rolled Up Wake

A model for the impulse response of a hovering rotor wake, including the

effects of the wake distortion and the tip vortex rollup, was developed in section

2.4.2. A principal objective is to verify the formulation of that model, in particular

the relationship between the wake strength and the peak bound circulation. Thus

the calculations for the undistorted wake model are repeated with the rolled-up

wake model. It must be established whether this change in wake model modifies

the conclusions regarding identification and model order reduction. A secondary

objective is to examine the effects of the wake distortion and rollup on the results.

Note that calculating the impulse response (in the rotating frame, before model

order reduction) is at the lowest level in the analysis, so replacing the undistorted

wake model with the rolled-up wake model is straightforward, and all other

operations (model order reduction, multiblade coordinates, identification, coupling

with the blade equations, etc.) remain unchanged.

Figure 30 shows the shed and trailed wake impulse response obtained using

the rolled-up wake model (compare with figure 9 for the undistorted wake). The

peak bound circulation of the trim loading is assumed to occur at 93% radius. That

circulation value determines the strength of the far wake, hence figure 30 shows the

uniform inflow response to the perturbation bound circulation at 0.93R. Figure 31

shows the corresponding system function (compare with figure 12). Since this

system function contains the effect of all the far wake, there is more influence of the

trailed wake than in figure 12. Also, the phase shows a linear increase with

frequency, which is a consequence of the dominance of the first peak from the

returning wake compared to the near wake (figure 30). Figure 32 shows the system

function at other radial stations, which now contain only a near wake effect

(compare with figure 16).

Figure 33 and table 8 show the identified system function with the rolled-up

wake model (compare with figure 23 and table 5). Generally, the behavior observed
in the identification task for the undistorted wake model was found here as well.

The fit of the identification for the second and sixth modes could be improved.
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Also, with the weight = 16 for frequencies from 0 to 1.5/rev and 1 from 1.5 to

4.5/rev, the fourth inflow mode has a positive pole. For just the fourth mode, an

additional weight of 10 -9 from 4.5 to 9/rev was used, which eliminated the positive

root (using a lower order model for this mode might also have been sufficient). So

the wake model change did influence the identification, but minor modifications of

the techniques established using the undistorted wake model were satisfactory.

Table 9 shows the flap roots, and figure 34 shows the flap response to

collective pitch (compare with table 6 and figure 26). As for the undistorted wake,

two to three modes are needed for convergence of the response. Figure 35 compares

the response calculated using the undistorted and rolled-up wake models. The

response behavior near 0.5/rev with the rolled-up wake might be associated with
the identification error in the second inflow mode.

Figures 36 and 37 show the inflow response along the span of the blade,

during collective and vertical hub motion input respectively (compare with figures

28 and 29). The number of modes required is generally the same as with the

undistorted wake. Figure 38 compares the inflow response obtained using the

undistorted and rolled-up wake models. At low frequency, the rolled-up wake

model produces much more variation of the inflow near the tip. It is possible that

even more inflow modes are needed to fully define this behavior. At high

frequency there is much less effect of the rollup.

3.4 Wake Geometry Perturbations

A theory that includes the effects of wake geometry perturbations on the

impulse response was developed in section 2.4.3. An objective of this investigation

is to verify the formulation of this theory. Thus the calculations of the impulse

response for the undistorted wake model are repeated, including the wake geometry

perturbations. Since wake geometry is involved, efficiency is also an issue.

Including the wake geometry perturbations in the analysis again only affects the

impulse response calculation, at the lowest level in the analysis.

Figure 39 compares the shed and trailed wake impulse response obtained

with and without the wake geometry perturbations. The near wake effect, at small _,

is not changed by the geometry perturbations. The returning wake effects, especially

from the trailed wake, are reduced by the geometry perturbations. That is the

expected result for a collective, uniform inflow mode, since vortex theory shows

that wake geometry changes reduce the steady induced velocity by a factor of two.

Note that for the first two interactions between the blade and the wake, the strength

perturbations dominate and the trailed pulses are positive; while for subsequent

interactions the geometry perturbations dominate, and the pulse are negative.

Regarding efficiency, including the wake geometry perturbations increases the

time required to compute the impulse response by 2 or 3 orders of magnitude. That
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is a typical result for free wake geometry analyses where no effort has been made to

develop efficient methods.
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4. CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

4.1.1 Identification

The least-squared-error method gave satisfactory results for the cases

considered. It was not difficult to find a weighting over frequency that controlled

the occurrence of positive roots. The behavior of the method was similar for

different inflow modes and different thrusts, and with an undistorted or rolled-up

wake model. However, there was a limit to how accurate an identification could be

achieved. This limit might reflect the fact that a ratio of polynomials is not in fact

the proper form for the system function.

Further work is needed to establish how accurate the identification needs to

be. This can only be done in the context of specific applications, for a wide range of

parameters and operating conditions. It appears that the least-squared-error method

will be satisfactory, but a target is needed against which to judge it. The next stage of

the investigation should apply a constrained identification method, at least to

provide that target.

4.1.2 Model Order Reduction

For the cases considered, with either undistorted or rolled-up wake models,

two to four inflow modes were needed for convergence. A single mode (linear or

constant) does not in general give good results. In fact, the phase shift of the inflow

response over the span of the blade precludes the use of a single (real) mode,

regardless of its shape. The rolled-up wake model influenced the inflow

distribution near the tip for low frequencies.

Further work is needed to establish how accurate the radial distribution of the

inflow needs to be. The accuracy must be assessed in terms of specific measures,

such as damping levels, stability boundaries, or static derivatives.

