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Progress Report

—-Experiment _design. The design of IBSE was based upon a carefully controlled
compar ison between identical sets of human blood cell suspensions ~ red cells,
white cells, and platelets - one set of which was transported aboard Columbia
on a 6 -day 11 hour mission, and the other held on the ground. Both sets were
carried inside stainless steel dewars within specially fabricated flight
hardware. Individual bags of cell suspensions were randomly assigned with
respect to ground vs orbit status, dewar chamber (-if-there was more than.one),
and specific location within the dewar. To foster optimal preservation, each
cell type was held under specific optimal conditions of pH, ionic strength,
solute concentration, gas tension and temperature: 5°C.-for red cells and
white cells; 229°C.- for platelets.- Air- from the orbiter middeck was
continuously. circulated around the bags of blood cells. An added variable in
this initial experiment was provided by the use of three different
polymer/plasticizer formulations for the sealed bags which held the blood
cells. At termination of the experiment, aliquots of the suspensions,
identified only by code, were distributed to. the.investigators to be assayed.
Assays were selected to constitute a broad survey of cellular properties and
thereby maximize the chances of detection of gravitational effects.should
they be-present. A total of 74 different outcaome measurements were reported
for statistical analysis. When the measurements had™ “besn completed, the
results were entered into the IBSE data base at the Harvard School of Public
Health, at which time the data were matched with the original blood bag
nubers to determine their status with respect to polymer/plasticizer type,
orbital status (orbit or ground) and storage position within the experimental
hardware. The data were studied by analysis of variance. Initially, type of
bag and orbital status were main factors; later more detailed analyses were
made on spec1f1c issues such as position in the hardware and specific plastic.
If the analysis of variance indicated a statistical significance at the 5% :
level the corresponding p-value was reported.

Quration and events. The elapsed time for STS 61-C, the Colurbia mission, was
6 days: 2 hours. This was the duration of exposure of the orbit samples to
microgravity. However, the overall elapsed time fraom collection of the blood
to postflight sampling was longer. For red cells, it was 9 days: 11 hours.
For granulocytes and platelets, it was 8 days: 11 hours. The preservative
conditions for IBSE red cells assured excellent post-transfusion survival for
21 days, i. e. if transfused at that time, more than 70% of the cells would
have survived for 24 hours in the circulation of a recipient. For platelets,
our evidence suggests that only 40% would have survived if transfused after 7
days (see below). Few granulocytes, which have a life of only 2 to 3 days in
the circulation, were expected to survive the IBSE experiment duration. The
significance of these observations is that the duration of the IBSE mission
intersected the survival curves of the blood cells at quite different zones.
Given the overall duration of IBSE, well over 90% of the red cells should



still have been viable, while less than 40% of platelets were probably still
functional at the end.

Red cells at microgravity. Tables 1 and 2. Red cells exposed to microgravity
differed only in subtle ways from unit gravity cells. The only statistically
significant differences were seen in the p02 and pCOz2 data. The orbit cells

. evidenced slightly detrimental alterations in the red cell menmbranes: greater
osmotic fragility, higher extracellular hemoglobin and potassium, and
decreased membrane lipids. The flight red cells displayed slightly elevated
nurbers of Type III echinocytes. No changes were seen in red cell associated
IgG.

Granulocytes at microgravity. Table 3. Although recovered in surprisingly
good yield, granulocytes exposed to microgravity were less functional and less
stable. Compared to ground controls, swelling was greater (p=0.06); as was
morphological damage (p=0.01). Respiratory burst oxidase activity was reduced
(p=0.007) as were phagocytic indices (p=0.05). Postflight recovery of
granulocytes (59%) was not affected by orbital status.

Lymphocytes at microgravity. IBSE observations on lymphocytes were made by
Dr. Richard Meehan at University of Texas Medical Branch, Galveston.

Dr. Meehan was supplied with samples of the mononuclear cell suspensions used
for the study of granulocytes (above). However, Dr. Meehan was unable to
document any enhancement or deleterious effects of exposure to microgravity.
It appeared that the culturing of pooled leucocytes from 24 separate donors
resulted in an in vitro lymphocyte proliferation of unstimulated cells
characterized by high thymidine uptake despite the 8 day, 11 hour preservation
period. This result was at odds with preflight 7-day storage tests of this
cell system which indicated poor function. No heterologous cell interactions
were observed, although 4 separate donor pools of buffy coat had been
combined. The major difference between pre and post flight protein and DNA
synthesis was that the mononuclear cells isolated from the postflight samples
were unstable, and clumped during centrifugation. The possibility exists that
the cells which did not aggregate were cultured at reduced density and
proliferated rapidly. The possibility that a mixed lymphocyte reaction
occurred could not be excluded.

Platelets at microgravity. Table 4. Almost all observations suggested that
microgravity conditions were favorable to platelets compared to ground
controls. Morphologically, the orbit platelets had more pseudopods and fewer
platelets were swollen and ruptured. They displayed higher aggregability by
both collagen and ADP; there was less loss of B-~thromboglobulin and
thromboxane B2 to the mediun. The medium of the orbit platelets retained
higher glucose, lower lactate, lower pO2 and higher pC02. Orbit platelets
were smaller in volume, and responded slightly better to hypotonic stress. At
the end of the 9 day, 11 hour experiment, the orbit platelets had acquired
significantly less IgG, C3c and C3d. Analysis of 125]-labelled membrane
proteins, 3H-labelled membrane glycoproteins, and platelet cytoskeletons were
quantitated by use of a scoring system based on replicate scoring
assignments. Of these, membrane glycoprotein and cytoskeleton assessments
were significantly superior for the orbit platelets.

Platelets at hypergravity. To further evaluate the importance of
gravitational force on platelet viability, studies were initiated to compare
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platelets exposed to hypergravity with control platelets held at unit gravity.
These exper iments were done in a simple centrifuge developed for the purpose.
The compression method described below was used to preserve the platelets.

The results could thus be compared to the IBSE findings which contrasted
microgravity with unit gravity. Platelets thus stored at 2xg for 7 days at
22°C were consistently inferior to unit gravity controls, as evidenced by
greater mean platelet volume, reduced response to hypotonic stress and reduced
aggregation by ADP. By contrast, pH, pCO2 and POz were not significantly
different at 2xg and unit gravity. In Figure 1, data for mean platelet volume
(MPV) from the two sets of experiments have been juxtaposed by setting MPV at
I1Xg at 100% in each set. This suggests that platelets are surprisingly
sensitive to small changes in centrifugal force. Effects on platelet response
to hypotonic stress and ADP aggregation for the two sets of experiments ran in
the same direction.

These initial findings on the effects of microgravity and hypergravity on
platelets are impressive both in the wide range of observations of properties,
functions and metabolism which were affected, as well as in the magnitude of
the differences which were registered. If confirmed, they represent important
new leads for further exploration of platelet preservation.

Ccompression storage of platelets. Present FDA regulations require that
platelets be agitated constantly during preservation in hospital blood banks
to facilitate gas exchange across the wall of the plastic bag. This
reguirement proved difficult to meet in the IBSE flight hardware. To
circumvent this limitation, we discovered that compression of the platelet
bags between open metal or plastic grids, without agitation, was an equally
effective way to preserve platelets. We attribute this to achieving a uniform
and minimum thickness of liquid suspension and maximun bag surface area 1in
compressed platelets. Taken together, this facilitates diffusion of
atmospher ic oxygen across the plastic wall to the platelets, and of carbon
dioxide from the medium to the enviromment. For IBSE, we used one of the
first prototypes of this device, in which the platelets were "compressed”
between stainless steel refrigerator shelving. Recently, this technique has
been further refined by compressing platelet bags between pieces of plastic
"honeycomb ™.

In_vivo survival of compression preserved platelets. Based on infusion of
S1cr labelled autologous platelets, i1n vivo survival of 7 day, 22° unagitated
compression-stored platelets (n=5) was compared with standard platelets
preserved by continuous agitation (n=2). In terms of yield of platelets
circulating after transfusion, half life, and life span of circulating
transfused platelets, the compression preserved platelets did not differ from
platelets preserved by the FDA-approved method. Thus, 39.3% +/-7.5% of 7 day
campressed platelets were recovered after transfusion vs 40.0% +/-1.4% for
continuously agitated platelets.

It is clear that the new compression method for preserving platelets by
circumventing the need for continuous agitation contributed significantly to
the success of the Initial Blood Storage Experiment. It also shows promise of
providing a simple useful alternative for hospital blood bank use. Recently,

the principal investigator received a NASA Certificate of Recognition and cash
award for developing this technology (Figure 2).
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NASA-IBSE
Table 1.

RED CELLS

| con -cisoar wassaroow|

GRAVITATIONAL EFFECTS

Mean

1xg ug SEM
Rbc count/mi x10 7 4.62 3.es 0.595
Pezk channe! ' €6.00 €4.44 1.870
pH 6.74 6.72 0.006"
pCO2 mmHg ' 137.22 144.31 1.872°
pC2 mmHg 4£.06 44.37 0.672
ATP pm/ghb 3.80 3.86 0.070
2,3 DFG pm/ghkb 3.12 2.84. 0.316
Giucose mg/100mi - 308.83° 310.31 3.725
K(c) meq/l 38.5¢2 38.27 0.063
Na(c) meg/l - 111.67 111.£6 0.157
Hb (pl) mg/d1 . 8.3¢ 0.33 0.515
K(pl) meg/l -~ 12.03 12.27 0.142
Na(pl) meq/l 168.22 168.17 0.331
*p<0.05
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NASA-IBESEZ
Table 2.

EED CELLS

Osmotic frag. 0.6% NACL %
O0.E2% NACL %
0.20% NACL %
P-figid pgP/10%kc
Cholesterol pa/108bc
laG on cell/molecules/c2ll
loG in call/molecules/cell
C3c on cell/molecules/cell
CZ2d on cell/molecules/cell
Agclutination with antiC3a’%
Agglutination with antiC3c¥%
Agglutination with antiC3d%
Agglutination with antilgG?

Mean
1xg Bg

2.28 3.8%
6.22 7.25
31.11 32.87
23.41 22.28
12.35 11.22
14.78 14.80
68.25 70.1¢
8.01 8.44
101.62 103.05
22.25 21.63
42.80 47.69
76.28 75.02
55.38 . 53.12

GRAVITATIONAL EFFECTS

SZM
0.£86
0.70€
1.80¢
0.420
0.208
0.457
4.322
0.30¢
3.7¢2
1.373
1.711
0.649
0.945
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TAELE 4 : SUMMARY OF IESZ

Microgravity EfZects on Survivael of Euman Platelets
after 6 davs, 2 hcurs in erdit

8 dzvs, 11 hours totzl exzeriment duration

ezrsh
Morzhologic measures: .
platalet count (x10-°/ml) 1.42
TEM score (0 to 5):
pseudcrcecds 0.70
accrecates 0.20
dezrznulated ‘4.00
swollen/ruptured 3.30
cell biclogy score (1 to 10):
memprane proteins 7.60
membrane glycoprots . 7.0%8
cytosgkeleton 8§.08
Functional measures:
Collagen aggregation (%) 6.70
ADP aggregation (%) : 5.00
Sercteonin uptake (%) . 3.10
ATD relezse (nmel/10° plts) 0
Stuyrven clctting time (sez) 20
extracallular B-TG (ug/ml) 5.638
extracellular TX-22 (sec) 10.67
Metzkolic measures: ’
EE 5.76
Gluccse (mg/100ml) 29.%0
FO:; (mm/Eg) 206.88
ECO; (mm/Eg) ' 8.04
Laczzt2 (mmol/L) 23.60
EFZ=S '
Mezn plztslet volume (um?) 9.77
Immunolcgic studies:
Tctal IcG (mol/plt) 4004:
Surfzce bouné IgG (mol/plt) 4753
C3c kcunéd (mol/plt) 2283
C3d bcund (mol/plt) ‘ 2082

1.40

1.11
0.11
3.67
. 2.78

€.02
5.40
4.92

17.33
9.44
7.42
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50.96
7.04

5.79
28.22
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ABSTRACT

The Initial Blood Storage Experiment (IBSE), probed the behavior of human red
cells, white cells and platelets during 6 days and 2 hours exposure to
microgravity on a NASA shuttle mission, STS 61-C launched on January 12, 19g6.
The experiment was designed to screen for a large number of potential
gravitational effects on blood cells. IBSE was planned as a carefully
controlled comparison between identical sets of blood cells, one of which was
exposed to microgravity while the other set was held on the ground. .OF
several control issues, most attention was paid to damping the vibration
encountered at launch. Specially designed and fabr'icatea'f‘light hardware
provided appropriate environmental temperatures and air flows for the blood
cells. Post-flight scientific measurements were carried out on coded samples,
and blocking techniques were used to assure comparability. Analysis -of
variance was used in processing the data. The most striking result was the
finding that platelets displayed markedly superior survival at m'icrogravi-ty.
Granulocytes held on the ground were preserved better than those which orbited
in the shuttle. Red cells displayed few effects attributable to the
gravitational variable, with ground storage being favored. PVC-DEHP was the
plastic of choice for red cells, while PVC-TOTM was superior to PVC-DEHP and

PO for p'laté]ets .

Index terms: blood cells, storage, microgravity



whether in the blood stream or in the blood bank, the blood cells are
continuously exposed to the .inﬂuence of earth’s gravity. Within the blocd
stream, the influence of gravity may be partially obscured by fluid dynamic
effects resulting from rapid flow of the blood. In the laboratory, however,
there are clear indications that the exposure of blood cells to
hypergravitational force can result in injury (1,2). The term ‘sedimentaticn
lesion’ has been used occasionally to descrjbe this injury. It is thus
reasonable to postulate that eliminating the 'influencg of gravity by exposure
of blood cells to a microgravity enviromment might have a beneficial effect on
those blood cells, particularly platelets and white qe'l'ls, which are sensitive
to cell-cell interactions. These considerations provided the incentive to
study blood cell suspensions after exposure for several days to a microgravity

environment during a space shuttle mission.

The specific aims of the Initial Blood Storage Experiment (IBSE) were to
investigate the effects of microgravity on the formed elements of human blood;
to evaluate the fundamental cell physiology of erythrocytes, leukocytes and
platelets during storage at microgravity in three different
polymer/plasticizer formulations; to improve our understanding of basic blood
cell physiology; and to contribute to improved survival and efficacy of blood

cells for transfusion.

Present Position: Douglas MacN. Surgenor, Ph.D.
Senior Investigator
The Center for Blood Research



In this paper we describe the experimental design, methods, experiment
logistics and statistical analysis of data which contribute to the successful
execution of the Initial Blood Storage Experiment, and which form the base for

the more detailed scientific results which follow.
EXPERIMENTAL DESIGN

IBSE was planned as a carefully controlled comparison between identical sets
of human blood cell concentrates, one of which was exposed to microgravity on
a épace shuttle mission, and the other held at unit gravity. During the
experiment, multiple sanmples of the individual types of blood cells were
stbred within specially fabricated flight hardware under specific
environmental conditions of pH, 1ionic strength, solute composition, gas
tension and temperature previously found optimal for cell preservation. At
~termination of the orbiter mission, the two sets of blood cells were then
subjected to measurements to evaluate a range of cell functions. Several
features of the design were intended to maximize the chance of detecting a
gravitational effect and give added confidence to the outcomes. The location
of each bloocd cell sample within the flight hardware was specifically
assigned. Blocking techniques were used to assure comparability between
ground and orbit samples. The set of measurements and observations to be made
on the post flight sanp]es were carefully selected. Through use of coded
samples, the identity of the postflight samples was blinded from the

investigators until all postflight measurements were completed.

Flight Hardware to provide an optimal enviromment for storage of the blood

cells during the experiment was designed and fabricated by AD Little Inc,



Cambridge Mass, and is described in a separate paper (3). The hardware units
were supplied throughout the experiment from external pcwer sourceé and were
"designed to operate independently of crew involvement, 'although pericdic
temperature checks were made via an externé'l Jjack on both flight and ground
units during the duration of the experiment. The plastic bags containing the
blood cells were carried within temperature controlled stainless steel dewar
chambers. A continucus flow of air was pr'ovic_'ied to support cell respiration
and remove carbon dioxide during tﬁe experiment. Red cells and white cells

were held at 5 deg +/-1degC, while platelets were stored at 22deg +/- 1idegC.

