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ABSTRACT

A workshop on the Mars Global Network Mission held at the Jet
Propulsion Laboratory (JPL) on February 6 and 7, 1990, was attended by 68
people from JPL, National Aeronautics and Space Administration centers,
universities, national laboratories, and industry. Three working sessions
on science and exploration objectives, mission and system design
concepts, and subsystem technology readiness each addressed three
specific questions on implementation concepts for the mission. The
workshop generated conclusions for each of the nine questions and also
recommended several important science and engineering issues to be
studied subsequent to the workshop.
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SECTION 1
INTRODUCTION

1.1 BACKGROUND

These proceedings document a workshop on the Mars Global
Network Mission (GNM) held at the Jet Propulsion Laboratory (JPL) on
February 6 and 7, 1990.

Mars network missions have been under study for more than a
decade. Recently, the GNM has been included in the robotic mission set
defined in the National Aeronautics and Space Administration’'s (NASA's)
90-day study in support of the new Science Exploration Initiative to
return humans to the Moon and Mars (Reference 1). As part of the 90-day
study, JPL studied the robotic mission set, including a 1988-launched
network mission based on penetrator-type landers. The JPL study is
documented in Reference 2. The JPL Global Network Mission study team
further detailed the penetrator mission in a data package (Reference 3).

Because of the range of possibilities for implementing this
type of mission, and because of the new context of the mission as part of
the Science Exploration Initiative, a workshop was scheduled to collect
ideas about implementation concepts from the science and industrial
communities.

1.2 ORGANIZATION OF THE PROCEEDINGS

This introductory section contains background information on
the subject workshop. Exhibit 1 is a copy of the workshop invitation
letter with attachments stating the purpose and strategy for the
workshop. Exhibit 2 is a copy of key material handed out at the beginning
of the workshop. This material shows the workshop agenda and the
specific issues to be addressed. A copy of Reference 3 was included with
the non-JPL invitations.

Section 2 contains an executive summary of the workshop
conclusions.



The details of the proceedings are contained in Section 3. Each
of the two plenary sessions, the parallel discussion sessions, and the
concluding informal session are summarized here. References are made in
the parallel session summaries to materials presented or submitted at the
workshop. These submittals are contained in the appendixes. Several
papers were submitted after the workshop for inclusion in the
proceedings. These are also contained in the appendixes.

The proceedings conclude with a list of references and a list
of workshop attendees.



Jet Propulsion Laboratory
Cal'orna Institute of Technology

43800 Qak Grove Drive
Pasadera Calforria 91109

(818) 3544321

January 9, 1990

AFlA
AFZA
AF3A
AF4A
AFSA

Dear Colleague:

You are invited to participate in a workshop on the subject of a
Mars Global Network Mission to be held at JPL on February 6 and
7, 1990. This mission has been proposed for a 1998 launch as
part of the robotic exploration mission set leading to human
exploration of the Moon and Mars.

The workshop has two major objectives: 1) to review and reconfirm
the candidate science and exploration mission objectives; 2) to
identify implementation options and tradeoffs to meet those
objectives. The workshop will help mission planners collect
ideas, especially from outside JPL, about applicable unclassified
engineering technology and implementation concepts to meet the
current science and human exploration initiative objectives for
the Mars Global Network Mission.

A copy of the agenda is attached, as well as a 1list of the
specific questions to be addressed at the workshop. All
participants are encouraged to select at least one of the session
questions of particular interest and to prepare a short brief
addressing the issue for discussion at the appropriate session.
Bibliography material would also be very useful. These
submittals will be published as part of the workshop proceedings.

Also included for your information is a copy of a point design
based on an all-penetrator mission that was generated at JPL
during the recent Human Exploration Initiative 90-~day Study.

A social time is planned for the evening following the first
workshop day. Details will be announced at the workshop.

Please respond concerning your attendance at the workshop by

Thursday, February 1. Call or write the JPL Global Network
Mission study leader, Fran Sturms, at (818) 354-5514, Mail Stop
171-267. Mr. Sturms can also be reached at FTS 792-5514 or

through NASAMAIL box FSTURMS.
Exhibit 1. Invitation and Attachments



Jet Propulsion Laboratory
California Institute of Technology

Colleague -2 - January 9,1990

We at JPL look forward to your participation and hope it will be
mutually beneficial as we prepare for this interesting mission.

. Casani
Assistant Laboratory Director
Office of Flight Projects

Attachments

Exhibit 1 (contd)



Mars Global Network Mission Workshop
Dates: Tuesday and Wednesday, 6-7 February 1990

Place: Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109

Purpose:

To collect ideas, especially from outside JPL, about applicable
unclassified engineering technology and implementation concepts to meet
the current science and human exploration initiative objectives for a Mars
Global Network Mission (GNM).

Agenda:
Day 1 Building 167 Conference Room

Plenary Session
0900 Welcome and Opening Remarks Casani
0915 Workshop Plan Sturms
0930 Overview of Science Objectives Squyres
1000 Human Exploration Objectives Bell
1030 Break
1045 Parallel Sessions

A - Science and Exploration

B - Mission and System Design

C - Subsystem Technology

(rooms to be announced at plenary session)
1215 Lunch
0115 Sessions A,B,C in parallel
0500 Adjourn
Day 2 Building 167 Conference Room

Plenary Session
0900 Summary Report, Session A - Science and Exploration
0930 Summary Report, Session B - Mission and System Design
1000 Summary Report, Session C - Subsystem Technology
1030 Break
1045 Formulation of Workshop Conclusions
1230 Adjourn formal workshop
0130 Informal Post-workshop discussions

Exhibit 1 (contd)



Workshop Strategy:

The primary emphasis of the workshop is on engineering, but with heavy
science participation. A review of the science objectives for GNM that
were developed at the December meeting of the Mars Science Working
Group (MarsSWQ) will be presented in the opening plenary session along
with the objectives of the Human Exploration Initiative. The heart of the
workshop consists of three parallel sessions which will each specifically
address three questions concerning implementation of the GNM mission:

Session A - Science and Exploration

1) In view of the stated science and human exploration objectives, what
are realistic for GNM and what should be allocated to subsequent
missions? .

2) Should there be only one type surface station (e.g. penetrators) or a mix
of lander types? Also-how many? where? what lifetime?

3) What instruments should be included in the lander and orbiter payloads?

Session B - Mission and System Design

1) How do we get to polar sites and is a common lander design feasible for
both low latitude and polar sites; both surface and subsurface science?

2) What is the best entry system - fixed or deployed aeroshells; -
parachutes or direct impact?

3) What are the desired and achievable accuracies for targeting the
landing sites?

Session C - Subsystem Technology

1) What technology will help achieve 10-year lifetimes?
2) What technology will help survival of high-g landings?
3) Are RTGs a workable power subsystem (size, location on the lander)?

A member of the MarsSWG GNM sub-group will attend each parallel
session. Each session will have a moderator to maintain the focus on the
questions. A session recorder will capture inputs. Participants are
encouraged to prepare a short written brief and bibliography material
addressing one or more of the session questions to be included in the
published proceedings. Position papers will be presented to start off
discussion on each question. A workshop consensus will be documented,
as well as outstanding issues for further study.

Exhibit 1 (contd)




Session A - Science and Exploration

Room assignment: 264-461B

Moderator:  Dan McCleese

Recorder: Matt Golombek

Questions:

1) In view of the stated science and human exploration objectives, what
are realistic for GNM and what should be allocated to subsequent
missions?

2) Should there be only one type surface station (e.g. penetrators) or a mix
of lander types? Also-how many? where? what lifetime?

Position Statement for questions 1 and 2: Fran Sturms

3) What instruments should be included in the lander and orbiter payloads?
Position Statement: Bruce Banerdt

List of attendees:

Bruce Bachofer - GE
Bruce Banerdt - JPL

Don Bickler - JPL

Mike Carr - USGS

Paul Davis - UCLA

Tom Economou - U Chicago
Matt Golombek - JPL
Robert Haberle - ARC
Ron Kahl - JSC

Tony Knight - MMC

Jack Kropp - TRW

Peter Landecker - Hughes
Janet Luhmann - UCLA
Mike Malin - Arizona State
Dan McCleese - JPL
Chris McKay - ARC

David Morrison - ARC
Bruce Murray - Caltech
Dave Smith - JPL

Fran Sturms - JPL

Tomas Svitek - Caltech
Dick Wallace - JPL

Rich Zurek - JPL

Exhibit 2. Key Topics



Session B - Mission and System Design

Room assignment: 167

Moderator:  Tom Penn

Recorder: Robert Mostert

Questions:

1) How do we get to polar sites and is a common lander design feasible for
both low latitude and polar sites; both surface and subsurface science?

Position statements: Phil Knocke, Jim Burke

2) What is the best entry system - fixed or deployed aeroshells;
parachutes or direct impact?

Position statement: Joe Gamble

3) What are the desired and achievable accuracies for targeting the
landing sites? :

Position statement: Les Sackett

List of attendees:

Arden Albee - Caltech Tom Penn - JPL
Norman Alexander - GE Richard Reinert - Ball
Steven Bailey - JSC : Les Sackett - CSDL
Ed Belbruno - JPL Joel Sperans - ARC
Dave Bell - JPL Byron Swenson - SAIC
Jim Burke - JPL Dan Young - McDAC

Louis Cassel - TRW
Bruce Crandall - Hughes
Manuel Cruz - TRW
Glenn Cunningham - JPL
Alan Friedlander - SAIC
Terry Gamber - MMC
Joe Gamble - JSC

Phil Knocke - JPL

Eric Laurson - Lockheed
Allan Lee- JPL

Bob Mitchell - JPL

Bob Miyake - JPL
Carlos Moreno - JPL
Robert Mostert - JPL

Exhibit 2 (contd)
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Session C - Subsystem Technology

Room assignment: 238-543

Moderator:  Brian Muirhead

Recorder: Bili Nesmith

Questions:

1) What technology will help achieve 10-year lifetimes?

Position statement: Genji Arakaki

2) What technology will help survival of high-g landings?

Position statement: C. Wayne Young

3) Are RTGs a workable power subsystem (size, location on the lander)?
Position statement: Mike Shirbacheh

List of attendees:

Larry Adams - MMC
Genji Arakaki - JPL
Wayne Arens - JPL
John Garvey - McDAC
Paul Gillett - GE

Owen Gwynne - ARC
Robert Karpen - JPL
Brian Muirhead - JPL
Bill Nesmith - JPL
Farley Palmer - Hughes
Dave Ryerson - Sandia
Al Schock - Fairchild
Mike Shirbacheh - JPL
Robert Smolley - TRW
Steve Squyres - Cornell
C. Wayne Young - Sandia

Exhibit 2 (contd)






SECTION 2
SUMMARY OF CONCLUSIONS

2.1 SESSION A: SCIENCE AND EXPLORATION

2.1.1 In view of the stated science and human exploration
objectives, what are realistic for GNM and what should be
allocated to subsequent missions?

The workshop concluded that most of the stated objectives for
this mission should be retained. The meteorology, surface and subsurface
chemistry, volatiles, regolith structure, descent imaging, and entry
science objectives support both science and exploration. Seismology is of
interest primarily to science. No strong arguments have been offered that
seismic measurements are needed for exploration purposes. Narrow-band
seismology should be retained, but wide-band seismology may have
implementation problems on a surface lander, and should be retained only
if adequate isolation from lander and surface-generated noise can be
accomplished. Postlanding imaging from the lander on the surface can
certainly enhance the interpretation of surface measurements, but it is
not as important as descent imaging. Orbital objectives, such as
aeronomy, support imaging, and other orbital support measurements, are
all candidates for implementation by other missions. The workshop
strongly recommended that orbital measurements to support surface
meteorology be considered. [t was also recommended that aeronomy be
included on the orbiter if it is possible to do so without seriously
complicating the spacecraft carrier design. The Mars Science Working
Group (MarsSWG) will convene three small workshops to address questions
in the areas of meteorology, seismology, and geochemistry/volatiles/
exobiology.

2.1.2 Should there be only one type surface station (e.g. penetrators)
or a mix of lander types? Also-how many? where? what
lifetime?

A major conclusion of the workshop is that two lander types
be used: hard landers for the long-life surface objectives and penetrators
for the short-life subsurface objectives. There should be 10 to 20 hard

11
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landers placed relatively evenly at widely separated latitudes (including
the polar regions) and longitudes, and at a variety of terrain types. These
landers should operate for many years, at least one Mars year at typical
3-sigma spacecraft-design lifetime probabilities and on the order of 10
years at some reduced confidence. Simultaneous data are desired from the
long-lived surface landers. Penetrators should be sent to about eight
sites, including the polar regions, and need last only a few weeks.
Measurements from the penetrators do not need to be simultaneous.

The two types of landers need not be part of the same mission,
and they could be launched on different launch vehicles in the same or a
different launch opportunity and by different agencies, including those
from other nations.

2.1.3 What instruments should be included in the lander and orbiter
payloads?

Strawman payloads for each lander type and the orbiter were
recommended. All suggestions for the payloads that follow were judged
to be preliminary and should be updated in the near future by the MarsSWG
workshops.

(1) Hard lander: high priority; a meteorology station
(pressure, temperature, wind, and aerosol measurements
at a minimum), narrow-band seismometer, descent
imager, alpha—proton—X-ray (a-p—x) instrument, and soil
electrochemical analyzer, and instruments for entry
measurements of acceleration, pressure, and
temperature (probably on the aeroshell). More difficult
to accommodate will be a differential scanning
calorimeter (DSC), an evolved gas analyzer (EGA) and a
neutron spectrometer. A landed imager and impact
accelerometer were listed at a lower priority.

(2) Penetrator forebody: a descent imager, alpha—proton—
X-ray instrument, DSC/EGA, neutron spectrometer,
impact accelerometer, and gamma-ray spectrometer, and
instruments for entry measurements of acceleration,
pressure, and temperature (on aeroshell). A soil
electrochemical analyzer was listed as a high priority,
but it may be difficult to implement without major

complexity.

12



(3) Penetrator afterbody: soil electrochemical analyzer.
Landed imager and alpha—-proton-X-ray instrument at
lower priority.

(4) Orbiter: Strong desire for instruments for orbital
support measurements, especially for meteorology. An
aeronomy package should be investigated, but it has
lower priority.

2.2 SESSION B: MISSION AND SYSTEM DESIGN

2.2.1 How do we get to polar sites and is a common lander design OK
for both low latitude and polar sites?

The workshop endorsed deployment of all landers from orbit,
using an elliptical, polar orbit (see Section 6.2, Submittal No. 1) that can
reach all latitudes. There is a 6-month wait for proper lighting for
descent imaging, which was judged not to be a big problem. Deployment
from hyperbolic approach has many problems and should be considered only
for fairly simple penetrators launched on a separate mission. A common
design for landers at all latitudes was judged to be possible; the only
exception was the design for penetrators that try to penetrate the polar
ice cap.

2.2.2 What is the best entry system - fixed or deployed aeroshells;
parachutes, or direct impact?

The workshop recommended the use of fixed aeroshells at
shallow entry angles as the least risky for launch in 1998. Both
deployable aeroshells and the use of steep entry-angle designs show
promise, but they have more development schedule risk for a 1998 launch.

Parachutes are recommended and, to reduce g loading,
crushable structures for the hard landers and possibly the penetrator
afterbodies. The concept of sizing the parachute for the specific altitude
target of each lander was offered. Also, a proximity sensor to impart a
retro-rocket impulse just before impact could reduce lander impact
acceleration from several hundred gs to less than 100 gs.

13



2.2.3 What are the desired and achievable accuracies for targeting
the landing sites?

There is a possible mismatch between desired and achievable
landing accuracies. High-probability accuracies are greater than 100 km
(3-sigma radius); with additional efforts to control deployment errors,
there is some promise of accuracies of 50 to 100 km. Some terrain types
desired for targeting may be in the 10- to 50-km range. Achieving this
accuracy is questionable without active guidance during atmospheric
entry. Target areas should be limited to the 50- to 100-km range. The
orbital retromaneuver delta-V should be imparted by a liquid system for
greatest accuracy. Guided entry was not judged feasible for these simple
landers.

Session B also considered a fourth question concerning
alternate mission and lander concepts. The major alternate concepts
recommended for further study are (1) spread launches of landers over
several opportunities with smaller launch vehicles, (2) separate probe
carrier and orbiter communication functions into two missions, (3)
attempt a contract for communication services similar to that for
Comsat, (4) use a mix of at least two lander types with international
partners providing one or more.

23 SESSION C: SUBSYSTEM TECHNOLOGY

2.3.1 What technology will help achieve 10-year lifetimes?

The key problem for achieving long lifetimes on the hard
landers involves electronics and thermal control. The large number of
thermal cycles and electrical on/off cycles (greater than 4000) will
stress electronic subsystems beyond the present levels of experience.
The failures occur in solder joints and interconnections rather than in the
parts themselves. Current electronics fail within 200 to 1000 cycles
when thermally cycled from -55 to 100°C. The key to extending the
lifetime is in limiting the thermal cycles to a narrower range, e.g., -20 to
20°C. Studies are needed to test the feasibility of thermal-control
designs. Testing of electronic designs for large numbers of cycles is
important.

14




2.3.2 What technology will help survival of high-g landings?

Current electronic designs have demonstrated survival of the
impact accelerations expected for hard landers and penetrators, which
range from hundreds to thousands of gs. Transverse accelerations may be
as high as the axial loads, and rebound accelerations may also be
significant. Improved impact models of Mars are needed for design and
testing purposes.

Current radioisotope thermoelectric generator (RTG) power-
source designs cannot survive the 1000+ g impacts that will be
experienced on the penetrator afterbody and on an unattenuated hard
lander. (See the following question.)

2.3.3 Are RTGs a workable power subsystem (size, location on the
lander)?

RTG power sources present a major set of developmental
problems for the GNM. Small RTGs of the necessary few watts of power
are currently available only for terrestrial use; they can probably be
designed to survive a few hundred gs and be space and nuclear-safety
qualifiable, but they will require considerable design analysis and testing.
In the current lander concepts, these lower g levels are experienced only
in the penetrator forebody. However, temperature control in the forebody
is a very severe design problem. Impact attenuation of hard landers and
penetrator afterbodies is a possible design approach, but lateral loads
may be a problem.

The results from Session A indicate that RTGs may be needed
only on the long-life hard landers and not the short-life penetrators. The
use of a proximity retro-rocket impulse to lower the lander impact
accelerations to less than 100 gs could relieve the RTG design problem.
Another way to lower the RTG impact loads is separation of the RTG from
the lander prior to impact, using either the descent parachute or a
separate chute. This would require an umbilical for power transfer and
analysis of other problems, such as lateral loads, landing orientation, and
temperature control. :

15
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SECTION 3
DETAILED PROCEEDINGS

3.1 PLENARY SESSION 1

The first plenary session began with a welcome by John
Casani, JPL's Assistant Laboratory Director for Flight Projects. The GNM
study leader, Fran Sturms, then reviewed the mechanics of the workshop
as presented in the invitation and workshop handout materials (see
paragraph 1.2).

Jim Martin brought a challange from NASA code E to “be
innovative.”

The next three presentations at the opening session served to
review the science and exploration objectives for GNM. These objectives
were not to be viewed as firm requirements, but rather as goals to serve
as guidelines for the subsequent discussions. The viewgraphs presented
during this part of the workshop are referenced in this section as figures.
(In some cases, handwritten slides have been typed for these proceedings.)

The first presenter was Mike Carr, chairman of code E’s Mars
Science Working Group (MarsSWG@G). Dr. Carr put the mission objectives
into the context of the series of robotic missions leading to the first
human landings on Mars. GNM completes the reconnaissance or global
assessment phase of Mars exploration (Figure 1). Primarily, the GNM
provides ground truth at a number of sites on Mars. The missions
following GNM comprise the validation phase of Mars exploration; this
phase increases confidence of our understanding of Mars to levels required
to evaluate and select sites and to design and fly missions to land humans
(Figure 2). He pointed out that this mission has been of interest to the
science community for many years and showed a recent set of objectives
from a code-EL workshop (Figure 3).

The next presenter was Steve Squyres, chairman of the GNM
subgroup of MarsSWG. Dr. Squyres presented the science objectives for
GNM in six parts: atmospheric science, internal structure, geochemistry
and mineralogy, volatiles, surface morphology, and regolith structure.
(See Figures 4 through 9.) Each of these experiment areas were detailed
as to the type of measurements, the kind of instrumentation, and the
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mission requirements. Additional science desired involves soil oxidation
state, aeronomy, magnetometry, heat flow, and entry science (Figure 10).
The science objectives divide naturally into short-lived subsurface
science and long-lived surface science. This in turn implies two types of
surface landers: short-lived penetrators and long-lived hard-surface
landers. (See Figure 11.) Finally, it was pointed out that both types of
landers will desire targeting to terrain types as small as 50 km, at
latitudes and longitudes over the whole planet, and at a wide range of
surface altitudes.

The third presenter was Dave Smith, representing the Science .
Exploration Initiative (SEI) Mission Analysis and System Engineering
(MASE) organization at Johnson Space Center (JSC). He pointed out that
the robotic missions obtain both science and engineering data to support
the mission, spacecraft, and equipment design for the human missions
(Figure 12). The SEI objectives overlap the pure science objectives in
many areas. The key SEI activities to be supported by additional
knowledge about Mars are aeromaneuvers in the Mars atmosphere and site
selection for the human landings (Figures 13 and 14). Specific objectives
for GNM include supporting the site selection for the subsequent robotic
sample return mission and validating the global resource maps of Mars
compiled from remote sensing on such missions as Mars Observer (Figure
15).

3.2 SESSION A: SCIENCE AND EXPLORATION

Session A on Science and Exploration was held on February 6.
Papers submitted for discussion are reproduced in Section 6.1 and
referenced here by numbers in parentheses.

‘Dan McCleese (moderator) presented an overview of some of
the issues to be discussed (1). These included science objectives for the
GNM, relevance of the GNM to the SEI, the role of the orbiter, and the
implementation approach.

Fran Sturms presented a position paper on the GNM mission
design (2). The objectives fit into four basic categories of long- and
short-lived surface landers and long- and short-lived subsurface
penetrators. Fran proposed surface hard landers only for the GNM, delaying
subsurface objectives for later in the mission set. The scientists present
overwhelmingly opposed such a solution, insisting that subsurface
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volatile and chemistry information is crucial for calibrating the remote
sensing data obtained by Mars Observer.

A broad-ranging discussion followed that questioned the need
for large Titan launches for the GNM: Perhaps a greater number of smaller
launches would be more appropriate. This seemed more in keeping with
the request for alternative strategies and concepts for implementing the
GNM and for involving international partners in the mission.

