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ABSTRACT OF THE DISSERTATION

A STUDY OF STRONG STABILITY

OF

DISTRIBUTED SYSTEMS

by

Tayfun Cataltepe

Doctor of Philosophy in Electrical Engineering
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Professor Nhan Levan, Chair

This dissertation studies strong stability of distributed systems and addresses the

problem of characterizing strongly stable semigroups of operators associated with

distributed systems. Main emphasis is on contractive systems. Three different

approaches to characterization of strongly stable contractive semigroups are devel-

oped. First one is an operator theoretic approach. Using the theory of dilations it

is shown that every strongly stable contractive semigroup is related to the left shift

semigroup on an L _ space. Then, a decomposition for the state space which identi-

fies strongly stable and unstable states is introduced. Based on this decomposition,

conditions for a contractive semigroup to be strongly stable are obtained. Finally,

extensions of Lyapunov equation for distributed systems are investigated. Suffi-

cient conditions for weak and strong stabilities of uniformly bounded semigroups
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are obtained by relaxing the equivalent norm condition on the right hand side of

the Lyapunov equation.

Thesecharacterizationsare thenappliedto the problemof feedbackstabilization.

First, it is shownvia the state spacedecompositionthat under certain conditions a

contractive system (.4, B) can be strongly stabilized by the feedback -B'. Then,

application of the extensions of the Lyapunov equation results in sufficient condi-

tions for weak, strong and exponential stabilizations of contractive systems by" the

feedback -B'. Finally, it is shown that for a contractive system k = Ax + t3u,

where B is any linear bounded operator, there is a related linear quadratic regula-

tor problem and a corresponding steady state Riccati equation which always has a

bounded nonnegative solution.
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Chapter 1

Introduction

Distributed systems are those dynamical systems that are described by partial

differential equations, integral equations, integro-differential equations or delay-

differential equations. They differ from lumped parameter systems in that the state

space of the system is no longer finite dimensional.

A flexible beam, an electrical transmission line, temperature distribution on

a metal rod, evolution of the population of a country, e.t.c., are all examples of

distributed systems.

A stable dynamical system is one in which the state does not grow without bound

in time. Topology of the state space plays the most important role in defining the

stability of the system. For distributed systems this leads to three different types

of stabilities: weak, strong, and exponential. A distributed system is weakly stable

if the state converges to zero in time in the weak topology and it is strongly stable

if the convergence is in the strong topology. When the norm of the state decays

exponentially the system is exponentially stable. Exponential stability is equivalent

to stability in the uniform operator topology.



Given a system, the problem of choosinga control (or forcing function) that

will yield the desireddegreeof stability of the state is referred to as stabilization.

Stability and stabilizability are of primary interest in control theory.

In this dissertation,westudy strong stability. Specifically,we find conditionsfor

a lineardistributed systemto bestrongly stableand strongly stabilizable. There are

variousreasonsfor concentratingonstrongstability rather than weakor exponential

stabilities. Exponential stability is a moredesirableproperty',howeverit is ditTncult

to come by in many situations [4, 7]. For example,a strongly stable distributed

system cannot be exponentially stabilized by a compact feedback.This meansthat

no finite dimensional controller can enhancethe stability of the system [22, 68].

Another situation is that exact controllability; a property which guarantees the

existence of an exponentially stabilizing control, is not possible if the system or

the control operator is compact. Certain parabolic systems and delay differential

equations are examples of such systems [6.5, 67]. In these cases strong stability may

play a useful role [!:. 22].

Strong stability involves tile state space. In other words, some states may be

strongly stable some may not. By the same token, it may be possible to strongly

stabilize a subset of the state space.

Moreover, since a norm can be regarded as energy, strong stability may be

interpreted as energy being dissipated in time while weak stability in general, does

not have such a physical meaning.

Most of the previous work on stability and stabilizability of distributed systems

deals with exponential and weak stabilities [7, 12, 13, 62]. Necessary and suffi-

cient conditions for exponential stability are known. However, there are no general
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conditions for weak or strong stabilities. Theseare the central problems of our

work.

This dissertation is organizedasfollows. Chapter 2 reviews the essential mathe-

matical notions and results on distributed systems. First, we state the fundamental

definitions and theorems on strongly continuous semigroups that will be needed in

subsequent chapters. Then we introduce the abstract state space model for linear

distributed systems and give definitions of controllability, stability and stabilizabil-

itv. Finally, results on stability and stabilizability of distributed systems that are

rclevant to our study are stated.

In Chapter 3, three different approaches to characterization of strongly stable

(mainly contractive) semigroups are developed. First, we apply the theory of dila-

lions of contractions to strongly stable contractive semigroups. It turns out that

every strongly stable contractive semigroup is "related" to the left shift semigroup

on an L -_ space. In Section 3.2, we introduce a decomposition for the state space

which identifies strongly stable and unstable states of a contractive system. This

decomposition then results in conditions for strong stability. Finally we investi-

gate extensions of Lyapunov equation for weak and strong stabilities of uniformly

bounded semigroups.

Chapter 4 is an application of the results of Chapter 3 for feedback stabiliza-

tion. First, we apply the state space decomposition developed in Section 3.2 to a

contractive system (A, t3) with feedback -B'. This results in conditions for strong

stabilization via tile feedback -B'. Then we apply the two extensions of the Lya-

punov equation investigated in Section a.a. Finally we show that the application of

the Lyapunov equation leads to some results concerning a linear quadratic regulator



problem for contractive systems.

Chapter 5 contains a discussionof our results and

directions.

ideas for future research
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Chapter 2

Background and Review

In this chapter we review basic mathematical fundamentals relating to linear dis-

tributed systems and define the terminology that will be used throughout this work.

We also present the key results on stability and stabilizability of distributed sys-

tems which are pertinent to our study. However, not all of the related results will

be stated here, instead, we will refer to them in the subsequent chapters as needed.

The abstract differential equation

_(t) = Ax(t) + B_(t) ,t > o

x(O) = zo

(2.1)

serves as a model for linear time invariant control systems. For each t, x(t) evolving

according to equation (2.1) is called the state at time t and belongs to a Hilbert

space H called the state space, u(t), called the control, belongs to a second Hilbert

space U, the control space. A and/3' are linear operators. When H and U are finite

dimensional, (2.1) becomes the familiar state space model for lumped parameter

linear control systems. If the state space H is infinite dimensional equation (2.1)
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describesa distributed control system.Tile operator A is taken to be the generator

of a strongly continuous semigroup of linear bounded operators T(t), t >_ O. Proper-

ties of the spaces H and U, and those of the operators A (hence the semigroup T(t))

and B determine the characteristics of the control svstem such as controllability and

stability.

2.1 Strongly Continuous Semigroups

The theory of semigroups of linear operators provides a convenient setting for study-

ing linear systems. A family of linear bounded operators T(t), t >_ 0, over a ttilbert

space H is called a strongly continuous (Co) semigroup if

(i) T(t)T(s) = T(t + _) for t,.s _> 0,

(ii) T(0)x = 2" for all x E H,

{iii) t _ T(t)x is a continuous mapping for t >_ 0 and each x C H.

The linear operator .4 defined by

Ax = lim T( l)x - x
t_O t

is called the infinitesimal generator of the semigroup T(t). The domain D(A) of A

consists of all those x in H for which the limit exists. We have:

Theorem 2.1.1 [3, 29] A linear operator .4 is the generator of a Co semigroup

T(t) on H if and only if

(i) A is closed and D(A) is dense in H,



(ii) There exist M > 1 and_ E _ (real) such that for each ,\ > _, A E p(A)

-resolvent set of,4- and for n >_ 0

_[o_eov_r lIT(t)ll _<3Ie _'t •

il(X_ _)"(x_r _ A)-_it <_M.

The resolvent set p(A) of A is the set of all complex numbers )_ for which the

operator (AI - ,4) has a bounded inverse. The family of linear bounded operators

R,(A)=(,\I-A)-' ,,\Ep(A),

is called the resolvent of ,4. The complement of the resolvent set in the complex

plane is the spectrum of ,4 and is denoted by or(A). Eigenvalues, or the point.

spectrum, form a subset of or(A). If liT(011 <_Me_' for some 4, then the spectrum

of the generator ,4 is contained in the halfplane {,_ : Re.)_ _< ,;}.

If A generates T(t), then its adjoint ,4" generates T(t)', which is also a Co

semigroup. The restriction to an invariant subspace of a semigroup and the direct

sum of semigroups are again semigroups.

Theorem 2.1.2 [29] Let A be the generator of a Co semigroup T(t) and l_t B be a

linear bouT_ded operator on the space H. Then ,4+ B also generates a Co semigroup

.5'(t) which ._ati_fies

Z's(t)x : T(t)x + r(t-_)BS(_) a_ ,x e U.

Moreover, if llT(t)l r <_Me _' then ]ls(0[I < Me (_+MIlBI1)'.

A Co semigroup T(t) is said to be compact if T(t) is compact for each t > 0.

T(t) is called uniformly bounded if tiT(011 _ M for some 3[ _> 1 and for all t >_ 0.

It is called a contraction or contractive semigroup when Ilr(t)ll < 1.



Theorem 2.1.3 [29] An operator A is the generator of a contractive semigroup if

and only if it is maximal dissipative, that is,

Re. [Az, x] <_ 0 for all x E D(A)

and A does not admit ang proper dissipative extension.