Controls. The experimental design sought to minimize treatment differences
between the two sets of samples otﬁer than those attributable to microgravity
vsS. unit gravity. Among the control issues considered were effects of
acceleration and vibration during launch, differences in incident irradiation,
and differences in the composition of the gas phase enviromment surrounding
the cells in the orbiter vs. the ground laboratory. The most serious of these
was thought to be the vibration issue; this was dealt with by encasing the
hardware units within standard NASA lockers using plastic foam padding (3). On
analysis the gravitational effect due to acceleration at launch was found to
be small and of short duration; it was disregarded. Based on NASA radiation
dosimetry measurements 1in shuttle flights and known effects of X-ray
irradiation on blood cells, it was concluded tr;at. this variable could also be
neglected in this initial experiment. NASA specifications fér the air in the
middeck of the shuttle were considered to be comparable to ground conditions.
No attempt was made to control for trace contaminants unique to the middeck
air supply. After the mission was completed we were informed by NASA that

cabin pressure had been reduced from nominal 14.7 psia to 10.3 psi for 74



hours during the mission. During this period, the partial pressure of oxygen
was reduced from nominal 3.3 psia to 2.7 psia, well above the level of oxygen
(ca.10 mm or 0.2 psia) below which platelet respiration might decline (4). The
partial pressure of carbon dioxide remained below 0.03 psia throughout the
mission. We have no reason to believe that blood cell respiration was

adversely affected by this change in the middeck environment.

Field Operations. The overall logistic p'lan for_IBSE was as follows. Blood
collection and preparation of the experimental samples were carried out at the
Central Florida Bliocod Bank in Orlando, Florida. Following transport to NASA
laboratory facilities at KSC, the sealed plastic baés of blood cell
suspensions were loaded, using clean technigues, into the IBSE flight hardware
units which were then closed and connected to ground( power sources. The units
to be transported aboard Colurbia were turned over to NASA ground personnel;
the units serving as ground controls were held in a NASA laboratory at Kennedy
Space Center (KSC). On landing of Colurbia, which took place at- the
contingency landing site at Edwards Air Force Base in California, the flight
hardware units were removed from the shuttie and transported by jet back to
KSC. The plastic bags were then removed; and after gentle agitation, aliquots
of the blood cell suspensions were distributed into sample tubes identified
only by code. The sarples were inmmediately handed over to the investigators
for study. When all the postflight observations and measurements had been
completed, the data were enﬁered into the IBSE data base at the Harvard School
of Public Heaith (HSPH), the code was broken, revealing the nature of each
sample, the type of plastic bag which had been used, and the exact placement

location of the bag within the hardware units. Statistical analyses of the



data were then carried out (see below). The following details pertain to the

IBSE field operations.

o Blood was drawn into standard CPD anticoagulant (5) from a tﬁta1 of 34
normal volunteer blood donors of the same group and type whose blood was
negative for viral markers and had been used on previous occasions for
clinical transfusion. To é'l'imi'nate‘ individual variability, the
suspensions of red cells, wh*itg_ cells and platelets for the experiment
were pooled and thoroughly mixed before being d'istributedA into the
sample bags for storage in the experiment. A single sample of each
pooled suspension was reserved as a baseline sanpie to validate the
quality of the blood cells at the outset of the experiment. These
samples were assayed inmediately following launch of the shutt_‘l_e. whole
blood was used for the red cell portion of the IBSE (6). Platelets and
white cells were separated as described 7,8). Three types of standcard
FDA-approved plastic blood bags (300 ml.) were used to carry each
biological payload (red cells, white cells, and platelets): polyvinyl
chloride plasticized with di-2-ethylhexylphthalate (PVC-DEHP), polyvinyl
chloride plasticized with trioctyltrimellitate (PVC-TOTM) and
unplasticized polyolefin (PO). Egqual numbers of each type of bag were
randcmly allocated to orbit and ground condition. Table 1 summarizes

the basic sample design.

(o) The IBSE flight hardware units were placed aboard Columbia on the launch
pad 12 hrs prior to launch. During the Colurbia mission, surveillance
of the experiment by the crew on the orbiter, and by IBSE personnel on

the ground, consisted of visual checks to assure that the units were



functioning; and measurements of a single temperature reading within

each unit via an external Jack.

o Scientific studies on the postflight orbit and ground samples were begun
at KSC by the scientific team immediately upoh receipt of the aliquots
of cell suspensions. In many cases, i.e.. measurement of pH, pO2 and
pQ02, the analyses were completed at KSC within a few hours; in other
cases, i.e.. electron microscopic obsgrvations and more complex cell
constituent measurements, the assays were carried to a point at KsC
where they could be safely interrupted, at which time they were
transported back to the investigators’ home laboratories for completion.
Other details of methods and procedures are given in accompanying papers

relating to specific parts of the IBSE project (3,6,7,8,9).

Flight Duration and Events. A summary of the IBSE chronology_is shown in
Table 1. The elapsed time for STS 61-C, the Columbia mission, was 6 days and
2 hours, which includes an unplanned extension of the mission by 1 day and the
landing in California. This was the duration of exposure of the orbit blood
cells to microgravity. However the overall elapsed time from blood collection
to postflight sampling was longer. The launch of Colurbia had been repeatedly
delayed, giving rise to strains in the logistics of blood collection. In the
end, the successful launch carried a biologic payload which had been subjected
to a 1 day postponement. The red blood cells flown in IBSE had been collected
3 days and 0 hours before launch; while the platelets and white cells had been
collected 2 days and O hours before. As a result, the overall e'labsed time
for the red cells in IBSE was 9 days and 11 hours, while that of the platelets

and white cells was 8 days and 11 hours.



The preservation conditions for red cells assﬁred excellent posttransfusion
survival for a period of 21 days after collection; i.e. if transfused at that
time, more than 70% of the cells would be expected to survive in the
circulation of a recipient. For platelets, on the other hand, our evidence
suggests that only 40% would have survived if transfused after only 7 days
(10). Few granulocytes, which have a 1life _of only 2 to 3 days in the
circulation, wére expected to survive the 8 day 11 overall duration of ;BSE.
Thus the duration of IBSE intersected the survival curves of the blood cells
at quite differ;ent zones. At the time of postflight aliquotting of sampiles,
well over 90% of the red cells should still have been viable, while less than
40% of the p‘laﬁe'lets could be expected to exhibit functional integrity at the

end.

Several minor events were noted at the termination of the experiment. One bag
of platelets (PVC-TOTM) was found to have leaked as a resuit of a minute crack
in the plastic. Data from this unit were excluded. On testing of the
hardware units after they had been unloaded, it was found that an air pump in
a unit from the orbiter did not start. Based on measurements of electrical -
current drawn by this unit,as well as on measurements of pO2, pC02 and pH made
on samples removed from the affected hardware unit, it was concluded that this
failure had probabtly near the end of its return Jjourney to KSC (3).
Experimental measurements made on the samples from this unit were not
excluded. Finally, scrutiny of the log of temperature measurements on the
flight hardware by the Columbia crew during the flight revealed that a single

temperature reading was out of range; no action was taken.
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Statistical Analysis of Data. The data received from the investigators was
listed only by coded sa_np?e nutber. The first step in data processing was to
match the code numbers with original bag numbers to determine information on
bag type (PVC-DEHP, PVC-TOTM, and PO), orbital st.atusn (orbit, ground) and
storage location within the hardware units. The method of analysis used was
analysis of variance. The analysis tool was SAS (Statistical Analysis System
release 82.4, SAS Institute, Cary NC.). For those sets with fully balanced
factors, the SAS ANOVA procedure was used, while for the others, the GWM
(General Linear Models) procedure was used. Most data séts included either 18
or 20 samples. In Table 2 is presented an illustration, based on the data
from measurements of mean platelet vo1®, of the some of the statistical
comparisons which the IBSE experimental des_ign made possible. Means and
standard errors of the mean (based on a pooled error varjance) were calculated
for each set of bags by plasticizer/polymer type and orbital status; for all
bags of each plasticizer/polymer type; and for all bags of each orbital status
(ground or orbit). These are shown within appropriate cells of the matrix. If
an analysis of variance indicated statistical significance at the 5% level,
- the p-value was reported. A significant difference was revealed (p=0.007)
between orbit and ground samples, adjusting for plastic type. Comparison of
orbit and ground platelet samples in the single plastic/polymer type: PVC-
TOTM; gave @ p value of 0.0003. Similarly, comparisons between plastics,
adjusting for orbital status revealed a p value of 0.0001. Within some of the
large data sets, interaction effects between orbital status and

plasticizer/polymer type could be identified.

We noted above that the individual plastic bags were assigned to a specific

location within the experimental hardware units. This made it possible to
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analyze for effects of location of storage on the experimental findings. To
do t.his., two additional factors were assigned to red cell and white cell bags,
one for the dewar chamber and the other for shelf position within a dewar.
(The red cell and white cell bags were Carried on three veFt*ica‘l shelves
within 6 ’cold’ dewars). For p]at,e'lets; where only one pair of dewars was
used, a single position factor was assigned; for upper and- lower location. In
most cases, the inclusion of these factors diq not affect the conclusions as
to significance with respect to qrbit vs ground, or plasticizer/polymer type.
But in other instances, the dewar or position had a statistica'l-‘ly significant
effect on the outcome. In a few cases, the inclusion of these factors altered

the significance levels of the experimental measurements.
RESULTS

During the postflight phase of IBSE, over 1500 pieces of data were reported by
the investigators for 92 outcome measurements. An overall sumary of the
scientific findings from IBSE 'ié provided here in Table 3. In only 3 out of
35 sets of measurements of red blood cells were the comparisons between earth
and orbit significantly different; and the samples held on the ground were
superior in those three instances. For the granulocytes, 4 out of 17 sets of
measurements were statistically significant, with ground samples superior in
all cases. The results obtained from study of the platelets revealed a quite
different picture. Of 32 sets of measurements, 12 revealed statistically
significant differences which showed that the platelets which had been exposed
to microgravity possessed superior properties, suggesting a definitely
superior survival of the platelets which had been carried on Columbia. The

impressive picture of platelet survival at microgravity portrayed by numerous
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functional measures was corroborated by measurements of mean platelet volume,

platelet count, and visualization by transmission electromnmicrograchy.

In 24 sets of functional, biochemical or morphologic measurements of all céﬂ
types, statistical analyses revealed s'ign'ificant effects attributable to
dewar-to-dewar or position differences within dewars of plastic bags
containing blood samples. These effects appeared with greatest frequency
among white cell (granulocyte) bags (9 out of; 17 data sets), but were found
quite frequently 1in the case of b]ate]ets (10 out of 32 data sets.
Interestingly, for all three types of blood cells, rbc, wbc and platelets, pH
was found to be sensitive to locus within the be1th hardware.  These
positional effects could have resulted from variations in sample temperature
and/or air flows around the plastic bags at different loci within 41':.he dewar
chambers. They suggest imperfections in the interior design of the flight

hardware which should be addressed in another experiment.

IBSE also yielded important insight into the effects of plasticizer/polymer
composition, independent of gravitational status, on the formed elements of
the blood. Statistically significant differences were revealed in 25 out the
92 measurement categories. Two conclusions in particular are of current
importance for transfusion medicine. The red cell data corroborated recent
evidence by others of the stabilizing effect of the plasticizer DEHP in PVC-
DEHP, on red cell menbrénes (11,12). In addition, the platelet studies
strongly confirmed the superiority of the plastic forqulat*ion PVC-TOT™ as the
plastic of choice for platelet pfeservat‘ion (13). One indication of this is
shown in the data in Table 2. In other studies from IBSE, binding of IgG, C3c

and C3d to the platelet membrane was found to be lowest in platelets stored in



13

PVC-TOT™ bags (14). Finally, in 5 sets of measurements of platelets,
statistical analysis revea1ed. the existence of a significant interacticn
between the gravitational effect and the nature of the plasticizer/polymer
composition of the bags in which the platelets were carried. In each of these
cases, the plastic bag which offered. the most favorable effects of

microgravity on the platelets was the PVC-TOTM bag.

The detailed scientific findings from the Initial Blood - Storage Experiment

"will be found in a separate set of reports (6,7,8,9,10).
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TABLE 1.

IBSE EXPERIMENT DURATION AND EVENTS

Elapsed Time - _

5TS 61-C Platelets
Event Mission Red Cells Levcocytes
Blood collection . 0 0
Cell preps completed
and placed in Orbiter C 1d; 11:00 hrs 11:00 hrs
Launch 0 3d; 00:54 hrs 2d; 00:54 hrs
Landing 6d; 02:04 hrs 9d; 02:58 hrs 8d; 02:58 hrs

Exp. returned to KSC
and sampling begun 9d; 11:02 hrs 8d; 11:02 hrs



Exp status?
Ground
Orbit

Cambined

'h=3 for each cell except PVC-TOTM/ground, where n=4.

ILLUSTRATION OF POSSIBLE STATISTICAL COMPARISCNS WITHIN

Mean (Standard Error of Mean)

PVC-DEHP

10.67 (.16)
10.30 (.16)

10.48 (.11)

TABLE 2.

&

Plastic Bag Formulation

‘PO

9.67 (.16)
9.27 (0.16)
9.47 (0.11)

p = 0.00012

2For comparison of plastics (n=6 vs. 6 vs. 7).

3For comparison of orbit vs. ground (n=10 vs. 9).

THE IBSE EXPERIMENT DESIGN

Mean Platelet Volume (um3)

PVC-TO™
9.18 (.14)
8.50 (.16)

8.89 (.10)

p = 0.0003¢

ALL THREE
9.77 (.09)

9.36 (0.09)

p = 0.0073

4For comparison of orbit vs. ground, TOTM.PVC bags only (n=3 vs. 4), based on T~

test.



TABLE 3.

SUMMARY OF STATISTICAL ANALYSES OF IBSE DATA

Erythrocytes Granulocytes - Lymphocytes Platelets
No. functions/properties assayed 35 17 8 32

No. assays differing

significantly (p<.05) . 3 4 0 12

Status with superior assays

p<.05 Earth Earth Orbit

No. assays exhibiting orbit-11

plastic interaction (p<.05) 0 0 0 5

No. assays in which effects of
position of sample within’flight
hardware were nhoted (pg.05) 5 9 NA 10

No. Assays in which plasticizer/
polymer results differed
(p<.05) 4 6 0 15



Ground

Orbit

Ground

Orbit

TABLE 4.

RED BLOOD CELLS

WHITE BLOOD CELLS

NUMBER OF BAGS

BAG TYPE

PVC-DEHP PO PVC-TO™

3 3 3
3 3 3
PLATELETS

NUMBER OF BAGS

BAG TYPE
PVC-DEHP PO PVC-TOTM
3 3 4

3 3 4
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ABSTRACT

The Initial Blood Storage Experiment (IBSE) was conceived to investigate the effects of
microgravity on the formed elements of human blood. The experiment flew on the January
1986, 61-C mission of the space shuttle Columbia. The experiment hardware was designed
to provide a closely controlled temperature and air flow environment for all blood samples.
During the mission, two IBSE modules were on the orbiter and an identical set of hardware
and blood samples were maintained on Earth as a control. This paper describes the
development and performance of the IBSE hardware which was converted from a conceptual

design to an on-orbit, man-rated, mid-deck locker experiment in seventeen months.

index terms: microgravity, shuttle experiment, mid-deck locker, temperature control, air

flow control



THE INITIAL BLOOD STORAGE EXPERIMENT
THE FLIGHT HARDWARE PROGRAM

Almgren,D.W.1 Csigi K. 1., Glaser,P.E., Lucas,R.M., and Spencer,R.H.

BACKGROUND

The Initial Blood Storage Experiment (IBSE) was a NASA-funded (NAS9-17222),
microgravity research effort which successfully flew on the 61-C mission of the space
shuttle Columbia as a mid-deck locker experiment. Given the absence of knowledge about
possible microgravity effects on human blood cells, the initial experiment was designed to
provide information on a broad range of cell parameters which would serve as a guide to

potential future scientific and/or commercial investigations.

-The IBSE flight hardware was designed, fabricated, qualified, and flown successfully within
a seventeen-month period. In addition, the initial hardware program was conducted in
parallel with some of the basic scientific studies being conducted by the Investigators. A
critical element to the overall success of the program was the close and flexible working
relationship among the Engineering Team, the Investigator Group, and the Mission Manager

at NASA Lyndon B. Johnson Space Center (JSC).

