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Much heterostructure and quantum well work is now devoted to
materials combinations other than GaAs/(Al,Ga)As. One of the most
interesting is the InAs/(Al,Ga)Sb system. In the InAs/GaSb limit, it exhibits
a broken gap, which offers a number of interesting possibilities for new
kinds of physical phenomena, most of which remain unexplored.

In the InAs/AlSb limit, it offers quantum wells of exceptional depth (1.35
eV), combined with the low effective mass (0.023 mo) and high mobilities of
InAs, a combination of interest for several potential device applications.
The lattice mismatch (1.3%), while not negligible, is sufficiently small that in
quantum well structures with well widths of practical interest (< 10 nm) the
growth should be pseudomorphic, with the mismatch taken up by elastic
strain, rather than leading to disastrous misfit dislocation formation.

We have been exploring the InAs/AlSb system recently, obtaining 12nm
wide quantum wells with room temperature mobilities up to 28,000 cm2/V-s
and low-temperature mobilities up to 325,000 cm2/V-s, both at high electron
sheet concentrations in the 1012/cm2 range (corresponding to volume
concentrations in the 1018/cm2 range). These wells were not intentionally
doped; the combination of high carrier concentrations and high mobilities
suggest that the electrons are due to not-intentional "modulation doping" by
an unknown donor in the AlSb barriers, presumably a stoichiometric defect,
like an antisite donor. Inasmuch as not intentionally doped bulk AlSb is
semi-insulating, the donor must be a deep one, being ionized only by draining
into the even deeper InAs quantum well.

The excellent transport properties are confirmed by other observations,
like excellent quantum Hall effect data, and the successful use of the
quantum wells as superconductive weak links between Nb electrodes, with
unprecedentedly high critical current densities. The system is promising for
future FETs, but many processing problems must first be solved. Although
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we have achieved FETs, the results so far have not been competitive with
GaAs FETs.

Although most of our work until recently has stressed the transport
properties of the system, its optical properties should also be interesting.
The large well depths should make the system promising for superlattices
with exceedingly short periods. The latter presumably have interesting
optical properties, such as strong inter-sub-band absorption effects, of
potential use for detector applications. Work exploring the optical
properties has been initiated, but we do not have any results to report yet.

Any superlattice applications require particular attention to the quality of
the hetero-interfaces, and in this regard the InAs/AlSb system differs
fundamentally from the GaAs/(Al,Ga)As and (Ga,In)As/(Al,In)As
systems: Because both the cation and anion change across an InAs/AlSb
(or InAs/GaSb) interface, two distinctly different interface structures may
occur. In one case, the InAs would be terminated with a final layer of In,
and the adjoining AlSb would start with a layer of Sb, leading to InSb bonds
across the interface. We call this the "InSb-like" interface. The comple-
ment to this is the "AlAs-like" interface, in which Al atoms from the AlSb
side are bonded to As atoms on the InAs side. Experiments show that
different kinds of interfaces can indeed be generated by choosing suitable
MBE growth parameters, yielding drastically different quantum well
properties. All our high-mobility wells were grown under conditions
presumably leading to InSb-like interfaces.

A systematic study of the effect of differently grown interfaces showed
that wells having AlAs-like bottom (i.e. first) interfaces had properties quite
different from wells with InSb-like bottom interfaces, while nature of the
upper (i.e. second) interfaces played little role in determining the properties
of the quantum well. More specifically, wells with AlAs-like interfaces at
the bottom (but not at the top!) yield a higher electron concentration but
much lower mobilities, indicating the presence of a charged defect at those
interfaces, believed to be a (deep) As antisite donor on Al sites. Several
observations strongly support this interpretation: The magnitude of the
effect correlates strongly with the length of exposure of the Al-stabilized
AlSb surface to the As flux prior to turning on the In beam. Furthermore, by
interrupting the growth of the AlSb barrier some distance away (~10 nm)
from the InAs/AlSb interface, and exposing the stagnant AlSb surface to an
As flux, we were able to "modulation-dope" the quantum well, with results
very similarly to conventional modulation doping with Te donors.
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InAs/AISb Quantum Wells
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