For a contraction semigroup T(t), t >_ O, the following are well defined closed

subspaces:

(i) Isometric subspace

H,(T) = {_ c H: llT(t)xll = flail for t >__0},

(ii) Unitary subspace:

H.(T) = H,(T)_ H,(T').

It is clear that H,(T) is invariant under T(t) and H_(T) reduces T(t), t >_ O. The

contraction semigroup Y(t) is called completely' non-isometric (c.n.i.) if Hi(T) =

{0} and is completely non-unitary (c.n.u.) if H,(T) = {0}. Since, by definition,

H,(T) c_ H,(T), it follows that c.n.i. _ c.n.u..

For a detailed treatment of the theory, of semigronps, we refer to [3, 14, 23, 27,

55, 70].

The following terminology" will be used in this work:

Definition 2.1.1 A linear bounded self-adjoint operator P is

(i) nonnegative if 0 <_ [Px, x] for all x E H,

(ii) positive if 0 < [Px,x] for all x E H,



(iii) st,'ictl9 positive tf al[zl[ 2 _< [Pz, z] for some a > 0 and for alI.r C H.

Example 2.1.1 Let K be a ttilbert space and denote by L2(!O, ec); K) the space

of K-valued functions z(t) such that

/7llxl[_== [Ix(t)ll_;dt< oc.

Then, L_([O,_c); K) equipped with the inner product

/j[z, g]L2 = [x(t),g(t)]Kdt

is a Hilbert space.

The family of operators L(t), t _> 0, on L2([0, oc); K) defined by

(l;(t)x) (s)= x(s + t)

form a Co contractive semigroup since ][L(t)zI]L2 <_ ][Xl]L2. L(t) is called the left

shift sem igro up.

A simple calculation shows that the generator of the left shift semigroup is

dx
(A_) (0 = 7/

with

dx

D(A) = {z: x absolutely continuous, _- C L2([0, zc); K),z(O) = 0} .

The adjoint of L(t) is given by

0 ,O<_s< t(R(t)z)(s)=(L(t)'x)(s)= x(s-t) ,t<s

and it is called the right shift semigroup. Since IIR(t)xll = II_ll for all x, R(t)is a

semigroupof isometrics. We have IIR(t)lf= IlL(Oil=-1, for t > 0. /k



2.2 Linear Distributed Systems

Consider the abstract homogeneous differential equation

_(t) = Ax(t)

z(0) = z0

,t > 0 (0_.2)

where for each t > 0 , x(t) is an element of an infinite dimensional Hilbert space H

and ,4 is the generator of a Co semigroup of linear bounded operators on H. Under

these conditions, ('2.'2) represents a linear autonomous distributed system. If T(t),

t > 0, is the semigroup generated by" A, then the unique (mild) solution of ('2.2) is

given by ,r(t) = T(t)xo.

The non-homogeneous equation

s(t) = Ax(t) + B_(t) ,

x(O) = zo,

(0_.3)

describes a linear distributed control system and is denoted by the pair (A,B).

The control u(t) takes values in the space U and, for our purposes, we take u(.) E

L2([0,_); U) and B to be a linear bounded operator from U to H. In this case, the

(mild) solution of (2.3) is of the form

.r(t) = T(t)xo+ T(t-_)Bu(a)da. (2.4)

We say that the system (A, B) is contractive if ,4 generates a contraction semi-

group, and conservative if A generates an isometric semigroup.

10



2.2.1 Controllability of Linear Distributed Systems

A state x ¢ H is said to be reachable (from origin) if there exist t > 0 and u(.) E

L2([O,t); _') such that

x = r(t-o)B4_)d_.

2-he characteristic of the system (2.3) that allows the control u(t) to steer the

state from one point to another in the state space is referred to as controllability.

There are various notions of controllability for distributed systems, all of which are

equivalent if the state space is finite dimensional [3, 7, 56, 63].

Definition 2.2.1 The sy.stem (.4, B) is exactly controllable if for every x E H,

there c.rist t > 0 and u(.) E L2([0, ec);U) such that

/o'x = T(t-cQBu(a)da.

The above definition is a natural extension of the concept of controllability in

finite dimensional systelrk_, tIowever, exact controllability is difficult to achieve and

many real life distributed systems are not exactly controllable [3]. For example

if the operator /3 or the semigroup T(t) is compact, then (A, B) is never exactly

controllable unless the state space is finite dimensional. In this work we will be

concentrating on the following weaker notion of controllability [6, 40]:

Definition 2.2.2 ,4 state :r in H is called (approximately) controllable if for e > O,

there is a u(.) E L2([O,t); _) such that

2'Ilx- T(t- _)B_4_)d_l[ < e for some t > O.

The set of all (approximat:ly) controllable states is

.IL(A,B) = U T(t)BU
t>0

11



where "= denotes the closure. The orthogonal complement in H of 3[c, denoted by

M_,c, is called the (approximately) uncontrollable subspace:

M_c(A, B)= A N(B'T(t)').
t>O

The .system (A,B) is (approximately) controllable if and only _ M_(,4, B) = {0}

,=_ M_(.4,B) = ti.

It follows that a system (A,B) is exactly controllable if every state in H is

reachable, and it is approximately controllable if the set of reachable states is dense

in H.

From now on, we will refer to "approximate controllability" simply as "control-

lability". It is easy to see that a state x E H is uncontrollable if B'T(t)'x = 0 for

t >_ 0 and the system (A, B) is controllable if and only if

B'T(t)'x=O for t>_0==_x=0

The following theorem shows that controllability of a distributed system is unaf-

fected by bounded perturbations.

Theorem 2.2.1 Let F be a linear bounded operator. Then (A,B) controllable

e==v (,4 + F, B) controllable.

2.2.2 Stability of Linear Distributed Systems

In control theory, stability of a system is of foremost importance. The autonomous

system (2.2) is stable if for every initial state x0 in H

x(t) ---,0 as t _ _.

12



Equivalently, a state Xo E H is stable if

T(t)xo_O as t_z_. (2.5)

Hence, stability of the semigroup T(t) determines stability of the system. In finite

dimensional state space, (2.5) implies that the decay is exponential. However, in

infinite dimensional state space, we have the following notions of stability:

Definition 2.2.3 The system (2.2) or equivalently, the semigroup T(t), t >_ O, is

(i) exponentially (e)-stable if there are constants M >_ 1 and oa > 0 such that

IIT(t)II _ Me -_' , t 2 0,

(ii) strongly (s)-stable if. for every x in H

llT(t)xl] _ 0 as t --+ _o,

(iii) tL'cakly (u,)-stable if. for all x and y in H

[T(t)x,y] + O as t + oc .

It is clear that e-stability => s-stability => w-stability. Also, by the uniform

boundedness principle, a stable semigroup is always uniformly bounded. We say

that the system (A, B) is stable if the semigroup generated by .4 is stable.

Note that if a semigroup T(t) is weakly or exponentially stable then so is its

adjoint T(t)'. This is not necessarily true for strong stability. For example, the left

shift semigroup L(t) of Example 2.1.1 is strongly stable but its adjoint R(t) (right

shift) is not since the right shift semigroup is isometric.

13



We now review the pertinent results on stability of Co semigroups. Almost all of

the previously reported works on weak and strong stabilities dealt with contraction

semigroups. This, as we shall see, is due to the fact that such semigroups have

certain special properties that can be exploited to arrive at conditions for weak and

strong stabilities. One of the most useful properties of contractions is the following

decomposition due to Sz.-Nagy and Foias:

Theorem 2.2.2 [51] To every contractive semigroup T(t), t >_ O, on H, there

corresponds a unique orlhogonal decomposition

H = H_,_,(T)O H_,(T)

where H_(T) is the maximal subspace which reduces T(t) to a unitary semigroup

while its orthogonal complement Hcn_(T) reduces the semigroup to a completely

non-unitary contractive semigroup. T(t) admits the unique canonical decomposition

T(t) = T_,_,(t) 0 T_,(t)

What makes the above decomposition applicable to the study of stability of

contractions is Foguel's characterization of the weakly unstable states.

Theorem 2.2.3 [20] Let T(t), t >_ O, be a contractice semigroup on H. Let

W(T) = {x C H : T(t)x --_ O weakly as t --* zc} .

Then, W(T) is a closedsubspacewhich reducesT(t). Moreover,_V(T) = IV(T')

and _V(T)l C_H_(T).

I'V(T) can be called the weakly stable subspace. Its orthogonal complement

IV(T) ± is therefore called the weakly unstable subspace. A contraction semigroup

14



T(t), then, is weakly stable if and only if W(T)" = {0}. Foguel's theorem shows

that a completely non-unitary contraction semigroup is weakly stable. Note that

this is only a sufficient condition.

Analogous to lI'(T), we can define M_(T) to be the strongly stable subspace of

a semigroup T(t):

::,(T) = {_ c H llT(t)xll --+0 as t _ _} .

There are no general conditions for a Co semigroup to be weakly or strongly

stable, tIowever, under certain situations, weak and strong stabilities are equivalent.

Fortunately, most physical systen_ have these properties [.3, 23].

Theorem 2.2.4 [5] Let T(t), t > O, be a Co semigroup.

strong stability prot_id_d, either

(i) The generator A has a compact re.solvent,

OF

Weak stability implies

(ii) T(t) i_ s:lf-a,tjoint.

Recently; Levan [t0, 43, 45, ,16] and Miyaji [18] investigated strong stability of

Co semigroups via several different approaches. We will be referring to their work

later on.