PURPOSE OF EXPERIMENT

The IBSE was conceived to investigate the effects of microgravity on the formed elements
of human blood. The investigation included an evaluation of the fundamental cell
physiology of erythrocytes (red cells), leukocytes (white cells) and platelets stored in bags
made of three different polymer/plasticizer formulations. A specific aim of the

investigation was to improve the understanding of basic blood cell physiology while

1 President of Q-metrics, Inc., Concord, MA.



contributing to an improvement in the survival and efficacy of blood cells for transfusion.
The Principal Investigator was Dr. Douglas MacN. Surgenor, The Center for Blood Research,

Boston. MA.

The experiment was designed to sto‘re, under carefully controlled conditions, identical sets of
human blood and blood cell concentrates. One set was maintained at microgravity during
the Columbia's mission (in two mid-deck lockers in the orbiter) and another set was held at
Earth gravity (in two mid-deck lockers on Earth). All other environmental conditions were
the same except that the flight lockers were subjected to the transient launch environment.
The function of the hardware was to provide the environment for the blood cells stored on
the orbiter and for those on Earth so that gravity would be the only experiment parameter

that differed significantly between the samples.
HARDWARE REQUIREMENTS

The scientific requirements for the experimental hardware were established by the
Investigator Group and documented by the Principal Investigator in the IBSE Protocol’s
Design Requirements. The IBSE hardware had to fit within and conform to the mass and
power limits of a mid-deck locker experiment, 60 lbs. and 100 watts (average) respectively.
Because fresh blood samples were utilized, they had to be loaded aboard the orbiter 12 hours
before a scheduled launch. The full set of initial requirements are shown in Table 1. The
most important environmental control requirements for the hardware were: temperature, for

all samples, and; respiratory air flow rate, for the platelets (@22°C).

To improve their understanding of the effect of air flow rates on the survival and efficacy
of the stored blatelets, the Investigator Group continued to conduct air flow tests in parallel
with the on-going, flight hardware program As a result of these tests, the platelet
respiratory air flow rate was increased to not-less-than 250 ml/min by' the time the

hardware was turned over to NASA.

“The blood samples were stored in the orbiter on the launch pad for approximately 12 hours
before lift-off. Launch subjected the blood samples on the orbiter to an acceleration of 2.9

g's for a period of three minutes. The Investigators determined that three minutes of the



TABLE 1 IBSE PROTOCOL'S DESIGN REQUIREMENTS

BLOOD COMPONENT WHOLE BLOOD| LEUKOCYTES PLATELETS
CONTAINED VOLUME 250ml 75ml 60mi

(in 300ml bags)

TEMPERATURE RANGE 5¢1°C 5+1°C 22+1°C
AIR SOURCE cabin/room air | cabin/room air | cabin/room air
AIR FLOW 40-50 ml/min 40-50 ml/min 40-50 ml/min
ORIENTATION OF THE horizontal horizontal vertical
BAG DURING TAKEOFF

MINIMUM SPACE BE- 0.37 inch 0.37 inch 0.5 inch

TWEEN BAGS




increased gravity would not result in any significant, additional sedimentation of the cells.
The samples stored on Earth, therefore, were not subjected to an identical launch
acceleration profile. Also, the bags containing platelets were specifically oriented in the
IBSE hardware so that the pre-launch and launch accelerations were in the long direction of
the bags. This orientation minimized the number of cells which wouldrcome in contact with

the "lower" boundaries of the bag during the period of increased acceleration.

Launch also subjected the mid-deck lockers in the orbiter to a vibration environment that
was not experienced by the lockers stored on Earth. The IBSE module was designed to float
in a block of PyrellR foam that fully filled the space between the module and the interior
walls of the locker. The launch vibrations felt by the IBSE hardware were, therefore,
significantly attenuated. The random vibration level during launch begins at 20 Hz. and is
at its highest levels of 0.03 g2/Hz. between 150 and 1000 Hz. The first mode, isolated
frequency of the IBSE, within the foam, in any direction, was approximately 10 Hz. The
transmissibility at 150 Hz. is about 0.1. As a result, the vibration levels experienced by the
IBSE flight hardware and blood samples were extremely low. No additional effort was
‘expended to either reduce further the vibration levels experienced by the blood samples on
thé orbiter or to subject the blood samples stored on Earth to a similar, transient, vibration

environment.

The requirements imposed by NASA JSC on the IBSE program were consistent with NASA’s
programs for hardware to be flown in the mid-deck lockers of the orbiter. The IBSE was
assigned a CLASS D Quality Assurance category (Reference: JSC-16427) which defined a
minimum-cost, one-time flight effort. Even so, there were 55 applicable Criteria and

Standards from JSCM 8080 that had to be satisfied.
DESIGN OF HARDWARE

Figure 1 is an exploded view of a "cold/warm" IBSE module. Two dewars were assembled
into each module. The dewars were combined as a "cold/cold" and a "cold/warm" module,
so named to signify the temperature levels within the pair of dewars. A total of four

modules and four mid-deck lockers were utilized in the IBSE program. A "cold/cold” and a
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"cold/warm" module were flown on the orbiter and an identical pair of modules were
maintained on Earth. One additional "cold/warm” module was fabricated, qualified and

maintained as a spare.

The stainless steel dewars were modified, commercially available hardware purchased from
Minnesota Valley Engineering, New Prague, MN. The modification was to eliminate the
charcoal trap within the vacuum space and, thereby, extend the length of the inner wall of
the dewar. The dewars were closed out with a two-layer, aluminum lid that contained
thermoelectric cooling devices sandwiched between the two layers. The inner layer was the
temperature controlled surface that set the temperature inside the dewar. The outer layer
was the heat rejection surface for the thermoelectric devices. The outer aluminum layer was
bolted to the top flange of the dewar through a ring of NEMA G-10 fiberglass which
served as a thermal isolator between the heat rejection surface and .the cold, upper flange of

the dewar.

As shown in the drawing of Figure 1, a single, aluminum control box was bolted to the
. outer aluminum lids of the two dewars in a given module. The interior of the control box
contained; two printed circuit boards for control of the thermoelectric devices in both
dewars, a single air pump for the flow of respiratory air to the interior of the two dewars,
and, two fans for the flow of cabin/laboratory air to the heat rejection surfaces of the
thermoelectric devices. The respiratory air pumps were commercially available, laborato-
ry-grade, gear pumps. The air movers were miniature, dc, brushless, axial fans (Model

8124K) manufactured by PAMOTOR, Burlingame, CA.

Two different interior designs were used for the biologic payloads with the IBSE dewars.
The first design was for the red and white cells and had a temperature set point of 5°C with
a specified air flow rate of 20 ml/min. This was the "cold" dewar. The bag holding
structure inside the "cold" dewar was designed to separate the individual bags so as to
provide an air flow passage inside the dewar that ensured the flow of cooled, respiratory air
contacted the large surfaces of each bag. The second design was for the platelets; it had a
temperature set point of 22°C and a final air flow rate of not less than 250 ml/min. This

was the "warm" dewar. The Investigator Group defined the basic bag holding structure for



the platelets. Figures 2 and 3 are photographs of partially disassembled "cold/cold" (dewars
A and B) and "cold/warm" (dewars C and D) IBSE modules which show the different bag

holding structures. The interior designs of "cold" dewars A, B and C are identical.

All bags within the interior of each "cold" dewar were maintained within a *1°C range by
virtue of a cylindrical, nickel plated, copper sleeve that surrounded the bags (see Figures 2
and 3). The top end of the sleeve was open and was bolted to a mating cylindrical surface
on the inner dewar lid. The bottom end of the sleeve was closed out with a plated copper
disc.- A slit was made down the length of the sleeve so that the top end could be spread
while sliding it up around the bag holding structure during closeout. The copper sleeve

was not required for the "warm" dewar.

The mass and power consumption of the flight hardware are summarized in Table 2:

Table 2 Summary of IBSE Mass and Power Consumption

TOTAL MASS: (LBS)
cold/cold module 55.8
cold/warm module 533

POWER CONSUMPTION: (28 Vdc) (WATTS)
cold/cold (70F air) 42
cold/warm (70 F air) 28

Figure 4 is a drawing of an IBSE module mounted within a standard, mid-deck locker. The
door panels of a standard locker were modified to provide an inlet and exit for the flow of
cabin/laboratory air used to remove the heat being rejected by the thermoelectric devices.

the electronics and the fans. Blocks of PyrellR foam provided by NASA, fit the inside the
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PHOTOGRAPH OF A PARTIALLY DISASSEMBLED "COLD/COLD" IBSE

MODULE
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locker and supported the IBSE module. Passages cut through the Pyrell foam allowed for
the flow of cooling air between the inlet and exit openings in the front doors of the locker
and the IBSE module inside. All surfaces of the PyrellR foam that formed the flow passages
for the cooling air were lined with NomexR tape as a further safety feature to guard against

any spark coming in contact with the foam.

The thermoelectric devices in a "cold" dewar rejected more heat than those in a "warm"
dewar so that a higher flow of cooling air was provided to the "cold/cold" module as
compared to the "cold/warm" module. This higher flow was achieved by modifying the flow
path for the cooling air in the "cold/cold” module so that the two air movers were both inlet
fans, while two, additional, exit passages were added in the middle of the three door panels.
In the "cold/warm" module one air mover was an inlet fan and the second air mover was an
exit fan. Figures 5 and 6 are photographs of the mid-deck lockers containing the

“cold/cold" and "cold/warm" IBSE modules.
FLIGHT TIME ACTIVITIES

The IBSE protocol required that the mid-deck lockers containing the IBSE modules, with
fresh bldod samples, be loaded into the orbiter approximately 12 hours before a scheduled
launch. These fresh blood samples were collected in the Central Florida Blood Bank,
Orlando, Florida, starting early in the morning of the day prior to the day of launch. The
blood elem_ents were then separated, aliquoted into the appropriate blood bags, transported
to NASA KSC and loaded into the hardware during the afternoon of the same day. The
location of each bag within the hardware had been previously defined so as to randomize
the position of each type of polymer/plasticizer bag material within the experiment. The
lockers were then closed out, electrically tested to ensure that the inner dewar temperatures
were stabilized at their specified levels, cleaned, weighed, trénsported out to and mounted in
the mid-cabin of the orbiter by 8 pm. Except for brief interruptions when power supplies
were being switched, all IBSE modules were continuously under power from the time of

close-out to the time of unloading of the samples back at NASA KSC after the mission.



v 4,
XTI ES
L7 ey

ORIGINAL PAGE IS
OF POOR QUALITY

PHOTOGRAPH OF A MID-DECK LOCKER CONTAINING A

FIGURE §

"COLD/COLD" IBSE MODULE




ITNAOW IS4l JNAVM/ATOD.

ONINIVINOD dIMND0T ADIA-dIN

Va® s res
s sO R Ry
U 2P

.
g

\4

40 HdVIODOLOHd

9 3AdNODIA

L PAGE IS

<
-

Fe

ORIGI

OF POOR QUALITY



The flight and ground-based hardware was designed for easy loading and unloading of the
blood bags. The modular ;onstruction of the experiment hardware provided a capability to
remove the control box, dewar lids and the interior hardware of the dewars from the
mid-deck locker as a unit, leaving the two, empty, stainless steel dewars embedded within
the blocks of foam. Lifting hardware, designed by Mr. William Curby of the SIAS Research
Laboratory, Lahey Clinic were utilized at NASA KSC to hoist and support that portion of
the IBSE hardware which was lifted out of the locker. The "Curby Cranes" provided easy
access to the bag holding hardware for the team of personnel who loaded the bags

containing the fresh blood samples.

A team of two persons was responsible for loading the bags containing whole blood, white
cells and platelets into the hardware, attaching the copper sleeve and lowering the hoisted
units back into the dewars. After these steps were completed, the first team moved on to
the next locker while a second, two-person team bolted the subassemblies together, closed
out the lockers and applied power. A fifth person monitored the procedures and maintained

a log documenting all the steps in the loading process.

The flight and ground-based lockers were cleaned, weighed, and taken out to the orbiter.
All four lockers were taken to the orbiter in case a difficulty were to develop with one of
the designated flight lockers between the laboratory in Hangar L and the orbiter. In such
an event one of the ground-based modules could replace the flight locker and the
malfunctioning locker brought back to the laboratory for repair or replacement by the spare

"cold/warm"” module. No such malfunction occurred.
PERFORMANCE OF HARDWARE

The IBSE was launched from NASA Kennedy Space Center (KSC) on January 12, 1986, on
the 61-C mission of the orbiter Columbia. Columbia landed at Edwards Air Force Base
(AFB) on January 18, 1986, 6 days and 2 hours later. NASA KSC was the designated
primary landing site, however, bad weather at KSC forced a return to the alternative site,
" Edwards AFB. An IBSE contingency plan was implemented to fly the lockers, under
battery power, back to the IBSE laboratory at NASA KSC immediately after the landing of

the orbiter.



The IBSE modules operated within their specified temperature ranges for the duration of the
mission with the exception of one reading of 6.6°C for a cold dewar on the orbiter at a
Mission Elapsed Time (MET) of three days, seven hours and 17 minutes. Once every 12
hours during the flight, the astronauts were scheduled to vacuum the four screens in the
doors of the two lockers to remove accumulated debris and to measure and record the
interior temperature of the four dewars. Figure 7 is a photograph of an astronaut taking a
set of IBSE temperature readings on-orbit. The one recorded temperature that was 0.6°C
above the specified limit may have been due to debris that had collected on the inlet screen
and partially blocked the flow of cooling air. Table 3 is a summary of all of the thermistor
readings recorded by the astronauts for the "cold/cold” and "cold/warm" IBSE modules on

the orbiter.

The cabin air pressure was dropped from 14.7 to approximately 10 psia for 75 hours during
the mission. This fact was not made known to the Investigators until some months after the
mission when the flight data became available. The IBSE modules had been operated at 10.2
psia during acceptance testing so that the reduced pressure was within the performance

"limits of the hardware.

The ground lockers were monitored continuously in the IBSE laboratory at Hangar L for the
duration of the mission. All temperature data from the ground lockers were within

specified limits.

After the flight, all lockers were opened at NASA KSC and the blood samples turned over
to the Principal Investigator. A measurement was then made of the flow rate of the
respiratory air within each dewar. Table 4 summarizes.the measured flow rates before and
after the mission. It was obvious from the measurements that the flight, cold/warm module
had a non-operating, respiratory air pump. Subsequent examination revealed that the
gear-type pump had ingested a small piece of metallic debris from the cabin air. The piece
of metal had jammed into one of the two plastic gears and caused the pump to stop at the
point of rotation of the gears in which the metal came into contact with both gears . A

subsequent review of the dc current being drawn by that locker indicated that the air pump
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TABLE 3 SUMMARY OF IBSE FLIGHT TIME THERMISTOR READINGS

o YSI Thermistor 44006 10kn @25°C
o Limits for Cold Dewar (A, B and E) 22.43 - 24.55 kn
o] Limits for Warm Dewar (F) 10.84 - 11.77 kn
Mission Elapsed Time Dewar A | Dewar B | Dewar E | Dewar F
(day/hour/min) (k2) (k2) (k) (k)
0/02/41 240 24.2 24.1 11.6
0/11/51 239 24.) 24.0 11.5
0/21/09 239 24.1 24.0 11.5
1/08/05 239 24.1 239 11.5
1/20/34 23.7 24.1 24.0 11.5
2/07/51 238 240 239 11.5
2/20/50 238 24.0 229 11.5
3/07/17 23.7 23.8 21.8 11.5
3/18/15 239 24.2 24.0 11.5
4/07/54 239 241 22.8 11.5
4/16/56 24.0 242 24.0 11.5
5/06/19 239 24.1 24.0 11.5
5/17/03 239 24.1 24.0 1.5

Reading of 21.8 kn for Dewar E at 3/07/17 MET corresponds to a dewar temperature of 6.6
*C where the specified limit was 5 + 1"C. This may have been caused by a partial blockage

of the flow of cooling air due to debris on the inlet screen.