4.1.3 Wake Geometry Perturbations

Application of the theory for the wake geometry perturbations confirmed its

development for a hovering rotor. Efficiency is the key issue. As for a trim free

wake analysis, a direct method is not practical because of excessive computation

time. It is anticipated, based on experience with the trim problem, that a 2 or 3

order-of-magnitude reduction in computation time is achievable, using the

appropriate numerical methods. Future work should focus on a discretized,
distorted wake model however.
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4.2 Recommendations

The following research is required to produce a general time-domain

unsteady aerodynamic model for rotors.

a) The work should focus on a discretized wake model, with rolled-up and distorted

geometry, since the advantage of the approach is its ability to handle such wake

configurations. Forward flight must be considered, not just hover.

b) The development of the identification and model order reduction techniques

must be completed. It is necessary to establish an approach that consistently gives

good accuracy and no problems with the differential equation form. For forward

flight, it is necessary to develop the identification techniques to handle periodic

coefficient equations (as a constant coefficient approximation).

c) The development of the theory for wake geometry perturbations must be

completed. For accuracy it is essential that the effects of wake geometry

perturbations, from both loading and velocity changes, be included in the induced

velocity. It is necessary to develop an efficient method (perhaps efficient when

implemented in parallel with a trim wake geometry calculation).

d) The theory must be applied to rotor problems. It is necessary to establish what

aspects of the theory are important for what problems. The analysis should be used

to investigate the unsteady aerodynamics of helicopter rotors. It is necessary to

compare the stability and response calculations with experiment.

e) Standard differential-equation models should be developed, probably low order

differential equations with precalculated coefficients. Such models can be easily

incorporated in simple analyses of rotor dynamics.

f) The theory should be implemented for routine use in rotorcraft aeroelastic

calculations. For this purpose, a general form suitable for a comprehensive analysis

is required.

g) The theoretical basis can be extended, for example to include a compressible wing

and wake; or a lifting surface or panel model of the wing.
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Table la. Influence of frequency range and order on

identification

hovering rotor, undistorted wake

nonrotating frame, 3 blades; uniform inflow, circulation at 0.77R

identified equation

ks = static response (zero frequency)

kl = high frequency response

order - equation order
wmax = identification frequency range

(weight = 1 for 0 to wmax)

wmax order

zeros

real imag

poles

real imag kl ks

2. 2 -0.0184 0.7531

-0.0184 -0.7531

-20.3248 0.0000 0.8259 0.1519

-0.1519 0.0000

2. 3 -0.0386 0.6869

-0.0386 -0.6869

-4.8135 0.0000

-0.0905 0.0000

-1.0758 3.4397

-1.0758 -3.4397

0.0783 0.1519

2. 4 -0.0384 0.6850

-0.0384 -0.6850

-12.2160 0.0000

3.9379 0.0000

3.1006 0.0000

-0.6450 3.3719

-0.6450 -3.3719

-0.0926 0.0000

0.0227 0.1519
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Table lb. Continued

hovering rotor, undistorted wake
nonrotating frame, 3 blades; uniform inflow, circulation at 0.77R
identified equation

ks = static response (zero frequency)
kl = high frequency response

order = equation order

wmax = identification frequency range

(weight = 1 for 0 to wmax)

wmax order

zeros

real imag

poles
real imag kl ks

4.5 2 0.0209 3.8888

0.0209 -3.8888

0.5887 3.5463 0.1298 0.1519

0.5887 -3.5463

4.5 3 -0.1459 3.1713

-0.1459 -3.1713

-9.3606 0.0000

1.9942 0.0000

0.0216 3.0990

0.0216 -3.0990

-0.0308 0.1519

4.5 4 0.0028 0.9419

0.0028 -0.9419

-0.1861 3.6733

-0.1861 -3.6733

-0.2961 3.0517

-0.2961 -3.0517

-0.2464 0.0000

-27.9306 0.0000

0.8187 0.1519

4.5 5 -0.2121 3.7057

-0.2121 -3.7057

-0.0247 0.6852

-0.0247 -0.6852

-7.1159 0.0000

-0.0929 0.0000

-0.2883 2.9973

-0.2883 -2.9973

-2.6069 6.8144

-2.6069 -6.8144

0.1477 0.1519

4.5 6 -0.0250 0.6883

-0.0250 -0.6883

-0.2158 3.7046

-0.2158 -3.7046

-10.7162 0.0000

25.1753 0.0000

-1.9727 6.6735

-1.9727 -6.6735

-0.2874 2.9961

-0.2874 -2.9961

-0.0951 0.0000

14.9668 0.0000

0.0538 0.1519
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Table ic. Concluded

hovering rotor, undistorted wake
nonrotating frame, 3 blades; uniform
identified equation

inflow, circulation at 0.77R

ks =

kl =

order =

wmax =

static response (zero frequency)

high frequency response

equation order

identification frequency range

(weight - I for 0 to wmax)

wmax order
zeros

real imag

poles

real imag kl ks

7.5 6 0.0289 1.5199

0.0289 -1.5199

-0.1758 3.8756

-0.1758 -3.8756

-0.3692 6.7727

-0.3692 -6.7727

-0.5276 6.0970

-0.5276 -6.0970

-0.4958 2.9540

-0.4958 -2.9540

-0.9990 0.0000

-17.7890 0.0000

0.5632 0.1519

7.5 7 -10.8510 0.0000

-0.4096 6.8035

-0.4096 -6.8035

-0.2187 3.7145

-0.2187 -3.7145

0.0090 0.7648

0.0090 -0.7648

-0.1173 0.0000

-0.2863 2.9864

-0.2863 -2.9864

-0.5141 6.0120

-0.5141 -6.0120

-3.1939 10.1199

-3.1939-10.1199

0.1610 0.1519

7.5 8 -0.0133 0

-0.0133 -0

-0.2216 3

-0.2216 -3

-0.4158 6

-0.4158 -6

-3.5510 14

-3.5510-14

7288

7288

7011

7011

8114

8114

3415

3415

-1.3992 9.3850

-1.3992 -9.3850

-0.5027 5.9940

-0.5027 -5.9940

-0.2800 3.0003

-0.2800 -3.0003

-0.1120 0.0000

41.3862 0.0000

-0.2803 0.1519
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Table 2a. Influence of frequency range and order on

identification

hovering rotor, undistorted wake
nonrotating frame, 3 blades; uniform inflow
identification for all radial stations
zeros for circulation at 0.77R

identified equation

ks - static response (zero frequency)

kl = high frequency response

order - equation order
wmax = identification frequency range

(weight - 1 for 0 to wmax)