The strongest type of stability is exponential stability. First, we have:

Theorem 2.2.5 [3] /f the semigroup T(t) is compact for some t > O, then weak

stability implies exponential stability.

15



Necessaryand sufficientconditions for a C0 semigroup to be exponentially stable

are known. The following theorem which can be regarded as the infinite dimensional

analog of Lyapunov's theorem on stability of matrices, was proven by Datko:

Theorem 2.2.6 [12] Let T(t), t >_ O, be a Co semigroup with generator ,4 in H.

Tl_e following statements are equivalent:

(i) T(t) is exponentially stable.

(ii) Tl_ere exists a self-adjoint, positive operator P > 0 on H satisfying

,2Re. [PA.,x] = -tlxll =

for all ,r il_ tt_e domain D(A) of A.

(iii) For all x in H,

_O °°
IIZ(t)xll=dt< _ .

Condition (ii) may be replaced by

2 Re. [PAx,x] = -[Wx,x],

where IV is a self-adjoint, strictly positive operator, i.e., [Irx,,r] >_ ollxll 2 for some

a > 0. In this case, W defines an equivalent norm.

The third condition of the theorem was generalized by Pazy:

Theorem 2.2.7 [54] A Co semigroup T(t), t >_ O, on a Banach space is exponen-

tially stable if and only if for 1 <_ p <_ _z

_0 °Q
Ilxll_= ( lIT(t)_llPdt)_/p < _ •

16



Moreover, ][. lip defines art equivalent norm if and only if there ezists to > 0 and

c > 0 such that, for ceery x,

ItT(t0)xll> cllxll•

2.2.3 Stabilizability of Linear Distributed Systems

Suppose the system

::(t) = Ax(t) + B_(t)

is not stable in any sense. Feedback stabilization or stabilization in short, is the

problem of finding a linear feedback operator F : H ---, U so that the system

with the feedback control u(t) = Fx(t) is stable. The system (A,B) is said to

be weakly, strongly or exponentially stabilizable if such an operator F exists that

weakly, strongly or exponentially stabilizes the system.

Thus, stabilization of the system (2.3) is equivalent to the stability of the fol-

lowing system with the perturbed generator:

)(t) = (A+ BF)x(t) (2.6)

x(0) = xo.

The solution of this differential equation is

, >__x(t) = _(t)_0 t 0

where S(t), t >_ 0, is the Co semigroup generated by A + BF. The stabilization

problem, then, can be restated as: given a semigroup T(t) with generator ,4 on H,

find an operator F • H _ U such that the semigroup S(t) generated by A + BF is

stable.

17



Benchimol proved the following, which is a refinement of earlier results on weak

stabilization of contraction semigroups [52, 53]:

Theorem 2.2.8 [5] Let A be the generator of a contraction semigroup T(t) on

H, and B a linear bounded operator from another Hilbert space U into H. Then

the semigroup S(t) generated by A- BB* is weakly stable if and only if the weakly

unstable subspace of T(t) is (approximately) controllable.

.\nother way of stating the above theorem is that the contractive system

.b = A.c + Bu is weakly stabilizable by the control u(t) = -B':c(t) if and only

if IV(T) ± _C M_(A, B). This choice of control is robust in the sense that it does

depend on the characteristics of the uncontrolled system. The result also applies to

semigroups which are similar to contractions.

Other types of feedback controls for weak stabilization of both general Co semi-

groups and quasi-affine transforms of contraction semigroups have been studied by

Levan [43]. Levan showed that using a feedback involving a solution of the steady

state Riccati equation, a Co semigroup can be approximately weakly stabilized. The

stabilization is approximate in the sense that the feedback semigroup is stable on a

dcnse subspace instead of on the whole space [4t].

When the generator of the original semigroup T(t) has compact resolvent, weak

and strong stabilities are equivalent. Indeed, most of the results on strong sta-

bilization are derived for systems with compact resolvent [4, 6]. However, using

state space decomposition techniques, Levan and Rigby gave the following results

on strong stabilization of contractive semigroups:
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Theorem 2.2.9 [38, 46] Suppose that for a contractive system (A, B)

H_(T) = M,(T) = M,(T').

Then the system is strongly stabilizable bg the feedback -B" if and only if H_(T) is

controllable for (A,B) or for (.4", B).

Finally, we give the key results on exponential stabilization. As in the case of

weak and strong stabilizations, (exact) controllability also plays an important role

in exponential stabilization.

Theorem 2.2.10 [71] lf the pair (A, t3) is exactly controllable, then it is exponen-

tially stabilizable.

Note that exact controllability is sufficient but not necesary for exponential

stabilization.

Exponential stabilization is related to optimization problems involving quadratic

performance indices [13, 62]. Techniques used in finite dimensional optimal control,

when applied to distributed systems, yield the following necessary and sufficient

conditions for exponential stabilization:

Theorem 2.2.11 [3, 56] For the system k = Ax + Bu, x(O) = Xo, the following

conditions are equivalent:

(i) The system is exponentially stabilizable.

(ii) For eeery initial condition Xo E H, there exists a control u such that

+ ll (t)ll )dt <

where R is a strictly positive operator.
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(iii) There exists a nonnegative operator P satisfying the steady state Riccati equa-

tion

[PAx,.r]+[x, PAx]+[Rx, xl-flB'Pxll2=O ,xE D(A). (2.7)

Moreorer, the stabilizing fiedback control is u(t) = -B'Px(t).
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Chapter 3

Stability

This chapl er is divided into three sections. Each section covers a different approach

to characterization of strongly stable (mainly contractive) semigroups. Section 3.1

is an operator theoretic approach and shows that every strongly stable contraction

semigroup is related to a shift operator on an L 2 space. In Section 3.2 we develop

a new state space decomposition with strong stability in mind. Strongly stable

and unstable subspaces are characterized and conditions for strong stability are

obtained. Finally, in Section 3.3 we investigate Lyapunov type approachesto strong

stability of uniformly bounded semigroups.

3.1 Dilations of Contractions and Strong

Stability

Structures of linear operators in finite dimensional spaces are obtained from the the-

ory of Jordan canonical form. Generalization of this theory to infinite dimensional

Hilbert space operators is the so called model for an operator. A canonical model
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for an operator is a representationof the operator in terms of "simpler" operators

which admit "richer" structures. A dilation of an operator is a particular form of a

canonical model where the given operator is represented as part (or compression) of

a naturally associated operator of a better understood type on a larger space. Thus

if (_ and T are operators on Hilbert spaces H1 and H2 , respectively, U is called

a dilation of T whenever H2 C_ H1 and T = P2U]H_, where P2 is the orthogonal

projection onto H_, and ]H_ denotes the restriction to H2.

The theory of dilations of contractions was initiated by Halmos and was fully

developed by Sz.-Nagy and Foias who showed that every contraction operator can

be dilated to a unitary operator. Dilations of semigroups were also investigated by

these authors.

In this section, strong stability of contraction semigroups will be studied from

tile point of view of their dilations. Results on dilations can be found in [16, iS, 25,

49, 50, 51]. Here, we wilt obtain several extensions by studying the problem from

the context of strong stability.

Let T(t), t >_ O, be a contractive semigroup with generator ,4 in H. Since

llT(t).rIl _<IIxII for all x and t >_ O, IIT(t)xll is a non-increasing function of t. Next,

we have,

o < IIT(t)xll = [T(t)'T(t)x,x] < [x,x],

which shows that the nonnegative contractions T(t)'T(t) are bounded and non-

increasing in t.

(say),

Hence, they converge strongly to a nonnegative contraction C 2

lira T(t)'T(t)x = C2x .
_00
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Therefore,

Now, for x E D(A),

Therefore

lim I[T(t)xII2= I[Cxl[ 2.
t _ ¢',O

d
_llr(t)xll _ = 2 Re. [Ar(t)x,Z(t)x] 50.

o_0 tIlxll=- Ilr(t)xll =- -2 Re.[Ar(_)_,T(_).r]d_.

Since limt_>_ tlT(t).rll 2 < _, we obtain by letting t _ oc:

/jll_ll_ --IlCxll_ - 2 Re. [AT(t)a:,r(t)_]dt. (3.1)

Let Ix, y],, be the symmetric sesquilinear form on D(A) defined by [x, 5'1,, =-

-[Ax, 9] - Ix, .49]. Then it is nonnegative definite by the fact that A is dissipative.

Hence. Ix,9],, defines an inner product on D(A) [8]. Let K be the completion of

the subspace D(A) modulo the set of "zero" elements, i.e., [x,x],_ = 0. Then (3.1)

can be rewritten as

/0Ilxlt2 = lied:It2+ llr(t)a:ll_d¢, for x e D(A).

This shows that for each x E D(A), T(t)x is in the space L_([0, oc);h'). Let

_: D(A) ---* L2([0, de); h') be the linear transformation defined by (f'tx)(t) = T(t)x,

then

llxll== IlCxll=+ II_11_=, for x (E D(A). (3.2)

It follows that each x in D(A) can now be represented by the element Ca: G fix

of the space R(C) O L2([0,<x_); K), where R(.) denotes the range. Let E: D(A) --*

R(C) ® L2([0, oc); K) be defined by

Ex = Cx G fla: ,
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then IlxlI = IIXxlt from (3.2). We therefore have an isometric representation for

D(A). Moreover, since D(A) is dense in H, E can be extended to all of H. The

above shows that the original space H can be "embedded" in the space R(C)O

t2([0, _c); A').