A philosophical discussion followed that ranged from the SEI
interests for the GNM to a simpler, smaller, and more fiscally
conservative mission than the one generally considered. Dave Morrison
stressed that the GNM should focus on objectives unique to a network
mission (3): the simultaneity of observations for meteorology and
seismology, and the ability to go places that will not be visited by the
other robotic exploration missions. Bruce Murray discussed at length his
views on what the GNM should encompass. He thought that a simple, hard-
lander mission involving launch on small expendable vehicles is,
politically, the most sensible approach. These landers would measure
properties for which enough information already exists to enable design of
a useful experiment. This would entail measuring atmospheric properties
and surface imaging. This view submits that not enough is known about
the seismology of Mars to allow meaningful measurements. Most of the
other scientists vehemently disagreed with this position: Seismological
measurements remain the only way to determine fundamental properties
of the interior. It was also pointed out, however, that there is no
fundamental incompatibility between meteorology and seismic
measurements at the same long-lived surface station, provided there is no
long-term mast or boom that would wave in a wind.

After lunch, Mike Carr discussed the science objectives (4)
attributed to the GNM by the MarsSWG. After a discussion that lasted
most of the afternoon, it was concluded that these science objectives
remain the best for the GNM. A table of the needs for the GNM for a
variety of disciplines was presented (4). This table shows that about 20
surface stations are needed for meteorology, 10 to 20 are needed for
seismology, and 10 or fewer are required for volatile and mineralogy/
chemistry science. A possible break between long-lived surface stations
and short-term penetrators was iterated from MarsSWG discussions.

The group overwhelmingly supported plans for a number of

small science workshops that focus on such critical questions as how
much does a simple surface station that is not firmly anchored to the
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ground degrade the seismic measurements? Another is how many
meteorology stations are needed and what additional measurements from
orbit need to be made simultaneously? A third is how many landers are
needed for geochemistry and volatile science, and are subsurface
measurements required? These questions will be addressed by three
upcoming workshops on seismology, meteorology, and geochemistry/
volatiles/exobiology objectives for the GNM.

Bruce Murray then presented a concept for adding balloons to
the hard landers now being considered for the GNM (5). These balloons
would allow high-resolution imaging of the Martian surface as well as
meteorology in the boundary layer. Tethered-, anchored-, and snake-
balloon concepts were presented and recommended for consideration as a
payload option.

Dan McCleese directed the focus of discussion to issues useful
for mission designers. A variety of questions and suggestions surfaced.
They included: What is the current engineering design for a hard lander?
Is a hybrid hard lander/penetrator in which a hard lander has a spike for
effective coupling to the ground possible? Does a hard lander perform a
smentn‘"cally satnsfactory group of measurements’?

Dave Mornson suggested a strawman payload for a hard lander
(6). The payload would include instruments for meteorology, seismology,
surface chemistry, soil physics, and imaging. A second class of vehicle
was proposed to accompany the hard landers, namely short-lived
penetrators that concentrated on the volatile, mineralogy, geochemistry
science goals. Steve Squyres summed up this apparent division between
science on penetrators and hard landers (7). This implementation strategy
looked promising to the group and more design work on it was
recommended.

To focus on a possible strawman payload for this type of
mission, Bruce Banerdt ‘presented a compilation of science instruments
and their masses, power, and data-rate requirements (8). Outside of
discussion about some of the instruments (e.g., a neutron spectrometer vs
a gamma-ray spectrometer), this strawman was considered reasonable,
although most believed it was still a little early in the mission-design
activities to accept a strawman payload. It was agreed that the mass,
power, and data-rate estimates need to be evaluated by the workshops
that focus on meteorology, seismology, and geochemistry/volatiles/

exobiology.
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Janet Luhmann presented an excellent summary of what was
known about the aeronomy of Mars and the need for additional
measurements (9). Most agreed that the orbiter will offer a good
opportunity for an aeronomy payload. The package proposed is under 100
kg, although some of the instruments require unimpeded ram directions
(without landers in the way) as well as fairly long booms. The spacecraft
orientation required to provide this ram direction may conflict with the
communications function of the orbiter, although a separate
communications satellite was suggested to alleviate this mismatch.

Bob Haberle suggested that atmospheric measurements from
orbit will be needed at the time the surface meteorology measurements
are made. While the science from these measurements is quite compatible
with the major goals of a network mission, most present were unwilling
to choose the orbiting atmospheric measurements over the aeronomy
measurements, given that an aeronomy mission had previously been given
a high scientific priority. Everyone agreed, however, that a balance has to
be achieved between lander and orbiter science and between orbiter and
surface meteorology, although this balance has not yet been reached.

Tom Economou presented information on a small, rugged alpha-
proton—-X-ray instrument being developed. Although most scientists saw
the utility of this type of instrument, difficulties in interpreting the
results were noted, given that this instrument samples only a thin layer.
Anyone interested in more information is encouraged to talk with Tom.

The meeting ended with a wrap-up session that summarized
what would be presented at the plenary session.

Subsequent to the workshop, Paul Davis submitted a paper on
the objectives of a Mars seismology experiment (10).

3.3 SESSION B: MISSION AND SYSTEM DESIGN

Session B of the Global Network Mission Workshop focused on
issues relevant to the overall mission and system design. These issues
included the causes for the network mission to exceed reasonable costs
and feasibility and the conceptual design of the 90-day study penetrators.
Tom Penn was designated the moderator of this session, and Robert
Mostert the recorder. Materials submitted for discussion are reproduced
in Section 6.2 and referenced here by numbers in parentheses.
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The issues raised in this session included (1) the ability to
place surface landers at the polar regions, (2) the feasibility of one long-
lived common lander design for both high- and low-latitude sites, (3) the
possibility of one common lander design to do both surface and subsurface
science, (4) the most feasible system to enter the Martian atmosphere—
fixed vs deployable aeroshells—and the best terminal decelerator—
parachutes vs direct impact, and (5) the desired and achievable accuracies
for targeting the landing sites.

The first issue raised was emplacement of landers at the polar
regions. Could a long-lived common lander design be used? Could surface
and subsurface objectives be achieved with a single long-lived common
lander design? Phil Knocke and Jim Burke presented opening position
papers to facilitate discussion.

A mission design proposing an elliptical polar orbit to place
landers at the higher latitudes was presented by Phil Knocke (1). His
premise is based on a requirement to emplace landers above 80 degrees
latitude. Also, good lighting angles are necessary for descent imaging.
These two requirements constitute the major mission-design drivers. A
previous site-synchronous orbit design was able to emplace landers at the
higher latitudes upon approach, but at very steep entry angles and poor
lighting conditions. The elliptical polar orbit allows landers to be placed
anywhere on the Martian surface at reasonable lighting conditions and at
shallower entry angles. The landers would be deployed from orbit instead
of on approach. This helps to avoid the larger landing dispersion of
approach-deployed landers. The orbit allows a second pass over the
planet, which gives the mission an element of redundancy for lander
emplacement. As such, this orbit design would permit aeronomy
experiments while the spacecraft waits to deploy the landers.

Jim Burke spoke about system design considerations and
options (2). This entailed the Mars network mission objectives, approach,
and desired results. He stated that the goals of the mission need to be
prioritized. Once the pnontles have been established, different design
options could be eliminated. A systems design tree that shows the
different options of the different stages of emplacing a lander on the
surface of Mars from atmospheric entry to surface landing was shown. It
serves to remind the designer of the different choices available. For
example, a designer is reminded that the lander could use a parachute or a
ballute for atmospheric terminal descent. Jim showed a couple of lander
designs done in the past (e.g., Viking) using the design tree to point out the
alternative options chosen versus those options eliminated.
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Alan Friedlander of SAIC presented global contour maps of the
available communications time per sol between a lander and the orbiter
summed over all orbiter passes during that sol (3). The maps help to
clarify the one-sol communication interval between a lander at any given
place on Mars and the orbiter, using the elliptical polar orbit. Alan also
showed a configuration of a spacecraft with stacked aeroshells at launch
(3). After orbit insertion, each aeroshell would be individually deployed
from the spacecraft bus. Each aeroshell, containing two penetrators,
would then be its own spacecraft on its way to Mars. At Mars, the
aeroshells would enter the atmosphere individually towards their
designated landing sites. Alan's proposal is based on a communications
infrastructure that would be already available at Mars. A short discussion
ensued about the communications industry providing the necessary"
infrastructure for a set fee. Friedlander also contributed an update to his
previous study of lander success probabilities (5), but this was not
discussed.

Manny Cruz of TRW presented the results of studies relevant to
steep entry flight path angles (6). The 90-day study penetrator is the
baseline lander. The study is based on the use of ballistic coefficients to
assess the terminal velocity, ground track, and angle of attack of the
lander with respect to steep entry flight-path angles. The results show
that different ballistic coefficients do not adversely affect the ground
track, but landing accuracies decrease with shallower entry flight-path
angles. An aeroshell or its equivalent—designed with any ballistic
coefficient—that enters the atmosphere at steep flight path angles will
have a good landing accuracy. The terminal velocity increases and the
angle of attack decreases with larger (>10) ballistic coefficients. The
disadvantage of entering the atmosphere at steep entry flight path angles
seems to be the greater temperatures the entry vehicle will encounter.

A short-lived penetrator for the Martian poles derived from
the Comet Rendezvous Asteroid Flyby (CRAF) penetrator was presented by
Rich Reinert of Ball Aerospace (7). He suggested that a Martian polar
penetrator (a CRAF penetrator derivative) as an individual mission would
not be difficult. A modification would not be complicated because the
science objectives and the instrument complement for the Martian polar
caps are similar to those for the CRAF mission. The proposal assumes
that the polar caps are of composition similar to that of a comet. Jim
Martin asked if the CRAF penetrator could be used at lower latitudes; Rich
responded by suggesting that a major reconfiguration would be necessary.
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A general discussion followed that summarized and concluded
the first set of issues. It was agreed that the polar caps could be reached
by landers with a good mission design. A single, long-lived common lander
could probably not be designed for both the higher and lower latitudes. A
cost estimate would be helpful to confirm this conclusion. The issue of
placing surface and subsurface science instruments on a single lander was
not addressed at this point, nor was the issue of alternative types of
landers (i.e., hard vs soft). Jim Martin suggested that, with international
partners, a mix of landers might be possible. A suggestion was also made
to use different opportunities to send different or a different number of
landers to Mars. This would allow designers to ensure mission success in
the case of a failure, to affect designs as needed, and to spread the loss of
a single mission failure over several missions. Martin also suggested a
look at the 1996 opportumty for a quick, inexpensive mission.

The second key issue raised at this session was the question,
"Can deployable aeroshell technology be used for this mission or should
fixed aeroshells be used?" Also, the question of using parachutes for
terminal descent versus direct impact of the lander was raised. Joe
Gamble of Johnson Space Center gave an opening position paper to begin
the discussion.

Joe Gamble presented results of a study that would help
identify deployment dispersion problems upon Martian atmospheric entry
(8). (Note: This contribution was rewritten and resubmitted after the
workshop.) The 90-day-study penetrator baseline design was used to
determine a ballistic coefficient. He compared the deployment of
aeroshells from orbit with that from approach and the dispersion
problems that result due to terminal velocities. His results show that
deployment from approach is risky unless large entry angles are used with
very large g loads. He also observed that parachute deployment altitude
will be critical in establishing terminal velocities. The higher the
altitude, the greater the mach number upon descent, which implies higher
g impacts.

Considerations and issues in an entry- _ and terminal- descent-
system de3|gn were prepared by Byron Swenson of SAIC, but presented by
Alan Friedlander (9). The presentation showed different types of entry-
system configurations done in the past. Byron Swenson has been studying
deployable aeroshells, but did not use one for the 90-day study, because he
did not think it could be developed by 1998. He has been looking at
different ways to jettison landers from aeroshells. Yet, a deployable
aeroshell is worth consideration. It would ease the packaging problem at
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launch. Rich Reinert mentioned that Massachusetts Institute of
Technology (MIT) has been looking at deployable accelerators, and MIT
should be contacted to identify progress.

Arden Albee of Caltech showed lander design drivers from the
standpoint of packaging at launch and deployment from the spacecraft
versus each lander's mass and structure or entry system, such as an
aeroshell (10). He used a design tree to show the results of different
landers that have been built or studied. They are the Soviet Mars 3, the
Soviet Venera 8, the Viking Lander, and the Ames penetrator of 1977. He
showed the choices made by each mission to highlight the different design
choices that can be considered in placing landers on Mars. He discussed
other lander designs that have been built and that are not penetrators.
Some aspects of a penetrator have not been thoroughly studied, such as a
long-lived power source that would survive high-g impacts. Alan
Friedlander commented that the instrument payload is very restricted on a
penetrator. In addition, Arden is concerned with the wide variation in
altitudes at which landers will be placed without taking into
consideration the entry angle and the resulting terminal velocity at that
altitude.

The discussion that followed summarized the issue and
concluded that because fixed aeroshells are well known and the technology
is available, the landers will be kept simple. Deployable aeroshells will
have to be excluded from any 1996 opportunity because of the development
schedule that will be required. However, they may not necessarily need to
be ruled out for a 1998 opportunity. The issue of a parachute versus
direct impact was raised because of the landing-site altitudes. At what
altitude is a parachute to be deployed for a high-altitude landing site in
order to decelerate the lander to an acceptable velocity? Jim Martin
mentioned that for the Viking lander, project management is concerned
with any altitude above 2 km, because the Viking landers would not have
decelerated to an acceptable velocity. Retro-rockets or retro proximity
fuses, like those the Soviets use, were suggested. Hence, a study is
needed to identify the altitudes at which the landers can be placed with
certain decelerators. A range of altitude regions will need to be studied,
in addition to the height-range variability.

The last key issue raised in this session was that of desired
and achievable accuracies for targeting surface landing sites. Les Sackett
of The Charles Stark Draper Laboratory (CSDL) was asked to present an
opening position paper (11).
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The desired landing accuracy for a long-lived surface lander
with meteorology and seismology instruments is on the order of 100 km.
The desired accuracies for short-lived landers with chemistry and
mineralogy instruments are on the order of tens of kilometers. Les
Sackett of CSDL, using the 90-day study penetrator as a baseline, showed
that a penetrator deployed from approach and deployed from orbit at a
flight path angle of -20 deg would have an approximate landing accuracy
of 300 to 350 km. A penetrator deployed at a flight path angle of -15 deg
would have an approximate landing accuracy of 450 to 500 km. Again,
steeper flight path angles improve landing accuracies. A comparison of
deployment from approach and deployment from orbit suggest that the
landing accuracy dispersion is not so different.

The ensumg discussion centered on how accurately Iandlng
sites could be targeted and with how much complexity and cost. It is
clear that targeting control systems can be added to landers to decrease
landing accuracy errors, but these subsystems would increase the
complexity, costs, and mass of each lander. Hence, decisions must be
made to clearly identify the desired landing accuracies.

The remainder of the time was used to present and discuss
alternative issues and design considerations that did not seem pertinent
to the issues already discussed.

Bruce Crandall of Hughes Aircraft Co. told the session that
Hughes has been working on very high-g subsystems to be used for Space
Defense Initiative (SDI) (12). Hence, he could not speak at length.
Significant and mature high-g technologies exist in the areas of
electronics, propulsion, imaging, and guidance systems. Moreover, he
raised a launch-vehicle issue. Is a Titan IV/Centaur the launch vehicle
that this mission will be permitted to use? The use of that launch vehicle
implies a number one priority launch, and that has not been proclaimed for
this mission. He suggested using two or more Atlas/Centaur launch
vehicles. The total would have equivalent mass capabilities to that of the
Titan [V/Centaur and would provide multiple launches, which could satisfy
any redundancy or probability of a mission success requirement. Each bus
would carry fewer landers, but this strategy would decrease the chances
of failing to emplace all the landers. That is, if all 20 landers were on
one spacecraft, and the first one could not successfully deploy—which is
required for deployment of the following landers—the mission would be a
complete failure. Having but a few landers per bus and a total of four
spacecraft would overcome this potential problem. Finally, if only 10
landers were placed on two separate spacecraft for redundancy, the Titan
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IV/Centaur probably could not be launched from the same launch pad
within a 20-day window. Atlas/Centaurs could be turned around within 20
days.

Carlos Moreno of JPL showed a conceptual configuration of a
hard lander on which he has been working (13). It is based on a JPL study
done in 1988 and is similar to that used by the Soviets in the early 1970s.
A parachute would be used for terminal descent, and a crushable impact
absorber would be used to withstand the final surface impact. The lander
uses an RTG as its power source and includes meteorology, seismology,
and soil-oxidant instruments in addition to an alpha-proton—-X-ray
spectrometer. An attempt to add descent imaging will be made on this
design. The design drivers for this lander include the size and mass of the
RTG, whether or not it can survive high-g impacts, and the size and mass
of the memory necessary for data storage. The latter is also a function of
data rate and transmission time. However, some think that memory will
not be a driver for this lander. The present design mass is approximately
10 to 15 kg.

Jim Burke of JPL presented a tethered balloon option for a
payload on a lander. (This is the Session A contribution No. 5 by Murray.)
It is an alternative to descent imaging. It would also be used for boundary
layer measurements. Bruce Murray of Caltech has been working on this
concept with some of his graduate students. However, several problems
are associated with a tethered balloon. First, packaging a pressurized
tank with gas is difficult. Second, filling the balloon with gas is not
trivial. Third, a good anchor is necessary to overcome any wind problems.
A solution to the anchor is the use of some sort of snake that is dragged
over the surface as the balloon pulls it. Another issue is the imaging done
by the balloon. This imaging will not permit identification of the lander
location. Jim Burke will continue to work with Bruce Murray to evaluate
tethered balloons.

John Garvey of McDonnell Douglas (MDAC) spoke about the
capabilities of a Delta launch vehicle using two or more Delta vehicles to
do a network mission (14). This presentation was similar to that of Bruce
Crandall with respect to launch vehicles. More than one Delta vehicle can
be launched in a 20-day launch window.

Other issues discussed following these presentations included
instrument payload feasibility. Which technologies can reach maturity for
this mission? Subsurface chemical-analysis instruments would be a
severe design driver. Jim Martin is not sure that we are looking at one
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mission to be done in 1998 only or if we are looking at other
opportunities. A concept of more than one network mission would have
merit for the human exploration group, which would be able to help select
certain landing sites.

The conclusions and recommendations of this session are
summarized in the workshop summary section.

Steve Bailey submitted a paper after the workshop for
inclusion in the proceedings (15).

3.4 SESSION C: SUBSYSTEM TECHNOLOGY

iSVegsio'h' C on Subsystem ‘féchnology was held on February 6.
Materials submitted for discussion are reproduced in Section 6.3 and are
referenced here by numbers in parentheses. :

In the opening position statement on 10-year lifetime
survival, Genji Arakaki pointed out that the big concern is the large
number (greater than 4000) of temperature cycles, both from the Mars
day-night cycle and from the electrical power on/off switching. -
Technology options include new packaging, coatings, and expansion boards.
Brian Muirhead pointed out that the subsurface components on penetrators
might see smaller fluctuations. However, the polar sites are very cold
(150 K) and the soil thermal conductivity is uncertain. Genji Arakaki
stated that current electronic packaging technology is good for 1000 to
2000 cycles at -55 to 100°C. Testing of existing packaging methods for
over 4000 cycles needs to be done. Byron Swenson remarked that the long
lifetime follows a high-g landing, which may add to the problem. Wayne
Young recommended looking at technology used in the 20-year life for
nuclear weapons storage. Current programs are looking at high-g designs:
CRAF penetrator, tested to 400 gs, and Smart Pebbles, tested to
48,000 gs. ,

After lunch, Wayne Young presented information on the Sandia
penetrator experience (1). Sandia has a lot of experience with penetrator
technology and many tools are available for use in the GNM program. Young
concludes that technology exists to develop the Mars penetrators.

Da\}ewﬁyérSOn described the Sandia Telemetry Department

practices and rules for building high-shock instrument electronics (2). A -
key observation was that shock attenuators and energy absorbers have not
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worked well in Sandia's experience because of amplification of gs at some
frequencies and rebound loads.

Tom Komakek described high-g design concerns for RF
hardware (3).

Farley Palmer presented information concerning the GNM
technology questions from Hughes' experience base (4).

Mike Shirbacheh presented material provided by Teledyne
Energy Systems on the use of small RTGs in terrestrial applications (5).

Al Schock presented design concepts for penetrator RTGs based
on extensions of existing Fairchild RTG work (6).

3.5 PLENARY SESSION 2

The second plenary session of the workshop convened at 9 a.m.
on February 7. The purpose of this session was to hear summary reports
from the parallel sessions of the previous day and to develop workshop
conclusions. The viewgraphs presented during this part of the workshop
are referenced as figures in this section. (In some cases, handwritten
slides have been typed for these proceedings.)

The first presenter was Steve Squyres, representing the
Session A moderator, Dan McCleese. (See Figures 16 through 21.) It was
recommended that GNM focus on simultaneous global measurements in a
wide variety of terrain types and in particular in those types that would
not be visited by subsequent missions (e.g., the high latitudes and terrain
too rugged for the safe landing of rovers and humans). Boundary-layer
measurements were added to the meteorology objectives. The pros and
cons of the two main lander types were discussed, as well as some
variants, such as hard landers with “spikes” to penetrate the soil. A
number of science and engineering issues were identified. The three
science issues will be taken up by special MarsSWG working groups.

Tom Penn, the Session B moderator, presented summary
results for each of the three questions addressed in the Mission and
System Design session (Figures 22 and 23). In response to a fourth
question (Figure 24), a system-design tree (Figure 25) was presented to
show trades for alternate concepts. Several recommendations were made
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to study additional mission and system designs as funding will allow
(Figures 26 and 27).

Brian Muirhead, Session C moderator, presented a summary of
technology status and issues, and recommendations for each of the three
questions addressed in the Subsystem Technology session (Figures 28
through 31). There is no clear need for new technology; however,
considerable advanced development is needed in most areas for high-g
penetrators (Figure 32). An innovative option recommended for study is
the use of microthrusters to reduce landing accelerations to tens of gs.
To be ready for a 1998 mission, the top three areas needing immediate
advanced development are deployable aeroshells; small, high-impact RTGs;
and small retropropulsion for softer landings.

Fran Sturms led a discussion of the workshop conclusions,
using six forms (Figures 33 through 38) with blanks to be filled in. These
completed forms, along with notes and comments recorded to capture
details not apparent on the somewhat simplified forms, were used to
develop the summary conclusions documented in Section 2.

3.6 INFORMAL SESSION

The workshop was formally adjourned at 12:30 p.m. on
February 7, 1990, at the end of the second plenary session. After lunch, an
informal session was convened to allow those able to stay to have
additional discussions on items of interest.

A number of ideas on how to obtain the desired imaging of the
lander sites were discussed. It was pointed out that the large data
storage and recovery necessary in descent imaging could be avoided by
taking images from tethered balloons subsequent to landing or from
cameras lofted by mortar from the surface. These approaches would also
get the desired atmospheric boundary-layer measurements. However,
these techniques involve pointing-control problems. It was the consensus
that descent imaging was the best way to get images, which could be
continuously nested from orbital resolution levels down to submeter
resolution at the site. The case for postlanding imaging was judged to be
weak, especially if the descent images were good enough to identify
surface effects on the meteorology measurements. Landed imaging would,
however, allow identification of postlanding weather effects such as
frosts or wind deposits of dust around the lander site. Relatively
unobstructed imaging is desired.
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A number of ideas for getting the seismometer away from the
potentially disturbing influence of the surface meteorology station were
discussed. The seismometer could be deployed by arms away from the
lander where it could be screwed or driven into the soil or otherwise be
made to have good surface contact. The arm could also release the
seismometer, leaving a data and power umbilical. Another technique
would fire the seismometer away by means of a mortar.