*

TABLE 4 SUMMARY OF PRE AND POST FLIGHT MEASURED RESPIRATORY AIR
FLOW RATES

MEASURED AIR FLOW RATES
IBSE MODULE (ml/min)
PRE-FLIGHT | POST-FLIGHT
Flight Units
cold/cold A 93 113
B 82 0
cold/warm E 104 o*
F 370 o*
Ground Based Units
cold/cold G 127 17
H 124 32
cold/warm J 93 97
K 363 402

Respiratory air pump would not operate at time of post-flight air flow check at NASA
KSC. Probably became non-operational after landing of the shuttle at Edwards AFB

when power was briefly interrupted.



probably became non-operational after the orbiter had landed. This was when the dc power
source was momentarily interrupted as the module was shifted from orbiter to battery power

in preparation for its flight back to NASA KSC.
SUMMARY

The IBSE yielded interesting scientific results and has led to a preliminary definition of
additional scientific research efforts. The experience with the IBSE hardware has also
resulted in specific recommendations for improvements to the hardware for future flights.
A cohtinuing, close working relationship between the scientific and engineering teams and
NASA personnel will ensure that planned blood storage experiments will yield as much

significant new information as the IBSE.
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Abstract

This study was designed to evaluate the gfavitational
effect on red cell storage and its relevance to jn vivo
observations during space flight. Units of fresh whole blood
were pooled and aliquoted for storage at ug an&_lxg.
Biochemical, morphologic, and immunologic analyses were
performed after pooling and following 8 days of storage,
Despite the fact that the red cell studies were carried out
early during there storage period, ug stored red cells
~demonstrated the following significant changes (p<.02)
relative to their baseline (at the time of lauﬁéh) values as
compared to lxg stored red cells: (1) abnormal red cell
morphology, characterized by acanthrocytoid cells,
spherocytes, and schistocytes (2) increased osmotic
fragility and (3) a reduction in total red ;elllphospho-

lipids,

Based upon this initial data it might not be possible
to store red cells in the liquid state at microgravity for

medical support for prolonged stay in space.

Shuttle
NASA

Space
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INTRODUCTION

Storage of whole blood or packed red blood cells under
standard blood bank conditions invariably leads to
sedimentation of the cells. This contributes to a “storage
lesiOn" because metabolites accumulate around the cells, pH
decreases and substrates are depleted. Sedimentation can be
prevented at earth's gravity (lxg) by continuous or
intermittent mixing of the blood within the bag during
storage. Mixing has been demonstrated to preserve better
the level of adenosine triphosphate (ATP), which is
necessary for the red cell to maintain its size and shape
(1).

Storage of blood in the microgravity (ug) environment
of the shuttle is postulated to favor the maintenance of the
red cells in suspension. .Without the force of gravity the
distances between red cells would be influenced by the
electrostatic interaction of the red cells, the wall of the
container. and its surface potential. Storage at
microgravity should: 1) eliminate the accumulation of
metabolites in close proximity of the cells, 2) increase the

availability of substrates, 3) facilitate gas transport and

4) better maintain pH.

This study was undertaken to compare whole blood
storage at ug and at lxg in bags manufactured from the

following three different plastics: 1) polyvinyl chloride
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plasticized with di-2-ethylhexyl phthalate (PVC-DEHP), 2)
polyvinyl chloride plasticized with trioctyl trimellitate
(PVC-TOTM) and 3) polyolefin (POL).

Units of blood were pooled and subsequently aliquoted for
storage at lxg under standard blood bank conditions and at
ug as provided by the NASA sp;ce shuttle Columbia. The
total storage time was nine and a half days which included

8ix days and 2 hours of flight time,

Following this reiatively brief period-of storage the
changes observed in several parameters of the ug stored red
cells were significantly different from the baseline values
(P<.02).

METHODS

Blood Co iop:  Twelve units of whole blood were
céllected into citrate phosphaﬁe dextrose (CPD)
anticoagulant from hematologically normal donors of the same
~ group and type and whose serum was negative for irregular
red cell antibodies. The blood from these units was
aseptically pooled and 250cc aliquoted into 7 PVC-DEH?. 7
PVC-TOTM and 7 POL containers using the Dupont Sterile
Connection Device (SCD, EI Dupont de Nemours & Co. Inc,
Wilmington, Del.). Three units in each type of plastic
container were stored at earth's gravity and microgravity
utilizing specifically designed dewars (A.D.Little Co.)

which maintained the temperature at 5¢C 1 1 with a constant
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flow of air from the shuttle environment.' The remaining
three units were stored under standard blood bank conditions
until launch. Samples from these units were analyzed
immediately following the launch and results are designated
as baseline or control yalues. The stored experimental
samples were analyzed after nine and a half days of storage
which included six days and two hours of actual flight time.
Each sample was coded so that the investigator was not aware

of either the polymer formulation or the method of storage.

Metabolic Studies: The metabolic activity of the cells was
evaluated by standard techniques to determine the levels of
ATP, 2.3 DPG, pH, pO,, PCO,, glucose. and intracellular

sodium and potassium.

Membrane Properties: Red cell ghosts were harvested'

following hemolysis in hypotonic buffers (2). Triton
extracted ghost residues were prepared by washing the ghosts
with 10 mM tris-HC1 (pH 7.8) (7). The protein concentrationm
was determined by the method of Lowry et al (6). Changes in
membrane proteins were analyzed by two dimemnsional sodium
dodecyl sulfate polyacrylamide gel (SDS-PAGE)
electrophoresis (3.9). Interaction of spectrinm with actin
in the presence and absence of protein 4.1 was measured by

the method of Wolfe et al (15).



Page 5

Physical Measuremepts: Membrane stability was determined by
non-incubated red cell osmotic fragility using standard
“techniques. The mean corpuscular volume (MCV), mean
corpuscular hemoglobin (MCH) and the mean corpuscular
hemoglobin concentration (MCHC) were determined
electronicallf using the Coulter S+4 (Coulter Electronics,

Hialeah, Fla).

Elg;;zgn_ﬂi;igggggx; Red blood cells were fixed for

electron microscopy in 2.5% glutaraldehyde amd 2%
paraformaldehyde in 0.1 M sodium cacodylate buffer for 30
‘minutes at room temperature. The ratio of red cells to
 fixative was 1/10 (v/v). After fixation the cells wvere
centrifuged at room temperature at 100xg for 10 minutes.

" The supernatent was remove&. the cells were washed in
several changes of 0.1 M cacodylate buffer. recentrifuged
and resuspended in 0.1 M cacodylate buffer containing 6%

sucrose.

For transmission electron microscopy, fixed cells were
postfixed in 12 osmium tetroxide for 1 hr at room
temperature, rinsed in 0.1M sodium cacodylate buffer pH 7.4,
dehydrated in a graded series of ethanol and embedded in
Spurr's plastic medium. Thin sections were cut omn a
Reichert ultramicrotome, doubly stained with uranyl acetate
and lead citrate and photographed inm a JEM 100B electron

microscope.
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For scanning electron microscopy 0.25ml aliquots of
fixed red blood cells were passed through a Nucleopore
filter (0.45 um pore size) by pressure filtr;tion. Filters
with attached cells were dehydrated in ethanol apd critical
point dried from liquid C0,. A conductivé layer of gold-
palladium was deposited on ﬁhe cells in a sputter coater,
Tﬂe filters were attached to specimen stubs and were
examined aﬁd photographed in either a JEOL JSM-35 scanning
electron microscope or a JEM 100B équipped with an ASIDfl

scanning attachment.

Quantitative Apalvsis of Elég:xgn Micrographs: Transmission
electron micrographs were obtaimed at a8 magnification of
4,800x. for each specimen; fifteen separate fields of cells
were photographed. An average of 385 cells was examined in
each specimen and they were classified according to shape
into one of four categories: normocytes, echinocyte type I,
echipocyte type II and echinocyte type III. The number of
cells in each category was sdded together for the triplicate
samples from each type of plastic container and the

percentage of cells in esch category was calculated.

Iomupologic Studies: RBC-bound I1gG and C3 were measured by

agglutination tests and by quantitative antiglobulin
consumption (QAC) tests. Red cells for these tests had been

washed with phosphate buffered 0.9Z NaCl (pH7) immediately



after sampling, then glycerolized and frozem at -80¢C. Just
prior to testing aliquots were deglycerolized. Preliminary
studies have demonstrated that the process of freezing did

not change the results.

The agglutination tests were done using a Technicon
Autoanalyzer (Technicon Corp., Tarrytoﬁn. N.Y.). 1In tﬂis
method, appropriate antibodie; elicit red cell agglutination
if the corresponding antigen is present on the fed cell
membrane (10,11). The antibody specificiﬁies and dilutions
used for these tests were: C3c(1/2,000), C3d4(1/200),
C3a(1/200) and IgG(1/5000). It has been shown that these
agglutination tests are semiquantitative, i.e., the mofé the
RBC's agglutinate, the more antigen is present on the red
cell membranes (12). In the QAC tesﬁ. red cells were
incubgted with diluted anti-C3c, anti-C3d or anti-IgG
thereafter antibody was also measured in the AutoAnalyzer
(13.14). IgG was quantigated on intact deglycerolized red
cells, as previously described (5). fp measure IgG inside
the RBC's, the deglycerolized RBC's were repeatedly frozen
and thawved. Thereafter the stroma was removed by high speed
centrifugation (35,000xg) for 20 minutes and IgG was
measured in the supernatant hemoglobin solution. The number
of IgG molecules per red cell was calculated on the basis of
hemoglobin concentration, MCB and Avagadro's number. The
number of C3¢c and C3d molecules per red cell was measured as

previously described.
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RESULTS

The results of the biochemical, metabolic amnd physical
parameters comparing the baseline values to post-storage
values at both lxg and ug are shown in Table I. Significant
differences from baseline-valueé were observed in most of
the parameters measured. The changes were more marked in
the ug stored cells especially in tests reflecting membrane
iﬁtegrity. For instance, both red cell K* and cholesterol
were significantly decreased in the ug stored red cells as
compared to their baselinme values (P<.02) but not im the lxg
stored red cells.‘ When the results of the ug and lxg stored
red cells were coﬁpared. there were no statistical
differences except in the results for pH and PCO,, The
ieaching into the:plasma of the plasticizer DEHP which is
known to have a protective effect on the red cell membrane
during storage was not affected by gravitational force, the
average DEHP concentration being 4.60mg/dl at lxg and
4.53mg/d1 at ug. These values are identical to those
previously observed following storage under standard blood
bank conditions for a comparable time period (4). SDS-PAGE
analysis of red cell membranes did not demonstrate any major
differences in the proportion of any of the membrane
proteins including the major skeletal proteins, between the
lxg and ug stored cells., The assay of the intetaction
between actin and 1251-spectrin dimer with and without

protein 4.1 demonstrated no differences in the binding
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capacity of the cells stored at lxg and ug. In the presence
of prétein 4.1 the average sgectrin-actin binding was 0.25mg
spectrin bound/mg actin at lxg and 0.255 at ug. Imn the
absence of protein 4.1 the binding was 0.107 at lxg and

0.0975 at ug.

The changes in red cell sh;pe foliowing storage at lxg
and ué are shown in Figures 1 and 2. These changes were
quantitated by transmission electron microscbpy (Table II).
The results are exb:essed as the perceﬁtage of cells
classified as normocytes, echinocytes type I plus type II,
and echinocytes type III. As shown in Table II stored red
cell samples demonstrated fewe:'normocytes and a three-to-
four fold increase in the number of type III echinocytes.
?he percentagé of type I and Ii echinocytes was
significantly decreased only in ug stored red cells when
compared to the baseline cells (P<.02). However, compa;ison
of red cells stored at lxg and ug showed no significant

differences.

When the plastics were compared, storage in DEHP

results in the least morphological damage to the red cell.

The comparison of the immunological results of the
post-storage samples to the pre-storage samples is shown in
Tables III and IV. Blood storage caused significant

increases in anti-C3a and anti-C3c induced agglutination,
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but no change in the anti-C3d and anti-IgG induced
agglutination (Table III). These data indicate that the
third component of complement having the C3a and C3lc
antigens accumulated on the red cell membrane during &4eC
storage. The §uantitive studies showed th;t there vwas a
significant increa?e in red cell bound C3c¢c but not C3d. No
significant changes were seen im the quantities of red cell
- associated I1gG molecules, although there vas suggestion of
a trend towards a slight increase in the membrane - Sound
I1gG and a slight decrease in the IgG detected in the red
cell hemolysates. The statistical analysis of the
immunological data revealed no differences attributable to

gravity or to the various plastics.

DISCUSSION

The Initial Blood Storage Experiment conducted aboard
the shuttle Columbia was designed to define the effects of
gravity-and the plastic container on the red cell during
storage. Equally important objectives were to determine
whether blood storage in space will be possible and whether
gravity related changes in red cells during storage have
relevance to the changes ocurring in-vivo during space

flight.

It is important to emphasize that the red cell studies
were carried out very early in the storage period. Although

blood storage induced similar changes at ug and lxg, at ug



there was a trend towards a higher level of plasma
hemoglobin and osmotic fragility, greater loss of membrane
lipid and abnormal morphology. When the comparisons were
made between the storage and the baseline values, there were
significant decrea;es in intracellular.x+ and membrane
cholesterol only in ug stored red cells. The changes
observed during ug storage are similar to those previously
observed in red cells after 7 days storage in an
experimental polymer. Such red cells had unacceptable
in-vivo survival after 21 days of storage (Jacobson and Kevy

- unpublished observations).

The changes in red cells stored at ug in our studies
were similar to the in vivo observations made during the
Apollo missions which revealed: (1) abnormal red cell
mor phology, characterized by acantﬁrocytoid cells,
spherocytes, and schistocytes, (2) increased osmotic
fragility and (3) a reductionm in total red cell lipids
especially lecithin., The red cell lecithin, a significant
component of the membranme. showed a marked change both
quantitati;ely and qualitatively. There was a shortening of
the fatty acid chains, particularly the long chain
unsaturated fatty acids, suggesting lipid peroxidation.,
During the Apollo missions the crew was exposed to a
hyperoxic atmosphere for a significant time period. Such was
not the case during our experiment. This resulted in loss

of red cell mass and was associated with a8 concomitant
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reticulocytopenia. Unfortunately hematologic data following

prolonged space flight are not available.

The immunological data obtaimed in our experiments
confirmed the previously observed finding that C3 molecules
attach to red cell membrane-during storage at 4°C (11,13).
The quantities of the bound C3 molecules were similar to
those reported previously. It was of interest that these C3
molecules contained the C3a fragment. usua11y present in the
native C3. but cleaved during the activation of the
complement pathway. In contrast. no increases could be seen
in the red cell bound C3d. This discrepancy can be most
likely explained on the basis of the vastly larger
quantities of C3 molecules containing C3d than C3c on the
non-stored red cells. Slight increases of C3c contaiping c3
molecules during the storage would mnot signifiéantly
increase the red cell-bound C3d. It is also possible that

there is some spontaneous elution of C3d during storage.

We did not documeﬁt significant increases in red cell
bound IgG during the storage period studied, although such a
trend seemed to exist. It is possible that during a longer
storage period IgG might increase on the red cell membrgne.
Although the quantitative data showed a8 slight increase in
the red cell associated IgG, the agglutination data showed
no such increases., These discrepancies could indicate
impairment in the ability of the stored red cells to

agglutinate. Loss of specific agglutination of red cells
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during prolonged storage has been previoulsy documented (8).
It was also of interest that the IgG in red cell hemolysates
appeared to decrease duriﬁg the initial storage period. |

Further studies are required to investigate these changes in

more detail.

Red cell preservation is of paramount importance for
the medical support of future prolonged space missions,
Additional grouqd based studies are planned with red cell
units that have been separated into younger and older
fractions by differential centrifugation using a newly
designed blood bag. This would enable us to determine
whether the “lesion of storage effects red cells of
ﬁifferent ages to an equal degree. We could then determine
the age of red cells to be used in a subsequent space flight
in order to demonstrate definitely that storage of red cells

at ug environment is deleterious.