By considering the representation of T(t)z in the larger space constructed above,

we obtain a dilation of Y(t). We have

_r(t).r = cr(t)_ e nr(t)_ ,x e/)(.4).

Let L(t) be the left shift semigroup on L2([0,_); K) as defined in Example 2.1.1,

then we can write

(_r(t),r)(r) = r(r)r(t)z = T(r + t)x = (L(t)fDc)(r).

More is true. We can define a second semigroup on R(C) by I/(t)C = CT(t). We

have,

II_(t)c_,ll_= IlCr(t)_ll _ = _im Ilr(,)r(t)_ll _= IIC_II_.

Thus I'(t) is also isometric. Therefore,

(3.3)

ft)r .r in D(A), and by continuity, for all :r in H.

We conclude that the semigroup

u(t) = v(t) • t(t)

defined on the space tt(C)@L2([0, _c); K) is a dilation of the contractive semigroup

Y(t). From (3.a), since E is isometric (E'E = I), T(t) admits the representation

= _ L_(t)sr(t) "" " .

24



Note from (3.3) that the closedsubspaceR(E) is an invariant subspacefor _'(t).

Hence, T(t) is isometrically equivalent to the restriction of t_(t) to an invariant

subspace.

If T(t) is strongly stable then of course, C = 0 and the above representation

takes the form

T(0 = E'L(t)E ,

or T(t) is isometrically equivalent to the left shift L(t) on L2([0, x);/(), restricted

to an invariant subspace.

Suppose now that a contractive semigroup T(t) is such that T(t) = E'L(t)[.vE

for some isometry w and some invariant subspace N of L(t), then

llT(t)xll = IlE"z:(t)INExll

= ]IE'L(t)P, vExII

< IIE'II IIL(ORvExll

< ItL(t)P.  xll 0 as t

which shows that T(t) is strongly stable. Thus, we have proved:

Theorem 3.1.1 A contractive semigroup T(t) is strongly stable if and only if

it is isometrically equivalent to the restriction of the left shift semigroup L(t) on

L2([0,,zc); K) to an invariant subspace.

The above theorem was indicated by Fillmore [18]. One half of it also appears in

the context of the theory of scattering [36, 37], where the semigroup related to the

scattering operator turns out to be a strongly stable contraction. The shift repre-

sentation is then a consequence of the application of the translation representation

theorem for groups of unitary operators.
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We note that in the abovetheorem the semigroupT(t) can actually be expo-

nentially stable. In other words, an exponentially stable contractive semigroup also

has the same shift representation. Although exponential stability implies strong

stability, here we will not consider this case; instead we look for weaker conditions

for strong stability. The following Proposition provides a means of verifying the

lack of exponential stability of contraction semigroups.

Proposition 3.1.1 If a contractive semigroup T(t) is strongly stable but no_._2texpo-

ne,ttiallu ,stable, then Ilr(t)li = t for t >_ O.

Proof." Since Z(t) is a contraction, IIZ(t)ll _<1. Suppose IlT(t0)ll < 1 for some

to > 0. Then T(t) must be exponentially stable [3]. Therefore, there is no such

to > 0 and we must have IIZ(t)ll ; 1 for t >_ 0. []

Example 3.1.1 Let {6,_, n = 1,2,...} be orthonormal basis for the space H

and let

T(t)x = _ e--'-" [x, 6,_1¢_
n=l

Then T(t) a strongly stable contractive semigroup and

llT(t)ll = supll_ll=a llT(t)xll = lim e-'_ = 1
n_OO

Therefore T(t) is not exponentially stable. A

Note that a contraction semigroup with IlT(t)[l = 1, t >_ 0, need not be stable in

any sense. But, if a strongly stable contractive semigroup is such that HT(t)[] = 1,

then it cannot be exponentially stable. A class of semigroups with this property are

those contraction semigroups T(t) whose adjoint semigroup T(t)" are isometries,

lIT(t)'xlt = Ilxl] for all x and t _> 0, in other words, T(t) is a co-isometry.
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Theorem 3.1.2 [18] .4 co-isometric semigrroup T(t), t >_ O, is stronglystable if and

only if it is unitarily equivalent to the left shift semigroup L( t) on all of L2([O, _c); K)

where K is an auxiliary Hilbert space.

Requiring the adjoint semigroup to be isometric is still too strong a condition.

We now give a weaker condition for a contractive semigroup to be strongly stable

but not exponentially stable.

Theorem a.l.a A contractive semigroup T(t) is strongly stable but no_2texponen-

tially .stable if it is unitarily equivalent to the left shift semigroup on L2([0, x); K)

restricted to a reducing subspace.

Proof." Suppose

T(t) = E*L(t)l.v2

where E : H _ L:([0,_); K) is unitary and N is reducing for L(t). Since N is

reducing, it is invariant for both L(t) and L(t)'. Let P.v be the projection onto N.

T hen,

P,,¢L(t)PN = L(t)P,u = PvL(t)= L(t)lx

and

PxL(t)*Px = L(t)'Px = PxL(t)" = L(t)'[.v.

Hence, the representation of T(t) can be rewritten as

T(t) = E L(t)PN,-, = E*P?¢L(t)E

We need to show that ]]T(t)xt[ ---, 0 for all x as t ---+_c and ]]r(t)]l = 1 for t > O.

For x in H, we have

ItT(t) ll = II 'L(t)P ,,- xtl I1 'II llL(t)P x; mll
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IIL(t)P_xrExl[.

But the left shift semigroup on L:([0, oc);K) is strongly stable. Therefore,

IIT(t)xll _ 0 as t _ _, proving the first part of our claim.

To show that liT(011= 1 for t >__0, _rst we observe that the adjoint semigroup

has the representation

T(0"= Z'PxL(0"Z = _'t(t)'P,,_ = Z'r_(t)'l_,_Z (3.4)

which shows that T(t)" is unitarily equivalent to the restriction of L(t)" to an

invariant subspace.

It is well known that the adjoint semigroup L(t)* of the left shift semigroup is

the right shift semigroup R(t), t > O, which is an isometry, and the restriction of an

isometry to an invariant subspace is again an isometry. Hence, L(t)'[x = L(t)'Px is

isometric and ]IL(t)'Pu][ = 1. Since EE* = E'E = I we have L(t)'PN = ET(t)'E"

from equation (3.1), and

1 = I[L(t)=PNII = II_T(t)=_'II IIT(t)'ll I1_1111_'11

< 1.

Therefore, IIT(t)'ll = IlT(t)ll = 1 for t >_0. This completes the proof. []

\Ve note that a necessary and sufficient condition for strong stability of a con-

tractive semigroup is that the semigroup be isometrically equivalent to the left shift

restricted to an invariant subspace, as given in Theorem 3.1.1. On the other hand,

Theorem 3.1.2 gives a necessary and sufficient condition for a semigroup to be co-

isometric and strongly stable. In this case, the semigroup is unitarily equivalent to

the left shift. Our result, then, is the "in between" case where the semigroup is uni-

tarily equivalent to the restriction of the left shift to a reducing subspace, and this
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is only sufficient for strong stability. These results may be regarded as outcomes of

a certain method of constructing dilations for contractive semigroups as mentioned

at the beginning of this section.

There are other methods of constructing dilations for contractive semigroups,

however they are not suitable for the study of stability. The theory of dilations

for contraction operators (more correctly, discrete semigroups) is well developed

[16, 51], which can be applied to semigroups via the notion of a co-generator.

The co-generator of a contractive semigroup T(t) with generator A is defined by

T = (A + I)(A- i)-1

and it is a contraction. It is easy to see that A is uniquely determined by T.

Ilence, F(t) is also uniquely determined i y T. T" is the co-generator of the adjoint

semigroup T(t)'. It can be shown that any contraction T for which 1 is not an

eigenvalue is the co-generator of a contractive semigroup. Properties of a contraction

semigroup can be obtained from those of its co-generator and vice versa. We have:

Proposition 3.1.2 [18, 51] A Co semigroup of contractions T(t) is normal, self-

adjoint, unitary, or isometric if and only if its co-generator T is normal, self-adjoil_t,

unitar.q, or isometric, respectively. Moreover, a subspace N is invariant for r(t) if

and only if it is invaria,_t for T, in which case TINis the co-generator of

The following proposition on the relationship between the asymptotic behaviours

of T and T(t) is the key to the study of the stability of the semigroup via its co-

generator.
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Proposition 3.1.3 [51] Let T(t), t > 0 be a Co semigroup of contractions and let

T be its co-generator. Then

lim IIZ_xll--lim IIT(t)xll and lim [IT'_xll_-lim IlZ(t)'xll for all x.

It follows that characterizing contractions which are co-generators and whose

powers tend to zero strongly is equivalent to characterizing strongly stable contrac-

tive semigroups. There are a number of results on the subject, and the pioneering

work, which is complete in itself, is that of Sz.-Nagy and Foias [51]. They have

classified contractions according to their asymptotic behaviour and characterized

each class. Although these results are applicable to strongly stable contractive

semigroups, this approach is limited since it is rather difficult to compute the co-

generator. But in some cases, given a generator it may be easier to compute the

co-generator than the semigroup itself. Then strong stability of the system can be

investigated through the application of the abovementioned results.

Example 3.1.2 The right shift semigroup on L2[0, _c) defined by

0 ,0_<s<t(n(0x)(_) = _(_-t) ,t_< s

is a semigroup of isometrics. Its adjoint is the left shift semigroup L(t):

(t(t)_) (_) = _(_ + t)

We shall show that the co-isometric semigroup L(t) is strongly stable by showing

that the powers of its co-generator tend to zero strongly.