wmax order
zeros

real imag
poles

real imag kl ks

2. 2 0.0095 0.8613
0.0095 -0.8613

-10.1646 0.0000 0.4572 0.1519

-0.2197 0.0000

2. 3 -0.0212 0.8215

-0.0212 -0.8215
-6.8447 0.0000

-0.1527 0.0000

-1.1977 3.7510
-1.1977 -3.7510

0.0778 0.1519

2. 4 -0.0180 0.6961
-0.0180 -0.6961
-1.5031 0.4830
-1.5031 -0.4830

-0.7805 0.0000

-0.1208 0.0000
-1.4664 2.9472
-1.4664 -2.9472

0.1284 0.1519

2. 5 -0.0168 0.7025
-0.0168 -0.7025

-0.9509 0.0000
-1.6420 2.1971

-1.6420 -2.1971

-0.9007 2.7650

-0.9007 -2.7650
-0.8760 0.0000

-0.1094 0.0000
-4.1204 0.0000

0.1435 0.1519

2. 6 -0.0281 0 6935

-0.0281 -0 6935
-1.1083 0 0000
-0.6314 0 0000
-1.1344 2 2670
-1.1344 -2 2670

-0.8007 2.6209
-0.8007 -2.6209
-0.5034 0.0000
-0.1052 0.0000

-2.5165 0.0000
-2.1631 0.0000

0.1517 0.1519

2. 7 -0.4393 2 2831
-0.4393 -2 2831

-1.8572 0 0000
0.9160 0 0000

-0.0326 0 6974

-0.0326 -0 6974
-0.9895 0 0000

0.8538 0.0000
-0.7487 0 0000
-0.i132 0 0000
-0.3724 2 3230

-0.3724 -2 3230
-2.0777 2 3942
-2.0777 -2 3942

0.1379 0.1519
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Table 2b. Continued

hovering rotor, undistorted wake

nonrotating frame, 3 blades; uniform inflow
identification for all radial stations

zeros for circulation at 0.77R

identified equation

ks = static response

kl = high frequency

order = equation order
wmax = identification

(weight - I for

(zero frequency)

response

frequency range
0 to wmax)

wmax order

zeros

real imag

poles

real imag kl ks

4.5 4 0.0676 1.0747

0.0676 -1.0747

-0.1959 3.7613

-0.1959 -3.7313

-0.4748 3.0829

-0.4748 -3.0829

-0.3952 0.0000

-13.8179 0.0000

0.4906 0.1519

4.5 5 -0.1818 3.7508

-0.1818 -3.7508

0.0759 1.0992

0.0759 -1.0992

188.6838 0.0000

-0.4497 0.0000

-0.4735 3.1055

-0.4735 -3.1055

-7.4407 0.0000

22.3287 0.0000

0.0347 0.1519

4.5 6 0.0462

0.0462

-0.3488

-0.3488

-0.1730

-0.1730

0 85

-0 85

3 09

-3 09

3 75

-3 75

84

84

77

77

28

28

-0.5560 3.3421

-0.5560 -3.3421

-0.1930 2.9946

-0.1930 -2.9946

-0.2047 0.0000

-13.7957 0.0000

0.4374 0.1519

4.5 7 -0.2154

-0.2154

-0.4881

-0.4881

-0.0035

-0.0035

-9.0448

3 71

-3 71

3 03

-3 03

0 8O

-0 80

0 00

84

84

53

53

91

91

00

-0.1451 0.0000

-0.2521 2.9846

-0.2521 -2.9846

-0.5870 3.0609

-0.5870 -3.0609

-2.8005 7.1782

-2.8005 -7.1782

0.1469 0.1519
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Table 2c. Continued

hovering rotor, undistorted wake
nonrotating frame, 3 blades; uniform inflow
identification for all radial stations
zeros for circulation at 0.77R
identified equation

ks = static response (zero frequency)

kl = high frequency response

order = equation order

wmax = identification frequency range

(weight - 1 for 0 to wmax)

zeros poles

wmax order real imag real imag kl ks

4.5 8 -0.0248 0.7944

-0.0248 -0.7944

-0.5202 2.8659

-0.5202 -2.8659

-0.2148 3.7417

-0.2148 -3.7417

2.1618 7.5408

2.1618 -7.5408

10.7621 0.0000

-0.1499 6.6247

-0.1499 -6.6247

-0.1489 0.0000

-0.5095 2.9198

-0.5095 -2.9198

-0.3379 3.0192

-0.3379 -3.0192

-0.1871 0.1519

4.5 -0.4050 4.2727

-0.4050 -4.2727

-0.1880 3.7237

-0.1880 -3.7237

0.0056 0.7733

0.0056 -0.7733

-0.5324 2.4999

-0.5324 -2.4999

-20.2454 0.0000

-0.1412 0.0000

-0.5401 2.6735

-0.5401 -2 6735

-0.3933 2 9484

-0.3933 -2 9484

-0.4094 4 3332

-0.4094 -4 3332
-3.4847 8 5369

-3.4847 -8.5369

0.1122 0.1519
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Table 2d. Continued

hovering rotor, undistorted wake
nonrotating frame, 3 blades; uniform inflow
identification for all radial stations
zeros for circulation at 0.77R

identified equation

ks = static response (zero frequency)

kl = high frequency response

order = equation order
wmax = identification frequency range

(weight = 1 for 0 to wmax)