The advantages of deployable aeroshells were discussed
further. The main advantages are smaller mass and less attachment space
on the orbiter. Testing deployable aeroshells in a Mars-like environment
will be difficult, and this contributes to the development schedule risk
for a 1998 launch.

Methods for “stacking” fixed aeroshells so that they take up
less room on the orbiter were discussed. Two ideas mentioned were a
sideward “frisbee” type release (which also imparts the desired spin) and
ejection from a stack in a “rifled” launch tube. The former may offer the
advantage of selection of specific aeroshells that have been tailored to
specific types of landing sites, e.g., with parachutes sized for different
altitudes.
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SCIENCE OBJECTIVES: ATMOSPHERIC SCIENCE

» SURFACE PRESSURE (SEASONAL VARIATIONS,

WEATHER SYSTEMS, WAVES, ATMOSPHERIC TIDES)
» AIR TEMPERATURE AND WINDS (BOUNDARY LAYER,

WEATHER SYSTEMS, DUST-RAISING MECHANISMS)
e AEROSOL PROPERTIES (DUST LOADING, RADIATIVE

PROPERTIES)
 HUMIDITY (WATER VAPOR TRANSPORT,

SURFACE/ATMOSPHERE EXCHANGE)
INSTRUMENTATION: METEOROLOGY PACKAGE

« T, P, WIND SENSORS
« SKY RADIOMETER
* P205 HYGROMETER?

MISSION REQUIREMENTS:

 SURFACE PLACEMENT REQUIRED
* LONG LIFE REQUIRED
* MANY (>20) STATIONS REQUIRED

GLOBAL PLACEMENT REQUIRED, INCLUDING POLAR

REGIONS (MINIMAL LATITUDE/LONGITUDE
RESTRICTIONS)

Figure 4. Science Objectives: Atmospheric Science
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SCIENCE OBJECTIVES: INTERNAL STRUCTURE

MARTIAN SEISMICITY AND RELATION TO GEOLOGY
SEISMIC ATTENUATION PROPERTIES

PRESENCE, SIZE, AND PHYSICAL STATE OF CORE
THICKNESS, VERTICAL STRUCTURE, AND LATERAL
STRUCTURE OF CRUST

INSTRUMENTATION: SEISMOMETER

SEISMOMETER TECHNOLOGY IS WELL ADVANCED
CAGING/RELEASE MECHANISM REQUIRED
INTRINSIC DATA RATE IS VERY HIGH; EVENT
RECOGNITION SYSTEM IS REQUIRED

MISSION REQUIREMENTS:

SUBSURFACE PLACEMENT PREFERRED, BUT
SURFACE PLACEMENT MAY BE ADEQUATE FOR
MOST OBJECTIVES

LONG LIFE REQUIRED
MANY (>10) STATIONS REQUIRED

GLOBAL PLACEMENT REQUIRED (MINIMAL
LATITUDE/LONGITUDE RESTRICTIONS)
ACCURATE TARGETING REQUIRED FOR LOCAL
NETWORK(S)

Figure 5. Science Objectives: Internal Structure
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SCIENCE OBJECTIVES: GEOCHEMISTRY AND
MINERALOGY

 MAJOR ELEMENT GEOCHEMISTRY (ROCK TYPE AND

PETROGENESIS)

» SELECTED TRACE ELEMENT CONCENTRATIONS AND
RATIOS (e.g., NATURAL RADIONUCLIDES)

e MINERALOGY (PHASE ASSEMBLAGES, HYDROUS

MINERALS, CARBONATES)
e SAMPLE WIDE RANGE OF ROCK TYPES

ANCIENT CRATERED TERRAIN

INTERMEDIATE AND YOUNG VOLCANICS
POSSIBLE SILICIC VOLCANICS

POSSIBLE AQUEOUS SEDIMENTS/CARBONATES

INSTRUMENTATION GRS, o-P-X, DSC/EGA

GAMMA-RAY SPECTROMETER (GRS)

DETECTS MAJOR ELEMENTS AND NATURAL
RADIONUCLIDES

SAMPLES LARGE VOLUME WITH NO SAMPLING
MECHANISM

AT DEPTH, DETECTION OF ALL BUT K/U/TH REQUIRES NON
RADIOISOTOPIC NEUTRON SOURCE

GE REQUIRES T < 120 K, Nal HAS POOR RESOLUTION
MATERIALS INTERFERENCE IS A PROBLEM

CANNOT BE USED WITH RTG NEARBY

Figure 6. Science Objectives: Geochemistry and Mineralogy
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GEOCHEMISTRY AND MINERALOGY (continued)

e o-P-X
- DETECTS MAJOR ELEMENTS
- NO COOLING, INTERFERENCE, OR RTG PROBLEMS
- REQUIRES DOOR OR SAMPLING MECHANISM
- SAMPLES VERY THIN LAYER
* DSC/EGA
- DOES SOME MINERALOGY; ESPECIALLY GOOD WITH
HYDROUS MINERALS AND CARBONATES
- REQUIRES SAMPLING MECHANISM
- COMPLEX INSTRUMENT

MISSION REQUIREMENTS:

« SUBSURFACE SAMPLING REQUIRED
» SHORT LIFE ADEQUATE -
« ACCURATE TARGETING REQUIRED

Figure 6. (contd)
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SCIENCE OBJECTIVES: VOLATILES

e POLAR LAYERED DEPOSITS COMPOSITION
» CONCENTRATION AND DEPTH OF GROUND ICE
 HYDROUS MINERALS, CARBONATES, ETC.

INSTRUMENTATION: DSC/EGA,
N-SPECTROMETER

e N-SPECTROMETER DETERMINES H

CONCENTRATION
e« SAMPLES LARGE VOLUME WITH NO SAMPLING

MECHANISM
 REQUIRES NEUTRON SOURCE, RTG, RADIOISOTOPE,

14 MeV PULSED NEUTRON GENERATOR

MISSION REQUIREMENTS:

SUBSURFACE SAMPLING REQUIRED
SHORT LIFE ADEQUATE
HIGH LATITUDE REQUIRED

Ne [ ] [ ]

Figure 7. Science Objectives: Volatiles
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SCIENCE OBJECTIVES: SURFACE MORPHOLOGY

* HIGH-RESOLUTION CHARACTERIZATION OF LOCAL
SURFACE SITES FOR A VARIETY OF GEOLOGIC

INVESTIGATIONS
e« NESTED IN LOWER-RESOLUTION COVERAGE FOR

CONTEXTUAL INFORMATION
* IMPORTANT FOR INTERPRETATION OF

GEOCHEMICAL RESULTS

INSTRUMENTATION: DESCENT IMAGER

smac—

e COMPACT OPTICS/CCD SYSTEMS ARE RELATIVELY

STRAIGHTFORWARD
* VERY HIGH DATA RATE IMPLIES SUBSTANTIAL

MEMORY REQUIREMENTS

MISSION REQUIREMENTS:

 INDEPENDENT OF SURFACE/SUBSURFACE
OPERATION

e INDEPENDENT OF LONG/SHORT LIFE

Figure 8. Science Objectives: Surface Morphology
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SCIENCE OBJECTIVES: REGOLITH STRUCTURE

» REGOLITH STRENGTH PROPERTIES VS. DEPTH
* ANCILLARY DEPTH INFORMATION

INSTRUMENTATION: ACCELEROMETER

 SMALL, SIMPLE, RUGGED
e HIGH INSTANTANEOUS DATA RATE

MISSION REQUIREMENTS:

» SUBSURFACE SAMPLING REQUIRED
 SHORT LIFE ADEQUATE

Figure 9. Science Objectives: Regolith Structure
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NOTES

OTHER POSSIBLE SCIENCE

SOIL OXIDATION STATE
AERONOMY PACKAGE ON ORBITER
MAGNETOMETRY

HEAT FLOW

ENTRY SCIENCE

GEOLOGIC UNIT AND LATITUDE REQUIREMENTS
ALSO IMPLY ELEVATION REQUIREMENTS

APPARENT NATURAL DIVISION INTO
SHORT-LIVED/SUBSURFACE SCIENCE AND
LONG-LIVED/SURFACE SCIENCE

Figure 10. Additional Science

42



TWO VEHICLE TYPES
A) ~8 SHORT-LIVED PENETRATORS

GRS (Nal; Ge POLAR?)

o-P-X

N-SPECTROMETER/14 MeV SOURCE
DSC/EGA

ACCELEROMETER

DESCENT IMAGING

B) ~16 LONG-LIVED HARD LANDERS

SEISMOMETER
METEOROLOGY PACKAGE
DESCENT IMAGING

a-P-X

BOTH REQUIRE ACCURATE TARGETING
AND MINIMAL LATITUDE/LONGITUDE
RESTRICTIONS

Figure 11. Two Vehicle Types
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GNM Workshop Conclusions

Mission Objectives GNM Other
Meteorology X
Narrow Band Seismology X
Surface Chemistry X
Descent Imaging X
Landed Imaging X (1)
Sub-surface Chemistry X
Volatiles X

- Wide Band Seismology TBD(2)
Aeronomy try (3)
Orbital Imaging
Other Orbital Support (4)

Observations

Entry Science X

(1) weak justification, needs work

(2) need input from seismology workshop

(3) work accommodation in FY90 spacecraft design studies
(4) a large number of participants feel this should be
explored further

Figure 33. GNM Workshop Conclusions: Mission Objectives
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GNM Workshop Conclusions

Payload Types Yes | No | Number

Long life Hard Landers only
Long life Penetrators only

Hard Landers + Short life

Penetrators X(1) 20+8
Short life Penetrators only X
Add Aeronomy ?
Other ?(2)

Note: These conclusions are to be interpreted as FY90
priority for JPL study.

(1) also look at separate implementation of this
combination, e.g., different launch vehicles, different
countries, earlier launch of penetrators, use of modified
CRAF penetrator for polar sites.

(2) other innovative designs may be possible, e.g., a
lander with a "spike" penetrator.

Figure 34. GNM Workshop Conclusions: Payload Types
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GNM Workshop Conclusions

Instruments Surface Penetrator Orbiter
Lander |Forebody | Afterbody

Aeronomy "package” ) 1

Meteorology station X 2

pressure

temperature

wind

aerosols

Narrow-band X

seismometer

Descent imager b { X
Landed imager 1 1
a-p-x X X ?
DSC/EGA X X

Soil Electrochemistry X ? X
Neutron spectometer X X

GRS X

Impact ? X

accelerometer

Entry X X
accelerometer
pressure
temperature

Other instruments TBD. This list to be updated by MarSWG workshops by April
1990 for inclusion in FY90 studies.

1 Lower priority.

2 Some participants suggest meteorology support on orbiter .

Figure 35. GNM Workshop Conclusions: Strawman Payload for FY30 Studies
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GNM Workshop Conclusions

Orbit Design
Deploy on Approach (1) yes X] no
Inclination X 90
45
37-39 sun-synch
Wait for Lighting x| yes no
Aeronomy early
late
X both
Landing Accuracy
radius, 3-sigma desired achievable
> 100 km xx | hi prob
50-100 km ? x | maybe
10-50 km X ?
< 10 km

(1) approach deployment to be assessed for separately launched short-life
penetrators.

Figure 36. GNM Workshop Conclusions: Orbit Design and Landing Accuracy
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GNM Workshop Conclusions

Lander Design

Polar landers [x] Common with Equatorial (1)
[] Separate from Equatorial
Sub-surface [ ] None
[x] Short life Penetrator
L] Long life Penetrator
Entry System
entry angle [x] shallow steep
aeroshell [x] fixed deployable (2)

orbit retro delta-V [_] solid [x] liquid

guided entry [] yes x] no

terminal deceleration [x] parachute
retro-rockets (3)
[x] crushable structure (4)
[x] penetrator
[ other

(1) may be a problem with pentration of hard ice

(2) shows promise, but riskier for 1998 launch

(3) proximity impulse solves RTG problem with high gs
(4) for penetrator afterbody and hard landers

Figure 37. GNM Workshop Conclusions: Lander Design
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GNM Workshop Conclusions

Subsystem Technology 10-year life high-g
Optics and
Detectors
Electronics problem area
needing advanced
development
Telecom
problem for RTGs,
Power needs advanced
development and
testing
Mechanical

Thermal and
Other
Environmental
Control

possible problem
area related to
electronics and
sub-surface
RTGs

Figure 38. GNM Workshop Conclusions: Subsystem Technology
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SECTION 5
LIST OF ATTENDEES

The names, addresses, and telephone numbers of the 68
attendees are listed here. The JPL attendees are grouped together in
alphabetical order and given a single address. All others are listed in
alphabetical order without regard for institution or session attended.
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Jet Propulsion Laboratory

California Institute of Technology

Telephone:

Arakaki, Genji A.
Mail Stop: 158-200
Extension: 2212

Arens, Wayne E.
Mail Stop: 156-246
Extension: 8490

Banerdt, William B.
Mail Stop: 183-501
Extension: 5413

Belbruno, Edward A.
Mail Stop: 301-140H
Extension: 3683

Bell, David J.
Mail Stop: 161-228
Extension: 7967

Bickler, Donald B.
Mail Stop: 158-224
Extension: 5488

Burke, James D.
Mail Stop: 233-307
Extension: 3201

Cunningham, Glenn E.
Mail Stop: 171-267
Extension: 5319

Duxbury, Thomas C.
Mail Stop: 183-501
Extension: 4301

4800 Oak Grove Drive
Pasadena, California 91109
(818) 354-(extension)

Golombeck, Matthew .
Mail Stop: 183-501
Extension: 3883

Kierk, Isabella K.
Mail Stop: 301-170K
Extension: 8784

Knocke, Philip C.
Mail Stop: 301-140L
Extension: 3915

Komarek, Tomas A.
Mail Stop: 161-213
Extension: 6044

Lee, Allan Y.
Mail Stop: 198-326
Extension: 4097

McCleese, Daniel J.
Mail Stop: 183-335
Extension: 2317

Mitchell, Robert T.
Mail Stop: 301-170S
Extension: 5152

Miyake, Robert N.
Mail Stop: 157-102
Extension: 5381

Moreno, Carlos, S.

Mail Stop: 158-224
Extension: 7223
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Mostert, Robert N.
Mail Stop: 233-306
Extension: 1773

Muirhead, Brian K.
Mail Stop: 158-224
Extension: 8179

Nesmith, Bill J.
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Extension: 3478

Penn, Thomas J.
Mail Stop: 233-306
Extension: 4428

Shirbacheh, Michael
Mail Stop: 303-308
Extension: 6147

Smith, David B.
Mail Stop: 171-267
Extension: 9277

Sturms, Francis M.
Mail Stop: 171-267
Extension: 5514

Zurek, Richard
Mail Stop: 169-237
Extension: 3725
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Adams, Larry

Martin Marietta Space Systems
Mail Stop S8082

P. O. Box 179

Denver, Colorado 80201

(303) 971-8512

Albee, Arden

Mail Stop 02-31

California Institute of Technology
Pasadena, California 91125
(818) 356-6367

Alexander, Norm

GE Aerospace Division

P.O. Box 8555

Philadelphia, Pennsylvania 19101
(215) 354-3831

Backhofer, Bruce

GE Aerospace Division

P.O. Box 8555

Philadelphia, Pennsylvania 19101
(215) 354-3831

Bailey, Stephen

NASA Johnson Space Center/1Z3
Houston, Texas 77058

(713) 283-5411

Carr, Michael H.

U.S. Geological Survey, M.S. 946
345 Middlefeld Road

Menlo Park, California 94025
(415) 329-5174

Cassel, Louis

(524/444)

TRW - Ballistic Missiles Division
P.O. Box 1310

San Bernardino, California 92402
(714) 382-5803
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Crandall, Bruce A.

Hughes Aircraft Co.

Space and Communications Group
P.O. Box 92919

S41/B363

Los Angeles, California 90009
(213) 648-9354

Cruz, Manuel |.

154/1878

TRW Space and Technology Group
One Space Park

Redondo Beach, California 90278
(213) 813-0261

Davis, Paul

Department of Earth and Space Sciences
University of California at Los Angeles
Los Angeles, California 90024

(213) 206-6459

Economou, Thanasis
University of Chicago
5630 S. Ellis Highway
Chicago, lllinois 60637
(312) 702-7829

Friedlander, Alan L.

Science Applications International Corporation
1515 Woodfield Road, Suite 350

Schaumburg, lllinois 60173

(708) 330-2518

Gamber, Terry

Martin Marietta Space Systems
Mail Stop S8082

P. O. Box 179

Denver, Colorado 80201

(303) 977-5988
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Gamble, Joe D.

NASA Johnson Space Center/ED3
Houston, Texas 77058

(713) 483-4682

Garvey, John

McDonnell Douglas

M/C A3/365, 13-3

5301 Bolsa Avenue

Huntington Beach, California 92647
(714) 896-3604

Gillett, Paul

GE Astro Space Division

P.O. Box 800

Princeton, New Jersey 08536
(609) 490-3026

Gwynne, Owen

NASA Ames Research Center
Space Science Division 245-3
Moffett Field, California 94035
(415) 604-3525 ‘

Haberle, Robert

NASA Ames Research Center
Space Science Division 245-3
Moffett Field, California 94035
(415) 604-5491

Hubbard, Scott

NASA Ames Research Center
M/S 244-14

Moffett Field, California 94035
(415) 604-5697

Jones, Tom

Science Applications International Corporation
400 Virginia Ave., SW

Suite 810

Washington, D.C. 20024

(202) 479-0750
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Mail Stop 170-25

California Institute of Technology
Pasadena, California 91125
(818) 356-6447

Knight, Tony C.D.

MS B0560

Martin Marietta Space Systems
P.O. Box 179

Denver, Colorado 80201

(303) 971-9002

Kropp, Jack

TRW Space and Technology Group
R-1/1062

One Space Park

Redondo Beach, California 90277
(213) 812-0328

Landecker, Peter B. ,
Hughes Space and Communications Group
Building S41, Mail Station B326

P.O. Box 92919

Los Angeles, California 90009

(213) 648-8738

Laursen, Eric

Lockheed Missiles and Space Co., Inc.
0/53-50 B/580

1111 Lockheed Way

Sunnyvale, California 94089

(408) 756-6676

Luhmann, Janet

6877 Slichter Hall

University of California at Los Angeles/IGPP
Los Angeles, California 90024-1567

(213) 825-1245
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Malin, Michael

Department of Geology
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Tempe, Arizona 85287-1404
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Martin, Jim

P.O. Box 700

Dundee, Florida 33838
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McKay, Chris

Mail Stop 245-3-

NASA Ames Research Centet

Moffett Field, California 94035-1000
(415) 604-6864

Morrison, David

Mail Stop 245-1

NASA Ames Research Center N245-1
Moffett Field, California 94035-1000
(415) 604-5028

Murray, Bruce

Mail Stop 170-25

California Institute of Technology
Pasadena, California 91125
(818) 356-3780

Palmer, Farley

Hughes Aircraft Co.

Building S41/Mail Station B352
P.O. Box 92919

Los Angeles, California 90009
(213) 615-4802

Reinert, Richard P.

Ball Space Systems Division
Mail Stop 80-10A

P.O. Box 1062

Boulder, Colorado 80306
(303) 939-5953
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Ryerson, David E.

Sandia National Laboratories
Division 5144

Box 5800

Albuquerque, New Mexico 87185
(505) 844-1046

Sackett, Lester L.

The Charles Stark Draper Laboratory
M.S. 4-C

555 Technology Square

Cambridge, Massachusetts 02139
(617) 258-2289

Schock, Alfred

Fairchild Space Company
20301 Century Boulevard
Germantown, Maryland 20874
(301) 428-6272

Smolley, R.

TRW

MS-1569

1 Space Park

Redondo Beach, California 90278
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CAMERA AND
\ METEOROLOGY

TETHER FORCE \\ SENSORS
AND DIRECTION .
SENSORS
I TEOROLOGY
SENSORS
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JPL BALLOON ANCHORING

LANDER CONCEPT
TETHER
\\\\‘\\\\IIII!I!IIII’IV
T TETHER
STOWAGE SENSORS
VOLUME FOR
BALLOON AND
rd GAS SUPPLY ™~
ELECTRONICS, /
TRANSMITTER, '/
AND OTHER— —— METEOROLOGY

SENSORS
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Session A, Submittal No. 6

David Morrison
Ames Research Center

115



MARS GLOBAL NETWORK MISSION
STRAWMAN LANDER PAYLOAD

« METEOROLOGY

- PRESSURE
- DUST LOAD (DIRECT AND SCATTERED
LIGHT)

+ SEISMOLOGY
- HIGH-FREQUENCY SEISMOMETER

. SURFACE CHEMISTRY
- o/p/x (MAJOR ELEMENT CHEMISTRY)

« SOIL PHYSICS
- ACCELEROMETER

 IMAGING
- to be determined
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Session A, Submittal No. 7

Steven W. Squyers
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PENETRATORS OR HARD LANDERS?

PENETRATORS

« PROS:

- ENABLE DEEP SAMPLING

- SOME HERITAGE (MILITARY, CRAF)
« CONS:

- SEVERE CROSS-SECTION CONSTRAINTS
- RTG HEAT MAY POSE A PROBLEM
- HIGH gs REQUIRED FOR PENETRATION

HARD LANDERS

- PROS: |
- SIMPLER INSTRUMENT ACCOMMODATION
- SIMPLER HEAT REJECTION

« CONS:

- DEEP SAMPLING VERY DIFFICULT
- LITTLE HERITAGE

APPARENT NATURAL DIVISION INTO
SHORT-LIVED/SUBSURFACE VEHICLES AND
LONG-LIVED SURFACE VEHICLES
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TWO VEHICLE TYPES

A) ~8 SHORT-LIVED PENETRATORS

- GRS (Nal; Ge POLAR?)
. 0-p-X

- n-SPECTROMETER/14 MeV SOURCE
- DSC/EGA

« ACCELEROMETER
« DESCENT IMAGING

B) ~16 LONG-LIVED HARD LANDERS

« SEISMOMETER
« METEOROLOGY PACKAGE

« DESCENT IMAGING, a-p-x

BOTH REQUIRE ACCURATE TARGETING AND
MINIMAL LATITUDE/LONGITUDE RESTRICTIONS
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THREE KEY QUESTIONS

(1) TO WHAT EXTENT DOES SURFACE
EMPLACEMENT DEGRADE SEISMIC
SCIENCE?

(2) TO WHAT EXTENT DOES SURFACE
EMPLACEMENT DEGRADE
GEOCHEMISTRY/VOLATILES SCIENCE?