Based upon the results obtained from this Initial Blood
Storage Experiment it might not be possible to store red
cells in the liquid state at microgravity to support the
space station crew for the approved FDA dating period (CPD-
A-1 for 35 days or CPD plus a nutrient solutionm for 42
days). The alternatives would include: 1) Repeat autologous
donations during their prolonged stay in space, 2) Pre
deposit of autologous frozen red cells prior to space
station assignment. Based upon available hematologic

studies the former would be medically contraindicated due to



anemia. The latter would require additional studies imn view
of the proposed =-25¢°C capabilities of the space station and
the need to modify existing deglycerolizing equipment
because of space constraints, Autologous donation would
éliminate the need for crossmatching and the hazard of

disease transmission by transfusion.
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Fig. 1

Fig. 2

Figure Legends

Transmission electron micrographs (3000X) of red
cells in PVC-DEHP bags (a&b) and Pol bags (cé&d).
Bags a&c stored a lxg, bags b&d stored at ug. Red
Cells stored in PVC-DEHP are the most normal in
appearance. :

Scanning electron micrograph (750X) of red cells
stored in Pol. When compared to baseline sample
(a) cells stored at either lxg (b) or ug (c)
demonstrate a marked increase in the number of
echinocytes,
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%?; GRAVITATIONAL EFFECTS ON RED CELL STORAGE
Qv
3
ER
Test :’ﬁ Baseline lxg Baseline ug Baseline ug
ve, lxg vs., ug ve., lxg
pH 6.90(.004) 6.74(.007) P<.05 6.72(.009) P<.01 P<.01
pCO, mm Hg 106 .50(1.618) 137.22(4.231) P<.0l 144.31(4.573) " P<,01 P<.01
p0, mm Hg 37.70(1.079) 45,06(2.268) NS* 44,37(2.267) NS NS
ATP um/gﬂb' 4.46(.203) 3.80(.083) P<,.02 3.86(.073) P<.02 NS
2,3 DPG um/gHb '8.63(.186) 3.19(.345) P<.0l 2.84(.243) P<.01 NS
Glucose mg/dl 427.10(3.121) 308.83(4.186) P<.01 310.31(2.437) P<.0l NS
Red Cell K meq/L 85 .4(.946) 84.2(.920) NS 83.10(.938) P<.,02 NS
Plasma K meq/L 6.53(.088) 12.03(.124) P<.01 12.27(.120) P<.01 NS
Plasma Hgb mg/dl 7.33(.333) 8.89(.455) NS 9.33(.726) NS NS
Osmotic Fragility
0.6%2 NaCl ¥ Hem. 1.49(.040) 2.28(.393) NS 3.94(.801) NS NS
0.55% NaCl¥ Hem. 2.77(.123) 6.22(.730) " P<.05 7.26(.816) P<.02 NS
P. Lipid ugpllo8 RBC 24.50(0.982) 23.,4(.652) NS 22.4(.653) NS NS
Cholesterol ug/108 RBC 13.20(.425) 12.4(.358) NS 11.9(.257) P<.02 NS

*NS = not significant

(Mean + SD)
n<=9

Statistical analysis by T-Test,

Table I A comparison of biochemical,

metabolic, and physical parameters of red cells stored at lx
and ug to baseline levels The data represent the mean of 9 i iati %
: . values with standard deviation shown in
[ ] 1lii R EE BE, :Il!';llE;:lll N I e " lN---TE N e l‘; [ ]



Baseline ug

Baseline lxg Baseline ug
ve. lxg ve., ug ve. lxg
Cells Counted 355 1297 1043
% Normocytes 24.53 (1.43) 9.06 (1.52) P<.01 8.98 (1.59) P<.01 NS
Z Echinocytes 1811 67.0 (0.670) 60.97 (1.92)l. NS * 57.9 (1.43) P<.02 NS
Z Echinocytes III 8.47 (1.953) 29.98 (1.71) P<.01 33.12 (1.95) P<.01 NS

(Mean 1 SD)
n=9

Statistical analysis by T-Test
*NS = not significant

Table 1I
bageline observations, .

Transmission electron microscope analysis comparing red cells stored at lxg and ug with the
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PERCENT AGGLUTINATION

Mean Values + SEM

Antibody -Baseline lxg ug F ratio, P
Specificity

‘C3a 247 % 0445 - 22.28 £+ 1.18 21.70 + 1.37 36 .34, P<.0001
C3c 9.7 + 0.71 49.20 = 1.50 47 .80 + 1.60 98.47, P<.0001
c3d 17.2 + 0,17 76.30 + 0.52 75.00 + 0.67 2.19, P=NSx
IgG 55.3 + 0.49 55.40 + 0.77 53.20 + 0.98 1.92, P=NS
?NS = not significant

Table 111 Comparison of antibody-induced agglutination of red cells before and after storage

at lxg and at ug by analysis of varience.

7
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NUMBER OF MOLECULES

Mean Values + SEM

Antigen Baseline 1xg ug F ratio, P

Cic 4.0 * 0.34 8.0 * 0036 8.4 * 0.22 30.49. P<000001
€3d 117 .7 + 3.76 101.2 & 4.08 103.0 + 4.08 3.35, P=NS*

1gG, RBC 13.4 % 0.17 14.8 + 0.30 14.7 % 0.50 1.79, P=NS

1gG, Hemolysate 77.9 * 4.17 ' 68.2 + 5.26 . 70,2 + 2.04 0.79, P=NS

*NS = not significant

Table IV Comparison of the quantities of red cell-associated C3 and IgG before and after storage

at lxg and at ug by analysis of varience.
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ABSTRACT

Leukocytes were isolated by sedimentation with dextran from human buffy coats
derivéd from 24 units of whole blood anticoagulated with citrate-phosphate-
dextrose (CPD). The leukocyte rich suspension was pooled and aliquofed into 18
plastic bags of 3 different types. Ni_ne bags flew Iin a middeck locker on the
space shuttle Columbia (#61-C) and 9 remained on the éround. The flight
duration was 6 days and 2 hours, while the total time from phlebotomy of the
donors to testing of the cells was 8 days and 11.hours. The cells were assayed
for count, size distributions, membrane integrity, ‘membrane oxidation, phagocytic
index, and cell volumes. Morphology was examined by transmission electron

microscopy in fixed sections.

Although recovered in high ylelds, granulocytes were less staﬁle and less
func'tional following storage In space. At microgravity they exhibl.ted greater
swelling (p=0.06) and morphological damage (p=0.01). Respiratory burst oxidase
activity (p=0.007) and phagocytic 'Indices (p=0.05) were also reduced. Granulocytes
in PVC-DEHP plastic were less stable than those stored In polyolefine or PVC-
trimellitate independent of flight status. It Is concluded that orbiter conditions

or microgravity were deleterious to granulocytes stored as leukocyte concentrates.

Index Terms: Leukocytes, middeck stqrage, lnstability,

loss of function, ultrastructural damage.



INTRODUCTION!

Significant cardiovascular changes, including a decrease In red cell mass are
provoked in man by spaceflight (15). In the blood_of astronauts and cosmonauts,
inflight and postflight changes have been demonstrated in the cellular immune
components (2,18). A postflight increase in the number of circﬁlating neutrophils,
and a decrease in the number -.of monocytes, lymphocytes and eosinophils has been
ﬁoted (18). A postflight decrease in the ability of lsolated' mononuclear cells to
respond to the mitogen phytohemaggiutinin (PHA) has also been observed (2,14,18).
Human immunology studies from almost twenty years of United States and Soviet
spaceflight were reviewed by Cogoli and Séhopp (2) who cited immune dysfunction
as evident from blunted in vitro Iymphocyt‘eA mitogen transformation, reduced
bacteriocidal and complement activities, and Increased interferon and autoantibody
production. These authors studying inflight cultured mononuclear cells found a
corqplete loss of the ability of iymphocytes to respond to the ﬁitogen Concanavalin
A (3), whereas cells cultured under hypergravity cbnditions typically
demonstrated an increased blastogenic reéponse (4). To the bresent the only data

on granulocytes has been the elevated neutrophil counts in astronauts (18).

Present Position: Fabian J. Lionetti, Ph.D.
Senior Investigatpr,

The Center for Blood Research



The purpose of this investigation was to investigate the effects of reduced
gravitational force on stored human granulocytes obtained by sedimentation of
buffy coat cells from whole blood anticoagulated with citrate phosphafe-dextrose
(CPD). Procedures were devised whicﬁ couid be accommodated to flights of seven
days duration. Blood bags made from three different plastics were tested to
elucidate a potential effect of piastic by reduced gravity on cell stability and
function. The plan of the overall éxperiment involving pla;celets, red cells and
leukocytes is detailed in the companion paper (17). The hypothesis to be tested
‘was that granulocytes at microgravity would remain suspended thereby enhancing
.viability. On the contrary, the absence of settling notwithstanding, the data

acquired support the conclusion that cell viability was. reduced during spaceflight.

METHODS AND MATERIALS

Isolation of White Cells

Whole blood frofn healthy, ABO compatible donors was collected Iinto CPD
'antlcoagulant. Apﬁroximately 200 ml of platelet-rich plasma (PRP) and 75 mi of
buffy coat from each unit were extracted into satellite bags. The PRP was
conserved for the preparation of platelet concentrates and plasma. Four units
(ca. 300mi) of buffy coats were pooled into a 600 ml transfer pack modified with
.'an 8 coupler attachment (Fig. 1). To each, 300 ml of 2% dextran contained in the
lntegrally attached transfer packs were added and the bag inverted several times
to mix the suspension. The bag was suspended upside down on hooks and
allowed to sediment for 18 to 20 minutes until a clear Interface was formed
between the leukocyte rich plasma (LRP) and the sedimented red cells. The red
cells were drained back into the orlglnél transfer pack, the line sealed and the
pack discarded. The bag containing the LRP was centrifuged at 1000 RPM for 10
minutes at 22°C In a Sorvall RC 3B refrigerated centrifuge. The supernatant was

discarded leaving packed leukocytes. To the pellet 300 m! of piasma-PBS glucose



(1:1) were added by means of couplers on the 600 ml transfer pack. The bag was
gently agitated by hand to resuspend the cells. For preflight experiments four
equal aliquots (ca. 75.0 ml by weight) were drained _lnto attached satellite bags for
storage at 4°C. For the flight experiment pooled leukocytes were obtained from
24 donors in six sedimentations and pooled into one large reservoir bag. Aliguots
were placed into 18 separate plastic bags, nine of which flew on the space shuttle

Columbia and nine of which remained as ground controls.

Leukocytes were stored in three types of plastic bags: polyvinylchloride
" plasticized with diethylhexylphthallate (PVC-DEHP), polyvinylichloride plasticized
with triethylhexyltrimellitate (PVC-TOTM), and polyolgflne at 4°C. Bags flown on
th;a.shuttie Columbia and ground control bags 'were maintained in specially
fabricated Dewar flasks thermostated at 5°C + 1°C. Those In the shuttle middeck
were In an envirbnment of circulating cabin air. Total storage time was eight
dayé and eleven .hours of which flight time of 6 days and 2 hours were at
microgravity. At the end of the flight, samples from the bags maintained on the
ground and at microgravity were aliquoted into coded containers. All analysis
were performed under code. The data were analyzed by Drs. N. Laird and D.
Blevins of the Harvard School of Public Health by anglysis of variance using
flight status- an.d type of plastic storage bag as the variables. Most data sets
.Included either 18 or 20 samples allowing calculation of interaction effects.
Cell Counts

Cell counting was performed with a Coulter S+4 three part white cell differential
counter. Total red, white and platelet cell counts were obtained as well as white
cell differential counts.
Determination of Size Distributions

Cell suspensions containing 1.0 to 1.5 x 105 granulocytes per ml were sized with

a Coulter counter Model ZH with a Channelyzer, model C-1000 and an X-Y plotter



(5). The sample volume was 0.1 ml. Granulocyte counts were obtained by
integration of the number of cells within the granulocyte distribution.
Granulocyte counts were aiso mgde from whole blood with a Coulter model F blood
cell counter.
Microfluorescence Viability Test
The viability of granulocytes and mononuclear cells _w.as evaluated with

fluorescein diacetate (FDA) and ethidium bromide (EB) in Hanks’ balanced salt
solution (HBSS) without calcium and magnesium (5). About 1 x 106 cells/in
volumes varying from 0.05 to 0.25 m| were mixed with 0.50 ml of a mixture of FDA
and EB. Wet mounts were made at room temperature and the cells viewed within
one minute with an Olympus Vanox microscope with a transmission fiuorescence
attachment. A green exciter filter (G533) was used for lIdentification of the
granulocytes and fluorescence viewed after switching to a UV exciter filter
(Schott BG-12) and a blue barrier (Schott 0G-530) filter. Cells demonstrating
cytoplasmic esterase activity fluoresced green due to fluorescein liberated. Non-
viable cells exhibited red fluorescent nuclei due to uptake of ethidium bromide.
Two hundred cells were counted and the percentage of viable cells was calculated
as the fraction of green cells in the total.
Glucose Oxidation by Human Leukocytes. 14C02 from I-14C-Glucose

A modification of the method of Boxer and Stossel (1) was used. Mixed human
feukocytes from freshly isolated control and 7 day old test samples at a
concentration of 3.0 x 10%® per ml were suspended In Kreb’s Ringer phosphate
(KRP), pH 7.4 containing 1 mM glucose and 1.5 uCi of 1-%C glucose (specific
activity 50 mCi/mM to a total volume of 3 ml). Then phorbolmyristate acetate (PMA
1 pug per ml) or f-met-leu-phe (fMLP) (0.1 uM) were added. The suspension was
Incubated in a 25 ml sidearm Erienmeyer flask stoppered by a cap fitted with a
cup containing 0.25 ml of hyamine hydroxide. After a 30 minute incubation at

37°C In a shaking water bath, the mixture was acidified by Injection of 1 mi of 1



N H2SO4. The cell suspension was equilibrated for an additional 30 minutes. The
cup was removed and 75 ul aliquots of the contents were assayed for “CO:2 in a
liquid scintillation counter;
Phagocytosis of 1251-Labeled Staphylococcus Aureus by Leukocyte Concentrates
The phagocytic activity of stored leukocyte concentrates was assayed as the
" ingestion of formalin fixed lyophilized 1] radiolabelea Staphylococcus aureu§
(11). It was mddified by using a 10%¥ suspension prepared from a lyophilized
stock of Staphylococcus aureus (I1gG SorbR, Eniyme Center, Medford, MA). Five
hundred ul of lyophilized 1gG SorbR were diluted with 9.80 ml of distilled H20 and
mixed vigorously to insure Oa homogeneous solution. A 0.5 mi aliquot of the above
suspension was removed, diluted to 2.00 mi with a buffer containing 150 mM NacCl
and 40 mM NaH2PO4 at pH 7.0. It was washed 2 times at 4°C in a Sorvall RC5B
centrifuge using an SS-24 rotor at 3000 rpm. The pellet was suspended to 500 ul
and added to a glass tube containing 500 uCi of Na I |[n the presence of 50 ug
Iodogen. The reaction mixture was slowly rocked on ice for 35 minutes and
'pipetted into a 15 mi polypropylene test tube. Tﬁe re'act'ion was stopped by
adding an equal volume of 150 mM KI and 1 ml of PBS. The mixture was
centrifuged at 3000 rpm at 4°C in the Sorvall centrifuge and the wash procedure

repeated once more.

To prepare a working I-Staphylococcus aureus suspension, 50 ul of stock
1251-labeled Ig Sorb were mixed with an equal volume of unlabeled Ig Sorb (10%
suspension), and washed twice with a 150 mM NaCl and 40 mM NazHPOa buffer at
PH 7.0 in the Sorvall RC-5B as described. The pellet was resuspended Iin 2 ml of
PBS (140 mM NaCl, 10 mM NazHPOs, 5 mM glucose, 5 mM KCI, pH 7.4) and
centrifuged at 3000 rpm for 10 minutes at 4°C in an IEC-CRU 5000 centrifuge with

rotor #253, to remove large aggregates of bacteria and the supernatant.



Ingestion Assay

Leukocyte rich plasma (LRP) was suspended to 107 leukocytes per ml in PBS
plus 0.9 mM CaClz and 0.15 mM Mg SO« Aliquots (0.1 ml) of ¥ 1Ig Sorb were
added, the total volume br;ought to 2 ml with PBS, and incubated for 30 minutes
with constant shaking in a water bath at 37°C. Following incubation on ice for 5
minutes the cells were pélleted at 800 rpm at 4°C in an IEC-CRU 5000 centrifuge.
The supernatant was saved and the wash procedure -repeated using 2 ml of ice
cold PBS., The supernatants and twice washed pellets from each sample were
saved and the amount of I determined In a Searle gamma counter. Metabolic
controls were made with ‘1 mM N-ethylmaleimide. In other controls aliquots of
PBS-plasma were substituted for cells to determine the quantity of 1251 not
associated with cells whvich sedimented with particles during the washing
procedures.
Electron Microscopy

Transmission electron microscopy was carried out on glutaraldehyde fixed
specimens. Fifteen répresentative fields were photographed from each of 18 pags
in the experiment. Morphological integrity was rated by_ visual scoring of
photographs containing numerous cellis per field. Four features were scored:
degranulation, swollen cytoplasm, swollen nuclear envelope, and clumped chromatin.
The scoring scale was: 0 = no ceils; 1 = occasional cells; 2 = 50% of cells; 3 =
majority of cells; 4 = 100% of cells.
Cell Volumes

Cell volumes ‘were measured with a Curby Blodetector (9). Size frequency
distribution histograms were plotted and ground control and flight samples
compared. Distributions were analyzed statistically for variations in volume of the

granulocyte populations as affected by the storage interval (8).