wmax order

zeros

real imag

poles

real imag kl ks

7.5 6 0.0974 1.5985

0.0974 -1.5985

-0.1589 3.9407

-0.1589 -3.9407

-0.3729 6.8656

-0.3729 -6.8656

-0.7381 6.1393

-0.7381 -6.1393

-0.7801 2.8148

-0.7801 -2.8148

-9.3213 0.0000

-1.7509 0.0000

0.4287 0.1519

7.5 7 -0.3216 6.8330

-0 3216 -6.8330

-0 1336 4.0259

-0 1336 -4.0259

0 0772 1.7010

0 0772 -1.7010

91 5750 0.0000

16.6242 0 0000

-0.7046 6 2742

-0.7046 -6 2742

-1.8312 3 4735

-1.8312 -3 4735

-1.0186 2 2094

-1.0186 -2.2094

0.0456 0.1519

7.5 8 0.1201

0.1201 -0

-0.1637 3

-0.1637 -3

-0.9126 5

-0.9126 -5

-0.3543 6

-0.3543 -6

0 9874

9874

7809

7809

7860

7860

8840

8840

-11 9025 0.0000

-0 3088 0.0000

-0 4643 3.1307

-0 4643 -3.1307

-i 0223 6.6067

-I 0223 -6.6067

-0 4641 5.8325

-0 4641 -5.8325

0.3702 0.1519

7.5 9 9 1896

0 0775 1

0 0775 -i

-0 1727 3

-0 1727 -3

-0 7732 6

-0 7732 -6

-0 3687 6

-0 3687 -6

0 0000

0818

0818

8034

8034

0050

0050

8818

8818

-10.5339 0.0000

7.9732 0.0000

-0.9418 6.6749

-0.9418 -6.6749

-0.3941 5.9035

-0.3941 -5.9035

-0.4150 0.0000

-0.5081 3.1359

-0.5081 -3.1359

0.3114 0.1519

55



Table 2e. Concluded

hovering rotor, undistorted wake

nonrotating frame, 3 blades; uniform inflow
identification for all radial stations
zeros for circulation at 0.77R

identified equation

order - equation order
wmax = identification frequency range

(weight - 1 for 0 to wmax)
** - unstable identified pole

wmax
rms system function error

order for 0.77R minimum maximum

.

2.

2.
2.
2.

2.

2 0.0198 0.0081 0.0335
3 0.0115 0.0052 0.0198
4 0.0048 0.0018 0.0056
5 0.0037 0.0012 0.0048

6 0.0029 0.0011 0.0078
7 ** 0.0037 0.0014 0.0053

4 5

4 5
4 5
4 5

4 5
4 5

4 0.0307 0.0108 0.0497

5 ** 0.0330 0.0113 0.0548
6 0.0139 0.0063 0.0250
7 0.0077 0.0037 0.0157

8 ** 0.0104 0.0052 0.0228
9 0.0091 0.0063 0.0263

7.5 6 0.0502 0.0142 0.1006
7.5 7 ** 0.0583 0.0157 0.1111
7.5 8 0.0212 0.0081 0.0312

7.5 9 ** 0.0257 0.0093 0.0439
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Table 3a. Influence of order and weight on identification

hovering rotor, undistorted wake
nonrotating frame, 3 blades; uniform inflow
identification for all radial stations
zeros for circulation at 0.77R
identified equation

ks - static response (zero frequency)
kl - high frequency response

order - equation order
wmax- identification frequency range

weight - 4 for 0 to 1.5/rev,
weight - 1 for 1.5 to wmax

wmax order
zeros

real imag
poles

real imag kl ks

4.5 4 0.0507 0.8964
0.0507 -0.8964

-0.1933 3.7399
-0.1933 -3.7399

-0.4492 3.0975

-0.4492 -3.0975
-0.2492 0.0000

-15.6761 0.0000

0.5140 0.1519

4.5 5 -0.2024 3.74618

-0.2024 -3.74618
0.0406 0.88574
0.0406 -0.88574

-50.2905 0.00000

-0.2344 0.0000
-0.4473 3.0879
-0.4473 -3.0879

-10.9747 13.6101
-10.9747-13.6101

0.1904 0.1519

4.5 0.0165 0.80809
0.0165 -0.80809

-0.2837 3.08339
-0.2837 -3.08339
-0.1561 3.74532
-0.1561 -3.74532

-0.4575 3.3206
-0.4575 -3.3206

-0.1757 2.9962
-0.1757 -2.9962
-0.1741 0.0000

-16.0896 0.0000

0.4892 0.1519

4.5 -0.2175 3.72655
-0.2175 -3.72655
-0.3555 2.94083

-0.3555 -2.94083
-0.0078 0.78710
-0.0078 -0.78710

-8.6772 0.00000

-0.1404 0.0000
-0.1977 2.9484
-0.1977 -2.9484

-0.5413 3.0021
-0.5413 -3.0021
-2.9457 7.0526

-2.9457 -7.0526

0.1454 0.1519
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Table 3b. Continued

hovering rotor, undistorted wake
nonrotating frame, 3 blades; uniform inflow
identification for all radial stations
zeros for circulation at 0.77R
identified equation

ks - static response (zero frequency)
kl - high frequency response

order - equation order
wmax - identification frequency range

weight - 4 for 0 to 1.5/rev,
weight - I for 1.5 to wmax

zeros poles
wmax order real imag real imag kl ks

4.5 8 -0.0093 0.75958

-0.0093 -0.75958
-0.6014 2.53204
-0.6014 -2.53204
-0.1871 3.71765

-0.1871 -3.71765
-1.5008 5.20242
-1.5008 -5.20242

-1.1355 5.2527

-1.1355 -5.2527
-0.1375 0.0000
-0.3514 2.9632
-0.3514 -2.9632

-0.6043 2.6978
-0.6043 -2.6978

-17.2290 0.0000

0.4452 0.1519

4.5 0.1095 0.00000
-0.0220 0.73300

-0.0220 -0.73300
-0.6645 2.48809
-0.6645 -2.48809

-0.1628 3.80579
-0.1628 -3.80579
-1.0988 3.82174
-1.0988 -3.82174

-6.8112 0.0000
-0.2094 0.0000

0.0670 0.0000
-1.3080 4.4653
-1.3080 -4.4653

-0.3027 2.8015
-0.3027 -2.8015
-0.6286 3.0217
-0.6286 -3.0217

0.2652 0.1519
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Table 3c. Continued

hovering rotor, undistorted wake
nonrotating frame, 3 blades; uniform inflow
identification for all radial stations
zeros for circulation at 0.77R
identified equation