(3) HOW MANY STATIONS ARE REALLY

REQUIRED FOR METEOROLOGY AND
SEISMOLOGY?
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1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

Vu-graph Captions

A list of science objectives which point to the value of a Mars aeronomy
mission to an overall program of understanding Mars and its environment.

Altitude profiles of the neutral upper atmosphere and ionosphere obtained
with the Viking Landers.

Example of radio-occultation derived electron density profiles of the
Martian ionosphere from Mariner 9.

Altitudes of the peak electron densities versus solar zenith angle showing
the effects of dust storm activity. Dust storms heat the lower atmosphere
and thereby raise the density in the upper atmosphere - causing the
ionosphere to form at higher altitudes.

Illustration of the small size of the Mars-solar wind interaction region
compared to that of the Earth. Earth's relatively strong magnetic field
creates a large magnetic bubble which protects the atmosphere and
ionosphere from direct interaction with the solar wind.

Comparison of a model of the Martian ionosphere (Shinagawa and Cravens,
1989) with data from Viking (Hanson et al., 1977). Notice that the top
of the ionosphere appears to be "removed" in the observed profile. This
is one effect of solar wind scavenging.

One mechanism by which the solar wind can remove ions is through MHD
(magnetohydrodynamic) forces associated with the interplanetary magnetic
field, which "hangs up"” on the conducting obstacle of the ionosphere.

Mars also has an extended neutral upper atmosphere (exosphere) of atomic
oxygen produced by the photochemistry at lower altitudes. Hydrogen is also
present at high altitude.

The solar wind "picks up" ions created from those regions of the neutral
exosphere that extend out into the flowing solar wind and magnetosheath
plasmas. Some are removed, while others reimpact the dayside.

Some flux levels of 0' ions at various energies expected in the vicinity
of Mars from the pick-up process (from a model by Luhmann, 1990).

In addition to ion pick-up, planetary atmosphere particles escape by virtue
of at least two other processes. Some of the neutral atoms simply have
upward-directed velocities pgreater than the ~5 km/s escape velocity.
Other neutrals escape because they are "sputtered" from the atmosphere by
the plck-up ions (Luhmann and Kozyra, 1990).

Energy spectrum of picked-up 0' ions precipitating into the dayside
atmosphere of Mars from a model by Luhmann and Kozyra (1990).

Upgoing neutral oxygen atom spectrum from the normal nonthermal escape
mechanism (top) and with the sputtered population (bottom).
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14)

15)

16)

17)

18)

19)
20)
21)

22)

23)

24)

25)

26)

27)

Illustration of magnetic fields in the dayside ionosphere of Venus as seen
by the Pioneer Venus Orbiter (left) and as modeled (right) by a
diffusion/convection calculation. The Martian ionosphere may everywhere
have fields similar to those in the subsolar region of Venus (region I).

When the subsolar region of the Venus ionosphere is magnetized, it is
"disturbed," with electron density fluctuations of magnitude shown here
in panel (V) on the left (from Woo et al., 1988).

The geometry of these observations at Venus is as illustrated here. The
spacecraft was submerged in the ionosphere and transmitting to Earth when
these disturbances were detected.

Further detail on the appearance of the ionospheric disturbances in the
Doppler shift of the telemetry signal. The bottom panels have been
corrected for the expected Doppler shifts. These kinds of disturbances
may also occur in transmissions through the subsolar region of the Martian
ionosphere.

NASA documentation in support of a Mars Aeronomy Mission (MAO) to address
these and other science objectives exists in the form of a report prepared
by JPL. This is the cover sheet.

The strawman payload recommended in the MAO report.

A description of the strawman payload instruments.

Cross-correlation of science objectives and proposed MAO instruments.

The Mars Network Mission Orbiters may provide the vehicle for carrying out
an effective MAO mission.

The availability of two spacecraft is of tremendous benefit if one can
monitor the solar wind while the other makes measurements of the Martian
system.

Some desirable characteristics of MAO spacecraft are included in this list.
The periapsis altitude would determine what science could be done.

The current Mars Network Spacecraft design would need to somehow
incorporate the features of an aeronomy spacecraft like the Pioneer Venus
Orbiter on the probe carrier.

Further description of the PVO spacecraft, showing the desirable

characteristics of unobstructed ram-face instruments, a magnetometer boom,
and body-mounted solar cells.
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Mars Aeronomy Mission
Science Objectives

Upper Atmosphere:
- properties and variability (e.g., response to dust storms, seasons, solar
activity, solar wind conditions)
- loss processes/evolution
Ionosphere:
- Source of Nightside Ionosphere (e.g., auroral activity?)
- temporal and spatial variability/disturbances (e.g., response to dust storms,
seasons, solar activity, solar wind conditions)

Magnetic Field:

- nature/origin
- variability

- effects on energetic particle (radiation) environment
Solar Wind Interaction:

- significance of planetary magnetic fields

~ comparisons with Venus and Earth

Vu-graph 1
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AERONOMY RESULTS FROM VIKING LANDERS
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RESULTS FROM RADIO OCCULTATION EXPERIMENTS
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NASA Technical Memorandum 89202

Mars Aeronomy Observer:
Report of the Science

Working Team

SOLAR WIND
INTERACTION

AERONOMY
VONOSPHERE UPPER

ATMOSPHERE

October 1, 1986

NNASAN

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California
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TABLE V.1 MAO SWI RECOMMENDED INSTRUMENTS

MASS POWER TELEMETRY!
(QORE PAYLOAD
Neutral Mass Spectnaneter2 (NMS) 10.0 €.5 180
Fabry-Perot Interferometer (FPI) 13.5 5.5 30
UV + IR Spectrometer (UV + IRS) 5.0 7.0 130
Ion Mass Spectrometer (IMS) 2.5 1.5 60
Retarding Potential Analyzer + Ion
Driftmeter (RPA + IDM) 4.5 4.0 80
Langmuir Probe (ETP) 2.0 4.0 30
Plasma + Energetic Particle
Analyzer (PEPA) 10.0 9.0 320
Magnetometer (MAG) 3.0 3.5 200
Plasma Wave Analyzer (PWA) 5.5 3.5 130
Radio Science3 (RS) 4.5 12.54 -
60.5 kg 59.0 W 1160 bps
SECONDARY PAYLOAD
Infrared Atmospheric Sounder (IAS) 8.0 7.5 260
UV + Visual Synoptic Imager (UV + VSI) 9.0 8.0 1000
Neutral Winds/Temperature (NWTS)
Spectrometer 10.0 9.0 180
27.0 kg 24,5 W 1440 bps
TOTAL 87.5 kg 83.5 W 2600 bps

Individual instrument rates can be highly variable and will depend upon

the final payload and orbit selection. The rates listed are based

upon typical duty cycles for each experiment and they have been
averaged over the orbit (i.e., 6,000 x 150 km orbit has been assumed).

Includes limited wind measuring capability.

Consists of S-band transponder and stable oscillator.

for the S-band transponder.

Vu-graph 19
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TABLE V.2 MAO SCIENCE OBJECTIVES AND INSTRUMENTS

Regions
Neutral Atmosphere Solar Wind
Structure Ionospheric Structure Interaction
NMS IMS PEPA
FPI RPA + IM MAG
RS ETP PWA
UV + IRS RS IMS
1as™ MAG RPA + IDM
NWrS® PWA ETP
UV + VsSI® PEPA RS
uv + vsI*
Processes
Global Energy Pickup Of Magneto-
Photochemistry Balance Nightside Dayside SW  Planetary tail
+ Escape Rates (Thermal+Winds) Ionosphere Interaction Ions Dynamics
NMS NMS IMS PEPA PEPA PEPA
IMS FPI RPA + IDM MAG MAG MAG
UV + IRS NWTS ETP PWA PWA PWA
ETP ETP PEPA IMS
1As* IMS MAG ETP
Nwrs* RPA + IDM PWA RPA + IDM
PEPA uv + vsI*
PWA
IAS
UV + VSI
*Secondary payload instrument
Vu-graph 21
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Mars Aeronomy Mission

Desirable Characteristics:

Orbit:

elliptical (variable periapsis from <200 km (~110-150 km?), apoapsis ~1-§ Ry,)
polar (or high inclination)
rate of periapsis motion ~1 hour LT per week to sample all local times

spacecraft position in orbits can be controlled (phased)

Duration;

to cover as much of a Martian year as possible (for seasonal coverage)

Spacecraft:

Instruments identical on both spacecraft
onboard propulsion

body mounted solar cells (for low drag)

option to spin or despin (use momentum wheel)

extendable boom for magnetic, electric field experiments

Vu-graph 24
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Periapsis Altitude versus Science

Altitude Science (cumulative)

>400 km - extended nightside ionosphere "rays”
- escaping ions and neutrals
- bow shock, magnetosheath, magnetotail
- "PHOBOS-2" science

>300 km - top of dayside ionosphere
- precipitating jons
- upper atmosphere

>200 km - upper ionosphere (structure, dynamics, induced magnetic field)
>150 km - intrinsic magnetic fields (?)
<150 km - ionosphere peak (~120-130 km)

- intrinsic magnetic fields (?)

<100 km - aerobraking environment

Vu-graph 25
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Abstract

A seismic network on Mars should: 1) have enough stations (e.g., 24) to characterize
the seismicity of the planet for comparison with a diversity of structural features; 2) be
comprised of low noise stations, preferably underground, 3 to 4 orders of magnitude more
sensitive than those used on Viking; 3) record over a sufficient band-width (DC-30 Hz) to
detect micro-earthquakes to normal modes; 4) record for a sufficient duration (10 years)
and data rate (108 Mb/day/station) to obtain a data set comparable to that from the
Apollo mission to the Moon so that locations of major internal boundaries can be inferred,
such as those in the Earth, i.e., crust - lithosphere - asthenosphere - upper - lower phase
transitions - outer - inner core. The proposed Mars Global Network Mission provides an
opportunity to sense the dynamics and probe the interior of the planet. We discuss the
seismic objectives, the availability of the instrumentation and trade-offs to meet them.

Introduction

The science objectives of the Mars Global Network Mission include installation of a
seismic network on Mars in order to measure the seismic activity of the planet and to
characterize its structure for comparison with Earth. Preliminary specifications for the
mission call for installation of up to 24 penetrators or hard-landers on Mars, in pairs, at
12 widely dispersed locations. Landers making up each pair will be installed hundreds of
meters to several kilometers apart, thereby achieving some redundancy. We review here the
science objectives of the seismic experiment, the instrumentation specifications required to
meet these objectives, and report on some recent progress on construction and testing of
a prototypical hard-lander seismometer.

Science Rationale for Seismic Network on Mars

Seismology has told us more about the Earth’s interior than any other geophysical
method. Such information from Mars is vital to progress in understanding the evolu-
tion of the solar system. The Viking spacecraft landed on Mars in 1976. The seismometer
on Lander I failed to uncage whereas that on Lander II provided 0.24 Earth years of obser-
vational data (Goins and Lazarewicz, 1979). The Lander II data contained mainly wind
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noise and possibly one marsquake but even that is doubtful. The seismic part of this
mission was of secondary importance to the search for life experiments. We are not yet
sure that marsquakes exist.

Apart from the uncaging problem on Viking I, wind noise on Viking II was extreme
because the instrument was located high up on the Lander near antennae, which vibrated
or rocked the structure in response to the wind forces. Also, because only one instrument
operated on Mars, it was almost impossible to tell if a given event was a wind burst or a
marsquake. The seismometer was less sensitive than the Lunar (Apollo) instruments due
to size, weight and power constraints. However the experiment did place bounds on noise
levels. It has been estimated that a network of ”seismometers more sensitive than the
Viking instrument by at least a factor of 10®”... ” emplaced by penetrators or deployed as
small packages can operate on the planet without being affected by typical Martian winds”
(Anderson et al., 1977).

Science Goals of Mars Seismic Network

Scientific questions that a seismic network on Mars can address depend on whether
the instruments are short period (10 seconds to 10 Hz) long period (DC to 10 seconds) or
broad-band (DC to 30 Hz) and whether they are 1-component or 3-component. Ideally they
should be 3-component, broad-band, but this places severe constraints on installation, and
volume and weight of the instrument package, but has the return that the science goals will
be met faster than if the performance is restricted. Table 1 lists the seismic science goals
separated into those achievable with short period instruments and long period instruments.

Short Pertod Seismometers

1. Are there marsquakes?

2. How do their locations compare to structural features such as rift zones, volcanoes,
and uplift zones?

3. How does the attenuation of seismic waves compare with Earth and the Moon where
an order of magnitude difference was observed?

4. Are there major internal boundaries in Mars similar to those within Earth and
the Moon, i.e., crust-lithosphere-asthenosphere-upper-lower phase transitions-outer-inner

core?

5. Is there sub-surface structure that yields information on the Martian hemispheric
dichotomy (e.g. 1=1 convection)?

6. What are the dynamics of impacts on Mars from meteorites?
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%  What are the focal mechanisms of marsquakes and how do they relate to inferred
stress fields, e.g., from isostatic imbalance?

Long Period Seismometers

8. Do large impact events or marsquakes generate measurable normal modes which can
be used to estimate velocity and density distribution?

9. Can we detect surface wave dispersion?
10. What is the Love number of the Planet?

11. Can we detect annual or Chandler wobble generated by internal changes of the
moment of inertia?

Table 1 Scientific Questions for Mars Seismic Array

Science Goals of Mars Seismic Network

If we knew Mars as well as we know the internal structure of the Earth from seismology,
not only would would we be exploring a new planet, we would also be adding fundamentally
to our understanding of the evolution of the Solar System including the formation and
composition of both Mars and Earth. Solar Nebular theories of the compositions of the
planets predict that the volatile content, oxidation state and silicate iron ratios increase
with distance from the Sun. The distribution of elements within a planet is determined by
the temperatures during formation. For Mars we know only the mean density and moment
of inertia (and there is still considerable debate on this, Kaula et al., 1989, Bills, 1989).
Further progress is hampered because models satisfying these constraints allow trade-off
between mantle and core densities, and core size. Direct determination of the size of the
core and density profiles, by seismic means, would constrain the overall composition of the
planet. Models of the thermal evolution of Mars (Schubert et al., 1989) since formation
differ as to whether the core is solid or molten. An important factor in this regard is the
amount of Sulphur in the core, which if it is the 15% as inferred from the SNC meteorites,
results in a completely molten core, but if much less, can result in a solid core. Attenuation
of S-waves would tell us about the fluidity of the core.

We assume that Earth’s core is mainly iron but with a substantial amount of lighter
element, or elements, based on estimates of uncompressed density, shock wave data, and
consistency with meteorite (type 1 carbonaceous) compositions. There are nonetheless un-
certainties associated with this view. Are the finite strain theories used for decompression
of the density truly applicable? What is the light element, or elements? Are the mete-
orites a relevant geochemical reference frame? Comparison of Earth with another planet
will allow us to test the hypotheses used on Earth.
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Installation of Mars Seismic Network

Various methods to install seismometers on Mars include implantation by penetrator,
deployment on the surface from a rover, or by hard, rough or soft-landers. The g loads on
the instrumentation range from thousands of g for a penetrator and hard lander, hundreds
of g for a rough lander and tens of g for a soft lander.

Penetrators

Penetrators offer an attractive way to implant a seismometer because the seismometer
is firmly coupled to the planet, and is unlikely to experience the wind generated rocking
motions that were thought to have generated noise on the Viking instrument (Anderson et
al., 1977). Penetrator technology is well advanced. Approximately 18,000 penetrators were
dropped in Southeast Asia and radioed information on troop movements from seismic and
microphone sensors which was detected by planes at 20,000 feet. The idea of a penetrator
mission to Mars dates back to reports by JPL (Briggs et al., 1975) and Sandia (Lumpkin
et al.,1974). Other studies made in the mid seventies include those by Westphal et al.,
1976, Blanchard et al., 1976, and Greely and Bunch, 1976.

Burial of the seismometer beneath the surface by a penetrator will reduce wind noise.
Also remoteness from a lander will eliminate internally generated spacecraft noise, both
electrical and mechanical, as well as wind generated vibrations of the superstructure.
Burial will also keep the seismometer thermally insulated from diurnal and other sur-
face temperature changes. This is critical for long period seismometers which, if installed
at the surface, record strong signals generated by thermoelastic strains, both in the sur-
rounding rock and in the instrument itself. At short periods, thermoelastic changes are
buffered by the thermal inertia of the instrument.

Presently we expend much effort digging pits to install sensors 1.5 m into the ground in
our field installations on Earth. For short period recording, it suffices to cover the pits.
For intermediate period recording, the pits are filled with insulation. However, first class
seismic observatories are usually located in vaults deep underground such as mine shafts,
tunnels, or in bore-holes. A penetrator installation on Mars is a practical compromise.

Surface Versus Penetrator Installation

A surface installation, though attractive because of its simplicity, compromises the qual-
ity of the seismic data obtainable. Ground coupling can not be assured. Proximity to wind
and temperature changes would probably limit the instrumentation to short period only.
However surface installations worked on the Moon, though they did not have to deal with
winds. There are, however, advantages to designing two types of landers, a surface one for
the seismic package and a sub-surface penetrator for short-lived (1 month) experiments
such as soil properties, mass spectrometry etc. It would remove the need for a small RTG,
since the short term experiment in the penetrator could run on lithium batteries. It also
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removes the possibility of contamination of the chemical analyses by radioactive products
from the RTG. A softer surface lander for the seismometer would reduce the shock toler-
ance requirements for the RTG and seismometer system. This may be critical for the RTG
since, because of its extreme temperature (1000°C) the thermocouples can not be bonded;
it may not survive shocks greater than a few hundred g.

Although it should be tested, it is probable that a large proportion of seismic short
period information on Mars could come from instruments installed on the surface. The
trade-off in simplifying the installation would be the loss of long period signals. Also, the
low end of the short period band would be noisier than that at depth. We ran a series
of tests in the alluvium in the caldera at Long Valley, California, in which a short period
sensor was buried and the background noise measured as a function of depth in a wind
of about (4.0 m/s) 8 knots. In the frequency band tested, 5 Hz - 30 Hz, there was no
perceptible difference in background noise. Such tests need to be performed over the full
frequency range and for different wind and surface conditions, before effects of burial can
be quantified. Shedding wind vortices from obstacles can generate noise in the seismic
band dependent on wind speed and obstacle shape.

Viking mission data showed that mean seismic amplitude increased as the wind velocity
squared (Anderson et al., 1977) for winds ranging from 3 m/s to about 10 m/s. Optimal
design of a surface installation will require the instrument package to be of a streamlined
shape . It will need to have the capability to attach to the surface securely. It will also
need to be kept isothermal (gradients less than 10~%°C/m) and at constant pressure (to
within 10 mbar).

Table 1 shows the science objectives (1-7) that could be achieved with a short period
seismometer installed at the surface. We could measure the seismicity, the travel times,
fault plane solutions, invert travel times for radial structure, including detection of the
Martian core. We would miss out on (8 - 11), in particular, surface waves and normal
modes, which would be regarded by most seismologists as an extremely high price to pay.

Normal modes will give an independent check on the radial structure determined from
travel time analysis of body waves. One large marsquake which generated a wide spectrum
of normal modes would allow inversion for internal radial structure; that would take years
using short period travel-time data alone. Measurement of lateral variation in the excited
modes, at multiple stations, can be used for determination of global heterogeneity. Surface
waves measured at multiple stations provides a method to measure upper mantle lateral
heterogeneity, which will be particularly interesting beneath the Tharsis plateau region.

Detection of lateral heterogeneity means all stations should be broad-band. We conclude
that too much science is lost if the seismic installations are restricted to (surface) short
period installations. All instruments should be broad-band, installed either in penetrators
at depth or, if on the surface, they should have good coupling, preferably to bedrock, and
be insulated from temperature and pressure fluctuations.
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Data Acquisition Specifications

Mars’ seismic activity is thought to lie between that of Earth and that of the Moon
(Kaula, 1984). If Mars’ seismicity obeys a Gutenberg Richter law, with b value = 1, such
as is observed on Earth, with instruments a factor of 10* more sensitive than Viking, 3
orders of magnitude more earthquakes should be detectable. As well as marsquakes, land-
slides of over steepened crater walls and meteorite impacts will generate seismic signals.
On Earth, installations of comparable sensitivity to that proposed for Mars, detect about
1 earthquake of magnitude=5.5 per day world-wide. A marsquake of this magnitude would
probably not have been observable had it occurred further than 90 degrees from the Viking
instrument.

If Mars seismograms are similar to those on Earth in order to capture the important
phases, P,S, ...multiple ScS etc., recording at 50 samples /second should continue for several
hours after initiation of a moderate sized event. After this time a low sampling rate (1
sample/second) could be used to detect normal modes. In areas of seismic swarm activity,
for example active volcanic regions, the local earthquake activity can be as much as 100
events per day, requiring continuous recording.

On the Moon, an average of 4 events per day were detected comprised of: unclassified
events (2.4/day), deep moonquakes (1/day), meteoroid impacts (0.6/day). Events on the
Moon persisted for several hours, because of the high Q (4000) of the Lunar mantle (Dainty
et al., 1976; Nakamura et al., 1976). For a Lunar-type activity it would be necessary to
save data for several hours per day, at 50 samples/second, to record the full wave trains of
the seismic signals.

These considerations indicate that the daily data budget of a seismic station can be
calculated as 3 components at 50 samples per second for 24x3600 seconds at 30 bits per
sample (24 bit A/D and 6 bit gain range) = 3.88x10® bits/day. With data compression,
such as event detection, this number can be reduced; 10® bits/day per station would provide
an adequate coverage. If 2 transmissions were made to an orbiter per day, this amount of
data would require an on-board 6 Megabytes of RAM.

Investigation of seismicity requires setting up a network of at least 3 stations since this
is the minimum needed to locate an event. However to measure local, regional and global
seismicity at least 9 should be installed, that is, a 3-station local network with stations
separated by about 20 km, a regional network of separation 200 km and three stations
distributed across the planet. We propose that the local array be installed in the Tharsis
region where earthquakes are expected from the associated stresses due to inferred isostatic
imbalance. The regional and global networks would extend out from this base. To measure
seismicity at diverse structural settings, several local networks should be installed. The
proposed network of 24 seismometers at 12 different locations with closely separated pairs
will achieve these goals.
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Seismometer Specifications

There is currently no seismometer available that would withstand the shock associated
with penetration. Either presently available ones, with the desired sensitivity, will have to
be modified, or a new design implemented. The seismometer design should be predicated
on considerations of ruggedness and simplicity. Leaf spring seismometers such as the
Ranger (Kinemetrics, Pasadena, California) have the required ruggedness.

In 1962 Lehner et al.,(1962) report (2000’) drop tests from a helicopter of the Ranger seis-
mometer which was clamped with all moving parts immersed in fluid (150 cc of n-heptane).
Decelerations were in the range 3000-7000 g. After cushioning the various components,
the final design survived a series of 7 drops with no degradation of performance.