RESULTS
The yield of white cells from a typical isolation experiment of four pooled buffy
coat units was 64 percent (Table 1). The final suspension for each sedimentation
contained approximately 300 ml with a white codnt of 10.4 x 10¢ white cells per mi.
The suspensions also contained red cells, and platelets. It was reduced about 60-
fold in red cells (4.16 x 10° per ml to 0.07 x 10° per mi) and in pl'atelets while
the leukocyte differential count was approximately the same as Iin pooled buffy

coat white cells.

The cell recoS/ery and /n vitro viability data for granulocytes flown in space
along with ground controls indicated the absence of an effect of reduced gravity
(Figure 2). Small differences observed were not significant. Values for the flight
were substantially iess than laboratory controls In which similar preparations
stored 7 days gave a 30 percent higher recovery and 20 percent higher viability.
The differences In the flight data reflect additional time in storage and extra

manipulations.

The function of granulocytes was affected by microgravity as small but
significant Iésses over that of controls were observed (Figure 3). The oxidation
of glucose caused by the respiratory burst oxidase (p=0.007) and the phagocytic
index (p=0.05) of flight sampleé both were reduced when compared to ground
controls whereas preflight experiments of granulocyte stored 7 days gave values

of similar magnitudes In both tests.

Granulocyte suspensions stored at 5°C gradually enlarge and undergo lysis.
Volume distributions obtained electronically over eight days in a separate study
revealed increases in median channel numbers (proportional to cell volume)

(Figure 4). It is seen that cells enlarged and lysed, as cell fragments gave
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signals which accumulated in the lower channels corresponding to Iyged cells.
Volume plots of the leukocytes stored In the eighteen bags In the flight
experiment revealed swelling in storage. A greater proportion of enlarged
granulocytes were found in suspensions exposed to microgravity (Figure 5). As
shown, the ratio of small to large cells (1.39 + 0.10) for ;ells in space was less‘
(larger denominator) than cells maintained at 1 x g (1.53 + 0.08), p = 0.06. This
difference was consistent with observed functioﬁal losses of respiratory burst

oxidase and phagocytic index.

Morphological evaluation of leukocytes revealed greater darﬁage to granulocytes
in space than on the ground (Figures 5,6). Transmission electron micrographs
scored for the number of cells per field exhibiting degran'ul'atioh, swollen
cytoplasm, swollen nuclear envelope, and clumped chromatin gave consistently
higher scores in the space samples. Figure 5 shows the transmission electron

microscopy scores (2.19 * 0.24 at microgravity, and 1.86 * ,05) at 1xg (p = 0.01).

Some differences were observed in leukocyfes stored In three different plastics.
Statistical analysis revealed that the diffgrences observed from flown samples
were not attributable to an effect of plastics per se. Thefefor_e, both _ground and
flight data were pooled to analyze the effect of storage.ln three different plastic
bags. The oxidase activity in the PVC-DEHP bag (Figure 7) was 30 percent less
than either of the other two. Llikewise the morphology index was 25 percent
greater Indicating more cell damage due to storage. Both the polyolefine and
PVC-TOTM bags were similar with respect to phagocytic index, oxidase activity and

morphology.

DISCUSSION

The life span and retention functional properties of leukocytes in vitro depends
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on the mode of preparation, the storage medium and other conditions including pH
temperature, gas phase composition, and plastic container (12). Granulocytes, by
virtue of their phagocytic mechanism are less stable to storage conditions than
the mononuclear monocytes and |lymphocytes. Granulpcytes obtained with
mechanical cell separators have been extensively studied for their transfusion
poten{ial (16,10,12). Their life sban ranées up to 96 hours while mononuciear cells
can be Idéntified in stored blood for 21 days (I13). The in vitro life span of
isolated .granulocytes varies widely. Mixed leukocytes obtained by sed'imentation
of fresh blood with dextran and suspen&ed in autolggous plasma remained intact
for 7 days at 4°C (7). Functional properties ho.wever, diminished rapidly in
stora.ge as motility, phagocytic index and oxygen consumption decreased about 80§s
after 5 days. On the other hand highly purified granuiocytes obtained by
counterfiow centrifugation and suspended In tissue culture media with antibiotics,

steroids and deoxyribonuclease have remained functional for 14 days at #°C (6).

The data of this paper showed '@hat granulocyteé concentrated from :buffy coat
with dextran and stored statically at 4°C for eight and one half days in space
exhibited larger volumes, more extensive morphological damage, less oxidase
activity and reduced phagocytic index than ground control samples. Whether
these data derive from an effect of microgravity 6r conditions in the orbiter is
not clear. The ground controis, although maintained in Identical containers as
those in the middeck locker, differed from the flight samples in ways judged to
be minor. These were: the vibration of launch, transient increased G forces
during launch and re-entry, radiation, contaminants in cabin air, increased carbon
dioxide and pressure changes during flight. It remains for experiments with
ground controls which mimic flight conditions or an inflight 1xG control centrifuge
to determine the significance of orbiter factors on results with stored

granulocytes exposed to microgravity.
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It is of particular interest that pilatelets stored at 20°C in space in the same
thermoreguliated Dewar containers as feukocytes stored at 5°C exhibited striking
improvement in cell viability (in preparation). A large number of functional and
morphological tests revealed with statistical significance that platelets stored
better in space than on the ground. Whether 'Adensity differences between
platelets and granuloéytes or storage conditions were rﬁediating factors s
unexplained.
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FIGURE LEGENDS
Figure 1: Schematic representation of the isolation of leukocyte rich plasma (LRP)
by sedimenting four units of buffyi coat white cells with dextran. Red cells were
drained away, the pooled leukocyte concentrate centrifuged and the pelleted cells
resuspended in PBS-glucose: plasmg (1:1).
Figure 2: Comparison of recovery and viability of gran_u!ocytes exposed to
microgravity. Preflight experiments are plotted (left side) and flight data shown
with bars. The solid bars (P are ground controls measured postflight, and the
striped bars () are data taken on flight samples.
Figure 3: Comparison of glucose 6xidation and phagocytic Index of granulocytes
exposed to microgravity. Conditions are the same as in Figure 2. The solid bars

()p are preflight controls, the opeh bars ([]) are ground controls postflight, and

the striped bars (:f) are data from flight samples.

Figure 4: Volume distributions of stored leukocyte suspensions. Plots were taken
at 1.2 and 8 days after stc_)rage at 4°C. Median channel members for the
granulocyte populations are shown. :

Figure 5: Volume and morphology comparison of granulocytes exposed to

microgravity. Volume distributions were compared for granulocytes stored in

ground control ([]) and postflight samples (D). Ratios were derived of cell
volumes less than and greater than the median volume for each distribution.
Greater swelling in spéce produced a lower ratio than in ground controls. On the
right the morphology rating is given by the transmission electron microscopy
score (TEM),

Figure 6A: Transmission electron micrograph of leukocytes stored at 1xg. Cell
structure is well maintained as evidenced by the abundance of cytoplasmic
granules, the moderate density of the cell cytoplasm, ahd'the lacy appearance of

the chromatin staining pattern. X 4,900.

Figure 6B: Transmission electron micrograph of leukocytes stored at microgravity.
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The cells exhibit swollen cytoplasm, swollen nuclear envelopes and clumping of
nuclear chromatin. X 4,806.

Figure 7: Functional activity and:- transmission microscopy score (TEM) in
granulocytes stored in bags made from three plastics; PVC-DEHP, PO, and PVG-;'
TOTM) as defined in METHODS. The data were combined for the flight and ground

controis (n=18).
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PREPARATION OF LEUKOCYTE CONCENTRATES
FROM POOLED BUFFY COATS

SAMPLE ID VOLUME CELL COUNTS = CELL ~ WBC DIFFERENTIAL
WBC RBC RECOVERY COULTER S +IV DFF
(m)  (x10%/ml) (x10%/ml) % NITIAL PMN LYM MONO
POOLED |
BUFFY COATS 350 13.9 4.16 100 60 34 6
DEXTRAN ‘
SEDIMENTED 450 0.7 0.67 65 48 40 12

SUSPENDED IN
PBS-PLASMA

DAY O 300 10.4 0.07 66 63 35 2

Table 1: fgb

Lionetti et al.
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ABSTRACT

As part of an Investigat?on of the effect of prolonged exbosure of human blood
cells to microgravity, a set of freshly coll_ected ‘and separated human platelet
suspensions, in three types of plastic containers, were transported on a 6 day, 2
hour mission of the orbiter Columbia (mission 61-C), launched from Kennedy Space
Center ("KSC") on January 12, 1986. Specially designed flight hardware provided
a controlled environment at a temperature of 22°C + 1°C with air flow. Another
set of control samples was held on the ground in identical hardware. At the
compietion of the mission, the ug and 1xg samples were subjected, under code, to
morphologic, metabolic, Immunologic and functional examinations. The interval
between collection of the blood and postflight analysis of samples was 8 days, 11
hours. Paired comparison of platelets at pg vs controls at 1xg, without regard to
plastic type, revealed superior platelet viability at microgravity. This was
indicated by transmission electron microscopic examinations; by studies of
integrity‘of membrane and cytoskeleton structural components; by immunology;
and by studies of biochemical indicators of platelet metabolism. Of 26 sets' of
comparisons, 11 were superior at pg (p <0.05), while 2 showed a trend in the same
direction (b <0.1). When the data were analyzed by plastic type, pg platelets in
containers fabricated from PVC-TOTM displayed the best overall postflight
viability. Possibie mechanisms of the favorable effect of microgravity storage on

human platelets are discussed.

Index terms: Human blood platelets, microgravity,

platelet preservation, space flight mission



INTRODUCTION:

Multiple factors influence the qua;lity of plateléts during storage and hence,
affect the survival and function of these cells after transfusion. To preserve
suspensions of human blood cells outside the body, as we did in our microgravity
experiment, it is essential to maintain a constant supply of metabolic energy
(7,19). For platelets, th'is is especially important because platelets cannot be
successfully stored at temperatures much below 220C (2,13). At this temperature,
metabolic rates are quite .h'igh, much higher than they would be at §°C, which is
the storage temperature for red blood cells. Under these circumstances, the
diffusion of oxygen into.A the plastic blood bag used to store the platelet
suspension, and of carbon dioxide from the bag, can beccme limiting factors.
Further, at low oxygen tension, platelets shift toward anaerobic glycolysis, with
cor{sequent increased production of lactic acid. Similarly, if the outward diffusion
of carbon dioxide is retarded, the CO2 tension increases. In either case, the
medium is acidified. Platelet survival is compromised if the pH falls below 6.0
(13,14). In blood banks, platelet respiration is facilitated by constantly agitating'
the plastic bags containing the suspensions of platelets. However, impairment of
platelet functions after storage has been associated with certain forms of agitation

(3,5,17,18).

Present Position: Francis C. Chao, Ph.D.
Senior Investigator,

The Center for Blood Research



4
-It was reasoned that microgravity may provide a unique and favorable condition

for platelet storage, because the microgravity environment in an orbiting vehicle
may maintain platelets in suspension and thus a) eliminate the local accumulation
of metabolites immediately surrounding platelets, b) increase the availability of
substrates, c¢) increase gas transport, d) befter maintain the pH and e) reduce or
eliminate damage to platelets caused- by agitation. This paper reports the results
of the IBSE platelet studies which clearly demonstrate superior preservation of

platelet viability at microgravity compared to storage at unit gravity on earth.
METHODS:

Platelet Preparations: Platelet concentrates were prepared from units of freshly
collected biocod according to the standard procedure (1). ~ The platelet
con-centrates were pooled under aseptic conditions and after gentle agitation, 60
mi aliquots were distributed into standard 300 mi blood bags. Three types of
plastic bags were used: polyvinyl chioride plasticized with di-2-
ethylhexylphthalate (PVC-DEHP; PL-146 from Fenwal Labs., Deerfield, 1IL),
polyvinylchlroide plasticized with trioctyltrimellitate (PVC-TOTM; CLX from Cutter
Biological, Bérkeley, CA) and nonplasticized polyolefin (PL-732 from Fenwal Labs.).
The design of the flight hardware precluded the agitation of the platelets in the
flight Orbitor .Columbia during the experiment. This limitation posed a unique
challenge to provide for adequate respiratory gas exchange in the platelet units.
We devised a special new system for facilitating respiration. This sytem involved
compressing the plastic bags containing platelets between two open mesh grids,
thus forcing the platelet suspension into a uniformly thin liquid layer which
presents a minimum thickness and maximum surface area for exchange of oxygen
and carbon dioxide with that in the air continually flowing around the bags. As

assessed by /n vitro measurements of platelet function as well as post transfusion
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survival data in separate laboratory studies, this compression system has been

demonstrated to preserve viable platelets during storage for seven days. ( ).
Within the flight hardware, the control (unit gravity) bags were vertically
oriented throughout the experiment while the flight (microgravity) platelets were
vertically oriented prior to launch and upon landing of the orbiter but not while

in orbit.
Post-Flight Measurements: All measurements were made on coded samples. .

Physical Measurements: Total platelet counts and the mean platelet volume (MPV)
were determined by an electronic cell counter (Coulter, Model S-Plus 1V, Coulter

Electronics, Hialeah, FL). -

Metabolic Measurements: pH, PCO2 and POz were measured at 37°C using a
Corning blood gas analyzer. Glucose and lactate were measured in perchloric acid
extracts of platelet suspensions by a colorimetric and enzymatic methods, using

commercial kits (Sigma), respectively.
Structural Studies:

1) Morphology: Platelet ultrastructure was examined using standard transmission
and scanning electron microscopic techniques. Electron mic}'ographs were
obtained at a magnification of 3000X. Ten separate fields of cells were
phqtographed for each specimen, providing an average of 390 platelets for
examination. A semiquantitative measure of platelet structural integrity was
obtained by scoring the prevalence of four features in each specimen: cell

swelling or rupture, degranulation, aggregation, and pseudopod formation. The

scale used for scoring was as follows: O = no cells exhibited that feature; 1



6
occasional cells exhibited the feature; 2 = 50% of cells exhibited the feature; 3 =

the majority of cells 9xhibited the feature; 4 = all cells exhibited the feature. For
each sample the grades for the four features were averaged. The values obtained
for the triplicate sampies were then averaged. Platelets with the lowest score
demonstrated the least structural damage while those with the highest score were

the most damaged. 2) Macromolecular Structure:

Changes in platelet macromolecular structure after storage were examined by
analyses of surface membrane proteins, surface glycoproteins and cytoskeletal
proteins. Surface proteins and glycoproteins were radiolabeled, respectively, with
1251 by the method_‘of Phillips (8) and with 3H, introduced into sialic acid
residues, by a previously described method (9). Radiolabeled surface components
were detected by autoradiography after platelet polypeptides were fractionated by
SDS-polyacrylamide gel electrophoresis. Platelet cytoskeletal proteins were
isolated in the insoluble cell fraction by ultracentrifugation of platelets extracted
with non-ionic detergent to solubilize non-cytoskeletal components as described
(10). Cytoskeleton polypeptides were detected by Coomassie blue staining after

fractionation by SDS-polyacryiamide gel electrophoresis.

A semiquantitative method was used for analysis of changes in macromolecular
structure of postflight samples. Reproducible replicate analyses demonstrated that
preflight samples could be treated as triplicate aliquots of a single sample. To
compare the coded postfiight samples to preflight controls, a set of three to five
independent criterial were established for each of the three aspects of platelet
structure studied. For each criterion, postflight samples were then ranked from 1
to 12 to reflect increasing difference from the pre-flight controls; the ra'nks, or

scores, for all criteria were averaged to derive a mean score for each sample.
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Samples with lower scores exhibited fewer structural changes while those with

higher scores were more extensively damaged during storage.