ks s static response (zero frequency)
kl - high frequency response

order s equation order
wmax - identification frequency range

weight - 16 for 0 to 1.5/rev,
weight - 1 for 1.5 to wmax

zeros

wmax order real imag
poles

real imag kl ks

4.5 4 0.0259 0.8210
0.0259 -0.8210

-0.1947 3.7138

-0.1947 -3.7138

-0.4247 3.0989
-0.4247 -3.0989
-0.1928 0.0000

-17.2476 0.0000

0.5294 0.1519

4.5 5 -0.2217 3.7446
-0.2217 -3.7446
0.0120 0.8044

0.0120 -0.8044
-20.5786 0.0000

-0.1712 0.0000
-0.4379 3.0699

-0.4379 -3.0699
-4.4775 9.9312

-4.4775 -9.9312

0.1583 0.1519

4.5 6 0.0004 0.7807
0.0004 -0.7807

-0.2477 3.0273

-0.2477 -3.0273
-0.1428 3.7325
-0.1428 -3.7325

-0.3745 3.2909

-0.3745 -3.2909
-0.1665 2.9657
-0.1665 -2.9657
-0.1555 0.0000

-19.3137 0.0000

0.5629 0.1519

4.5 -6.1274 0.0000
-0.2178 3.7401
-0.2178 -3.7401

-0.0112 0.7699
-0.0112 -0.7699
-0.3289 2.7508
-0.3289 -2.7508

-0.1338 0.0000

-0.2302 2.8494
-0.2302 -2.8494
-0.5299 2.8924

-0.5299 -2.8924
-3.2364 6.2302
-3.2364 -6.2302

0.1808 0.1519
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Table 3d. Continued

hovering rotor, undistorted wake
nonrotating frame, 3 blades; uniform inflow
identification for all radial stations
zeros for circulation at 0.77R
identified equation

ks - static response (zero frequency)

kl - high frequency response
order - equation order
wmax = identification frequency range

weight - 16 for 0 to 1.5/rev,

weight - 1 for 1.5 to wmax

zeros poles
wmax order real imag real imag kl ks

4.5 8 -3.1015 0.0000 -0.6303 0.0000 0.1852
-0.0080 0.6732 -0.1145 0.0000
-0.0080 -0.6732 -0.3152 3.0076
-1.0272 0.0000 -0.3152 -3.0076

-0.2202 3.7076 -0.8337 2.9787
-0.2202 -3.7076 -0.8337 -2.9787

-0.9055 3.1451 -2.7370 5.8083
-0.9055 -3.1451 -2.7370 -5.8083

0.1519

4.5 9 3.5865 0.17453.7402 0.0000
-0.0006 0.6960
-0.0006 -0.6960

-1.8140 1.0875
-1.8140 -1.0875
-0.2110 3.6974

-0.2110 -3.6974
-1.1050 3.2525
-1.1050 -3.2525

-i 0253

-0
-0
-0

-0
-0
-2

-2

0.0000
0.0000

1258 0.0000

3327 3.0230
3327 -3.0230
8969 2.9315

8969 -2.9315
4151 5.6271
4151 -5.6271

0.1519

6O



Table 3e. Concluded

hovering rotor, undistorted wake

nonrotating frame, 3 blades; uniform inflow

identification for all radial stations

zeros for circulation at 0.77R

identified equation

order = equation order

wmax = identification frequency range

** = unstable identified pole

wmax order
rms system function error

for 0.77R minimum maximum

weight = 1 for O-4.5/rev
4.5 4 0.0307 0.0108 0.0497

4.5 5 ** 0.0330 0.0113 0.0548

4.5 6 0.0139 0.0063 0.0250

4.5 7 0.0077 0.0037 0.0157

4.5 8 ** 0.0104 0.0052 0.0228

4.5 9 0.0091 0.0063 0.0263

weight m 4 for 0-1.5/rev, 1 for 1.5-4.5/rev

4.5 4 0 0228 0.0089

4.5 5 0 0217 0.0085

4.5 6 0 0121 0.0060

4.5 7 0 0091 0.0045

4.5 8 0 0072 0.0043

4.5 9 ** 0 0196 0.0098

0.0314

0.0297

0.0320

0.0195

0.0132

0.1120

weight = 16 for O-l.5/rev, 1 for 1.5-4.5/rev

4.5 4 0.0199 0 0082

4.5 5 0.0184 0 0076

4.5 6 0.0126 0 0063

4.5 7 0.0099 0 0061

4.5 8 0.0037 0 0024

4.5 9 ** 0.0048 0 0037

0.0342

0.0303

0.0435

0.0235

0.0070

0.0053
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Table 4a. Influence of order and weight on identification

hovering rotor, undistorted wake
nonrotating frame, 3 blades
identification for all radial stations; three inflow modes

identified equation

order = equation order
wmax - identification frequency range

weight - 1 for 0 to wmax

poles, mode 1 poles, mode 2
wmax order real imag real imag

poles, mode 3
real imag

4.5 4 -0.4757 3.0829
-0.4757 -3.0829

-0.3966 0.0000
-13.7688 0.0000

-0.6361 3.1211 -0.6573 3.1161

-0.6361 -3.1211 -0.6573 -3.1161
-0.4849 0.0000 -8.1862 0.0000
-9.1806 0.0000 -0.6535 0.0000

4.5 -0.4533 0.0000
-0.4742 3.1065

-0.4742 -3.1065
-7.3186 0.0000
21.9282 0.0000

-0.4936 0.0000 -0.6120 0.0000
-0.6412 3.1239 -0.6572 3.0886
-0.6412 -3.1239 -0.6572 -3.0886

-8.2513 0.0000 -12.1863 8.5857
40.4850 0.0000 -12.1863 -8.5857

4.5 6 -0.5546 3.3379
-0.5546 -3.3379
-0.1919 2.9922
-0.1919 -2.9922
-0.2033 0.0000

-13.8507 0.0000

-0.7012 3.3832 -0.8288 3.4841
-0.7012 -3.3832 -0.8288 -3.4841
-0.2539 2.9932 -0.3427 2.9834
-0.2539 -2.9932 -0.3427 -2.9834
-0.3595 0.0000 -7.5157 0.0000

-9.0959 0.0000 -0.5267 0.0000

4.5 -0.1445 0.0000

-0.2501 2.9843
-0.2501 -2.9843
-0.5756 3.0466

-0.5756 -3.0466
-2.6440 7.3696
-2.6440 -7.3696

-0.3109 0.0000 -0.3614 2.9884

-0.3060 2.9626 -0.3614 -2.9884
-0.3060 -2.9626 -1.1114 3.4564
-0.7881 3.0892 -1.1114 -3.4564