Coil spring designs such as the Mark products (Houston, Texas) L4C or the HS10
(Geospace, Texas), are also rugged but have less tolerance to non-verticality. The re-
sponse of a damped inertial seismometer depends on the mass, the spring constant and
the damping factor. The low frequency response of a velocity transducer is critically de-
pendent on the value of the resonant frequency. Since the response to ground displacement
falls off as about 1/(frequency squared) the useful bandwidth is about a decade above and
below resonance. With high signal to noise ratio and wide dynamic range, the useful band-
width can be extended to 3 decades, e.g., 0.01 Hz to 10 Hz, for seismometers of resonant
frequency 0.5 Hz. However a typical range for an L4C, as used in the USGS network in
Southern California, is 0.1 to 10 Hz.

One way to extend the dynamic range and linearity of an inertial seismometer is to
use force-balance feedback in the form of either a magnetic or electrostatic restoring force
proportional to the ground acceleration. The former consumes power whereas the latter,
while consuming negligible power, provides a weak force and is typically used on long period
instruments (such as the LaCoste gravimeters of the IDA array). Alternatively addition
of a displacement transducer, sensitive to sub angstrom displacements, can provide a low
frequency channel output with flat response to ground acceleration with a minimal power
requirement.

The final position of the penetrator may be well off vertical. The seismometer must
either work at any angle or have a levelling mechanism. Seismometers with the mass
suspended from coil springs have little clearance and so jam if they are not close to vertical.
For example, the L4C jams at 17° off vertical. The mass of the Ranger seismometer is
attached to leaf springs at either end so that when it is tilted the transverse shear strength
of the flat springs prevents lateral movement which would otherwise cause it to jam against
the casing. In fact it can be converted to a horizontal seismometer merely by rezeroing
the mass to the position of greatest sensitivity. The commercially available Ranger from
Kinemetrics has a diameter of 11.1 cm excluding casing. This is too large to be directly
transferred into a penetrator (diameter 9 cm). A seismic sensor is required that has the
versatility and ruggedness of the Ranger but is small enough to fit in a penetrator and has
a broad-band transducer.
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In 1977 the Bendix Corporation (Perkins 1977) presented a design for a multi-instrument
penetrator including a 3-axis seismometer. The seismometer was attached to a levelling
table pivotted on a monoball bearing. Two motor drives 90 degrees apart, attached to
the table via spherical bearings and flexures, are used to level to within 1 microradian.
The transducer consists of a vertical geophone and a North American Rockwell biaxial
bubble tiltmeter which can both be used as a two axes horizontal seismometer and also
as the levelling transducer. However this apparatus was not built. Levelling to within
10~¢ is difficult. We favor a simpler design which does not have such stringent levelling
requirements.

Number of sites 12
Number of landers 24
Number of channels/lander 3
Number of samples/s 50 sp/s
Bandwidth DC-30 Hz
Sensitivity 107 lg
Displacement Resolution 107 2m
Free period ) 0.8 seconds
Power 100 milliwatts (sensor)
1.0 watts (signal acquisition)
Data rate 1000 b/s or 10°® b/day
A/D 24 bit
Gain Ranging 6 bit
Dynamic Range 140 dB
Clip Level 107%g
On Board RAM 6 Megabyte
Clock Accuracy 10 millisec
Calibration 1/day
Shock 10,000g for 2 millisecs any axis
Weight seismic mass 3x0.16 kg
Weight sensor
(exclusive of housing) 3x0.5 kg
Diameter 9.0 cm
Height 3x15.0 cm
Temperature control 107%°C/m
Vacuum 10 mbar
Spring resonances > 80 Hz
Mass Centering +- 90 degrees; 6 volt motor
Table 2.

Specifications for Mars Global Seismic Network

Specifications for the Mars Network Seismic stations are listed in table 2. Seismometer
specifications are based on presently available force balance seismometers, including the
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Guralp (Guralp Systems, Reading, England) seismometer and the Strekeisen seismometer
(Wielandt and Strekeisen, 1982) which have the sensitivity required but, owing to the
Bendix hinges that support the boom, they do not have the required ruggedness. Spec-
ification of the digital acquisition system is based on systems currently in use by IRIS
(Incorporated Research Institutions for Seismology) for the permanent and portable net-

works.

Brassboard Prototypical Penetrator Seismometer

One of the most popular modern broad-band seismometers is the recently developed
Guralp force-balance feedback seismometer, the mechanical part of which resembles, in
many ways, a leaf spring micro-gravimeter designed by R.V. Jones (Jones and Richards,
1973). The difference is that the Guralp employs Bendix hinges to pivot the boom with a
leaf spring supplying a restoring torque whereas in the R.V. Jones design, the leaf springs
also perform the function of the hinge. The Bendix hinges are too weak to withstand the
high deceleration impacts.

FiTaN

N )
Lear Springs Cap
)
‘J m

Figure 1 Leaf spring seismometer designed to be shock tolerant.
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We have constructed a leaf spring seismometer based on the R.V. Jones design. This de-
sign has an advantage that it works 13° off-vertical without post-implantation adjustment
and fitted with an adjustable re-zeroing mechanism would work in any orientation. There-
fore a three component set could be installed in a penetrator for which the default would
be no post impact adjustment, if the penetrator ends up close to vertical, and minimal
rezeroing adjustment if it ends up well off vertical. Even then, if the rezeroing system fails,
some data would be achieved, albeit at reduced sensitivity. Basically the ruggedness of leaf
springs is achieved by employing 2 parallel Beryllium Copper springs on which the mass is
suspended. A photograph and schematic of our sensor is shown in figure 1. Although it is
more rugged than the Guralp seismometer, the trade-off is that it is about 1/3 as sensitive.

The position of the mass is detected by capacitance micrometry. Eventually a magnet-
coil assembly will be used to provide force feedback as in the Guralp seismometer. By
adjusting the filters for the force feedback output a wide dynamic range can be achieved.

Implementation of a Laboratory Impact Tester

In order to test the prototype, we assembled a laboratory impact simulator (Kewitsch,
1989). This has enabled us to conduct impact tests in the laboratory at UCLA to elim-
inate obvious design flaws before going to the more extensive testing at Sandia National
Laboratories, Albuquerque, or from helicopter drops. Validyne Engineering (Chatsworth,
California) donated a drop tower to the project. We added 8 bungee cords stretched over a
pulley system, allowing 100% stretch of the cords to accelerate the drop, to give an effective
drop of 40 feet (figures 2 and 3). An accelerometer/charge amplifier system measures the
deceleration; the output is recorded on a signal analyzer (see figures 2,3,4). The system
was calibrated at Environmental Associates, Chatsworth.
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IMPACT DEVICE from top to bottom: 8,6,4 bunges cords
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Figure 2,3 Schematic of Bungee assisted drop tower for Lab testing seismometer
and examples of deceleration pulses.
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Addition of waight to
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Orop table and bungee
cords at point of impact

Signal snalyzer

Figure 4 Photos of Bungee assisted drop tower.

We subjected the leaf spring sensor to impact impulses of 3 g secs (15,000 g at 0.2 ms,
figure 3) for a variety of combinations of peak pulse and duration. It survived longitudi-
nal shocks well but lateral shocks caused distortion of the frame supporting the springs.
Components must be modified and the design changed until performance survival is guar-
anteed.

conclusion

Seismometers, many orders more sensitive than those on Viking, emplaced on Mars, will
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detect marsquakes, meteorite impacts and, possibly, landslides. To identify the locations
of events, and to correlate phases, at least 4 stations are required, 3 for location and a
fourth for redundancy. To examine diverse geological sites, several different regions should
be instrumented; A total of 12 sites with 2 stations per site would achieve these goals.

Emplacement by penetrator, with detachable forebody, achieves good coupling, isola-
tion from surface temperature and wind pressure effects; but the high g loads risk the
seismometer and probably rules out using an RTG.

Emplacement by hard-lander on the surface, could achieve fair coupling, if post-
emplacement mechanisms are employed (such as driving in a spike or drilling). It will
need special provision for isolation from temperature and wind pressure effects, which if
only partially successful, will result in a short period narrow band station only. High g
loads can be minimized, to less than several hundred g’s, if a rough-lander is used.

Leaf spring, force-balance feedback, seismometers have the wide band-width, dynamic
range, shock tolerance and sensitivity to be used in penetrators or surface landers. They
are light but consume more power than narrow-band magnet-coil velocity transducers. We
have tested a brass-board suspension design, which approaches the necessary ruggedness,
but has about 1/3 the sensitivity of a state-of-the-art instrument.
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INTRODUCTION

The purpose of the Global Network Mission (GNM) is to deploy simple landers
on the Martian surface in late 1998. The objective is to create a globally distributed
network of ground stations which will collect environmental data, perhaps for as long
as several years. The GNM presents unique mission design challenges, which are
addressed by the following essay.

The GNM mission concept calls for two carrier spacecraft, each equipped with a
number of simple landers. Some of the landers may be deployed from approach, either
to reduce carrier mass prior to orbit insertion, or to reach latitudes not available from
the carrier orbit. The remaining landers are deployed from orbit.

One configuration for the Global Network Mission was proposed in a report
from the Exploration Precursors Task Team to the Office of Space Science and
Applications.] This formed the basis of a previous orbit design for the GNM.2 The
following analysis uses this mission scenario as a point of reference, but results from
the current study are generally applicable to a wide range of GNM mission variants.

FACTORS INFLUENCING MISSION DESIGN

The need to minimize the orbit insertion AV of the carrier implies that the carrier
orbit be as elliptical as possible, and have a low periapse altitude. Elliptical orbits also
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lead to lower de-orbit AV's than circular orbits.

A number of other requirements act in concert to lay severe constraints on the
orbit design for this mission. Among them is the need to distribute the landing sites
globally. The overall goals of the mission, as well as guidance from the Mars Science
Working Group, indicate a need to emplace landers near the Martian poles. This calls
for an orbit capable of reaching latitudes of at least #80°. Coupled with this
requirement is the need for good lighting angles at impact, to support descent imaging.
Ideally, the sun elevations at impact would never exceed 30" or fall below 15°. An
acceptable range of solar elevations is 10° to 45°.1 The lighting conditions, coupled
with the requirement for extensive latitudinal dispersal, constitute the major orbit
design drivers.

In most cases, the lander is restricted to a given range of entry flight path
angles. This has particular significance in the case of landers deployed from approach.
The circumstances of the interplanetary trajectory, in particular the declination of the
arrival asymptote, produce a minor circle of impact points which satisfy the desired
entry angle. This leads to severe restrictions on the maximum north and south
latitudes available to an approach lander. For example, a high negative approach
declination produces rather low maximum northern latitudes at the desired entry
angle. The only way to achieve impact at the North Pole in this case is to enter at
prohibitively steep entry angles.2 In addition, approach-deployed landers must accept
whatever lighting conditions are available at their impact latitude.

ASSUMPTIONS

The current analysis uses the nominal GNM mission plan described in Reference
2. This specifies a launch period from December 6, 1998 to December 26, 1998, and an
arrival period from September 22, 1999 to October 9, 1999. Entry interface was defined
at an altitude of 125 km, and the nominal entry flight path angle at this point was taken
to be -20°. The impact point was determined by propagating the free space trajectory
from entry interface to an altitude of 10 km. Impact was assumed to occur directly
beneath this point. (Atmospheric deceleration was not specifically addressed. The
effects of drag would change the impact point by only a very few degrees along-track.)
As mentioned earlier, this was only a reference scenario. The results are applicable to
a range of entry angles and mission options.
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The nominal deployment scenario described in Reference 2 was retained for this
study. Figure 1 illustrates the deployment technique, in which the lander's de-orbit AV
is applied tangential to the carrier's motion, and parallel to the entry velocity vector.
This assures zero angle of attack at entry. The advantage of this mode of deployment
is that no attitude sensors or attitude adjustments are required after deployment. All
orbit-deployed landers are deployed from a fixed point in the carrier's orbit, and
always impact at a fixed true anomaly with respect to the carrier's periapse location.
As the carrier periapse moves due to nodal and apsidal rotation, the impact point
moves along the surface of the target planet. The orbit must be chosen such that the
nodal and apsidal motions place the impact points at favorable lighting conditions.
Note that the maximum latitude available from orbit is equal to the orbital inclination.
Longitudinal placement is achieved by making very small changes in the orbital period,
causing the ground track to "walk" in longitude.

PREVIOUS ORBIT DESIGN

The nominal orbit design described in Reference 2 involves one carrier in a 45°
inclined orbit, and a second carrier in a complementary, 135° retrograde orbit. Both
carriers are in 1/5 sol site-synchronous orbits with periapse altitudes of 200 km. Figure
2 shows a plot of sun elevation at impact vs. latitude of impact for the 45" orbit. As
shown, immediately after insertion, the carrier can deploy landers at favorable sun
elevation angles. In this orbit, there is a single sweep of deployment opportunities
from 45°N to 45°S. The retrograde, 135° orbiter must wait between 70 and 150 days

after arrival before deploying its landers. The retrograde orbiter sweeps once from
45°G to 45°N.

The advantage of the nominal orbit design is that some landers may be deployed
immediately after arrival. This orbit does not allow easy attainment of high latitudes,
however. In order to reach the North Pole, a lander would have to be deployed on
approach, and enter the atmosphere at very steep entry angles (-43.9" to -49.87.2 A
lander placed at the North Pole would also enter in darkness. Another factor to
consider is the lack of deployment redundancy; there is only one deployment sweep
from 45°N to 45°S. Favorable lighting angles do not occur again for several hundred
days, and only for a narrow range of latitudes.
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POLAR ORBIT

Figure 3 shows a plot of solar elevation at impact vs. latitude of impact for a
carrier in a 1/5 sol orbit, with an inclination of exactly 90° and a periapse altitude of
275 km. The graph applies to a direct, periapse insertion from a northern approach at
the start of the arrival period. Initially, the impact point is at the North Pole, which is
in darkness. After waiting approximately 160 days, however, the impact point has
moved to the Southern Hemisphere, and the lighting angles have moved into the
acceptable range. Shortly thereafter, the impact point sweeps from the South Pole to
the North Pole, remaining at good lighting angles. After the North Pole is reached, the
impact points move south again, staying at reasonable lighting conditions until a
latitude of 55° is attained.

This situation occurs, in part, because the impact point moves from the South
Pole to the North Pole as the Sun is moving from the Southern Hemisphere to the
Northern Hemisphere. Figures 4 and 5 illustrate how the impact point follows the
Sun. In addition, it is necessary that the orbit plane be placed properly with respect to
the Sun, and that the rate of periapse advance be chosen to complement both the nodal
movement with respect to the Sun, and the rate of change in solar declination. The 1/5
sol orbit is the most elliptical site-synchronous orbit with the required characteristics,
and the 275 km periapse altitude provides the best lighting conditions for both the
south-north sweep and the sweep from the North Pole to 55°S. The situation is similar
at the end of the arrival period, although a small periapse rotation at insertion is
required.

The advantages of such an orbit are evident. It allows landers to be placgd
anywhere on the Martian surface at reasonable lighting conditions and at the desired
entry angle. A measure of redundancy is afforded by the second sweep from 90°N to
55°S. (This sweep could be used as backup in the event of failed landings on the first
sweep.) The polar landers would be deployed from orbit instead of approach, and
would enter at the nominal entry angle. The option exists to deploy all the landers
from orbit, thereby eliminating the need for two deployment techniques, and avoiding
the larger landing dispersion of approach-deployed landers.

The major disadvantage of this orbit design is the 160 day wait time required
before lander deployment. This interval is largely unavoidable, as the orbit only slowly
drifts into the required solar geometry. It should be noted, however, that for the 1998
opportunity, the wait interval allows the dust storm season to pass before first
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deployment. The time could be used for other purposes as well, such as aeronomy
measurements. The carrier could be placed in an orbit with a lower periapse, and then
elevated to the 275 km altitude for a small investment in AV.

CONCLUSIONS

A 1/5 sol, polar orbit with a periapse altitude of 275 km offers the best
circumstances for orbital deployment of the Global Network Mission landers. It
allows easy polar access at nominal entry angles, and global dispersal of landing sites
at lighting angles suitable for descent imaging. The polar orbit allows the option of
deploying all the landers from orbit. A wait interval of 160 days after arrival is
required before deployment can commence.
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A Global View of Lander-to-Orbiter Communications Accessibility
for a Mars Global Network Mission

Alan Friedlander
Science Applications International Corporation

Presented to Mars Global Network Mission Workshop
Jet Propulsion Laboratory, February 6-7, 1990

Given the mission objective to deploy a number of small landers to the surface of Mars at various
latitude/longitude locations, it is of interest to obtain a global perspective of the communications
link geometry between the landers and a data relay orbiter. Specifically, the question to be
answered is what is the total time interval over one martian day ( 1 sol) that a lander at any given
latitude and longitude can communicate data to the orbiter. Results should be obtained for more
than one elevation angle constraint (lander antenna design issue), and also for several time points
into the mission since the orbiter's periapsis location moves under the influence of Mars oblateness
perturbation. This paper presents such information in terms of global contour maps of available
communications time per sol summed over all orbiter passes on that day. Global data of this type
complements more detailed local site data such as communications range and elevation vs time per
pass.

The reference mission launched in 1998 arrives at Mars in late September 1999 and the orbiter is
placed into a polar orbit (90 deg inclination) with periapsis altitude of 275 km, apoapsis altitude of
6903 km, and orbit period of 1/5 sol. Periapsis latitude is initially at 27 deg N and moves
southward at the rate of about 1 deg/sol. Landing sites for orbit deployment are displaced about 56
deg from the orbiter's periapsis, thus starting near the north pole and moving southward. If the
landers have descent imaging capability with a requirement for low sun elevation angles between
15 deg and ~ 30 deg, then the first deployment from orbit must be delayed until sol # 180 after
arrival. Thereafter, all landing site latitudes are accessible with good values of sun angle. Pole-to-
pole coverage is accomplished in about 6 months.

Communications time contour maps are included here for sol #s 180, 232, 318, 361, and 404
corresponding to orbiter periapsis latitudes of 35 S, 90 S, equatorial, 45 N, and 90 N. For each of
these days, there is a map for both a 15 deg and 45 deg minimum elevation constraint on the
lander-to-orbiter line of sight. The jagged appearance of the contour lines is due to computational
resolution in interpolating between a finite number of latitude/longitude grid points. Although the
contours should really be smooth, the general information content is represented by the lower
resolution maps shown here. An example of the tabulated, finite-grid data points is also given.

Communication with all sites is possible at the 15 deg elevation constraint, at times only for several
minutes per sol but more generally for a much longer time up to 14 hours per sol. Significantly
less time is available with a 45 deg elevation constraint, and at certain times in the mission some
localized regions of the planet are inaccessible. Still, one may conclude that the reference orbit
selection will support a more than adequate communications link through the mission timeline with
landers emplaced at any desired location on Mars.
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COMNAP - COMMUNICATION AVAILABILITY MAP

COMMUNICATIONS HORIZON ELEVATION ANGLE IS _15.0 DEGREES

ORBITAL ELEMENTS FOR THE ORBITER ON 19990929.0000:
A= £985.2 E=0.474362 1=
START DATE: 20001116.0000

90.00 NODE= 129.93 ARGP= 153.27 HMEANO=
TIME STEP IS 0.0010 DAYS

STOP DATE: 20001117.0260

0.00

NUMEER OF MINUTES THAT THE SITE-ORRITER LINK IS AVAILALBE DURING THIS PERIOD TABULATED BELOW:

EAST
LONGITUDE

10,
13,

25,
30.
35,
40,
4.
50,
3,
0.
65,
70.
75.

85.

90.

5.
100,
105.
110.
115,
120.
125,
130.
135.
140,
145,
150,
155.
160.
163,
170,
175.
180,
183,
190,
195,

825.
827.
822,
822.
g24.
a2,
822.
823,
824.
821,
821.
822.
822,
822.
825.
825.
822,
822.
822.
8.
B24.
az22.
824,
822.
B22.
B24.
B24.
B22.
822.
B21.
823,
823,
824,
822.
822.
822.
822,
824.
g24.
823.

-70.

794,
789.
792.
792,
791.
784,
792,
791,
791,
791,
788.
731,
793.
791.
788.
792.
791,
792.
791,
789.
791.
792.
791,

792.

792,
789.
792,
791,
789.
191,
789.
791,
791.
789.
78%.
192,
791,
791,
791,
789,

-50.

739,
740,
742,
739.
742.
740.
737.
736.
734,
739,
734,
733.
733,
734,
736,
736,
737.
737,
740,
740.
739,
737.
734,
734,
734,
734,
734,
734,
734,
736,
73b.
740.
739,
737,
3%,
737,
737.
736.
734,
734,

651,
652,
660,
b1
b4,
657.
533,
632,
b48.
b48.
642,
044,
LN
647,
b49.
452,
657,
LN
660,
658,
654,
652,
548.
b43.
642,
642,
b42.
b4,
648.
654,
635,
6b2.
bbl,
sél.
57,
655.
831,
649.
435,
b48.

498.
498.
501,
sil.
314,
501,
498,
498.
492,
492.
492,
491,
492,
492,
493,
194,
495,
300.
als.
304,
500.
490,
497,
495,
494,
491,
492,
437,
495,
497,
501,
500,
a4,
516,
303,
498.
497,
497.
493,
494,

-30.

315,
274,
3.
204,
204,
219,
263,
310,
333.
347,
354,
3%6.
330,
344,
324.
293,
240,
206,
203.
208,
236,
298.
325,
340.
381,
354,
351,
346,
333,
308.
245,
223,
204,
206.
228.
281,
318.
338.
350,
356,

183,
167.
170,
171,
168,
170,
167,
164,
194,
238,
255,
258,
19,
228.
183,
163,
187.
168,
168,
170.
187.
164,
190,
222.
248.
233,
249,
236.
190.
183,
167.
170,
170,
170,
168.
166,
176.
199.
245,
255,

-10.

128.
132.
135,
138,
137,
138.
135,

130,

137,
143,
141,
145,
138.
135,
{24,
130.
134,
137.
137.
135,
134,
128.
124,
140.
140,
140.
134,
138.
120,
128.
132,
135,
135,
137.
134,
130.
125.
138.
141,
135,

LATITUDE
0.

9.
101.
105,
109,
108.
108.
104,

96.

6.

94,

1.

1.

8.

4.

91.

98.
§04,
107,
107,
f08.
104,

98.

9.

1.

78.

71.

2.

8s.
95.
12,
107.
105,
107.
105,
101,
95,
84,
Bg.
7.

218

10,

8.
75.
1.
2.
82.
79,
75,
8.

4b.
30.
52,
4.
1.
62.
1.
78.
9.
B1.

78.
1.
0.
39,
30,
33,
33,
42,
55,
48,
75,
78,
Bi.
81,
79.
1.
b3,
32,
45,
33,

20.

45,
5.
8,
59.

7
£

9.
a5,
45,
27,
3.
7.
39,
36,
29,
12,
49,
33,
8.
0.
39,
335,
18,
3%
2.
7.
39.
7.
27,
30,
5.
32,
b,
0.
.
36.
a0,
40,
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33.
7.