The generator A of R(t) is given by

dx

de

D(.4)
d,r

= {x'x absolutely continuous,_- s E L2([O,_);K),x(O)= 0}.
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Let

z = (.4+ z)(A- I) -1

be the co-generator of R(t). It follows that

/o"(zx) (_) : x(_) - 2 e-' e_x(_)_,

and it is easy to verify that Z is an isometry. The adjoint of Z

/?(z'x) (,_): x(_) - 2 e' e-'x(_)_

is the co-generator of L(t).

To show that

IIZ'_ll _ o as /,-_ _,

we use a decomposition for the state space that can be summarized as follows [51].

Let Z be an isometryon a Hilbert space H and let a E N(Z') whereN(-) denotes

the nullspace. Then if (span{Z"a},__0) ± = {0}, {Z'_a},T__o form an orthogonal basis

for H. Letting fn = Z'_a we have, for x E H,

oo

x = y_ [x,f=lf,_
rL=O

With this decomposition, Z "k acts as a shift of coefficients by k units to the left:

c,o

Z'kx = _ [x,/,,+k]f, .
rt=O

In our case, we take the isometry Z to be the co-generator of R(t). It turns out

that for a(s) = _ e -_, the functions Z'_a, called the Laguerre functions, form an

orthonormal basis for L2[O, _c).
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Hence, letting A(s) = Z'_(v_2 e -s) the co-generator Z" of the left shift semigroup

has the representation

(z'_)@) = E [_,A+q_A(_)
n=0

Therefore,

OlD

tl(Z'h-)(_)ll[_ = E I['T,f,,+NL_I_

= E I[x,f..]L_l_ ,
m=k

which shows that It(Z£_) (._)IIL_-_ 0 as k _ o_. &

3.2 Decomposition of the State Space

We develop in this section a decomposition for the Hilbert space H on which a con-

traction semigroup T(I), t >_ O, acts. This decomposition depends on the strongly

stable subspace 3Is(T) of the semigroup T(t), defined by:

Ms(T)={xCH:T(t)x--*O as t---)oc}.

Consequently, conditions for stability can be found by requiring this subspace to be

all of H.

We must note that decomposing a state space into stable and unstable subspaces

is a familiar technique in the study of finite dimensional systems. This technique

has also been used in the case of weak stability of contraction semigroups [5], and

in exponential stabilizability [66].

Let A be the generator of a contraction semigroup T(t) and define the set

3,;= {x6 D(A)" Re. [Ax, x] =0}.
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Then, of course, ._" is a subset of D(A). Moreover,

Proposition 3.2.1 ,_r is a closed subspace.

Pro@ Let

S = (A + 5(A- Z) -_

be tile co-generator of the semigroup T(t). Then 5' is a contraction which does not

admit 1 as its eigenvalue, and A = (S + I)(S - I) -_. Define the set

HI = {y E H IlSyl] = llyll},

[ ]leD.:

0 = ItSyll_-Ityll =

= [sv, syl-[>y]- Re.[&,y]+ ae.[&,y]

= Re. [(S + I)y,(S- I)y].

Let (S - I)y = x, then x E D(A) and y = (S - I)-'x. Therefore,

o = Re. [(S + 5(S- 5-'x,x]

= Re. [Ax, x] ,

or Hi C_ .t'.

Now, suppose x E ,_', then 0 = Re. [:Ix, x] = Re. [(oc + I)(S- I)-'x,x]. Let

(S- I)-'x = y so that x = (S- 1)9. Hence, 0 = IlSvlI_- II,dll_, or IlSvll = tlvll. We

therefore conclude that:

= {_ e D(A): Re. [Ax,x] = o}

= {y e H: IlSvll- llyll}

H 1 •
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But, since S is a contraction, tiSylI -- ]Iyll _ S-Sy -- y, or ([ - s*S)y = 0.

This shows that

H_ = N(I- S'S) =._',

where N(.) denotes the nullspace. Hence, ._r is a closed subspace as expected. []

Now, recall that the isometric subspace of a contractive semigroup T(t) is defined

as

H,(T) = {z E H: llT(t)xl[ = [Ix[I for t >_ 0}.

Since T(t) is contractive, the operators (I - T(t)'T(t)), t >_ O, are nonnegative, and

clearly

H,(T) = _ N(I - r(t)'T(t)) .
t>O

The sets N(/- T(t)'T(t)) are decreasing in t since for x E N(I- T(t + s)'T(t + s)),

t,s _> O, we have

ll.lt== I[T(t+ _).1t=

by the fact that T(t), t >_ O, is a contraction. Therefore, llr(t)x[I = llxll or x E

N(I - T(t)'Y(t)), proving that for t2 >_ t_,

N(I- T(t_)'T(t2)) C_ N(I- T(t,)'T(t,)) .

It then follows that,

Hi(T) = ('1 N(I- T(t)'T(t))
t>O

= {x E H: lira llr(Oxll- llxll}.
t_O_

(3.5)
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We have seen in the proof of Proposition 3.2.1 that ,%" = H, = {x E H : ]]Sx][ =

[]z]]}. We now define the subspaces

H_ = {x e H: IIS%:II= I1zJl},for ,_>__0.

Then H,_+I C_ H,_. To see this we only have to note that

II,II= IIS_+',II _<IIS"_ll_ I1_11,for x c nn+,.

Hence, :c E H,_. Thus, the subspace

b xl[ ]txl[ for n 1,2,.. } ,n,(_e) = {xe n: tl'" = = ..

which is the isometric subspace of the co-generator S, can also be expressed as

H,(S) = f-hH_
n>O

= {x6H: _Lm_IIS_ll = I1_11}• (3.6)

This shows that IL(S) C_ Ht = 3, 7. But, since lim_-,oo IIS_xll = limt_o_ IlT(t)zII for

all z, we have actually shown that (3.5) and (3.6) are equivalent. More is true as is

shown in the next proposition.

Proposition 3.2.2 The subspace Hi(T) is the largest .subspace of ,V which is in-

variant for T(t).

Proof." Suppose ,t4 C A" is an invariant subspace of T(t).

T(t)z is also in ,'v4 and

0 = Re. [Ar(,)x,r(t).]

Therefore, ]lT(Oxl[ = II*ll, or x c Hi(7").

1 d
= g _ltr(t)*ll =.

Then, for x E .t4,

[]
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Let ,'k''± be the orthogonal complement in H of ."_', then we have

H

(3.7)

where L is the orthogonal complement of H,(T) in ,_'. We can now prove:

Theorem 3.2.1 /f the co-generator S of a contractive semigroup T(t) is nonneg-

alice, then the semigroup is strongly stable.

Proof" We have shown that 3," = H1 = N(I - S'S). Let x E ,_', then S'S.r =

x = ._q'2x since S is self-adjoint. Set Sx = y so that Sy = S2x = x. Therefore,

S(x - y) = -(x - y). But since S is nonnegative we must have x = y. Hence, if

.r E A" then Sx = x, which implies that 1 is an eigenvalue of S. This is not possible

by the fact that S is a co-generator. Therefore Sx = x =_ x = O, or _r = {0}, which

further implies that H,(T) = {0}, i.e., r(t) is c.n.i.. Hence, T(t) is also c.n.u.,

therefore it is weakly stable [5]. Moreover, since S is self-adjoint, so is T(t). In this

case weak stability implies strong stability. []

Remark: We note that the generator of a contractive semigroup which satisfies

the conditions of the above theorem also has some special properties. First, A is

self-adjoint since T(t) is. Also, we have for all z, 0 _< [Sz, .r] = [(,4 + I)(A- [)-_.r, z].

Letting (A - I)-lx = y,

0 < [(A+I)y,(A-/)y]

= tlmxll_-Ilxll _ - 2i Im. [,4.r,.r]

= IIAxil_- Ilxll_
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since [Ax,x] is real. This shows that Ilxll_ _ IIAxII2 for an x • D(A) or A is

invertible. Also, since A is dissipative and self-adjoint, -,4 > 0 and it is also

Ainvertible. -A -1 is called an abstract potential operator [70].

For a contraction semigroup T(t), t >_ 0, the operator C defined by

C 2 = lim T(t)*T(t)

which was introduced in Section 3.1 is a nonnegative contraction.

Proposition :3.1.3 that

IlC.II_ = lirn II,_¢nx[l_

It follows from

where S is the co-generator of T(t). We can therefore define the isometric subspace

&(T) as

H,(T) = {x • tI: llCxll = Ilxll}.

But, since (7 is a nonnegative contraction we have

H,(:r) = {xCH:Cz=x}

= N(I - C).

This shows that Hc,,_(T) = R(I - C). The decomposition (3.7) now becomes

H = N(I - C) @ L @._'". (a.s)

Therefore, L _,9 "I = N(I-C) I = R(I- C). We then have, since C is self-adjoint,

H = N(I- C) @ a(I- C). (3.9)

Next, we further decompose R(I - C). First, we observe that N(I- C) 2_ N(C)

since, for x in N(I- C) and y in N(C):

[x,y]= [c_, y]= [x,cv] = 0.
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Therefore,by (3.9)

and wehave

N(C) C_N(X -C) l = R(I - C)

H = N(I-C)@M@N(C) (3.10)

= R(C)®N(C)

where .11 is the orthogonal complement of N(C) in R(I - C). It follows from (3.9)

and (3.10) that

M= R(C)NR(I-C ) . (3.1 t)

ttence, the decomposition (3.10) becomes

H = N(I - C) @ (R(C)NR(I- C)) @ N(C). (3.12)

_ O_,V _

N(C) = {xEH:Cx=O}

= {_ _ H- lim IIT(t)/ll = O}
b.-*_

Therefore,

Theorem 3.2.2 Let T(t) be a contractive semigroup on H. Then H admits the

orthogonal decomposition

H = H,(T)• M ® M_(T)

= N(I-C)®M@Ms(T) (3.13)
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_h c Fe

C 2

M,(r) =

lim T( t)'T( t)
t_O0

R(C)_R(I-C)

{x C H' lim IlT(t) lt = o).