Functional and Viability Tests: Platelet aggregation induced by ADP (100 uM) or
collagen (12.5 pg) was measured by a photometric method (4). The uptake of 14C-
serotonin was determined by a previously described technique (6). The release of
ATP was monitored continuously during collagen-induced aggregation employing
the luciferin-luciferase enzyme system using commercial reagents (Chronolog, PA).
The platelet procoagulant function was aésayed by the Stypven time determination
based on Spaet and Cintron (16). Platelet response to hypotonic stress (PRHS)
was measured by a previously publiéhed method (11). The plasma levels of
thromboxane Bz (TXBz2; New England Nuclear, Boston, MA) and B-thromboglobulin
(BTG; Amersham, Chicago, IL) were measured by radioimmunoassays using

commercial kits.

Immunology: The duantity of the platelet-associated 1gG and C3 complement
proteins was determined using antiglobulin consumption tests as described

previously (12).
RESULTS

Paired comparisons of platelets at microgravity vs ground controls at 1xg
revealed superior platelet viability at microgravity as evidenced by the resuits of
a number of measurements of structure and function. The experimental findings
are summarized in Table 1. A tota.l of 9 space and 10 ground samples were
analyzed. One orbital sample had to be excluded from this analysis (paper). The
storage Interval of 8 days and 11 hours, when measurements were begun,

exceeded the 5 day maximum allowable storage period for platelets intended for
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transfusion. Thus, extensive qualitative changes in platelet structure and

functionai measurements were observed in both space and ground control samples

relative to preflight samples.

Morphologically all platelets stored at 1xg were severely damaged. Platelets
were degranulated, swollen, without pseudopods and frequently demonstrated
discontinufties in the plasma membrane. In comparison, a larger proportion of the
microgravity platelets exhibited pseudopods and contained storage argonelles,
mitochondria and glycogen granules while a smaller preparation 'c'»f microgravity

platelets were swollen and ruptured.

At the macromolecular level of structure, platelets stored at microgravity were
better preserved than those stored at unit gravity (Table 1). Microgravity
platelets showed significantly fewer degradative changes in surface proteins and
glycoprotéins relative to the corresponding 1xg controls. The integrity of platelet
cytoskeleton were found to have survived in superior fashion in the platelets

which had been exposed to microgravity.

Measurements of platelet function and metabolic status corroborated the
structural -findings. Microgravity platelets exhibited somewhat higher
aggregability by collagen and ADP and greater release of ATP than the 1xg
controls. There was less evidence of damage as reflected by lower levels of the a
granule protein, B-thromboglobulin, and the lipid metabolite, thromboxane B2, in

the extracellular plasma of the microgravity plateiets.

The metabolic status of platelets stored at microgravity was superior to that of
the platelets kept on the ground. Platelet concentrates which had been exposed

to microgravity had higher glucose, lower lactate, lower pOz and higher pCOz2 than
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the 1xg controls suggesting a more active aerobic metabolism. Moreover,

microgravity platelets were significantly smaller in mean volume (less swollen) and
retained some capacity to respond to‘ hypotonic stress, both properties reflecting
a superior metabolic status. In contrast, 1xg stored platelets cause the capacity
to respond to hypotonic stress. After the 8 day 11 hour storage interval, the
counts ofvplatelets in both ground and microgravity sampies were unchanged and
there was nd visible evidence of spontaneous platelet aggregation in' either group
of platelet samples. Finally, the microgravity platelets had acquired less adsorbed
antibodies and compiement components suggesting that, if retranéfused, they

would be less sensitive to potential destruction by phagocytic cells.

Influence of Plasticizer/Polymer Composition: Additional insight was gained from
analysis of the data with respect to the polymer/plasticizer composition of the
baés in which the platelets were stored. This analysis revealed numerous
differences in platelet morphology, functions and metabolism which depended upon

plastic type as well as the presence, or absence, of the microgravity environment.

Of the three plastic types, platelets stored in PVC-TOTM at 1xg and at
microgravity displayed the best overall preservation. However Table 2 shows
selected observations which demonstrate that the platelets in TOTM bags that were
exposed to microgravity retained superior in vitro functions relative to the
corresponding controls in TOTM bags at 1xg. The metabolic data confirms this
conclusion. As a group, platelets in PVC-TOTM at microgravity were found at the
end of the experiment to have the ﬁighest glucose concentration and the lowest
lactate suggesting that they consumed less glucose and aerobically metabolized a
higher proportion of total glucose to CO2 and produced less lactic acid by

anaerobic glycolysis. The higher pH and lower mean platelet volume gf
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microgravity/TOTM platelets also are indications of superior preservation of

platelets at 8 days 11 hours after collection.

Transmission electron microscopy most convincingly demonstrated that the
platelets stored in TOTM bags at ug had superior morphologic integrity relative to
the corresponding grouna controls. Nearly all of the platelets in the 1xg stored
samples were swollen and dégranu!ated or had ruptured surface membranes. Few,
or none, retained discoid shape or showed surface projections (Fig. 1a). On the
other hand, more than half of the platelefs stored at ug had intact surface
membranes, contained storage organelles, mitochondria and glycogen granules.
Several platelets in every fiAeld retained discoid shape and others had at least one
or two finger-like projections extending from their surfaces (Fig. 1b). The
capacity to maintain discoid morphology and to undergo changes in shape are
hallmarks of the viable platelet. However, many of these platelets also showed
dilation of the surface canalicular system and/or contained cytoplasmic vacuoles

which reflects the stress imposed by prolonged storage in vitro.
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DISCUSSION

We interpret the findings from this initial experiment to suggest that the
.freeing of blood platelets from earth’s gravity resulted in superior preservation
in vitro. This was achieved in spite of the adverse experimental conditions which
were beyond the control of the inAvestigators. These include the following: First,
-due to a postponement of the laun;xch, both pg and 1xg platelets were held on the
' ground for 2 days prior to the launch. Thus, deterioration of platelet viability
had probably begun to occur before exposure to microgravity. Second, since
platelets. have a natural life span of onily 8-11 days and a permitted preservation
period of only 5 days prior to transfusion, the 8 days and 12 hours duration
between the collection of biood and the initiation of post-flight anélyses precluded
- the optimal demonstration of the storage effect. We suspect that the observed
" beneficial effect of microgravity on platelet storége would be even greater if
- freshly collected plateiets were exposed to microgravity for a period of 3-6 days.
As to our experiments, the pH had fallen below 6.0 (which Iis deleterious to
platelet viability) in majority of the units by the end of the prolonged period of

storage.

How can this favorable effect of microgravity on human blood platelets be
explained? Tc; what factors can we attribute the beneficial effect of exposure
platelets to the ug environment which we have observed? At this stage, we are
considering two possibilities. The first is that there Is a gravitational effect on
the‘ platelets in their environment. The second Is that there is a gravitational
effect directly on some aspect of platelet metabolism or function. Since platelet
suspensions represent a system of particles suspended in a viscous medium, the
velocity of sedimentation of the platelets could be an important variable in our

experiment. Slichter and Harker (1,15) demonstrated that platelets sedimented by
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high g forces have significantly reduced viability when compared to platelets

prepared at lower g forces. In our experiment, sedimentation of platelets held at
unit gravity should have continued without Interruption throughout the
experiment. éy contrast, sedimentation of the flight platelets should have been
interrupted fér the duration of the Columbia mission. Under the conditions or our
experiment, preliminary estimates of the Stokés sedimentation velocity of platelets
that take into account the additional time at._unit gravity resulting from the
postponement of~ the launch suggest that about 80% of the flight platelets should
have remained in suspension throughout the experiment. On the other hand, more
than 50% of the ground platelets should have sedimented to the bottom of the
'bags by the end of the experiment. The micrégravity conditions thus conferred
on the platelet suspension similar to that of platelets in circulating blood:
discretely suspended, with minimal contact between platelets. This is an
att}'active hypothesis, since the major physiologic role of platelets in the
prevention of hemorrhage depends upon an activation process involving an altered

adherence of platelet membranes which cause them to aggregate irreversibly.

However, the possibility of a direct gravitational effect on some aspect of
platelet metabolism or function cannot be exciuded on the basis of the findings
from this experiment. It has been previously esfabli_shed that ATP is needed for
the proper maintenance of the viability of platelets even while stored at 22°C (19).
Although we did not measure platelet ATP directly, metabolic measurements
revealed that platelets at microgravity consumed more oxygen, utilized less
glucose, produced less lactic acid and more COz than platelets stored at 1xg.
Taken together, these results suggést that oxidative metabolism, which is a more
efficient mechanism for producing ATP than anaerobic glycolysis, is the
predominant cellular source of energy at microgravity. Further, by keeping

platelets in a quiescent and suspended state at microgravity, less ATP may be
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required to maintain cell integrity. In view of the number of measurements which

indicate a favorable effect of exposure of platelets to microgravity manifested, and
because of the possible implications of these findings for prolonged manned space
flight, it is important to confirm the results of this first experiment and to extend
the study of the microgravity effect on platelet viability on further orbiter

missions.
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FIGURE LEGENDS

Figure 1:

Eiectron micrographs of platelets stored at micro- and unit gravity.
ia. Transmission electron micrograph of platelets stored in TOTM bag
at 1xg. The cells are degranulated, swollen- and sometimes exhibit a
ruptured plasma membrane. 1b. Transmission electron micrograph of
platelets stored in TOTM bag at microgravity. Most cells are intact

and contain some granules and other organelles X15,000.
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TABLE 1: SUMMARY OF IBSE PLATELET MEASUREMENTS

Physical_Integrity 1q. Mg SEM p-Value
Platelet Count (x10%/ml) 1.42 1.40 ~ 0.610;0.010

Mean Platelet Volume (ui3) 9.77 9.36 0.089;0.094  <0.05
Platelet Response to 0.003 0.018 0.002;0.024

hypotonic Stress (OD at 420nM)

Ultrastructure
Pseudopods (Score:0-5) 0.70 1.11 0.124;0.139 <0.05
Aggregated " 020  0.11 0.127;0.133
Degranulated " : 4.00 3.67 0.160;0.169
Swollen/Ruptured " 3.30 2.78 0.160;0.169 <0.05
Macromolecular _Structure
Metabolism
pH 5.76 5.79 0.036;0.038
Glucose (mg/100ml) 28.22 29.90 5.264;5.549

pO2 (mm/Hg) 206.88 183.8 4.251;4.481 <0.05



pCO2 " 8.04 15.66
Lactate (mmol/L) ' 23.60 22.26
Eunction

Collagen Aggregation (%) 6.70 17.33
ADP Aggregation (%) ' 5.00 9.44
Serotonin Uptake (%) 3.10 7.42
Serotonin Release (%) : Insufficient Data
ATP Release (nmol/10° platelets) 0 0.27
Stypventime (sec) 80 84.8
Platelet_Damage_ & Activation

B-Thromboglobulin (ug/mi plasma) 55.68  50.96
Thrombaxane B2 (ng/mi plasma) 10.67 7.04
Macromolecular Structure

Membrane Proteins (Score 1-12) 7.60 5.38
Membrane Glycoproteins ( " ) 7.60 6.02
Cytoskeleton (") - 7.90 5.03
Immunology®*

Surface Bound IgG 4759 4195
Total 1gG 40043 36925

1.442;1.442

0.421;0.443

3.687;3.886
2.826;2.979

2.823;2.976

0.12 0.13

5.5, 5.5

3.305;3.483

2.600;2.740

0.819;0219
0.607;0.665

0.728;0.729

40.7;43.69

1759;1865

<0.05

<0.05

<0.05

<0.1

<0.1

<0.05

<0.05

<0.05



C3c 2283 2160 72.88;77.30

C3d 2082 1762 50.18;53.22 <0.05

*Molecules per platelet.



Table 2

MICROGRAVITY EFFECTS ON HUMAN PLATELETS STORED IN PVC-TOTM BAGS

Mean
Earth Qrbit SEM p_value

Collagen aggregation 8.75 26.33 5.83;6.73 <0.05

ADP aggregation 4.00 23.00 4.47;5.16 <0.10
Serotonin uptake 2.43 16.40 2.98;5.15 <0.05

pH 5.77 5.93 0.08;0.07

Glucose (mg/100 ml) 26.25 42.00 8.32,8.61 <0.05

pOz (Torr) . 208.83 175.60 6.72;7.76 <0.05
pCO2 (mmHg) 6.95 | 18.17 2.28;2.28 <0.05
Lactate (mmol/!) . 23.58 21.00 0.81;0.77 <0.10

Mean Platelet Volume (p3) 9.18 8.50 0.16;0.16 <0.05
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ABSTRACT
Future space missions of long duration may require that
autologous leukocytes be stored in flight for infusion to
restore normal immune competence in crewmembers. Peripheral
blood mononuclear cells (PBMNC), as leukocyte concentrates
in autologous plasma and 2% dextrose, were.sto:ed in the
microgravity conditions provided by U.S. Space Shuttle
Mission 61-C. Activity of PBMNC aftei spaceflight was
compared with that froﬁ a series of preflight ground control
experiments, which demonstrated a progressive daily loss in
mitogen-stimulated protein synthesiSAat 24 h and thymidine
uptake after 72 h in culture after storage for 7 d at 4°C.
Post-storage viabilities were at least 90% as determined by
. trypan dye exclusion. A progressive reduction iﬁ the
percentage of PBMNC expressing cell-surface phepotype
markers, which was similar for monocytes, B celis, and T-
cell subsets, also occurred after storage. The ability of
PBMNC, stored for 8 d in Columbia's middeck, to become
activated and proliferate in vitro was similar to that of
cells that remained in identicai flight lockers on the
ground és 1-G controls, thus indicating that PBMNC were no
more adversely affected by storage under microgravity

conditions.
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The unique environment of spaceflight exposes the crew
to multiple stressors that may impair normal immune homeo-
stasis, and chrénic stress could cause immune suppression
through neuroendocrine-mediated mechanisms (3,4,15).
Prolonged missions may expose crews to damaging levels of
novel galactic ‘and solar ionizing radiation (14). It has
been shown that the incidence and distribution of human
pathogens are typically increased during spaceflights (16).
The in vitro re;ponsivengss of human lymphocytes to
mitogenic lectins is reduced after space flight (5,6,10,
17,18). In vitro studies haQe also demonstrated-blunted
lymphocyte prolifergtion compared with both when cultured
in-flight at ambient microgravity and in a 1-G centrifuge
- compared with ground controls (2,7). Soviet investigators
have reported reduced in vitro lymphocytg interferon pro-
duction after space flight (19), and spléen cells from rats
flown on Spacelab 3 had a selective impairment of the in
vitro production of interferon-gamma but not interleukin-3
(9). |

Because long~duration orbital, lunar, or interplanetary
missions would make medical evacuation difficult or impos-
sible, it may become necessary for seriously ill crew
members to receive autologous blood components stored under
microgravity conditions. We conducted this series of
experiments to determine whether certain functions of human

mononuclear cells responded predictably after storage as

leukocyte preparations at 4° C for 1 wk in the microgravity

conditions of space flight on Shuttle Mission 61-C.
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METHODS

| Leukocyte Preparation and Storage Conditions

Peripheral blood leukocytes (granulocytes and
mononuclear cells) were obtained from healthy blood bank
donors. Approximately 75 ml of the cells in the buffy coat
were removed from each whole blood unit and mixed with an
equal.volume of 2% dextran. After sedimentation at 20°C for
20 min, the dextran layer containing red cells was evacuated
and discarded. The remaining dextran, which contained
platelets, was removed by additional centrifugation at 300 g
for 16 min at 4©°C. Each unit of leukocyte concentrate was
then resuspended with 75 ml of a 1:1 mixture of autologous
plasma and 5 mM glucose in phosphate-buffered saline (PBS).
The resulting leukocytes from blood-group-matched donors
were pooled and transferred into 1 of 3 types of sterile
plastic bags; polyvinyl chloride (PVC) plasticized with
diethylhexyl phthalate (DEHP), PVC plasticized with
triethylhexyltrimellitate (TOTM), or unplasticized
polyolefin (PO). The leukocyte preparations in plastic bags
were stored at 4°C in refrigerators or in flight hardware
modules at Kennedy Space Center and on board Columbia’s

middeck also maintained at 4°cC.
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Mononuclear Cell Preparation, Culture Conditions, and Assays

' Leukocytes, 10-15 ml, were sterilely aspirated from the
plastic storage bags with.an 18-gauge needle on a 30-ml
plastic syringe. The cells were gently layered over 15 ml
of Ficoll-Hypaque (Sigma, St. Louis, MO) in a 50-ml conical
tube followed by 10-15 ml of PBS containing 3% heat-inacti-
vated fetal calf serum (HIFCS) (Biolabs, Northbrook, IL).
After a 30-min centrifugation at 400'g at 20°c, the
mononuclear cells were wa;hed twice in PBS-HIFCS at 300 g
for 15 min. The cells were then resuspended in RPMI 1640
(Gibco, Chagrin Falls, OH) containing.S% 200 mM glutamine
(Flow Labs, Mclean, VA), 1% vol/vol antibiotic containing
penicillin, amphotericin, and streptomycin (Gibco) and 20%
HIFCS. The cells were brought to a final concentréﬁion of
2.0'x 10% cells m1™! using a Coulter D2N cell counter
(Coulter, Inc., Hialeah, FL), and'loo ul was transferred
into 200~ 1 round-bottom sterile microtiter tissue culture
plates (Linbro, Flow Labs). Next, 100 pl of mitogen or
mitogen~-free RPMI complete medium was added in triplicate to
wells for final cell concentratioﬁs of 1.0 x 106 cells -m1~1.
The wells contained: no mitogen; 0.4, 0.8, 1.5, 3, 3.8, 5
of, or 7.5 ug-rnl'l of phytohemagglutinin (PHA) (Burroughs
Wellcome, Greenville, NC); or pokeweed mitogen (PWM) (Gibco)
with final dilutions 1:5071, 1-10071, or 1-20071., cell
culture plates were transported to the University of Texas
Medical Branch at Galveston in portable incubators

(Millipore Corp, Bedford, MA) and maintained at 37°C with 5%
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CO,. Viability was determined from cells cultured in media
alone and PHA or PWM by light microscopy using trypan blue
dye and expressed as the égrcentage of unstained cells as
previously described (13).