0.
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36,
40,
45.
3.
42,
39.
30,
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22,
29,
29,
27,
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39,
43,
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1.
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22.
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2.
30.
29.
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2.
24,
7.
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43,
39,
I5.
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20.
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29,

40,
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n

0.
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32.

kf

w\a

26.
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16.
19.
22,
23,
20.
16.
17.
22.
29.
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30,
30.
26,
20,
14,
14,
22,
24,
22,
16.
i7.
17.
24.
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30,
30.
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24,
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14,
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22,
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i3.
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16,
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i7.
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16,
13,
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13,
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i7.
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12,
14,
14,
14,
14,
14.
10,
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14,
14,
16,
17,
i7.
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13,
14,
16,
16,

SOL #404 15 deg

70.

19,
1.
17,
16.
17.
16.
17,

17.

17,
17,
i6.
17.
16,
17,
i7.
17.
i7.
14,
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29.
29.
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32.
32,
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32.
32,
30.
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30.
30,
30,
30,
30,
32,
30.
32.
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SOL #404 15 deg (contd)

EAST NEST
LONGITUDE LATITUDE LONGITUDE

-80. -70. -40. -30. -40. -30. -20. -10. 0. 0. 20. 30. 0. 30. 0. 70, 80,

200, B22. 791. 736, A5, 494, 354, 258, 140. 72, 53, 39. 9. 3. 17, WA Q6. 32, 160,
203, B24. 789. 736, 645. 493, 351, 246, 140. 84, 4B, 35, 3. 19, 17, M4, 18, 3L 153,
210, B22, 789. 73b. b4%. 498. 340, 219. 137, 82. 4%, 30. 22, 7. 13, 13, 17, 30, 150,
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MEMOTO: Roger Bourke, EIS Team
FROM: Alan Friedlander, SAIC
SUBJECT:  Analysis of Success Probability/Cost Trades for Small Landers in a Mars Network

The premise to be tested in this analysis is whether cost economies may accrue by delivering more
landers designed to lower reliability of operation (compared to fewer landers of higher reliability)
to obtain a desired probability of achieving a given number of lander successes. Generally, the
application in mind is a network of penetrators, although the analysis may apply as well to other
small lander concepts or even to simple rovers. In previous MRSR studies, the approach taken 10
raise the probability of a successtul mission (e.g. a rover or sample return objective) was to invoke
4 dual launch policy utilizing identical flight systems. With this approach we found that a
substantial improvement in achieving at least one total mission success was gained for realistic
values of system element reliability, albeit at the expense ot higher program cost and more complex
operations. However. in the case of a large number of small landers whose recurring cost of
production might be small compared to the development cost, a single spacecraft carrier may be
sufficient to deliver these landers to Mars within acceptable limitations of spacecraft injected mass
and launch vehicle performance capability. It seems reasonable to at least explore the question of
potential economies if such landers were purposely designed to lower values of reliability. Whatis
specitically meant by lower reliability in this context is that, while fewer lander emplacements will
succeed, those that do succeed will accomplish the desired mission objectives. The underlving
assumption here is a certain degree of independence of lander system failure modes such that
objective-specific elements (science instruments and data communications) are highly reliable
while delivery-specific elements (e.g. deorbit propulsion and aeroshell) are less reliable and
developed at lower cost with attendant higher risk. This analysis leaves open the important
question as to whether such an approach is at all realistic in terms of engineering design. but

focuses instead on the first question of potental cost advantage.

The method of analysis is based on a probabilistic model of lander success and a related
probabilistic model of project cost including the lander. spacecratt carrier, and integration, but not
launch or operations costs. Quantitative results are obtained in a normalized and parametric
fashion. Sensitvity to the assumed model parameters is also examined.
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Mission Success Model

Consider (n) landers each of which have the same level of reliability (p) for achieving individual
mission success. Assuming that the actual failure events of different landers are statistically
independent (even though the underlying failure modes for contributing components may be
related), then the probability that exactly (m) of these landers are successful is given by the
binomial distribution

P(m successes) = [ n! / (m! * (n - m)!)] * pm * (1 - p)n-m (1)
where ! denotes the factorial operator and * denotes multiplication. Mission success also depends
on the reliability of the launch vehicle and the spacecraft carrier that delivers the landers to Mars.

To take these factors into account, we define Pj as the probability of a successful launch event and
P¢ as the probability of a successful delivery event. Then, the overall probability P that at least m

(i. e. m or more) landers will be successful (for a single launch) is calculated by the expression

P=P|Pc 2i=mion[n! /Gl *@-D)] *pi* (1 -po-i 2)
The relationships of Equation (2) are illustrated in Figure 1 for P} = 0.94, Pc =0.98, and p = 0.8.
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Figure 1 Lander Success Probability P(n, m) for Lander Reliability p = 0.8
Pl = 0.94, Pc=0.98

232



Mission Cost Model
The lander system development cost is modeled in terms of design reliability by the relationship
Cg=Cdo/(1-p)? (3)

where C{g is a "reference” development cost at p = 0, and the exponent (a) is a model parameter.
This equation is graphed in Figure 2 for values of a = 0.1, 0.2, and 0.301.
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Figure 2 Lander Development Cost Model
The nominally selected value of the development cost parameter is a = 0.301 = logjo 2, which
gives a doubling of cost from p = 0 to p = 0.9 and doubling again for p = 0.99, etc. Fora =0.1
the increase in cost is only 25% for each additional 9 in reliability. The sensitivity to this parameter

will be tested later. Recurring cost for each additional lander is assumed to be a constant fraction
of the development cost. Hence, the lander system cost model is represented by

LC=Cq (1+k1*n) = Cdo (1 +k1*n) /(1 - p)? )

where the nominal value of the constant is selected as k1 = 0.2. Total project cost includes the

lander, carrier, and a cost element associated with hardware integration, management, and

233



contingency. The carrier spacecraft cost is taken to be proportional to the reference lander cost
(development + recurring) at p = 0. Integration, management, and contingency is taken to be
proportional to the sum of the carrier cost and the reference lander cost. Hence, the total project
cost model is represented by

PC = LC + k2*Cdo (1+ k1*n) + k3*[LC + kp*Cdo (1+ k1*n)]
= Cdo (1+ k1*n) [1/(1-p)a + k2 (1 + k3) + k3] ()

where the nominal parameters are a = 0.301, k1 = 0.2, k2 = 0.667, and k3 = 0.4. The final step
in the cost model is to normalize LC and PC to their respective values LC* and PC* corresponding
to one lander (n = 1) and reliability p = 0.8684 evaluated at the nominal values of the cost model
parameters. Hence, LC* = 2.209 Cgo and PC* = 3.809 Cdo. Lander system relative cost and
total project relative cost are graphed in Figures 3 and 4 as a function of the number of landers and
the individual lander reliability.

Results

Solution of the mission success model (Equation 2) was obtained for a constant probability P = 0.8
that at least (m) landers will be successful. These calculations assume the nominal values of 0.94
for launch success and 0.98 for carrier success; these values yield the reference lander reliability of
p = 0.8684 for a single lander. Results are shown in Figure 5 which plots the required lander
reliability as a function of the number of landers (n) and the minimum number of lander successes
(m). The solution values for p are then used to evaluate the normalized total project cost which is
graphed in Figure 6. Note that for each value of (m) there is a number of landers (n > m) that
yields the lowest cost. Generally, (n) is greater than (m) by one or two lander units. This result
substantiates the initial contention that more landers of lower reliability may provide cost economy.
The intersection points along the minimum cost locus can be mapped into Figure 5 to determine the
lander reliability values; the range is p = {0.64, 0.87) as m varies from 1 to 8. For example, to
obtain at least six lander successess (m = 6) at a probability of 80%, the minimum relative cost is
PC/PC* = 2.084 (i.e. twice the single lander project cost) with n = 8 and p = 0.835. Note also
that the cost curve is fairly flat for n > 8, so that if n = 10 the project cost increases to only 2.195
but the required lander reliability decreases to p = 0.711. By comparison, if n = m = 6, then the
required reliability is quite high at p = 0.977 and the project relative cost increases to 2.563. One
could also interpret the results for a constant cost as (m) varies. For example, if PC/PC* =2.0 or
less, then for values of m = {1, 2, 3, 4, 5} the minimum necessary lander reliabilities are {0.18,
0.31, 0.42, 0.57, 0.74} at corresponding values of n = {10, 10, 10, 9, 8}.
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Figure 3 Lander System Relative Cost
LC* = 2209 x Cdo (for n =1, p = 0.8684)
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PC* = 3.809 x Cdo (for n =1, p = 0.8684)

235



I N S S R S S
f o.s\ \\ \\ ,\‘ \\02\
2 AN NN IS e T
-g 0.6 \\ \\ \\\ 4 \\\
: os \ \\\ 3 T \\
[ 2 \\ T
3 0.4 ﬁ&\‘
@ 03 ) R S [
%’ 0.2 E— e
3 o1
0.0
1 2 3 4 5 6 7 8 9 10

Number of Landers (n)

Figure § Required Lander Reliability for at Least m Lander Successes
with Probability P = 0.8 (Pl = 0.94, Pc = 0.98)

3.0 )
———. Mlnleum Cgst Locys \ y
— 25 3 E.
s NS =
. 20 N —— %
- 4 Y
- __F //
5 - ///
3 - —
8 s \ ,”-« /é/
‘g 2 ”I ///
£ 1.0 |l
0.5
1 2 3 4 5 6 71 8 9 10

Number of Landers (n)

Figure 6 Project Cost for at Least m Lander Successes
with Probability P = 0.8 (P1 =0.94, Pc = 0.98)

236



Similar types of solution data are presented in Figures 7 and 8 for a constant success probability of
P =0.9. In this case, of course, the level of both cost and required reliability is raised to satisfy
the more demanding 90% success capability. For example, at m = 6, the minimum relative cost is
PC/PC* =2.327 obtained for n =9 and p = 0.866. If PC/PC* =2.0 or less, then for values of m
= {1, 2, 3, 4]} the minimum necessary lander reliabilities are {0.31, 0.45, 0.61, 0.76} at
corresponding values of n = {10, 10, 9, 8}.

Sensitivity to Model Parameters

Model parameters were varied, generally one at a time, to determine the sensitivity of the minimum
PC/PC* solution. These calculations were made for the case of m = 6 and P = 0.8 with PC* held
constant at its reference value 3.809 Cdo. Results are listed in Table 1.

Table 1
Sensitivity to Model Parameters for m = 6 and P = 0.8
(Parameters at Nominal Values Unless Otherwise Noted)

Varied Parameter n P PC/PC*
a= 0.1 6 0.9768 1.611
0.2 7 0.9074 1.854
0.301 8 0.8351 2.084
0.4 9 0.7694 2.302
k1= 0.1 9 0.7694 1.441
0.2 8 0.8351 2.084
0.3 8 0.8351 2.725
ka= 0.5 8 0.8351 1.925
0.667 8 0.8351 2.084
1.0 8 0.8351 2.402
k3= 0.2 8 0.8351 1.857
0.4 8 0.8351 2.084
0.6 8 0.8351 2.312
P)*Pc= 0.84 8 0.8910 2.240
0.9212 8 0.8351 2.084
1.00 8 0.8014 2.020
P1*Pc=0.84, a=04 9 0.8338 4.127
k1 =03,k2=10,k3=0.6
P1*Pc=1.0, k1 =k2=0 9 0.7324 1.093
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Lander Success Probabllity (p)
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238



Comparison of One and Two Launch Scenarios

Results presented so far have been for a single launch of (n) landers. Additional calculations were
made for two launches, but this required modification of the mission success and cost models. To
calculate the probability P for at least (m) lander successes with two launches, it is necessary to use
Equation (1) as the basic model for lander success, multiply each term by the product P}*P¢ except
for the m = 0 term which is adjusted to [(1 - P|*P¢) + P1*P¢ * Pm=o), and then obtain the various
combinations for exactly (m) successess with two launches. The probability for at least (m) lander
successes can then be calculated by summation of terms as in Equation (2). The project cost model
for two launches is taken as a modification of Equation (5)

PC(2) = Cdo { (1+ k1*n) [1/ (1 - p)@ + k3] + 2*k2 (1 + k3)*(1+ k1*n/2) } 6)
where (n) is the total number of landers for two launches.

Employing the nominal values of model parameters, the first comparison case examined is n = 4
and a constant probability P = 0.8 that at least (m) landers will be successful. The single launch

carries 4 landers while the dual launch system carries 2 landers each. Results for this case are
listed in Table 2.

Table 2
Comparison of One and Two Launches for n = 4 and P = 0.8
—One Launch (n=4) _ =2+
At Least m Successes p PC/PC* p PC/PC*
1 0.3977 1.180 0.3675 1.417
2 0.6447 1.275 0.7747 1.615
3 0.8336 1.441 0.8951 1.806
4 0.9653 1.929 0.9854 2.561

Although the relative cost for two launches is always higher, if the criterion of comparison is the
minimum value of lander reliability (p), then the results indicate that two launches is better only for
the condition m = 1. If more than 2 lander successes is desired, a higher reliability is required
because of the influence of possible launch and carrier failures.
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The second comparison case examined is n = 8 and a constant value of p = 0.8 for the reliability of
each lander. In this case we compare the mission success probability P(m) for m =1 to 8. The
relative project costs are PC( 1)/PC* = 2.018 and PC(2)/PC* = 2.263 for all values of (m).
Results are listed in Table 3.

Table 3
Comparison of One and Two Launches for n = 8 and p = 0.8
One Launch (n = 8) Two Launches (n = 4+4)

At Least m Successes p P

1 0.9212 0.9936

2 0.9211 0.9898

3 0.9201 0.9665

4 09116 0.8992

5 0.8694 0.8008

6 0.7341 0.6763

7 0.4637 0.4271

8 0.1546 0.1424

These results indicate a "success performance" crossover point between one and two launches at
the value m = (3, 4). That is, two launches are better as measured by probability of success only
for the condition m = 1, 2, or 3. If 4 or more lander successes is desired, then the single launch
policy yields a somewhat higher probability of that occurrence.
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Addendum to December 6, 1989, Memorandum

| did some more sensitivity studies relative to the cost model assumption. The results
still confirm the conjecture (generally) that more landers at lower reliability yield lower
project cost.

Basic Cost Model No.1 C,/C, =——=
° (1-p)

(as per memos)

Basic Cost Model No.2 c,/C, =(?1p)

(modified “Bourke”)

Results for m=6 and P(m >6) =0.8

MinimumCost Solution

Cost Model a n p PC/C,
No. 1 0.100 6 0.9768 6.136
0.301 8 0.8351 7.938
0.500 9 0.7693 9.561
1.000 13 0.5767 10.334
No. 2 0.100 6 0.9768 6.130
0.301 8 0.8351 7.703
0.500 10 0.7113 8.710
1.000 15 0.5110 9.513

Note: The greater the sensitivity (a), the more landers (n) desired.
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Combining Independent and "Common Cause™ Failure Events

Consider (n) landers on a single launch. Each lander has an independent
reliability = p; and a common cause (or bias) reliability component = pq. Then, if Sm
represents the event of exactly m successes, the total conditional probability

formula is -
P(Sm) = P(Sm/D)P(D) + P(Sm/D)P(D)

where

D = event that common cause failure does not occur
D = event that common cause failure does occur
P(Sm /D) obtained from binomial distribution, as before

1.0 for m=0
P(Sm /D) = {0 for m>0

P(D)=py;P(D)=1-py
Distribution between failure event types

p=pPg =(1=,) (1=1g)=1-f

Let

1 -
kd=fd/f= RTBPLp;OSkd <1
i Pd
or
1-k
Py = T——— =1 —ky (1-p)
1 —Kg P
Special case: P, =Py = qu

kg = (1 —~/PV(1 -p)

p Pi = P4 Ky
0.5 0.7071 0.5858
0.6 0.7746 0.5635
0.7 0.8367 0.5445
0.8 0.8944 0.5279
0.9 0.9487 0.5132
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Parametric Results For m=6, p,=0.94, p.=0.98, P=0.8

243

Pec . Pit+py '
K, n P, Pq B (usmg forcost)
0.2 6 0.9777 0.9945 2.861
7 0.9153 0.9793 2.368
0.8533 0.9646
9  0.7984 0.9520 2.355
10 0.7506 0.9413 2.433
0.5 6  0.9800 0.9804 2.650
0.9336  0.9377
8  0.8965 0.9062 2.281
9 0.8716  0.8862 2.368
10  0.8576  0.8754 2.494
P=Py
0.5051 6 0.9800  0.9800 2.645
0.5167 0.9350  0.9350 [2.274]
0.5259 8  0.9014  0.9014 2.281
0.5314 9 0.8817  0.8817 2.377
0.5340 10  0.8727  0.8727 2.515
0.8 6 0.9858  0.9463 2.368
0.9678  0.8859
8 0.9628  0.8705 2.352
9 0.9622  0.8687 2.526
10  0.9621  0.8684 2.705
0.9 6 0.9904 09205 2.243
| 7] 0.9838 0.8728 [2.233]
8  0.9832 0.8687 2.404
9  0.9832 0.8687 2.589
10  0.9832  0.8687 2.774
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MARS GLOBAL NETWORK MISSION WORKSHOP
ENTRY SYSTEM DESIGN CONSIDERATIONS
J. Gamble - NASA/Johnson Space Center
Introduction

This section addresses some of the design issues concerned
with the specific workshop question, "What is the best entry
system - fixed or deployed aeroshells; parachutes or direct
impact?" To address these questions some information about
the entry conditions in the Mars environment is required.
Results from the 90 day human exploration initiative study
were used as a reference point. The MRSR pre-phase A study
results were also considered. Finally some parametric data
was generated to specifically address the GNM entry design
question.

Reference Mission

The 90 day study considered two flight systems each
consisting of an orbiter/carrier vehicle with six aeroshells
as shown in Figure 1. Each aeroshell contains two penetrator
landers as shown in Figure 2 that use parachutes to extract
them from the aeroshell just prior to landing. The rigid
aeroshells are deployed from the carrier vehicle and spin
stabilized at 60 rpm. Small propulsion systems provide the
delta V required for the desired atmospheric entry
conditions. The aeroshells do not have an active guidance
and control system.

The aeroshell design incorporates a rigid conical aeroshell
with a spherical nose cap. The aeroshell diameter is 2.2 m
and has an entry mass of approximately 110 kg, yielding a
ballistic coefficient of 30 kg/m2. The aeroshell uses an
ablative heat shield. :

Two of the six aeroshells are deployed 2-10 days prior to
Mars arrival in order to land at polar sites. The other four
aeroshells are deployed after capture into a 1/5 Sol Mars
orbit.

Mars Approach Deployed Aeroshells

One of the primary concerns in the MRSR study was the ability
to achieve the proper entry conditions during the Mars
approach. The entry corridor is bounded by the skip out and
maximum allowable g load boundaries as shown in figure 3.
Figure 4 shows the entry corridor limits versus L/D for an
entry velocity of 6 km/sec. The total corridor width is
summarized in figure 5 and shows that the corridor is nearly
independent of the ballistic coefficient. The ballistic
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coefficient determines whether the vehicle flies higher or
lower in the atmosphere during the early portion of the
entry. While the MRSR was concerned with aerocapture during
the approach phase, the results are also applicable to the
entry case. The estimated corridor width for ballistic
vehicles are shown on figure 5. For a maximum entry load of
5 g’s, the total corridor width is less than one degree. The
corridor width increases to 3 and 5.5 for 10 and 15 g limits
respectively. The MRSR study concluded that a minimum
corridor width of approximately 3 degrees was required in
order to accommodate navigation and atmosphere uncertainties.
In order to achieve this accuracy, optical navigation was
baselined for the study and trajectory corrections were
considered within a few hours of entry.

GNM aeroshells deployed several days prior to entry and not
having an active guidance and control system will almost
certainly require much larger entry corridors than are
necessary for the MRSR. It is very possible that a minimum
corridor width of at least 5-10 degrees will be required.
Figure 6 shows some preliminary results for the aeroshell
defined by the 90 day study at an entry velocity of 6 km/sec
at 125 km altitude. The figure indicates that g loads in
excess of 20 g’s will be required to provide a corridor width
of 10 degrees. Figure 7 shows that for a 10 degree corridor
width, downrange dispersions of +/- 2-5 degrees will occur
for nominal entry angles of 15-20 degrees. These results
were obtained from three degree-of-freedom simulations
entering in a polar plane.

One proposal for decreasing the landing footprint dispersions
is to enter at a much steeper entry angle. The results of
entering at -35 and -45 degrees are shown as a function of
ballistic coefficients in figure 8. The downrange dispersion
for 10 degrees change in entry angle is less than one degree
although it does increase as the ballistic coefficient
increases. One of the primary problems with the steep entry
angle is the large load factors that result. Figure 9 shows
the maximum g loads (Earth g’s) resulting from entry at

-35 and -45 degrees. Load factors on the order of 40 - 60
g’s result from these steep angles.

Deployable Aeroshell Consideratjons

Use of deployable aeroshell configurations will in general
preclude the use of ablator heat shields and the ballistic
coefficient will have to be small enough to limit the
aeroheating during entry. To achieve a ballistic coefficient
of 10 kg/m2 using the 90 day study mass of 110 kg would
require an aeroshell diameter of approximately 3.8 m while a
diameter of 8.5 m would be required to achieve a ballistic
coefficient of 2 kg/m2. It would appear that use of deployed
aeroshells of this size would have significant problems
operating at 40-60 g’s during entry. For this reason it is
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questionable whether use of deployable aeroshells for entry
during Mars approach is a viable concept.

Mars Orbit Deploved Aeroshells

The lower entry velocity for aeroshells deployed from Mars
orbit present much less of a problem than for those deployed
during approach. Figure 10 shows that entry corridors of 15
degrees are possible at less than 10 g maximum load.

Because the navigation is much better defined for the orbit
deployed aeroshell than for the approach deployed case, the
entry angle dispersions will be much less. Figure 11
indicates that for entry angle dispersions of +/- 1 degree,
the dispersion in the downrange landing site will be well
within +/- 1 degree. Aerodynamic heating for the orbit entry
cases will also be much lower than for the approach deployed
aeroshells. It would appear that these advantages definitely
outweigh the delta V penalty associated with capturing the
aeroshells into Mars orbit.

Parachute Considerations

One of the primary concerns with use of parachutes for the
final surface delivery of the instrument packages is whether
acceptable deployment conditions can be achieved during the
aeroshell entry. The Viking program used supersonic deployed
parachutes which were required because of the uncertainty

in the Mars atmosphere. 1In general deployment of parachutes
up to around Mach 2 (approximately 500 m/sec at Mars) is
considered well within the state of the art. Figure 12 shows
the aeroshell velocity at 5 and 10 km altitude as a function
of entry angle for the 30 kg/m2 configuration with an entry
velocity of 3.6 km/sec at 125 km altitude. The aeroshell is
seen to be subsonic at both altitudes for the range of entry
angles shown. Figure 13 shows the variation of the aeroshell
velocity at 10 km altitude for various dispersions in the
atmosphere. The low density cool COSPAR atmosphere results
in barely supersonic conditions for the 30 kg/m2
configuration and even a severe 50% decrease in atmospheric
density only produces a Mach 2 case. Therefore use of
parachutes for landing of the payload should not present any
significant deployment problems.