Remark: We note the following properties of each subspace of the decomposi-

tion:

(i) For all x in N(I - C), Cx = x. Therefore, C = C = on this subspace and it

is invariant for C. It is also invariant for T(t), since N(I- C) = HdT ) and T(t) is

isometric on N(/- C).

(ii) M,(T) is invariant for T(t) since

T(t)x_O as t_o¢

on this subspace. Clearly, it is also invariant for C.

(iii) For x E M, liCxll < Ilxll. To see this, we observe that if liCxII = I[x[]

then x E N(I - C) = Hi(T), which is not possible. Therefore, we conclude that

llC.rll < IlxH by the fact that C is a contraction. In addition, since &(T) and

M,(T) are both invariant for T(t), M is invariant for T(t)*. A

We now investigate the stability of contraction semigroups using the decompo-

sition developed above. For a contraction semigroup to be strongly stable, Ms(T)

must be all of H. That is, N(I - C) and M both must be trivial. The subspace

N(I - C) is the isometric subspace of T(t) as we have seen above. Therefore, a

strongly stable contractive semigroup must necessarily be completely non-isometric.
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Proposition 3.2.3 Let T(t) be a contractive semigroup with generator A on H.

Let P be the linear bounded nonnegative operator defined by

/7[Px, x] = -2 Re. [AT(t)x,r(t)xldt ,x ¢ D(A). (3.14)

Then, T(t) is c.n.i, if and only if P > O.

Set

Proof." \Ve have, for x E D(A),

I[:rll2- IlCxll = --2 Re. [AT(t)x, T(t)x]dt . (3.15)

_0 °°[1-Ix, x] = -2 Re. [AT(t)x,T(t)x]dt

where [I = I - C 2 > 0. This shows that if there exists a P satisfying (3.14), then

P=[I.

By definition, Px = limt__(I- T(t)'T(t))x, x E D(A). Since 0(,4)is dense,

P can be extended to all of H. \Ve have

N(C) = lim N(I- T(t)'T(t)) = H,(T).
t-,-* OO

Therefore, N(P) = Hi(T), which proves the proposition. []

An immediate consequence of Proposition 3.2.3 is tile follm_,ing stability result.

Corollary 3.2.1 If there exists a linear bounded positive operator P satisfying

(3.1_), then T(t) is weakly stable.

We can actually state a necessary and sufficient condition for strong stability

along the same lines as Proposition 3.2.3.
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Theorem 3.2.3 A contraction semigroup T(t) with generator A is strongly stable

if and only if

77Ilxll2 -- -2 Re. [.4T(t)x,r(t)z]dt ,z e D(A). (3.16)

Proof: Suppose T(t) is strongly stable. Then Cz = 0 in (:3.15) and consequently

(3.16) holds. Conversely, suppose (3.16) holds, then replacing x by T(t)x, we have

IIT(t)xil_ = -2 Re. [Ar(_,)x,T(_)x]d_

for x 6 D(A). Letting t _ zc, we see that is T(t) strongly stable on D(A). T(t)

being a contraction and D(A) being dense in H, this extends to all of H. []

If the generator A has compact resolvent, weak stability implies strong stability-

for an 3 Co semigroup. In the case of c,,,,tractions, the compact resolvent assumption

gives us more as in the next theorem.

Theorem 3.2.4 [39, 46] Let T(t) be a contraction semigrou p with generator ,4. /.f

A has compact resolcent, then T(t) is strongly stable if and only if it is c.n.i.

To proceed further, we need the following result due to Fillmore and Williams:

Lemma 3.2.1 [19] Let A and B be bounded nonnegative operators on H.

A : B = A(A + B)-lB. Then A : B is also bounded and nonnegative and

R(A) ("1R(B) c R(A: B).

De fin e

Taking A = C and B = ([ - C), we find n(c)nn(z- c) c R(C - C:).

One can actually obtain this directly as follows. Let y C R(C) 71R(I- C), then

y = Cx = (I-C)z for some x and z in g. Therefore Cx = z-Cz, or C(x+z) = z,
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which shows that z E R(C). We then must have z = Cw for some w. Substituting

this, we find y = (C - C2)w, proving the above result.

Xlore can be shown. Let x 6 R(C - C2), then x = (C - C2)v = ([ - C)Cv =

C([- C)t, for some t,. Hence, R(C- C 2) C R(C)f"lR(I- C) and we conclude:

R(C)_R(I-C) = R(C-C 2)

or, R(C-C _) C_ M.

The next step is to require the subspace M to be trivial. We have:

Lemrna 3.2.2 The subspace M in (,7.13) is trivial if and only if C is a projection

operator" (C = C2).

Proof." _ Since R(C- C 2) C_ M, if M = {0} then R(C- C 2) = {0} as well.

This implies that C - C 2 = 0 or, since C is already nonnegative, C is a projection.

e= If C(= C 2) is a projection then

N(C)

N(I- C)

H

= R(C) ± = R(I- C)

= R(I-C)±=R(C) and

= N(I-C)_SN(C) ,

which shows that M = {0}. This completes the proof.

\Ve then have:

[]

Theorem 3.2.5 ' A c.n.i, contraction semigroup T(t),t > O, over H is strongly

stable if and only if C is an orthogonal projection on H.

The problem is then to find conditions for C to be a projection operator.

1Theorem 3.2.5 was proved by a different method by Levan and Rigby [46].
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Theorem 3.2.6 For a contraction semigroup T(t), the operator C is a projection

under any of the following conditions:

(i) The generator A has compact resoh'ent.

(ii) T(t) is normal for t >_ O.

(iii) T(t) is self-adjoint.

(iv) T(t) is co-isometric.

Proof:

(i) If .4 has compact resolvent weak and strong stabilities are equivalent, or

Ms(T) = II'(T). IIence,

M,(T) ± = W(T) x c_ H_,(T) c_ H,(T).

But this implies H,(T) _ M C_ Hi(T) by the decomposition (3.13). Therefore we

nmst have C = C 2.

(ii)-(iii) First, we note that a self-adjoint semigroup is also normal since T(t)'T(t) =

Y(t)T(t) = T(t)T(t)'. We have, from the spectral theory of normal operators [58],

[I_,_,(T) = 34(T). Therefore,

M,(T) c_ Ms(T) + M= H_,_,(T)

C_ H_,_(T)= M,(T).

ttence, M = {0} and C is a projection.

(iv) Suppose T(t)" is isometric, then T(t)T(t)"

T(t)'T(t) are such that

= I. So, the self-adjoint operators

(T(t)'T(t)) (T(t)*T(t))= T(t)'T(t)
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or, they are projections. Therefore

C 2 = lim T(t)'T(t) = C.
t_OO

[]

In the previous section we presented a characterization of strongly, stable co-

isometric semigroups via the dilation theory approach (Theorem 3.1.2). We can

now give another characterization via the decomposition developed above.

Lemma 3.2.3 A co-isometric semigroup is strongly stable if and only if it is c.n.i..

t)roof: Suppose T(t). t > 0 is co-isometric. Then C = C 2 from Theorem 3.2.6

and 3Is(T) = Hi(T) ± = [[c,,(T) from (3.13). If r(t) is c.n.i, then H = Hc,_i(T) =

.I/,(T), hence T(t) is strongly stable.

On the other hand, if T(t) is strongly stable, then it is c.n.i.. Otherwise,

there would exist an .r for which I[r(t) ll = I1-11 for t >_ 0, which contradicts the

assumption. []

Example 3.2.1 Let {_%, n = 1,2,...} and {0m, m = 1,2,...} be biorthonormal

basis for the Hilbert space H. That is,

i1  11= I1 '=11= 1 for all n

and

[,On, g'm]=0 for alln, m .

Let T(t), t >_ 0, be given by"

n=l m=l
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wherea,_,3,, and "Y'mare all real numbersand c_,, > 0. Then, for all x E H

IIT(t)xll_
2,O

= _ e-=_"' I[x,_=lt2+ _ I[x,_"m]l_
rt----1 m=l

'DO OO

< _ I[x, ,_,,]1_+ E I[x,,:,,,,11_
n=l m=l

= Ilxll2

which shows that T(t) is a contractive semigroup, ttence, we can apply Theo-

rem :3.2.2 to decompose the space H. First we have

C2x = lim T(t)'r(t)x
t_r2_

= '_-_ [X,_,mlh(, _ .

rn--.--I

T here fore

C22 - _ P_,x

where P_, is the orthogonal projection onto the subspace spanned by {_',,_, m =

1,'2 .... }. Then C is a projection and

M = {0}

In fact, since

oo oo

T(O'x = _ e(-_'-_'_' Ix,¢,,1¢,,+ Z e-'"" Ix, ,:'_],_,m
n=l m=l

we have IIT(t)xll = ItT(0"xlI, which shows that T(t) is normal.