The experiments performed on leukocytes stored on
'Shuttle 61C differed from the preflight ground-based studies
in some aspects. Due to the number of morphological,
biochemical, and functional assays pérformed by the other
investigators, it was necéssary to pool leukocytes from 24
separate donors to obtain sufficient numbers of cells to
£ill 18 plastic bags (9 were flown and 9 served as éround
controls). A 24-h launch delay, an additional day in orbit,
and Shuttle landing at Edwards AFB in California rather than
at Kennedy resulted in longer storage than originaliy
planned (6 days in microgravity and 2 days in 1 g). Because
these cells stored for 8 days undérwent vigorous spontaneéus
cell clumping in the culture media, only the monodispersed
cells in the upper layer of 50-ml conical tubes were
cultured, which excluded large-cell aggregates. This
resulted in final culture cell coﬁcentration of 0.5 x 10°
ceils/ml.

Protein synthesis was determined after 24 h in culture,
of which the last 3 h included incubation with 2 uCi of
355-methionine (specific activity 1000 uCi-mM-l; Amershanm,
Arlington Heights, IL). The radioactivity'in
trichloroacetic acid-precipitable protein was determined

from cells harvested with an automated harvester (Bellco
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Biotechnology, Vineland, NJ) and counted in an automatic
beta counter (LKB Pharmacia, Houston, Texas) as previously
described (13). Lymphocyte proliferation at 72 h was
determined by 3H-thymidine uptake after a 2-h pulse with
1 pCi of 3H-thymidine (sp. act. 2 mCi-mM™}; New England
Nuclear, Boston, Ma) as‘previously described (17,18). The
protein synthesis and thymidine uptake data are reported as
the means of cpm/lo6 mononuclear ceils cultured in
triplicate.

Flow cyfometry saﬁples were prepared by incubating 25
pl of mononuclear‘cell (0.5 x 106 cells) suspension in tubes
containing 25 ul of heat-inactivated human AB serum (KC
Biologicals, Lenexa, KS) and the appropriate monoclonal
antibody égainst cell-surface phenotype antigens for 20 min
at 4°c. Sseparate tubes contained a phycoerythrin (PE)
control or one of the following PE-cénjugated monoclonal
antibodies (PE-MoAB) from Becton-Dickinson (Mountain View,
CA): anti-leu3a (T helper/inducer), anti-leu2a (T
supprgssor/cytétoxic), anti-M3 (monocyte), anti-Dr
(monocyte, B cell and activated T cell) and anti-leul2 (B
cell). -The pan leukocyte antibody, anti-HLe-1 (Coulter),
required a second incubation with an anti-mouse antibody
conjugated to fluorescein isothionate (FITC) (Becton-
Dickinson). Two washes were accomplished by adding 3 ml of
cold PBS containing 0.05 M sodium azide (Sigma)-and
centrifugation at 300 g for 15 min after each incubation.

After the final wash, samples were fixed in 1%
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paraformaldehyde in normal saline and maintained at 4°C
until analyzed within 1 wk at NASA/Johnson Space Center with
an Epics V flow cytometer (Coulter). A 488 nm line of a 5-
watt argon ion laser was maintained at 500 mW. Ten thousand
mononuclear cells were counted after gating on forward angle
light scatter to exclude platelets, .cell fragments, debris,
electronic noise and clumps as previously described (18). A
515-nm long pass filter and a 560-nm éhort pass filters were
used to collect logarithmic integrated "green" signals from
sémples stained with fluorescein isothionate. The filters
used to collecﬁ logarithmic integrated "red" fluorescence
signals from samples stained with PE-MoABs were; 515-inter-

ference, 560-nm dichroic, and 570-nm long-pass filters

RESULTS

Preflight Ground Control Studies

The effects of storage for 7 4 at 4°C on leukocyte
concentrates is represented in Figs. 1A and 1B. These
pooled leukocytes were obtained from four separate donors.
Despite mononuclear cell viabilities of 90% after storage
for 7 dafs, the cells were markedly impaired when functional
studies were performed. Unstimulated and PHA- and PWM-
stimulated protein synthesis (Fig. 1A) was reduced by 75%,
90%, and 84%, respectively, at the optimal mitogenic
concentrations. Thymidine uptake (Fig. 1B) was reduced by
83% and 50% during PHA- and PWM-stimulated activation,

respectively. The percentage of mononuclear cells positive
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for the pan leukocyte cell~-surface antigenic marker, HLe-1,
was reduced from 95% to 51% after storage for 7 d. The
percentage of HLe-1 positive cells positive for specific
surface antigens after 7 d of storage compared with unstored
controls were: leu3a, 46% vs. 44%; leua, 17% vs. 14%; M3,
19% vs. 34%; and Dr antigen, 24% vs. 36%.

Another preflight groﬁnd experiment was conducted to
determine whéther storage for 7 d iniany of three different
plastic bags (PVC-DEHP, PVC-TOTM, or PO) at 4°C could
improve in vitro mononuclear cell function (Fig. 2). Pooled
“leukocyte coﬁcentraﬁions were obtained from four separate
blood-group-matched donors and cultured under the stated
conditions.i Reductions of 80% to 90% were observed in PHA-
stimulated 3_H-thymidine uptake by mononuclear cells after 7
d of storage. Similarly, a 40% and 43% reduction in maximal
PHA- and Pwﬁ?stimulated protein synthesis occurred after 24
h in culture (data not shown). Therefore, there was no
significant improvement in the function of cells stored in
any of the three plastic bags. Subset analysis data. listed
in Table I demonstrate greater variance in the percentage of
cells positive for the pan leukocyte marker (HLe-1) from
different bags on day 7, but these differences were not
associated with alterations in any functional assay results

(Fig. 2).
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Another experiment was performed with leukocytes

collected and prepared from a single donor to determine the
kinetics of impaired mononuclear cell thyﬁidine uptake for
the first 4 d of storage under these:same conditions (Fig.
3). After 4 d of-storage at 49C, the maximal thymidine
uptake was reduced to 59% of day 0 response values. The
response to PWM was similar, with the maximal response
reduced by.zs% after 4 4 of storage (39,113 vs. 29,085
cpm/106 cells cultured). The effecté of storage for 4 4 on
protein synthesis were similar, with reductipns of 26%, 54%,
and 54% for unstimulated, PHA-, and PWM-stimulated
35s-methionine incorporation, respectively, compared with
day 0 values (data not shown). The :gsults of mononuclear
cell viability and surface phenotype marker identification
are represented in Table II. A progressive loss in the
ability of mononuclear cells to bina monoclonal antibodies
is demonstrated as a decrease in number of HLe-1l-positive
cells (pan leukocyte marker) from 91% to 68% after 4 d of
storage. Subset analysis data indicate that binding of
PE-MoAB was similar for all cell populations (T-helper,

T-suppressor, monocytes, and B cells).

Results of Shuttle 61-C Initial Blood Storage Experiment
The effect of space flight on in vitro mononuclear cell

function after 8 days of stofage at 4°9Cc is displayed in Fig.
4. Results from the 3 bags that were flown were combined

and data from the three ground control bags were combined
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because no statistical differences were observed among any
of the three different types of plastic storage bags
(PVC-DEHP, PVC-TOTM or PO). In contrast to the earlier
ground-based studies, leukocyte concentrates for the fiight

_experiment were pooled from 24 sepafate non-HLA-matched
donors. No differences were observed among mononuclear
cells obtained from the flight bags and the ground control
bags in unstimulated, PHA- or PWM-stimulated protein
synthesis, or 3H-thymidine uptake.

The results of cell-surface phenotypg—marker expression
after storage are shown in Table III. Despite viability
values between 90% and 98% after 72 h in culture, only 40%
of the Ficoll-Hypagque-isolated mononuclear cells could pe

shown to be HLe-1 (pan leukocyte) positive.

DISCUSSION

In these experiments we selected two well-established
assays of in vitro lymphocyte function, protein synthesis,
and 3H-thymidine uptake (1,13,18). These assays were also
chosen so that the results could be compared with in vitro
lymphocyte studies obtained after space flight or after
exposure to different known stressors (7,10,11,12,15,17,18).

Based on our prior preflight studies, we believed that
mononuclear cell function was so severely compromised after
7 d of storage under these conditions that only an
improvement in cell function could be detected after space

flight. Therefore, we thought that mononuclear cells stored
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for 7 4 at 4°C were probably incapable of undergoing an in
vitro mixed lymphoéyte reaction response resulting from
culturing lymphocytes from 24 separate donors. The vigorous
responses (Fig. 4) after 8 d of storage were unanticipated
and may reflect different culture conditions uhique to the
flight experiment. A healthier subpopulation of lymphocytes
and monocytes may have been selected by culturing only the
cells that remained monodispersed, or culturing cells at
lower densities in the round-bottom microtiter wells may
have provided a more favorable microenvironment for cells
impaired by storage. The very high unstimulated
3H-thymidine uptake (Fig. 4) compared with mit-
ogen-stimulated responses suggests that an in vitro mixed
lymphocyte response had occurred, which is consistent with
the interpretation that more favorable culture conditions or
healthier cells were cultured.

These results suggest that optimal cell culture
conditions for fresh human mononuclear cells are probably
not optimal for activating cells which have been impaired by
storage. The results of the spaceflight experiment suggest
that varying the culture conditions can induce more robust
in vitro mitogen-stimulated activation responses, including
a mixed lymphocyte response (activation by cell surface
alloantigens). Phenotype analyses of stored cells before
culture indicate that the blunted activation and
proliferative responses were probably not caused by

substantial alterations in subpopulations of mononuclear
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cells cultured. Furthermore, assessing cellular health by
trypan blue dye exclusion is an insensitive predictor of in

vitro functional status. In contrast, cell-surface

phenotype analysis by flow cytometery, provides more useful
information on subsequent effector cell function.

These results do not indicate that storing of human
lymphocytes as leukocyte concentrates under microgravity
conditions associated with orbital flight adyersely alters
subsequent in vitro mononuclear cell function. Future
immunobiology investigators may wish to investigate and
define whether the novel biophysical conditions unique to
microgravity may actually improve human mononuclear cell
function after storage. Optimizing storage conditions for
immunocompetent cells on earth will become increasingly
important if adoptive immunotherapy becomes more routine as

a therapeutic modality (8).
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Fig. 1A: 35s-methionine incorporation into trichloroacetic
acid precipitable protein by unstimulated and mitogen-
stimulated mononuclear cells at 24 h in culture after
storage as leukocyte concentrates. The results are |
displayed as means of triplicate samples in cpm per 106
cultured cells after storage for 1 (open bars) and 7 d
(solid bars) 20% FCS; PHA, phytohemagglutinin; PWM, pokeweed

mitogen.

Fig. 1B: Unstimulated and PHA- and PWM-stimulated tritiated
thymidine uptake at 72 h in culture by mononuclear cells
after storage as leukocyte concentrates. The data'represent
means of triplicate samples in cpm per 10® cultured cells

after storage for 1 (open bars) and 7 d (solid bars).

Fig. 2: PHA-stimulated thymidine uptake by mononuclear
cells after the first 4 d of storage at 4°C. Mononuclear
cells from a single donor were stored and culturéd'before
storage (open circles), and after 1 d (closed circles), 2 d
(open triangle), 3 d (closed triangles), and 4 d (open box)
of storage. Results represent means of triplicate samples

at each PHA dose in cpm per 106 cultured cells.
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Figf 3: The effect of leukocyée storage in three plastic
bags for 1 and 7 d on mononuclear cell PHA-stimulated
thymidine uptake at 72 h. Bag A is polyvinyl chloride
plasticized with diethylhexl phthalate (PVC-DEHP), Bag B is
polyvinyl chloride plasticized with triethyhexyl- ‘
trimellitate (PVC-TOTM), and Bag C is unplasticized
polYolefin (PO). Results represent means of triplicate

samples in cpm per 106 cultured mononuclear cells.

Fig. 4: In vitro mononuclear cell function after storage
for 8 d at 59C as leukocyte concentrates on board the
shuttle during mission 61-C and in ground control lockers.
No statistical differences were observed between ground vs.
flight samples in unstimulated, PWM-, or PHA-stimulated
protein synthesis at 24 h (wide vs. narrow cross hatched
bars) and thymidine uptake at 72 h (open vs. solid bars).
Results represent means of triplicate samples in cpm per 106

cultured mononuclear cells.
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Table I. THE EFFECT OF STORAGE FOR 7 DAYS IN 3 DIFFERENT
TYPES OF PLASTIC BAGS ON CELL-SURFACE PHENOTYPE

MARKER EXPRESSION

Bag A Bag B Bag C
Day Day . Day
Cell Types 1 7 1 7 1 7
HLe-l-positive
cells (pan
leukocyte) 88 59 93 66 93 72
Leu3a-positivex*
(T helper) 52 50 50 36 50 42
Leu2a-positive*
(T suppressor) 11 26 13 28 14 31
M3-positive*
(monocytes) 11 25 9 16 13 15
Dr-positive#*
(monocytes +
B cells) 18 NA 14 39 16 27

* Specific markers expressed as percentage of HLe-l-positive
cells

NA = not available
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Table II. STORAGE EFFECT ON MONONUCLEAR CELL VIABILITY AND

PHENOTYPE MARKER EXPRESSION

Viabilities Dézs Stored
& Cell Types 0 1 2 3 4
viability 97 94 76 75 94

HLe-l-positive
cells 93 91 51 71 68

(pan-leukocyte)

Leu3a-positive*

(T helper) 52 49 56 50 52

Leu2a-positivex*

(T suppressor) 25 27 20 30 . 21

M3-positive *

(monocytes) 9 17 ) 10 12

Dr-positive*
(Monocytes +

B cells) 21 38 16 41 21

*Specific markers expressed as percentage of HLe-l-positive

cells
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Table III. THE EFFECT OF SPACE FLIGHT ON STORED

MONONUCLEAR CELL PHENOTYPE EXPRESSION

Cell type Ground Control Flight samples

HLe-1-positive cells

(pan leukocytes) 40 _ 47

Leu3a-positivex*

(T helper) 11 9

Leu2a-positive*

(T suppressor) 5 6

M3-positivex*

(monocyte) 16 . 18

Leul2-positive*

(B cell) 13 28

Dr-positive#*
(monocytes +

B cells) 13 11

*Specific markers expressed as percentage of HLe-l positive

cells.