The bibliography lists several references with some
applications to the Mars entry problem. A number of these
also have extensive bibliographies.
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Viking Entry Through Landing Sequence

WEIGHT (b}

6195

2220

MARS ORBIT
INSERTION
1-HRBURN
. S-BAND DATA
%;. 4 FROM LANDER

B}

2060

LANDER CAPSULE SEPARATION

E;

SS'OT&\; ft ’ DEORBIT
PARACHUTE (50 fi
DEPLOYMENT

25,000 ft

AEROSHELL

1400

SEPARATION

TERMINAL

1269

y PROPULSION
3360 ft

ENTRY TO LANDING
5.10 minutes
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CIRCULAR ORBIT

BOUNDARY OF ATMOSPHERE
FREE FALL 5 1 A\
N ..
4 .
AV Va ' ,
3 ‘ AV
2 Y3 Y1
Y2
RETRO FOR:
-3deg: 200 m/s 1 ELLIPTIC ENTRY .ORBITS
-15deg: 430 m/s

-90 deg: 3000 m/s

Deorbit manoeuvre from low circular orbit,
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So.

40.

30.

20.

10.

oo

ao

oo

[s]e]

oo

. DO

NETWORK MISSION SCENARIO

\ MAXIMUM SOUTHERN ¥ <
LATITUDE >

ARRIVAL HYPERBOLA

Location of entry points at Mars’ atmosphere.

agmox (~EARTH g
oMAX. STAG. PT. HEATING (W/ecm2)

+DOWHRANGE ERRDR (km)

T I ) T i T 1

Q. 0D 5. Do 10. 0O 15. 00 20. 00 25. 00 30. 0o

~GAMMA (degreoae)
Rm=1. 25m Rb=1.55m CONE ANGCLE=60 M=300kg

Ballistic entry from hyperbolic arrival (performance for different entry angles).
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100.0

80.0

80. 0

7D0.0

60.0

s50.0

40. 0

30.0

20. 0

10. 0

NETWORK MISSION SCENARIO

AaSTAG. PT. HT RATE (W/cm2)
pALTITUDE (km)>
+VELOCITY (km/e x 10D

wMATH NUMEER

DECELERATOR

.0 50.0 100.0 150. 0 200. 0 250. 0

TIME FROM 100km (SECS

GAMMA=-15 Rn=1.25m Rb=1.S5m CONE ANGLE=E60 M=300kg

20. 00

15. 004

10. 00

Ballistic entry from hyperbolic arrival (trajectory parameters).

AALTITUDE AT M=0.8 hm)
oALTITUDE AT M=1.5 (km)

/b\\

From Fluid Gravity

. 00

! | I T ] L
5. 00 10. 0O 15. 00 20. 00 25.D00 30. 00

—GAMMA (dagreos)

M=300kg LOW PRESSURE ATMOSPHERE
Ballistic entry from hyperbolic arrival (parachute deployment altitude).

313

AFTER COVER



” [ TR e WA e e e Ve .



Session B, Submittal No. 11

Lester L. Sackett
The Charles Stark Draper Laboratory

315
PRECEDING PAGE BLANK NOT FILMED



(Lybe-8S2/L19) uljieids uay
(eeve8se/L19) sulbbiy uyop
Aq pepinoid ejeq

0661 ‘2-9 Areniqad
A1ojeroqer uoisindold 1ar ayy 1e pjay doys)yiom

6€ 120 shasnyoesse ‘ebpuquien
Alojeloqe Jadelq yieis sapieyn ayy
(6822-852/.19) Hayoes sa7

says buipue
Bunabie] 10} se1deIND2Y s|qeAdIyOY

dOHSHHOM NOISSIN YHOMLIN Tvg01D

316



Global Network Workshop

Primary Question:
What are the desired and achievable accuracies for targeting the landing sites?

Subsidiary Questions:

What are the navigation (knowledge) uncertainties at the time of aeroshell firings?

What are the landing (guidance) dispersions of the penetrators?

What contributes to the errors in knowledge and targeting accuracy?

How can the errors be reduced?

For the approach targeted aeroshells, what are the errors as a function of the deployment
time? _

Does onboard nav help and how much?

What is the dispersion due to passage of the aeroshell through the atmosphere?

Due to the time on the parachute?

Due to the error introduced by the small rocket firing?

Does Viking experience help in estimating the targeting accuracies?

What is the effect on the trajectory of the despin from 60 to 15 rpm following the targeting
firing?

What is the effect of changing the assumptions or parameter values (e.g., flight path angle,
ballistic coefficient, etc.)?
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N91-14364

A GNM Mission and System Design Proposal

A Position Paper in Response to the Session B of the
Mars Global Network Workshop, Feb 6-7, 1990

Introduction

After having attended the Mars Global Network Mission (GNM) Workshop, and
upon some reflection, I have put together a mission and system design option
for the GNM which I believe is complementary to the 2001 Sample Retum
Mission (SRM). In this paper I take an advocacy position for the proposed
mission; it is not intended to be an objective review, although both pros and
cons are presented in summary. This work represents my own opinions and
judgements, and is not an SRM policy statement, nor is it supported by any
systematic analysis. These ideas are an expansion and claboration of the
design proposed by Al Friedlander of SAIC in the Session B discussion of the
GNM workshop.

In arriving at the proposed design I used the following criteria, in order of
priority, for evaluation:

1) Maximize Science Value

2) Keep Costs Low

3) Maximize Heritage (both from previous missions and heritage to be
provided to future exploration missions, particularly the SRM)

4) Design to fly in the earliest possible opportunity

5) Make it "Innovative"

The Elements of the proposed mission are:

1) Aeroshelled Landers
2) Communication Orbiter(s)

Mission Scenario

The mission consists of launches from earth in the ‘96, '98, and 'Ol

opportunities on Delta-class launch vehicles (~1000 Kg injected to Mars in 8 to
10 ft diameter shroud). The trans Mars boost stage injects a stack of small
independent, aeroshelled spacecraft. The stack separates from the boost stage
and each rigid (as opposed to deployable) aeroshell flies to Mars on its own,
performing midcourse maneuvers as necessary. On-board GN&C systems
provide precision pointing (via torque wheels) and burm execution. Each
spacecraft flies a unique trajectory which is targeted to achieve approach
atmospheric interface at the desired latitude and lighting conditions; arrival
times may vary by a month or more. A direct entry is performed, there is no
propulsive orbit capture. The aeroshelled rough-landers are targeted (0
achieve a desired attitude and entry flight path angle, and then follow a
passive ballistic trajectory until terminal descent. Based on sensed
acceleration (integrated to deduce altitude), the aft aeroshell skirt is jettisoned,
a short time later a supersonmic parachute is deployed. The ballistic coefficient
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of the parachute is sized to achicve terminal vclocity at about 8 Km. However
the parachute is not decployed until a few Km above the surface 10 minimize
wind-induced drift.  This relatively short period on the parachute is possible
because of the low ballistic coefficient of the aeroshell, and allows surface
sites up 10 6 Km above the mean surface level to be visited. The nose cap
(weighted by the no longer required torque wheel assembly) is jettisoned and
descent imaging begins, a laser altimeter also measures true altitude.
(Depending on what altitude descent imaging is first required, the nose cap
may be jettisoned prior to the aeroshell skirt jettison.) Based on range and
range rate to the surface, the parachute is jettisoned and the lander uses
descent engines to achieve touchdown velocity. (Note: if the ballistic
coefficient of the aecroshell is sufficiently low, a parachute is not required, the
ballistic terminal velocity provided by the aeroshell would be low enough that
a propulsive descent could be performed directly). A contact sensor shuts
down the motors to avoid cratering, and the lander rough-lands at less than 5
m/sec. The remaining aeroshell and a deployable bladder attenuate landing
loads and minimize the possibility of tip over. Science instruments are
deployed and activated, and the network is established.

See the appendix of figures which illustrate the mission and spacecraft
designs.
Shared Communications Infrastructure

In this scenario, the communications relay orbiter(s) are provided as

_infrastructure for both the GNM and the SRM. In the reference GNM and SRM

scenarios, each mission provides its own communications system. These
systems are a part of the carriers which are captured into deployment and (in
the case of the SRM) retrieval orbits; these orbits are not the preferred ones
from a communications standpoint, and may in fact be far from optimum.
Because of the successive nature of these missions, commonality between the
communications system requirements should be explored. Because of the
stated commitment to planetary exploration, consideration should include the
use of this system to backup or augment future, higher capability Mars
communications systems.

Deployment from the Trans Mars Boost Stage Contrasted to the
Reference GNM Mission Scenario

Another key feature of this design proposal is the lack of a centralized carrier
vehicle which propulsively captures into Mars orbit and performs deployment
of landers from that orbit. In the proposed approach, the acroshells are
separated for the boost structure via a simple sequencer. They then become
independent spacecraft, each targeted and tracked on a unique trajectory.

In contrast, the reference GNM mission designs involve a combination of
deployment from orbit and deployment on approach.

Although an orbit design exists which satisfies lighting conditions over a wide
range of latitudes, including polar (re. "A Polar Orbit Mission for the Mars

Global Network Mission", Philip Knocke, JPL), it comes at some expense. The
I/5 sol polar orbit requires a higher capture Delta-V than a more clliptic orbit.
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A 160 day wait (for the 1998 launch opportunity) is also required 1o achicve
the corrcct orbital conditions before cntry vehicle deployment may  begin.
The opportunity available then swceps from the south pole to the north over a
180 day period - thus (o get full latitude coverage and cmplace the full network
would take almost a ycar from the time of arrival at Mars.

The carrier deployment stratcgies discussed in the workshop considered the
deployment of aeroshells with no active GN&C system. In this scenario, the
carrier would provide pre-deployment pointing and would deploy the
acroshell in such a way that tip off rates were ncgligible; the aeroshell would
then simply execute a fixed delta-V bumn. This "point-and-shoot” strategy for
acroshell deployment on approach variety has the virtue of simplicity, but at
the cxpense of landing accuracy (especially for low entry flight path angles).
Of course this accuracy can be improved by putting a GN&C system on the
acroshell. Also execution accuracy for approach can be improved by a
combination of steep entry flight path angle and simply delaying approach
deployment until the last "minute” (2 days outs, 1 day out, hours...?). Waiting
however, incurs .a Delia-V penalty.

The design choice of putting an on-board GN&C system then leads one to the
scenario proposed here. That is to deploy aeroshells on approach, but that
deployment may begin immediately after the Trans Mars Injection (TMI) bumn.
In this way the aeroshells are independently guided to entry interface from
post TMI separation from the boost stage. Since the aeroshells all perform
direct entry they are all of the same design (ic. there are no disparities
between having to design both orbital deployed and approach deployed
aeroshells).

GNM Mission and Sysiem Design Proposal Feb 16, 1990
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The Development of a Spacecraft Bus

Whether or not an existing bus such as the Mars Observer bus can be used,
there is significant development, integration, testing and certification to go
through prior to launch. A closer look is warranted to compare the costs of
developing a large central bus with separate acroshells as contrasted (o
developing a simple aeroshell deployment mechanism and many small,
independent spacecraft.  The development of many smaller and simpler
appears 1o have great potential to lower the overall costs of the GNM mission,
and may help moderate costs for the following sample returm mission by
providing valuable infrastucture and heritage for the SRM program.

This leverage would be provided by the design of a single small aeroshelled
lander which could have broader application than the currently proposed
penetrator concept. Once a kick stage has provided the necessary trans-Mars
Delta-V, only attitude maintenance and periodic midcourse corrections up to
the point of entry interface are required for the proposed spacecraft. The
GN&C heritage to solving this problem is vast, and an off-the-shelf solution
requiring little more than integration is possible, given the current trend
towards miniature satellites. A spacecraft required to do orbital insertion and
orbital deployment is in my opinion an unnecessary complication. Each
acroshell would simply maintain course and attitude until entry interface, and
from there follow a passive ballistic trajectory (no acromanecuvering) up to
terminal descent.

Mission Strategy

There is a possibility that a vigorous, aggressive development schedule could
produce a '96 launch. This is possible because of the strong heritage that exists
from previous and current engineering and development efforts. In any case,
the science objectives and program enhancing opportunities available from
this proposal argue for launch in multiple opportunities. For instance, if the
scheduled launch dates were in successive years (say '96, '98, and ‘01), a unique
strategy for mission reliability exists. If a first attempt at an attractive site
fails, PLAN on trying again later instead of sacrificing global placement for a
strategy of sending two landers to every site in order to achieve redundancy.
Or, if every thing works on the first try and the network is satisfactorily
established - stop, you're finished, no extra launch or set of launches is
required.

GNM Mission and System Design Proposal Feb 16, 1990
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The

Advantage of Smaller Independent Spacecraft

The idea of simple independent carriers has a number of other advantages:

1)

2)

3)

4)

5)
6)

7)

GNM

It allows smaller, simpler launch vehicles like the Delta or Atlas to be
used (while still allowing the launch of a GREATER number of landers
from a Titan IV than currently planned), which translates both into
costs savings for the agency and much greater launch flexibility.

The mission is adaptable at modest cost. The global network can be
sustained, added to, or evolved incrementally as questions arise,
objectives evolve, and instrumentation improves.

The payload bay is reconfigurable (more so as compared to a penetrator
fore/aft body design). The science equipment bay on the proposed
lander is reconfigurable to accommodate 20 Kg of science instruments
specific to latitudes or science objectives.

The design is reusable and provides heritage to the SRM. There may be
tremendous design leverage to be found in the SRM if the sites selected
for the SRM can be visited by simple landers (either carried piggy back
and deployed on approach or launched separately), that provide exact
terrain knowledge at the site and establish navigation aids that lead the
lander to a landing area verified to be safe per lander design. Using GNM
heritage, this could be done at a fraction of the cost of a comparable
imaging orbiter mission. The Human Exploration Vehicles could use
these “"throwaway" landers in a similar fashion, and to conduct specific
surface experiments related to site selection.

The design may be suitable for micro-rover ("Ant") deployment.

The aeroshells may be placed with relatively high accuracy by
employing radiometric approach navigation via the communications
orbiter(s). This would provide a flight demonstration for this navigation
technique for the SRM while enhancing the GNM. A high factor of
safety for the GNM is retained since earth based navigation would
probably be the primary method.

Engincering heritage for future possible missions. A modified aeroshell
bus (without the aeroshell skirt) could be used as a flying testbed for
various L/D configurations by modifying the aft aeroshell skirt. The
testbed could be used to evaluate various GN&C algorithms and would as a
bonus extend our operational understanding of the variabilities of the
Martian atmosphere. This kind of testbed may the the most cost effective
method of getting operational aerocapture experience at Mars. The
aeroshell bus will also fit inside very small launchers such as the Orbital
Sciences Pegasus or Taurus, or the General Dynamics Atlas-E. A
deployable aeroshell skirt could be developed (which could have a much
lower achievable ballistic coefficient), with a modified bus used in flight
test and operations. This has the additiona! advantage of sending a large
number of probes through the martian atmosphere thus building the
engineering knowledge database of Mars atmospheric flight prior to
launch of a Human exploration mission.
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Technology

I belicve this proposal can be accomplished with minimal technology risk.
This may not qualify it as "technologically innovative", but I see no need to
invent technology where it obstructs timely, cost effective execution of the
mission. The possibility of pressing for a '96 launch should be investigated.
However, for serious consideration of a '96 launch, funding for concept studies
needs to be provided now.

For the mission proposed here, the program risk that I believe exists for early
taunch of high G designs is mitigated. This is a simple mission, with a single
simple spacecraft to design (excluding the comm orbiter which has even
greater heritage working for it). I am sure that no show stoppers exist for
penetrators, but there seem to be significant development costs and schedule
risks associated with them. The fact is that none of the instruments, with rare
exception, have been developed and tested for the very high G environments,
and T am not aware that INTEGRATION of this number and variety of high G
instruments has ever before been attempted (CRAF penetrator is the necarest
data point that I am aware of, but the G loads there are considerably lower than
those considered for the Mars penectrators, especially the aft body G loads). The
combination of designing for the intense thermal flux, radiation, and G load
environments, have probably not been predominate considerations for the
majority of past high G development programs.

In this proposal, the strategy was to provide a relatively generous 20 Kg
science payload capability with an ample 10 watt constant power supply
augmented with rechargeable batteries. Several types of science payloads can
be envisioned, each tailored of objectives which vary with latitude and the
required number of a particular experiment type. As far as satisfying the
requircments which lead to penetrator designs (subsurface sampling,
placement of seismic geophones) a number of proposals emerged in the
Session B workshop for satisfying these requirements. For instance a flexible,
cable driven drill for acquiring subsurface regolith samples to a depth of up 1o
3 meters should be quite possible to incorporate into one such payload type.
Geophones may be placed away from the lander on teathers to reduce the
chance of interference, or they may be driven into the surface with a
pyrotechnic device. I believe that the consensus at the meeting was clearly
that engineering solutions could be found to satisfy science objectives,
whether the surface device was a soft, rough, or hard lander. For the proposed
rough lander design, risk and cost are mitigated by the using current

expertise in developing, integrating, and testing moderate G instruments (10's
of G's instead of 100's or 1000's).
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Mass Guess-timaltes

Subsystem or Component ' Mass
(Kg)

Science Payload (including atmosphere profiling) 20
Structure (primary and secondary) ] 45
Power

RTG's (2) 5

Batteries 5
Communications 10
GN&C/Propulsion
---Avionics 10
---Torque Wheel Assembly _ 10
---Attitude Control System (Spin/Despin) and RCS Hardware 10
---Tanks & Fuel e 35
Thermal Protection 30
Thermal Control 5
Parachute Assembly 15
Miscellaneous 5
Total 205
Notes:

1) This breakdown was used to get a rough estimate of the total mass. The
numbers here represent only an educated guess, actual mass may vary,
perhaps significantly, from these based on a detailed requirements
analysis of the Global Network mission, and a comprehensive mass
assessment.

2) For an aeroshell diameter of 2.44 m (8 ft) the ballistic coefficient would be
about 44 Kg/m~2, for a diameter of 3.05 m (10 ft), all other things being
equal, the ballistic coefficient is about 28 Kg/m#*2. Lower ballistic
coefficient translates into higher entry G-loads and heating rates, but
also into steeper achievable entry flight angles which improve landing
accuracy and provide the ability 10 achieve higher (polar) latitudes;
lower ballistic coefficient also means lower mach numbers, or subsonic
conditions, at parachute deployment. Exactly what latitudes are
achievable should be the subject of future study.

3) Usable payload volume is about 50 cubic centimeters (1.8 cubic feet).

GNM Mission and System Design Proposal Feb 16, 1990
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Challenges...

This

proposed design is certainly not without technical and programmatic

challenge. 1 encourage others to critique this proposal, but some difficulties I
can see with the design are:

1)

2)

3)

4)

5)

6)

7)

GNM

Navigating a fleet of vehicles to Mars simultaneously. This may saturate
an already oversubscribed DSN. An integrated DSN upgrade or an
alternate communications and navigation approach or system may have
to be pursued.

A systematic injected mass study may show that some of my estimates are
significantly in error. For instance, a stellar sensor such as the Ball CS-
203 is required to provide inertial attitude reference, but even the CS-203
at 5.5 Kg, 6 watts, and 9 arcsec accuracy is not as small or precise as
desired; a lightweight, low power Canopus tracker is assumed to be
available. A total target weight of less than 200 Kg is attractive, I belicve
that lower weight (and thus lower ballistic coefficient, higher
achievable latitudes, and higher landing accuracy) is attainable given
the current trend towards micro-spacecraft. In any case, using off the
shelf miniaturized components and technology is key to the success of
the proposed design approach. (Is this technologically innovative?)

Science objectives best accomplished from orbit will require another
orbiter (Son of Mars Observer?), or perhaps science payloads could be
piggy backed on the (separate) communications orbiter.

Establishing a shared communications infrastructure may be a
challenge. The communications and operations requirements of the
missions need to be analysed together to determine what the best
approach is to solving both problems. The placement of GNM landers at
the poles, for instance implies the need for highly inclined relay orbits,
while a sample return operation may best be satisfied with an
aerosynchronous relay orbit.

Achieving the desired (steep) entry flight path angles from approach
velocity may be problematic. Heating rates and total heat load are of
special concerm. The proposed approach would rely heavily on the
heritage of Shuttle, AFE, and the High Energy Aerobrake work currently
underway for Thermal protection materials, heat resistant substructure,
and insulation materials and techniques.

Mission planning to achieve the desired distribution of landers at
preselected longitudes and latitudes at the proper lighting conditions for
descent imaging may be constrained by orbital mechanics and the
launch dates, combined with the achievable entry flight path angles
(function of ballistic coefficient, G loads, heating - requires further
analysis). It may be necessary to relax the lighting condition
requirement for descent imaging for some of the sites.

Achieving a '96 launch date would require an immediate commitment Lo
GNM concept studies, and an innovative approach to contracting,
developing, managing, and administering the program.
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Conclusions

An approach such as the one proposed by Al Fricdlander, which 1 have
elaborated on here, has great promisc in terms of reduction of cost and risk,
increased flexibility, heritage and commonality, and I believe can reap
substantial political dividends as well. However, a system engineering and cost
estimation effort is needed to ascertain what the payoff of such a proposal
might be. For a serious investigation of the possibility of a '96 launch of any
description, it is imperative that funding of these important concept studies be
swiftly provided.

While there is much refinement and analysis needed for this proposal, it has
attributes which I hope will receive serious attention. My hope is that this and
other proposals can generate the kind of discussions which will lead to a well
balanced Robotic Exploration Program and Human Exploration Initiative.

I ask the readers of this proposal who have become hardened by the decade
long neglect of planctary exploration to try to suspend doubt in a sustained
exploration program. Consider the GNM in a broader context of planctary
exploration that has a new commitment behind it. If there is significant gold
to be found in getting science value and the taxpayers money's worth in this
program, it is in looking beyond the event horizon of the next mission.

I believe the GNM work shop was very productive and I look forward to future
discussion of this and other promising mission and system design options for
the Robotic Exploration Program.
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Aeroshelled Lander (Perspective)
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Lander Operational Configuration
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Meterology and ground imaging boom
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Sandia National Laboratories
Telemetry Department
High Shock Penetrator Instrumentation Program

D. E. Ryerson
Division 5144
February 2, 1990

Sandia National Laboratories Telemetry Department has been building high shock
instrumentation systems for penetration studies for over twenty years. The
instrumentation systems are digital stored data acquisition systems used to
gather data during the penetration event and then recovered for data readout.
The systems are powered by batteries, which are presently Eagle Picher LTC-/PST
thionyl chloride batteries.

The shock loads that these systems are designed for are:

20,000 g for 1 millisecond
8,000 g for 10 milliseconds
3,000 g for 20 milliseconds
1,000 g for 50 milliseconds

Sandia has been fielding an average of sixty instrumented penetrator tests per
year for the last five years. Attached is a plot of a sample penetrator test
acceleration record.