Theorem 3.2.6 the operator C has to be a projection in this case.

Now, it is easy to see that

According to

N(I-C) = H,(T) = H_(T)

= spa, n{_,_}_=:
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and

M_(T) = N(C) = H_,.(T) : Hcn_,(T)

: span{ ,_},_=1o

HeDce,

H = H,(T) _ 3I,(T)

= span{t;,,_}_=l @span{o,_}n_=l

and T(t) is strongly stable if and only if g'm = 0 for m = 1,2, ....

Example 3.2.2 Consider the heat equation on a bounded domain:

&,(t,{) 0=,r(t,_)
Ot O_2 ,_ [o,2_-],t> o

with the boundary conditions

/X

= _(t, 2_)

= .e(t, 2_r)

0 2

Let H = L2[0,2_ -] and let A = _ with

D(A) {.r C H • .r and x' absolutely continuous, x' and x" ff H,

• (o) = _(2_), _'(o)= x'(2,_)}

Then ,4 is self-adjoint and dissipative and generates a compact contraction semi-

group T(t), t >__O, given by

r(0. =
c_
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where
e-in(

¢"(_) - v57

and {_,_},______ is an orthonormal basis for L2[0,2_ -] [3].

Since A is self-adjoint so is T(t) and according to Theorem 3.2.6 the operator C

is a projection. Then, we have H = N(I - C) _ M_(T), where

N(I- C) : H{(T) : H.(T) = span{Oo}

and

M,(T) = Ho,_(T) = span{C=, n = 4-1,+2,...}

Therefore, T(t) is not stable in any sense. ZE

3.3 Extensions of Lyapunov Equation

Let ._. be the generator of a Co semigroup T(t), t >_ O, over a Hilbert space H. A

necessary and sufficient condition for the semigroup to be exponentially stable is

the existence of a positive solution P to the Lyapunov equation

[PAx, x]+ [x, PAx]= -I1_11=, x _ D(A) . (3.17)

In this section, we wish to generalize (3.17) to other types of stabilities. \Ve

begin by pointing out an interestingfact concerning Pazy's resulton exponential

stability (Theorem 2.2.7), which, as far as we know, has not been pointed out before.

Let T(t), t >_ O. be an exponentially stable Co semigroup. Then, replacing x by

T(t)x in (3.17) and integrating both sides, we obtain

/0'- IIT(_)xll2do= [Pr(t)_,r(t)x]-[Px, xl < O.
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Therefore,

for every :r in D(A).

[PT(t)x,T(t)x] < [Px, x] (3.18)

Since the semigroup is exponentially stable, it is uniformly

bounded, and since D(A) is dense, (3.18) holds for all x in H.

It is easy to see that the operator P satisfying (3.17) is given by

f0-'°[p_,x] = llT(e)xil_d,.

Thus, one can use P to define a new norm which is equivalent to the original norm

if the conditions of Pazfs theorem are satisfied. Denote by Q the square root of P,

p = Q2. Then (3.1S) can be rewritten as

I]QT(t)Q-lyl] < Ilvll= for all y _ H,

where we set Q.r = y. Therefore it is evident that Pazy's results are necessary and

sufficient conditions for an exponentially stable semigroup to be similar to a strictly

contractive one.

Now, let ][. ]], be a new norm on H or, depending on the case, just on a dense

subspace of H, and consider the equation

[PAx, x]+ [x,P.4x] = -II,rtlZ, x _ D(A). (3.19)

If the two norms [l" 1] and I1" It_are equivalent, i.e.,

for some kl > 0 and k 2 > 0, then of course, Datko's result still holds and the

semigroup is exponentially stable.

This suggests that one should study equation (3.19) with
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and

(ii) <[Ixll _ II*tl_•

These two extensions of the Lyapunov equation are the main subjects of our study

in this section. We first prove a general existence theorem.

Theorem 3.3.1 ,4 necessary and sufficient condition for the existence of a linear

bounded operator P >_ 0 satisfying

2 Re. [PA.r,x] = -II.rll_, x c D(A), (3.20)

,t'hc,'e [1" 11,_is a new norm on D(A) (or H), is the convergence of the integral

fo :_ IlT(t)xtl2.dt < _ for x C D(A).

Proof: Suppose there exists a linear bounded nonnegative solution P.

replacing x bv T(t)x and integrating (3.20), we have for x C D(A)

/o[PT(t)x,T(t)z]- [Px, zl = - llT(_)a'll2.d_

or

Hence, we have

Then

_0 t[PT(t)x,T(t)x] = [Px, x]- IIT(o-).ll_#o-> o.

rJotllT(a)mll_do <_[Px, x] < _o (3.21

for every x in D(A), and taking the limit as t --+ _c, we conclude that the infinite

integral converges.
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Conversely,suppose

f0'_

Define P on D(A) by"

IIT(t)xll_dt < _c for . • D(,4).

_O %2'°
[Px,x] = IIT(t)xll_dt.

Then P is linear, bounded, self-adjoint, and positive on D(A). Since D(A) is dense,

we can extend P > 0 to all of H.

Consider, for x • D(A)

[pr(t)., r(_):]= IIr(_,)*ll_d_•

Differentiating with respect to t yields

[¢.-IT(t),,', T( t)._"1 + [Y(t)z, P.4T(t)x] = -IIT(,),il_ •

Setting t = 0, we have tile desired relation. []

Note that the proof remains valid even if ]l" ]],_ is a seminorm, i.e., ]lzl[,_ = 0

does not necessarilv imply that z = 0.

We now investigate the Lyapunov equation

[PA.r, a:] + [z, PAz] = -lt.ll=,_ ,. e D(A). (3.'2'2)

,,here II.11._s_ new norm on H and is weaker than the original norm, i.e., for some

k2 > O:

Ilxll,, < __I1,11,x _ H.

Suppose that there exists a nonnegative, bounded solution P of (3.22). Then, we

know from the proof of Theorem 3.3.1 that P can be expressed as

_0 _
[Pz, z] = IIT(t)zll_dt (3.2:])
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for x in D(A).

However, in this case, the integral in (3.23) converges for all x in H.

this, we note that

To prove

[]T(t)(x,- x)[[. _< k2[lT(t)(x_- x)[/

< k, JIr(t)ll

< /,'_Me_'t[]xi- x][.

If H,ri- ,vii ---, 0, then iIT(t)xi- T(t)x]In ---, 0 uniformly on compact intervals of

[0. _). lIence, the inequality (3.21) holds for all x since D(A) is dense in H. This

means that the expression for P given by (3.23) is valid not only on D(.4) but on

all of H.

Now, consider for .r in H

ft _
[PT(t)x,T(t)x] = ]tT(a)xll_d_ •

Then, we have

tli_m[PT(t)x,T(t)x] = O, x E H. (3.24)

in addition, since ]1-[I,_ is a new norm, P is positive, i.e., [Px, z] > 0 for all x.

Therefore, if we further require T(t), t >_ O, to be uniformly bounded, ]lT(t)]] _< M,

then (3.2 I_) implies that T(t) is weakly stable. We summarize the result below:

Theorem 3.3.2 Let T(t), t >_ O, be uniformly bounded with generator A. If there

exists a linear bounded positive solution of the Lyapunov equation

[PAx, x] + [x, PAx]= -II*ll , x e D(A)

where ]]. ]],_ is a new norm on H and for some k.2 > O:

II ll k ll ll (3.25)
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then, T(t) is weakly stable.

We note that if (3.25) holds for a new norm, then it admits the representation

Ifxtl .= [vx,x]

for some linear, bounded, self-adjoint operator U.

Recentb, Miyaji investigated Lyapunov type approaches to stability of Co semi-

groups. IIe proved the following theorem:

Theorem

bounded operator t3 on H and an _ > 0 such that for every x in H

allxll _ < Hg'r(t)xllZdt < _,

then. T(t) is strongly stable.

3.3.3 [48] Let T(t), t >_ O, be a Co semigroup. If there exists a linear

(3.26)

This result is an application of the first type of extension of the Lyapunov

equation. Because, if we let Ilxll_ = [BB'x,x], then we can define a nonnegative

operator P by

and P satisfies

_O °°
[Px,x] = IlB'r(t)xll2dt

[PAx, x]+ [x, PAx]= -IlB'xll _, x e D(A).

Also, since B is bounded, Ilxll_ <_IlB'IIIIxU, and in which case, we have shown that

[PT(t)x,T(t)x] --+ 0 as t ---+_, for all x E H. (3.27)

Hence, if there exists an a > 0 such that (3.26) holds, then P defines an equivalent

norm, and we conclude from (3.27) that T(t) is strongly stable.
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If P is positive then (3.27) implies that the uniformly bounded semigroup T(t)

is weakly stable. A condition for P to be positive is that the pair (A',B) be

controllable. We also note that if T(t) is uniformly bounded and N(B') is trivial,

then all conditions of Theorem 3.3.2 are satisfied for weak stability.

As a final comment on Theorem 3.3.3, we will show that as in Pazy's theorem, it

also results in a sufficient condition for a Co semigroup to be similar to a contraction.

Since

[PZ(t)x,r(t)x] = IIB'Z(_,)xll=d_,

it folh)ws that for x in H,

[PT(t)z,T(t)x] < [Px, x].

Since P is bounded from below, letting P = Q_, we conclude that T(t) is similar to

a contraction semigroup C(t) (say) given by

C(t)=QT(t)Q -_.

