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ABSTRACT

We have calculated the absorption strengths for intersubband transitions

in n-type Sii_zGez/Si superlattices. These transitions can be used for the

detection of long-wavelength infrared radiation. A significant advantage in

Sii_zGez/Si superlattice detectors is the ability to detect normally incident

light; in Gai_zAlzAs/GaAs superlattices intersubband absorption is possible

only if the incident light contains a polarization component in the growth

direction of the superlattice. We present detailed calculations of absorption

coefficients, and peak absorption wavelengths for [100], [111] and [110]

Sii-j-Geu/Si superlattices. Peak absorption strengths of about 2000-6000

cm"1 were obtained for typical sheet doping concentrations (w 1012 cm~2).

Absorption comparable to that in Ga1_zAlzAs/GaAs superlattice detectors,

compatibility with existing Si technology, and the ability to detect normally

incident light make these devices promising for future applications.
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Si/Ge Multi Quantum Wells for
LWIR detection

• Similar to extrinsic Si detectors

• Can change wavelength response by
varying layer thicknesses

• Possible to achieve absorption at
normal incidence

• Can achieve high doping concentrations

• Improved uniformity

• Compatibility with Si readout electronics
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Outline

Introduction

Possibilities with [lllj^HO]1 directions

Intersubband absorption coefficient

Si/Ge band offsets

Strain effects

Results

• Conclusions
'C. L. Yang, D. S. Pan and R. Somoano, J. Appl. Phys. 65, 3253

(1989).

QW Absorption

A/V*
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vwv*

Parallel Normal
Incidence Incidence

Quantum well states of ellipsoidal valley
materials

[111]

[100]

Consider the case where ellipsoids are not oriented in
the growth direction

• Effective mass is a tensor; large anisotropy

• Possible to couple orthogonal components of vector
potential and electron motion
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Optical Matrix Element in
Superlattices / Multi Quantum Wells

Mop= (
me

Interband Case: V -> C

me
UC\A • P\uv) (FC\FV)

Intersubband Case: Cl -> C2
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Normal Absorption
\
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and l/myz ^ 0 necessary

shearing terms of the reciprocal effective mass
tensor are important.

large eccentricity improves absorption
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Si/Ge system

• SiGe alloys; X valleys, Si cone, x < 0.85

• SiGe alloys; L valleys, Ge cone, x > 0.85

Other systems of interest

• GaAlAs alloys; X valleys,
Al cone, x > 0.45

• GaAlSb alloys; L valleys,
Al cone. 0.25 < x < 0.55

• GaAlP, PbSnTe

Absorption

f . ..J dkz
0 (Tiw-E(k2))2 + r2 /4

F is the broadening due to lifetime ~ (5 meV)

Absorption depends on m*. Shearing terms m*xz and m*yzimportant

Cj denotes the polarization direction of light

Ns is the sheet doping concentration

L is the length of a superlattice unit cell

E (kz ) is the subband separation energy

F! and F2 denote envelope functions
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Band Offset

Si/Ge average VB offset 0.54 eV

Strain effects important

CB offsets are small

VB offsets are large
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Strain Effects

• Lattice mismatch

• Splits the valence band degeneracy;
HH and LH splitting

* Compression -* HH shifts up
* Tension -» LH shifts up

• Splits the conduction band degeneracy
Six A valleys

* Compression -» 4-fold valleys shift down
* Tension -> 2-fold valleys shift down
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[100] 2-fold electrons

[100] 4-fold electrons

[111] 6-fold electrons

[110] 4-fold electrons

[100] direction
parallel incidence
2-fold electrons

• purpose of study is to compare with GaAs

• effective masses large

• possible to achieve good confinement

• structures:

* barrier layer, Ge rich: Sio^Geo.e
* well layer, Si rich: Si

* coherently strained to Ge rich Sio.4Geo.6 buffer
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Absorption Coefficient (cm l)

lattice matched to Si4Gefi [100] buffer
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[100] direction
parallel incidence
4-fold electrons

purpose of study is to compare with GaAs

• effective masses small

poor confinement

structures:

* barrier layer, Ge rich: Sio.2Geo.8
* well layer, Si rich: SiojGeo.a

* coherently strained to Si rich Si buffer
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Peak Absorption Wavelength

lattice matched to Si,Ge, [100] buffer
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[111] direction
normal incidence
6-fold electrons

• effective masses: medium

• wavefunction confinement: medium

• no preferred azimuthal dependence to
absorption

• possible to grow on a buffer layer lattice matched to
free standing SL

• structures:

* barrier layer, Ge rich: SicuGeo.g

* well layer, Si rich: Sio.sGeo.2

* coherently strained to Sio.sGeo.s buffer
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Absorption Coefficient (cm )

lattice matched to Si,Gec [ill] buffer
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[110] direction
normal incidence
4-fold electrons

• effective masses: medium
larger than [111]

• wavefunction confinement: medium
better than [111]

• preferred azimuthal dependence
for absorption in [1TO]
polarized light

• structures:

* barrier layer, Ge rich:

* well layer, Si rich: Sio.sGeo.2
* coherently strained to Sio.2Geo.8 buffer

Absorption Coefficient (cm")

lattice matched to Si,Gen [110] buffer
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Peak Absorption Wavelength (/xm)

lattice matched to Si2Ge8 [110] buffer

Si _Ge _ layer thickness (ML)
.2 .8

Other major issues

Role of dislocations

Excited state lifetime

Intervalley scattering

Responsivity, Detectivity
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Conclusions

• Absorption of [100] Si/Ge superlattices is
comparable to GaAs/AlGaAs (absorption
coefficient « 5000 cm"1) for 1012 cm"2 dop-
ing.

• Absorption of [111], and [110] Si/Ge super-
lattices is superior to GaAs/AlGaAs since
normal incidence can be detected

• Similar to extrinsic Si; Can vary absorption
wavelength; Large absorption coefficients pos-
sible
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