To make our electronics survive high shock, we constrain all of the components
very tightly in the penetrator package. We use selected components and
encapsulate them in hard potting per the attached "Rules for Building High-g
Electronics."” Our temperature environment 1s typically between 0 and 50
degrees Celsius, so we can use components that would not survive standard
military temperature ranges.

We normally try not to use shock attenuation to protect the electronic
components. An analysis of shock attenuation is given on an attached page. It
shows that to get shock attenuation, one must let electronics move a much
larger distance than the penetrator housing, which is impossible.

We have used material to remove high frequency components of a shock pulse to
protect such devices as accelerometers which can be broken by high-amplitude
high-frequency inputs., The disadvantage of this shock material is that it may
distort the accelerometer response and in certain cases, actually amplify
certain frequencies of the shock pulse. In our work, we stay away from shock
attenuators if at all possible.
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10.

11.

12.
13.

RULES FOR BUILDING HIGH-G ELECTRONICS

D. E. Ryerson
Sandia National Laboratories
Division 5144
February 2, 1990

Constrain the PC Boards and Components in Hard Potting - Hard potting is
required to keep components from moving during shock. Typical potting
is epoxy filled with glass micro-balloons. Make sure electronics and
potting material are compatible with temperature ranges that the system
will see in curing of potting and system operation.

Cover the Components with a Thin Layer of Soft Potting - Soft potting
protects components during the hard potting curing process. It also
gives a slight cushion to the component. Typical potting used is
polysulfide rubber. Some silicone-type materials will not work because
they act like mold release and will not let the hard potting adhere to
the boards.

Use as Small a PC Board as Possible - The smaller a board is the less
likely it is going to flex and break.

Mount .Small Components such as Resistors and Diodes Away from PC Board -
Small components can be broken by a board which flexes, especially if
the board has raised solder mounds or lands under the component.

Mount Shims Between Integrated Circuits and PC Boards - Potting will
typically not flow under an IC and a void will be left. Voids or air
pockets allow components to move and break.

Interconnect PC Boards with Fixed Wires or Spring Sockets and Beryllium
Wire - Normal connectors are prone to break.

Use Plastic Integrated Circuits - Plastic integrated circuits have the
wires running from the IC pins to the die encapsulated. Ceramic IC’'s
leave a cavity for the wires and die. The small wires will often move
and short out during shock in a ceramic IC.

Do Not Use Large Electrolytic Capacitors - Use Only Ceramic Capacitors -
Many large electrolytic capacitors cannot take shock. Solid
electrolytic capacitors such as Kemet parts may work., Avoid large
capacitors if possible. If that cannot be done, test components under
shock to determine survivability.

Use Small Known High-Shock Batteries - Large batteries typically have
internal construction which will not survive shock. Test battery types
under shock to determine survivability.

Do Not Overcharge Batteries - When batteries are overcharged or charged
too fast, they will expand and crack the case or potting which holds the
cells.

Keep Power Consumption Low - Keep the system power consumption low to
keep battery size down.

Preload Package when Mounting in Hardware

Present Major Shock Perpendicular to PC Board Instead of Along Board
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Shock Attenuation

D. E. Ryerson
Sandia National Laboratories
Division 5144
February 2, 1990

The purpose of a shock attenuator is to reduce the amplitude of a deceleration
pulse. Assume a deceleration pulse of constant amplitude A for time T.
Calculate the motion parameters as follows:

acceleration = a =A for time T
velocity -v=-Vo+fadt=-V+AtL, 0<t<T
V = AT to force v=0 at t =T

<
]

A(t-T), 0<t<T

depth =d=-fvdt=-A(Q/t2-Tt), 0<ec<T
d=1/,AT2, t=T

.

A shock attenuator would reduce the deceleration by slowing the body over a
longer time interval. Let's calculate the energy in the shock pulse and hold it
constant as follows:

energy = E = force * distance = mass * acceleration * distance

E-mAl/,AT2=1/,m (AT)?

let E, = E; -> A, T, = A, T,

since d =1/, A T2 and (A; T3)2 = (A; Ty)?

- A, d, = A, d,

Therefore, the time of the deceleration pulse is inversely proportional to the
amplitude of the pulse to keep the energy in the pulse constant and the depth of
penetration is also inversely proportional to the deceleration amplitude.

Summary

A shock attenuator must allow the device being decelerated to travel over a
longer distance to get any shock attenuation. If the device is being stopped in
centimeters, it may be possible to double the stop distance to halve the
deceleration. If the device is being stopped in meters, it probably is not
possible to double this stop distance.

In penetrator work at Sandia, we have found that shock attenuators do not work to
protect our electronics. We have found that in some cases an elastic medium has
been useful in removing the high frequency components or fast rise times of the
deceleration pulse. If one is not careful, it is possible that such elastic
media will become shock amplifiers at certain frequencies (resonances) rather
than shock attenuators.
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David E. Ryerson

Supervisor of Telemetry Technology Development Division 5144 at Sandia
National Laboratories, Albuquerque, New Mexico.

BS in Electrical Engineering, Iowa State University, 1965.
MS in Electrical Engineering, University of New Mexico, 1967.

Worked at Sandia from 1965 to the present in telemetry, data acquisition, and
control systems. Designed real-time aircraft computer-controlled systems for
target tracking and rocket-launch computer systems for Sandia’s Kauai test
range. Developed long-life (1 to 3 years) ocean-floor seismic systems and
underwater acoustic telemetry for data recovery. Presently directing the
designing and fielding of ultra-high shock (up to 20,000 times gravity)
penetrator data acquisitions systems, rocket and reentry vehicle
instrumentation, and specialized data acquisition systems.
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SPECIAL APPLICATIONS LOW-POWER RTG

DEVELOPMENT PROGRAM SUMMARY

A. Background

The Special Applications RTG Development Program was initiated at Teledyne
Energy Systems (TES) 1in September 1983 under DOE Contract DE-ACO1-83NE32115.
The development effort was performed under this contract through September 1988.
After this time the program was continued as the Two-Watt Special Applications
RTG Program (DOE Contract DE-ACO1-88NE32142) with the objective of fueling a
prototype RTG unit. Present activities at TES include fabrication, assembly and
test of the electrically-heated prototype RTG which will be delivered to
EG&G/Mound in June 1990 for fueling in December 1990.

Development of a sealed, 3-layer fuel capsule for use in the Two-Watt RTG
is being performed for DOE in a joint effort by TES, EG&G/Mound and LANL. The
capsule design is based on an upsizing of the Milliwatt RTG and Navy One-Half
Watt RTG terrestrial 3-layer capsule technology.

B. Introduction

The primary objectives of the Special Applications RTG Developmént Program

are to:

(1) develop a low-power (2 to 5W) relatively high voltage (5 to 12V)
thermoelectric module using proven PbTe/TAGS  thermoelectric
materials. This materials technology has been applied to both NASA
SNAP-19 space RTGs (Pioneer 10 and 11 Jupiter Fly-by spacecraft and

Viking 1 and 2 Mars Landers), and terrestrial RTGs delivered to DOE
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for subsea applications. Demonstrated thermoelectric module
technology for low-power terrestrial RTGs at the initiation of the
development program was limited to bismuth telluride with a typical
RTG system efficiency of 3.5 to 4.0%. The goal for the development
program was to increase this efficiency by 50%.

(2) develop a sealed heat source intended for terrestrial applications to

contain the helium gas generated by the Pu-238 fuel decay. Available
RTG heat source technologies for the anticipated thermal inventory
requirement were all vented designs which result in increased
parasitic heat losses with operating time due to the introduction of
helium into the thermal insulation. The goal was to contain this
helium within the capsule.

(3) design, fabricate, assemble, fuel and test a prototype terrestrial

RTG system to demonstrate the developed technology. The selected
terrestrial RIG design would <consider potential near-term
applications of low-power RTGs.

Although the hardware development for the Special Applications RTG has been
oriented towards terrestrial applications, the thermoelectric module technology
is generic and may be adapted to both space and terrestrial missions which
require a low-power RTG power source. The radioisotopic heat source for space
applications can be selected from available, qualified space hardware (such as
the GPHS technology) or possibly be specifically designed and qualified for the

mission requirements.
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C. Thermoelectric Module Technology Description

The Special Applications thermoelectric module has evolved during the
development program from using a couple with an all-PbTe N-leg and TAGS P-leg to
one with Bi2Te3 cold segments on both the N and P-legs. The BizTe3 cold
segments were added to the latest generation of thermoelectric modules to
enhance the thermoelectric conversion efficiency for terrestrial applications
where the RTG would be exposed directly to the cold subsea environment. These
cold segments would not be beneficial for space applications and would not be
included in the thermoelectric couple design.

1. Viewgraph 1

Viewgraph 1 shows Special Applications PbTe/TAGS minicouples which

exemplify a configuration which could be considered for space application. The
couple design is basically a miniaturization of the proven SNAP-19 space RTG
thermoelectric technology. The couple has iron hot and cold shoes and copper
pins to provide for electrically interconnecting the couples within a module.
The Special Applications module uses a printed circuit board at the cold side to
complete the interconnects between the couples. For the couple shown the

individual legs are 0.102 in. sq. by 0.625 1g.

2. Viewgraph 2

Viewgraph 2 shows the typical internal construction of a Special

Applications RTG. The configuration shown is that for the subsea prototype RTG
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now being fabricated at TES. The 30-pound weight shown is almost all in the
BeCu pressure housing, with less than 5 pounds attributable to the RTG internal
components {thermoelectric module, heat source, heat distribution cup, thermal
insulation and prelcad springs). For a space RTG configuration, particularly
for a penetrator mission with high shock loading, the internal configuration
would probably vary somewhat from that shown to satisfy mission vibration/shock
requirements. For example, the heat source could have a support system
independent of the thermoelectric module Ito minimize dynamic loads on the

module.

3. Viewgraph 3

Viewgraph 3 shows a typical Special Applications thermoelectric module
containing 68 couples. The module is approximately 3 inches in diameter by 0.8
inch thick. The cold side printed circuit board provides the basic structure
for the module. Powdered Min-K thermal insulation is vacuum-impregnated between
the couples to minimize heat loss. A thermoelectric module similar to that
shown has been successfully tested to a 100g axial, 50g lateral (both applied

simultaneously) shock loading to simulate impact deployment of an RTG.

4. Viewgraph 4

Viewgraph 4 shows the typical performance for the subsea RIG design shown
on Viewgraph 2. The BOL in-water power output is approximately 5W with a system

efficiency approaching 7%. Note that the hot Jjunction temperature of the
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-5 -
terrestrial RTG is limited by the 3-layer capsule technology which has a
long-term operating limit of approximately 1100°F. For a space application the
hot junction would probably be increased to the 950°F range to take advantage of
the high temperature heat source.

5. Viewgraphs 5, 6 & 7

Viewgraphs 5, 6 and 7 depict an alternate module configuration developed on
the Special Applications program called a "Close-Packed-Array" or CPA. These
viewgraphs show the configuration and performance of a 30-couple module rated at
approximatély 1.2W power output at 2.4V load voltage.

6. Viewgraphs 8, 9 and 10

Viewgraphs 8, 9 and 10 depict a module with a construction similar to that
of the 30-couple module previously shown rated at 4.2W power output at
approximately 6V load voltage.

7. Viewgraphs 11, 12 and 13

Viewgraphs 11, 12 and 13 show a 5W level module at approximately 9V load
voltage. The module has 126 couples.

8. Viewgraph 14

Viewgraph 14 shows the conceptual design for a 10-15 W (at 9-12V) space RTG
generated for a potential DOD space application using minicouples in conjunction
with a 250W thermal GPHS heat source module. This concept uses the conventional

SNAP-19 spring/piston cold end hardware arrangement to individually spring-load
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-6 -
each leg of the thermoelectric couple. This arrangement is an alternate to that
shown in Viewgraph 2 where the thermoelectric module is loaded as a unit with
preload springs.

In summary, the Special Applications thermoelectric module technology is
flexible both in its configuration and power level, permitting its aaaptation to
both space and terrestrial RTG missions requiring low-power RIGs. The RTG
configuration and internal component support structure design would depend on

the specific mission requirements.

410



| ydeibmaip

30HS 34

Q@
-
owd
D
£
O.

pees ¢l

ww<._. ;.KL", _ xﬂ.fl,q,;
SR

' A.,
l,
.
o.

9144
JOHS 34

sud ng

J1dNOJINIW JIAL1ITTIOWAIHL SNOILVIITddY TVIXAdS

CRIGINAL PAGE IS

OF POOR QUALITY

411



TWO-WATT SPECIAL APPLICATIONS TERRESTRIAL RTG
(BeCu Housing Design For 10,000 Psi External Pressure)

la

PRELOAD
SPRINGS

HOUSING

5.000 in.

N

-

oy | fa S FUEL G
'()'j)s)’“,‘) .:SHA DST
4 ’S I22 ] Y AL
virdasan
“y4 "45'5 ")',:] o

10.300 in.

/3\:'\ =
137743
g S
Zr GETTER '
\g* \,’l‘)ul~H
’ g 4 v
ﬁ‘x:""flir
3-LAYER HEAT SRS
SOURCE \5}4»'1,::{;&%(
.‘;; 1 { ,‘
MIN-K 5‘3 NERITIRY
INSULATION \7/4 t.u':’.;ff 3
47 . t
HEAT //;:s‘:f:,‘,w'u
DISTRIBUTION RN
cup < D
MIN-K :
INSULATION

THERMOELECTRIC_A

MODULE

W th) )]
NS n' )
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HIGH PRESSURE
RECEPTACLE ™
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-
1 A
BOL POWER QUTPUT = 5.0 W(e)
THERMAL INVENTGORY = 72 W(t)
APPROXIMATE WEIGHT = 30 LBS.
Viewgraph 2




SPECIAL APPLICATIONS MODULE

(HOT SIDE VIEW)

Viewgraph 3

NAL PAGE ;s
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TWQ-WATT SPECIAL APPLICATIONS RTG PERFORMANCE PREDICTION SUMMARY

WorsT-CASE

IN-AIR

IN-WATER

IN-WATER

Bou) (B0 (10 Yps.)

Power Quteut (W(E)) 3.95
Fuer Inventory (W(T)) 70.8
T/E EFFiciency () 7.74
THermaL EFFiciency (Z) 73.2
SysTeM EFFiciEncY (%) 5.58

Hot Junction Temperature (°F) 814
CoLp Junction Temperature (OF) 214
AMBIENT TemperaTURe (OF) 113

4.92

- 70.8

9.36
75.1
6.94

676
50
40

3.37 (2.6 8 .99 1o
0.999 RreL.)

65.4

6.89
/4.8
5.15

b4l
50
40

NOTES: (1) T/E eLeMeNnT piMensions: 0.450 IN. Le. x 0.103 In. sa.

(2) Numeer T/E coupLes: 68
(3) RTG Free eas: 1007 xenon

Viewgraph 4
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30-COUPLE (.067" SQ. ELEMENTS)
DEVELOPMENT MODULE QUADRANT
(COLD SIDE VIEW)

Viewgraph 5
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30-COUPLE (.067" SQ. ELEMENTS)
DEVELOPMENT MODULE QUADRANT
(PARTIALLY "STUFFED" WITH COUPLES)

Viewgraph 6

ORIGINAL PAGE IS
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SPECIAL APPLICATIONS PROGRAM
30-COUPLE MODULE PERFORMANCE
(ELEMENT SIZE =.067" SQ. X .483" LG.)

QUADRANT #3
PREDICTION (11/11/84)
POWER OUTPUT (WATTS(e) ) 127 1 28
POWER INPUT (WATTS(t) ) 16.3 () 15.8 (2)
HOT JUNCTION (°F) 925 925()
COLD JUNCTION (°F) 160 160
OPEN CIRCUIT VOLTAGE (VDC) 4,80 4.79
LOAD VOLTAGE (VDC) 2. 40 2.41
INTERNAL RESISTANCE (Q) 4,55 4 4.48
EXTRANEOUS RESISTANCE (%) 0 -L5

THERMOELECTRIC EFFICIENCY (%) 9.3 -

(1) INCLUDES: QT/E 4.1 W) +QSEPARATORS 2.2W)
(2) MEASURED POWER INPUT LESS TEST FIXTURE TARE LOSSES.

(3) INFERRED TEMPERATURE BASED ON POWER INPUT AND OPEN CIRCUIT
VOLTAGE,

(4) INCLUDES Ry /. (4.38 1) +Rgrpaps b 07Q) *Rpapg 1082).

Viewgraph 7

417



g ydeibmaip

ATENISSY 3TAAON
03719WISSY ATTVILHVYd AS0TONHIIL SNOILYIITddV TVII3dS

OF POOR QUALITY

ORIGINAL PAGE IS

418



6 ydeibmaip

o)
<
%_._
% 2
$8 S9VL - $931 4 G
900131 = S93IN &
WIYILYW INIWIT (¥HL'NISI0") S5
DS "NI L0 = NOI1D3S INIWIT3 ¥01¥¥Vd3s
NI €8V = HIONI1 INIWIT3 INVHINAS
= 'SASSY QV31 ¥3IMOd 'ON /
9/ = S3dN0J IAILIY ON fe— 016" — T\
- F -
....... T 1 ;l _
e
— C
m = — o
— ” e “ =] M
== I
- | I 1=
| b I
ol |« = =
, | S e
, | 1 NREERREE
| AENEERERNEE
° = T 110 1117 .
° A.fffg RN UR
! EREEEEREREREERER
301$ 00D (NMOHS 10N) 301S LOH

43714 ANOGYWYY3ID
('VIG NI 0£0°) 30HS 3 IM ND

3TNAOW INIWd0T3A30 37dN0I-9L WYHI0Hd SNOILYIITddY 1VIIIdS



SPECIAL APPLICATIONS PROGRAM
716-COUPLE MODULE PERFORMANCE
(ELEMENT SIZE =.077" SQ. X .483" LG.)

MODULE S/N 6

PREDICTION (11/3/84)
POWER OUTPUT (W(e)) 4.25 4.26
POWER INPUT (W(t)) 56, 1(1) 56,2
HOT JUNCTION (°F) 925 925(3)
COLD JUNCTION (°F) 160 160
OPEN CIRCUIT VOLTAGE (V) ° 12, 16 12, 14
LOAD VOLTAGE (V) 6.10 6.10
INTERNAL RESISTANCE (1) 8. 69(4) 8.65
EXTRANEOUS RESISTANCE (%) 0 ~0.5
THERMOELECTRIC EFFICIENCY (%) 9.3 -

(1)
@)
3)

“)

INCLUDES: Q 47.3W) +Q

T/E SEPARATORs (8- 8 W)
MEASURED POWER INPUT LESS TEST FIXTURE TARE LOSSES,

CIRCUIT VOLTAGE.

INCLUDES: R 8.4102 )+ R S .1892) +R

T/E STRAP LEADs ¢ 10 @)

Viewgraph 10
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FIVE-WATT DEVELOPMENT
THERMOELECTRIC MODULE

SCALE

] [ T
l Z 3

COLD SIDE OF COMPLETED MODULE

SCALE
[ T %

HOT SIDE OF COMPLETED MODULE

Viewgraph 11
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SPECIAL APPLICATIONS PROGRAM
126-COUPLE MODULE PERFORMANCE
(ELEMENT SIZE =.061" X .466" LG.)

MODULE S/N §

PREDICTION (10/12/84)
POWER OUTPUT (WATTS(e)) 4.51 4.47
POWER INPUT (WATTS()) | 59, 7(1) 60. 0%)
HOT JUNCTION (°F) 925 925()
COLD JUNCTION (°F) 160 160
OPEN CIRCUIT VOLTAGE (VDC) 19, 27 19. 30
LOAD VOLTAGE (VDC) 9,63 9,72
INTERNAL RESISTANCE ( © ) 20,564 20, 83
EXTRANEOUS RESISTANCE (%) 0 1.3

THERMOELECTRIC EFFICIENCY (%) 9,2 -

1)

()
@)

4)

INCLUDES: Q (49.4W) + Q 2W) +

T/E SEPARATORs &

QINERT couPLES(5) %1 W)
MEASURED POWER INPUT LESS TEST FIXTURE TARE LOSSES.

INFERRED TEMPERATURE BASED ON POWER INPUT AND OPEN
CIRCUIT VOLTAGE.

INCLUDES R (20.40 2) + R

T/E STRAPS 06 8) + Ry papg (:1002).

Viewgraph 13
423



7

T

fes
s
—

) g7
¢

Ly

SWILSAS ADIINT 3INAGIHL M

— e

s

¥1 ydeibmaip

(LLVYM ST-0T) Ld3ONOD D1d 30VdS

(0081 M~ NIN) NOILYINSNI IWINE3HL
(9) NId NOILO3M3Y LVY3H

3INSdVD wNiaigl

{) M 052~) 30HNOS LVIH SHAD

HOLDINNOD TWOIHLOI &
HOLVINSNI VOIdL03 13
30HS LOH

NOLSId

OIS

HYE ¥NIS LvaH

(00FL M ~ NIW)

NOULYINSNI ONIHYIE QvO)
HOOTEG HOLVINWNDDY LVAH LIdS

el

[
L

<4 1O~

Lo

IAL PAGE IS

i
i

.
N

L,

CRr:

OF POOR QUALITY

424



Session C, Submittal No. 6

Alfred Schock
Fairchild Space Company

425



RADIOISOTOPE HEAT SOURCE

(FWPF*)
Insulator (CBCF**)
Aeroshell (FWPF*)

|_—Fuel Pellet (PuO»)
Impact Shell
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HEAT SOURCE CROSS-SECTIONS
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SECTION A - A
Mass - 1.346 LB = 0.611 kg
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MULTICOUPLE AND FASTENERS

<— Heat Collector
(Graphite)

Thermoelectric Legs
(SiGel/GaP)

Compliance Pad
(Graphite)

Mounting Stud (W)

Ferrule (Al)

-~ Washer (Ti)

Belleville Spring (Fe)

|
} - Washer (Ti)
|

%‘ﬁ Nut (Ti)
|
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RADIOISOTOPE THERMOELECTRIC GENERATOR (RTG)
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RTG CROSS-SECTIONS
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RTG IN PENETRATOR
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RTG IN PENETRATOR CROSS-SECTIONS
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PENETRATOR DECELERATION, PAGE 1
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PENETRATOR DECELERATION, PAGE 2
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PENETRATOR DECELERATION, PAGE 3
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PENETRATOR DECELERATION, PAGE 4
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PENETRATOR DECELERATION, PAGE 5
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Velocity, m/sec

DECELERATION OF AFTBODY,
VELOCITY VERSUS TIME AFTER IMPACT

100 TN O S E S L1 Lopll 11 % T B DA B L1 1 1FJ -
80 1 -
B L

3 o

60 - =+
] -

40 1 I
1 o

] C

20 - +
- L

— P

0 T T 1 b1+ } S B B B e e e e e e e e e N ?

-5 0 5 10

Time, msec

439



Velocity, m/sec

DECELERATION OF FOREBODY,
VELOCITY VERSUS TIME AFTER IMPACT
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Velocity, m/sec
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