-0.7881 -3.0892 -0.2563 0.0000
-3.5849 6.3927 -4.6433 0.0000
-3.5849 -6.3927 -1.3210 0.0000
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Table 4b. Continued

hovering rotor, undistorted wake

nonrotating frame, 3 blades

identification for all radial stations; three inflow modes

identified equation

order w equation order

wmax = identification frequency range

weight - 1 for 0 to wmax

poles, mode 1 poles, mode 2

wmax order real imag real imag

poles, mode 3

real imag

4.5 8 12.9421 0.0000

-0.3404 6.4782

-0.3404 -6.4782

-0.1447 0.0000

-0.5610 2.9437

-0.5610 -2.9437

-0.2878 2.9504

-0.2878 -2.9504

-0.3115 0.0000 -0.4400 0.0000

4.6435 0.0000 3.6680 0.0000

-0.3374 2.9877 -0.3505 2.9902

-0.3374 -2.9877 -0.3505 -2.9902

-0.7751 3.0449 -0.9683 2.8490

-0.7751 -3.0449 -0.9683 -2.8490

-1.8848 7.2257 -2.7294 5.0006

-1.8848 -7.2257 -2.7294 -5.0006

4.5 -0.1346 0.0000

-0.3577 2.3488

-0.3577 -2.3488

-0 3197 3.0331

-0 3197 -3.0331

-0 4644 3.6799

-0 4644 -3.6799

-0 4660 11.4747

-0 4660-11.4747

-1.4991 6 9447

-1.4991 -6 9447

3.4262 0 0000

-0.3343 2 9458

-0.3343 -2 9458

-0.7754 3 0407

-0.7754 -3.0407

-0.3082 0.0000

-13.5740 0.0000

4.6150 0.0000

-2.3294 0.0000

-0.4761 0.0000

-0.4515 3.0488

-0.4515 -3.0488

-I.0101 2.6041

-i.0101 -2.6041

-1.8731 4.6561

-1.8731 -4.6561
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Table 4c. Continued

hovering rotor, undistorted wake
nonrotating frame, 3 blades
identification for all radial stations;

identified equation

three inflow modes

order =

wmax -

equation order
identification frequency range

weight - 16 for 0 to 1.5/rev,

weight - 1 for 1.5 to wmax

wmax order
poles, mode 1
real imag

poles, mode 2 poles, mode 3
real imag real imag

4.5 4 -0.4258 3.0989
-0.4258 -3.0989
-0.1934 0.0000

-17.1864 0.0000

-0.5903 3.1426 -0.6109 3.1472

-0.5903 -3.1426 -0.6109 -3.1472
-0.3535 0.0000 -0.5169 0.0000

-10.2615 0.0000 -9.0196 0.0000

4.5 5 -0.1721 0.0000

-0.4385 3.0707
-0.4385 -3.0707
-4.5720 10.0105
-4.5720-10.0105

-0.3413 0.0000 -0.4805 0.0000
-0.6007 3.1222 -0.6272 3.0883
-0.6007 -3.1222 -0.6272 -3.0883

-8.2291 6.8358 -5.2461 4.9872
-8.2291 -6.8358 -5.2461 -4.9872

4.5 6 -0.3796 3.2827

-0.3796 -3.2827
-0.1594 2.9603
-0.1594 -2.9603

-0.1560 0.0000
-19.2778 0.0000

-0.6118 3.3818 -0.6971 3.5096
-0.6118 -3.3818 -0.6971 -3.5096
-0.3030 2.9004 -0.3839 2.9225

-0.3030 -2.9004 -0.3839 -2.9225
-0.3169 0.0000 -0.4756 0.0000

-10.8879 0.0000 -9.1029 0.0000

4.5 7 -0.1332 0.0000
-0.2416 2.8479
-0.2416 -2.8479
-0.5434 2.8700
-0.5434 -2.8700

-3.2938 6.0200
-3.2938 -6.0200

-0.2803
-0 3063
-0 3063
-i 0411

-I 0411
-3 6821
-3 6821

0.0000 -0.3580 2.9307
2.9553 -0.3580 -2.9307

-2.9553 -1.2077 3.4471
3.2690 -1.2077 -3.4471

-3.2690 -0.3537 0.0000
1.8219 -4.4951 0.0000

-1.8219 -1.4726 0.0000

64



Table 4d. Continued

hovering rotor, undistorted wake
nonrotating frame, 3 blades
identification for all radial stations; three inflow modes
identified equation

order - equation order
wmax = identification frequency range

weight - 16 for 0 to 1.5/rev,
weight - 1 for 1.5 to wmax

wmax order
poles, mode 1
real imag

poles, mode 2 poles, mode 3
real imag real imag

4.5 8 -0.2135 0.0000

-0.0059 0.0000
-0.2910 3 0179

-0.2910 -3 0179
-0.8064 2 9763
-0.8064 -2 9763
-2.8333 5 7149

-2.8333 -5 7149

-0.3413 2.9479 6.7132 0.0000

-0.3413 -2.9479 -1.1935 3.1095
-0.9523 3.1868 -1.1935 -3.1095

-0.9523 -3.1868 -0.3708 2.9299
-0.2789 0.0000 -0.3708 -2.9299
-3.1056 0.0000 -3.0536 0.0000

-9.7224 0.0000 -4.7642 0.0000
41.3149 0.0000 -0.4071 0.0000

4.5 9 3.6995 0 0000
-1.5203 0 0000
-0.1270 0 0000

-0.3348 3 0218
-0.3348 -3 0218
-1.0326 2 9118

-1.0326 -2 9118
-2.5323 5.1575
-2.5323 -5.1575

2.6983
-08423
-0

-0
-0
-0
-0

-2
-2

0.0000
0.0000

2888 0.0000
3732 3.0149

3732 -3.0149
8139 2.9452
8139 -2.9452

2090 5.9900
2090 -5.9900

4.8936 0.0000

-0.4345 0.0000
0.0666 0.0000

-0 3557 3.0423

-0 3557 -3.0423
-i 1436 3.1491
-I 1436 -3.1491

-3 5028 2.5622
-3 5028 -2.5622
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Table 4e. Continued

hovering rotor, undistorted wake
nonrotating frame, 3 blades
identification for all radial stations; three inflow modes
identified equation

order - equation order
wmax = identification frequency range

** - unstable identified pole

wmax order
rms system function error

for 0.77R minimum maximum

inflow mode 1

weight - 1 for 0-4.5/rev
4 5 4 0.0308
4 5 5 ** 0.0331
4 5 6 0.0138

4 5 7 0.0076
4 5 8 ** 0.0072
4 5 9 0.0081

0.0108 0.0499
0.0114 0.0551
0.0063 0.0249
0.0038 0.0145
0.0040 0.0135

0.0049 0.0226

inflow mode 1

weight - 16 for 0-1.5/rev, 1 for 1.5-4.5/rev
4.5 4 0.0199 0.0082

4.5 5 0.0184 0.0076
4.5 6 0.0125 0.0061

4.5 7 0.0099 0.0060
4.5 8 0.0043 0.0021
4.5 9 ** 0.0050 0.0038

0.0342

0.0304

0.0437
0.0225
0.0113

0.0061

inflow mode 2

weight - i for 0-4.5/rev
4.5 4 0.0281

4.5 5 ** 0.0287
4.5 6 0.0082
4.5 7 0.0046

4.5 8 ** 0.0045
4.5 9 ** 0.0088

0 0140
0 0140

0 0076
0 0032
0 0032

0 0072

0.0679

0.0691
0.0465
0.0363
0.0352

0.0584

inflow mode 2

weight - 16 for 0-1.5/rev, 1 for 1.5-4.5/rev
4.5 4 0.0288 0.0161
4.5 5 0.0281 0.0153

4.5 6 0.0118 0.0081
4.5 7 0.0079 0.0039
4.5 8 ** 0.0086 0.0055

4.5 9 ** 0.0069 0.0033

0.0449
0.0433

0.0478
0.0336

0.0304
0.0208
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Table 4f. Concluded

hovering rotor, undistorted wake

nonrotating frame, 3 blades

identification for all radial stations; three inflow modes

identified equation

order = equation order

wmax - identification frequency range

** - unstable identified pole

wmax order
rms system function error

for 0.77R minimum maximum

inflow mode 3

weight = 1 for O-4.5/rev
4 5 4 0.0219

4 5 5 0.0209

4 5 6 0.0158

4 5 7 0.0093

4 5 8 ** 0.0129

4 5 9 ** 0.0115

0.0061 0.0706

0.0056 0.0713

0.0074 0.0356

0.0072 0.0281

0.0083 0.0832

0.0059 0.0696

inflow mode 3

weight m 16 for 0-1.5/rev, 1 for 1.5-4.5/rev
4.5 4 0 0178 0.0116

4.5 5 0 0169 0.0099

4.5 6 0 0186 0.0110

4.5 7 0 0098 0.0051

4.5 8 ** 0 0101 0.0069

4.5 9 ** 0 0114 0.0083

0.0655

0.0607

0.0432

0.0278

0.0137

0.0208
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Table 5a. Identification for hovering rotor with undistorted
wake

hovering rotor, undistorted wake
nonrotating frame, 3 blades
identification for all radial stations; six inflow modes

identified equation

order - equation order
wmax - identification frequency range

weight - 16 for 0 to 1.5/rev,
weight - i for 1.5 to wmax

wmax order

inflow

mode

poles, CT/s - 0.08 poles, CT/s - 0.02
real imag real imag

4.5 6 -0 3897 3.3050

-0 3897 -3.3050
-0 1761 2.9543
-0 1761 -2.9543

-0 1530 0.0000
-18 9011 0.0000

-0.1056 3.3703
-0.1056 -3.3703
-0.1747 3.0824

-0.1747 -3.0824
-0.1615 0.0000

-89.3653 0.0000

-0.6440 3.3661
-0.6440 -3.3661
-0.2974 2.8729
-0.2974 -2.8729

-0.3138 0.0000
-10.5975 0.0000

-0.1669 3.6042
-0.1669 -3.6042
-0.2750 3.0296
-0.2750 -3.0296

-0.2277 0.0000
-30.5039 0.0000

-0.7390 3.5250

-0.7390 -3.5250
-0.3826 2.9284
-0.3826 -2.9284
-0.4833 0.0000

-8.5163 0.0000

-0.2052 3.6435
-0.2052 -3.6435

-0.3078 3.0257
-0.3078 -3.0257
-0.3286 0.0000

-16.3804 0.0000
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Table 5b. Continued

hovering rotor, undistorted wake

nonrotating frame, 3 blades

identification for all radial stations; six inflow modes

identified equation

order m equation order

wmax - identification frequency range

weight - 16 for 0 to 1.5/rev,

weight - 1 for 1.5 to wmax

wmax order

inflow

mode
poles, CT/s - 0.08 poles, CT/s - 0.02

real imag real imag

4.5 6 -0 5780 3.6495

-0 5780 -3.6495

-0 4805 3.0053

-0 4805 -3.0053

-0 6310 0.0000

-7 7913 0.0000

-0.1858 3.7066

-0.1858 -3.7066

-0.3660 3.0367

-0.3660 -3.0367

-0.4233 0.0000

-12.0282 0.0000

-0.4297 3.8271

-0.4297 -3.8271

-0.6268 3.0669

-0.6268 -3.0669

-0.7794 0.0000

-6.7275 0.0000

-0.1773 3.7959

-0.1773 -3.7959

-0.4134 3.0343

-0.4134 -3.0343

-0.4835 0.0000

-10.4208 0.0000

6 -0.1305 4.1607

-0.1305 -4.1607

-0.7974 3.0865

-0.7974 -3.0865

-0.9144 0.0000

-6.4736 0.0000

-0.1831 3 9066

-0.1831 -3 9066

-0.4650 3 0292

-0.4650 -3 0292

-0.5431 0 0000

-9.2193 0 0000
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Table 5c. Concluded

hovering rotor, undistorted wake
nonrotating frame, 3 blades
identification for all radial stations; six inflow modes

identified equation

order = equation order
wmax _ identification frequency range

weight - 16 for 0 to 1.5/rev,
weight - 1 for 1.5 to wmax

wmax order CT/s

inflow

mode
rms system function error

for 0.77R minimum maximum

4.5 6 0.08 0.0113 0.0062 0.0415
0.0134 0.0078 0.0450

0.0153 0.0107 0.0451
0.0149 0.0053 0.0546

0.0146 0.0053 0.0486

0.0177 0.0102 0.1744

4.5 6 0.02 0.0401 0.0153 0.1265
0.0517 0.0181 0.2003
0.0382 0.0128 0.2534

0.1144 0.0098 0.2917
0.0391 0.0140 0.3219
0.0605 0.0126 0.2677
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Table 6a. Flap motion of hovering rotor with undistorted wake

hovering rotor, undistorted wake

nonrotating frame, 3 blades

roots of coning mode

equivalent values, derived from

real part of flap root:

C I lift deficiency function
dl/dT = derivative inflow with thrust

= f / (mean inflow)

wake inflow flap root natural

model CT/s modes real imag freq C dl/dT f

uncoupled 0.08 -0.500 0.923 1.050

dynamic 0.08 1 -0.484 0.973 1.087

2 -0.410 0.992 1.074

3 -0.451 0.974 1.073

4 -0.477 0.947 1.060

5 -0.485 0.943 1.061

6 -0.487 0.943 1.062

static 0.08 -0.312 1 002

-0.239 I 022

-0.242 1 021

-0.248 1 020

-0.251 1 019

-0.253 1 018

1.049 0.624 6.86

1.050 0.478 13.31

1.049 0.484 12.95

1.049 0.496 12.25

1.049 0.502 11.92

1.049 0.506 11.71

0 406

0 787

0 766

0 725

0 705

0 792

vortex theory (no wake geometry distortion) 0.544 9.86 0.583

momentum theory 0.693 4.93 0.292
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Table 6b. Concluded

hovering rotor, undistorted wake
nonrotating frame, 3 blades
roots of coning mode

equivalent values, derived from

real part of flap root:
C - lift deficiency function
dl/dT = derivative inflow with thrust

= f / (mean inflow)

wake inflow flap root natural
model CT/S modes real imag freq C dl/dT f

uncoupled 0.02 -0.500 0.923 1.050

dynamic 0.02 1 -0.521 0.942 1.076
2 -0.448 0.959 1.056
3 -0.496 0.904 1.031

4 -0.501 0.841 0.979
5 -0.512 0.828 0.974
6 -0.519 0.827 0.977

static 0.02 1 -0.284 1.010 1.050 0.528 10.59 0.313
2 -0.194 1.031 1.049 0.388 20.68 0.612

3 -0.194 1.031 1.050 0.388 20.68 0.612
4 -0.197 1.031 1.049 0.394 20.04 0.593
5 -0.199 1.030 1.049 0.398 19.63 0.581
6 -0.200 1.030 1.049 0.400 19.43 0.575

vortex theory (no wake geometry distortion) 0.397 19.72 0.583
momentum theory 0.544 9.86 0.292
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Table 7. Flap-pitch motion of hovering rotor with undistorted

wake

hovering rotor, undistorted wake
nonrotating frame, 3 blades
roots of flap/pitch, collective mdoes
no wake model

center of gravity
location (% chord)

flap roots pitch roots
real imag real imag

25 -0.492 0.973 -1.258 2.881

-0.492 -0.973 -1.258 -2.881

28 -1.554 0.000 -0.378 2.185
-0.802 0.000 -0.378 -2.185
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Table 8a. Identification for hovering rotor with rolled up wake

hovering rotor, rolled up wake

nonrotating frame, 3 blades
identification for all radial stations_ six inflow modes

identified equation

order - equation order
wmax - identification frequency range

weight - 16 for 0 to 1.5/rev,
weight - 1 for 1.5 to wmax

wmax order
inflow poles inflow poles

mode real imag mode real imag

4.5 6 -1.9144 4.9566 2 -0.3731 2.9479
-1.9144 -4.9566 -0.3731 -2.9479
-0.6658 2.9592 -0.2349 0.4294

-0.6658 -2.9592 -0.2349 -0.4294
-0.1071 0.0000 -7.9477 0.0000

-7.6523 0.0000 -5.6843 0.0000

4.5 6 -0.3714 5.5955 4 -2.0528 8.6765

-0.3714 -5.5955 -2.0528 -8.6765
-0.4724 3.0474 -0.9566 3.1013
-0.4724 -3.0474 -0.9566 -3.1013

-8.5166 0.0000 -1.0952 0.0000

-0.4045 0.0000 -7.5764 0.0000

4.5 6 -0.9612 1.2656
-0.9612 -1.2656

-1.1263 3.7180
-1.1263 -3.7180
-2.1830 8.7510

-2.1830 -8.7510

-0.7516 1.1121
-0.7516 -1.1121

-0.2600 3.7486
-0.2600 -3.7486
-1.0880 6.4135
-1.0880 -6.4135
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Table 8b. Concluded

hovering rotor

nonrotating frame, 3 blades
identification for all radial stations; six inflow modes

identified equation

order = equation order
wmax - identification frequency range

weight - 16 for 0 to 1.5/rev,

weight - 1 for 1.5 to wmax
maximum - excluding 0.93R

inflow

wmax order mode
rms system function error

for 0.93R minimum maximum

4.5 6 0.0140 0.0002 0.0014
0.3500 0.0005 0.0144

0.0282 0.0005 0.0086
0.0340 0.0001 0.0024

0.0606 0.0002 0.0065
0.1736 0.0005 0.0200
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Table 9. Flap motion of hovering rotor with rolled up wake

hovering rotor, rolled up wake
nonrotating frame, 3 blades
roots of coning mode

equivalent values, derived from
real part of flap root:

C - lift deficiency function
dl/dT - derivative inflow with thrust

- f / (mean inflow)

wake inflow flap root natural
model CT/s modes real imag freq C dl/dT f

uncoupled 0.08 -0.500 0.923 1.050

dynamic 0.08 1 -0.492 0.958 1.077
2 -0.400 0.985 1.063
3 -0.424 0.986 1.073
4 -0.448 0.961 1.060
5 -0.448 0.943 1.044

6 -0.460 0.947 1.052

static 0.08 6 -0.240 1.021 1.049 0.480 13.19 0.781

vortex theory (no wake geometry distortion) 0.544 9.86 0.583
momentum theory 0.693 4.93 0.292
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