Since T(t) is strongly stable, so is C(t). The generator of C(t) is Ac = Q.4Q -1

with D(Ac.) = Q-1D(A). Rewriting the corresponding Lyapunov equation as

[QAQ-Iy, y] + [y, QAQ-_y] = -llB'Q-_yll =

where Qx = y, we see that Ac satisfies

[Acy, yl + [y, Acy] = -IlD*yll = (3.2s)

for every y in D(Ac), where D" = B'Q -1.

Therefore T(t) is strongly stable and similar to a contraction C(t) whose gener-

ator satisfies (3.28)..Moreover,

53



Corollary 3.3.1 Let T(t) be a Co semigroup with generator ,4 in H. Suppose that

[,4._,x]+ [x,Ax] = -IIB*_II _ ,x e D(A),

for some linear bounded operator B. Then T(t) is strongly stable if and only if there

exists a > 0 such that for every x in H

_llxll _ _< tlB*f(t).rll_dt < _o.

Proof. One half of the Corollary is already stated in Theorem 3.3.3. To prove the

other half, first, observe that A is dissipative, hence T(t) is a contraction. Therefore,

since T(t) is strongly stable, we have, for x C D(A),

jo11.,.11_ -_ IlB'Z(t)xll2dt

which can be extended to all of 11 since B is bounded, T(t) is a contraction and

D(,'I) is (lense. This completes the proof. []

We now consider the other extension of the Lyapunov equation. In this case,

the operator P satisfies

[PA,r,.r] + [z, P.4.r] = -ll_ll_,,, x c D(A)

where, this time, the new norm is stronger that the original norm, i.e.,

<11-11-<llxll,, (3.29)

for some kl > 0 and for all x. If we also assume that H equipped with the new

norm is complete, then there exists a unique self-adjoint operator V such that

Ilxll_= [v., x]
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for all x [30, 31]. Note that l 7 may be unbounded but because of (3.29) it has an

(possibly unbounded) inverse.

We also note that Theorem 3.3.1 which gives a necessary and sufficient condition

for the existence of a linear bounded solution P _> 0, still holds. We now prove that

the existence of the solution is sufficient for strong stability in the case of uniformly

bounded semigroups.

Theorem 3.3.4 Let T(t), t >_ O, be a uniformly bounded semigroup on H u, ith

g_l_erator ,4. Suppose there exists a linear bounded nonnegative operator P satisfying

[PA.r,.r] + [:r, P.4x] = -Ilxtl_, x c D(A), (:3.:30)

,,.he,._II"J[,,i_ a n_. norm or, tt, and

k,llxll<_llxll-

for some kl > O. Then, T(t) is strongly stable.

Proof: We know from Theorem 3.3.1 that if there exists a solution to (3.30) then

fo_ llr(t)xllZdt < OG

for all ,r in D(A). Sincek, llr(t)zll _< llT(t)zll., we have

/J /5_._ llZ(t)xtl_dt<_ llZ(t)_lt_dt< _.

Now, if for an x

fo_ llZ(t)x]12dt <

then, T(t)x _ 0 as t _ _c [11]. Therefore, T(t) is strongly stable on D(A) and

since D(A) is dense and T(t) is uniformly bounded, we conclude that T(t) is strongly

stable on H. o
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Example 3.3.1 Let {0_, n = 1,2,...} be an orthonormal basis for tt and let

Then, since

Re. [Ax,x] = --(n_+
1

)___0
(n 2 + 1)3

.4 generates a contraction semigroup T(t), t >_ 0.

Let I," be defined by

n 2 1

w = _ 2( + )__=__ n2+I (n 2+1

T h(?tI

3;,,4 ___E l[x,0.1t_= tl_tl_ ,forz 6 H.

Therefore I" defines a new norm IJ" [I,, on H:

The operator

P* = E ._ + _ [_,_]_

is self-adjoint, nonnegative, and satisfies the Lyapunov equation

'2 Re. [PAz,:r] = -Jlz]J2,_ = -[Vz,,r] (3.31)

Therefore, from Theorem 3.3.4, we conclude that ,4 generates a strongly stable

contraction semigroup T(t). We find

r(0_ _2 e-("'+_)'_
n_ -- "DO

Moreover, it is actually exponentially stable since l[T(0.r[[ _< e-tli.rI[.
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Wecould havereachedthe sameconclusiondirectly from theLyapunov equation

(:3.31).SinceV is a bounded operator, t1" t12n= [V','] is actually an equivalent norm

on H and in this case Datko showed that (3.31) implies exponential stability [12].

,¢

Example 3.3.2 Let ll = span{ _},_=1 where {¢n} are orthonormal. Let

n=l /l

Then .4 generates a Co semigroup T(t), t >_ 0, given by

T(t)x = _ e-_ [x,_b,_]_,_

n=l

< llxll_

\Ve have

tlence, T(t) is a contraction semigroup. Moreover, for all x E H,

lira IIr(,).lt =-- lim _ e-_ [[z, aS,,]]2 = 0

or, T(t) is strongly stable.

Note that since llr(t)*ll = 1 (see Example 3.i.1), T(t)

stable.

We define the linear bounded operator B by

B_ = E [., 6.]6.
n----1

Then B is self-adjoint and

--_ 1[_,¢.]1== 2Z n
rt-----1

= -IIB'xll_ ,

2 Re. [Ax, x]

is no_._£texponentially'
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which shows that ,4 satisfies the condition of Corollary 3.3.1. /_

58



Chapter 4

Stabilization

In this chapter, we study feedback stabilizability of the distributed control sytems.

,[escribed by the differential equation

2(t) = Ax(t) + Bu(t) (4.1)

Such a system is denoted by tile pair (,4, B). Unless otherwise stated, B is a linear

bounded operator from the control space U to the state space H.

Our problem is to find controls of the form u = Fx, where F is a linear bounded

feedback operator, such that the "closed loop" svstem

2(t) = (A + BF)x(t)

is strongly stable. In this sense, stabilizability of (A, B) is equivalent to the stability

of the closed loop system. Results obtained in Chapter 3 will play a key role in what

follows.

Here, we again focus on contractive systems where A generates a contraction

semigroup. We apply the feedback control u = -B'x and investigate the stability
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of the semigroup generated by A - BB'. The reason for this choice of feedback is

twofold. First, the closed loop system 5c(t) = (A - BB').r(I) is also contractive.

ttence our earlier results on contraction semigroups apply. But, any" F such that

Re.[BF.r. ,] < 0 will preserve contractivity. However, from practical point of view.

-/3" does not require any computations hence it is robust, and this is the second

reason for its choice.

This chapter is organized in three sections. First, we apply the state space

decomposition developed in Section 3.2 to obtain conditions for strong stability

of tile semigroup generated by ,4 - BB'. Limitations of the feedback -/3" for

sl rong stabilization are also discussed. Then, we apply the extensions of Lyapunov

equation developed in Section 3.3. Finally, we show that this approach leads to

interesting results concerning a Riccati equation for contractive systems.

4.1 Stabilization via Decomposition of the

State Space

Let T(t) be the contraction semigroup associated with the contractive system (A, B).

Let u = -B'.r be the feedback control. Then, the closed loop system

= (A- BB')x(t)

is also contractive bv the fact that -BB" is bounded dissipative and A is maximal

dissipative.

We know that tile feedback -B" will weakly stabilize the contractive system

(A, B) if its weakly unstable states are controllable [5] (see also Chapter 2, The-
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orem 2.2.8). Here, we will explore strong stabilization with the same feedback.

Specifically, we will apply the state space decomposition developed in Chapter 3 to

the closed loop system.

We note that in general, application of the theory developed in Chapter .3 for

stabilization, particularly the state space decomposition, is not only limited to feed-

backs of the form -B'. In fact, the feedback operator F need not be dissipative. As

long as the closed loop operator .4+ BF generates a contraction semigroup, the state

space can be decomposed with respect to this contraction semigroup. Conditions

for strong stability can then be found.

Let Z(t), t >_ 0, be the contractive semigroup generated by .,4 = A - BB". Let

II,(Z) be the isometric subspace of Z(t):

tt_(z) = {_ e H: IIZ(t)=ll = !1=11,t > o}

and let

.Us(Z)= {x e H" Z(t)z---, O as t--, _}

be its strongly stable subspace. Also, let C_ be defined by

C_-- lim Z(t)'Z(t) ,

then it is a nonnegative contraction. Therefore, applying Theorem 3.2.2 of Chap-

ter 3, we have the following decomposition of the state space H with respect to the

semigroup Z(t)

H = _,(z) • M_• M,(z) . (4.2)

The feedback system (A - BB', B) or, equivalently, the semigroup Z(t), t _> 0,

is strongly stable if and only if H = M_(Z). In other words, the contractive system
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(,4, B) is strongly stabilizable by the feedback -B" if and only if Hi(Z)@ M, = {0}.

This means that we must have Hi(Z) = {0} and M, = {0}.

It is evident that stabilization of T(t) via the decomposition (4.2) is a two step

procedure. First, we require the subspace :_,I, to be trivial, for which it is necessary

and sufficient that the operator Cz be a projection (see Chapter 3, Lemma 3.2.2).

We have seen in Chapter 3 several conditions for C= to be a projection. If Z(t)

is self-adjoint or if the generator A has compact resolvent then C_ is a projection.

These conditions are satisfied when the original semigroup T(t) with generator .4

has the same properties. Because, if T(t) is self-adjoint then so is its generator .4.

Hence A = A - BB" is also self-adjoint and generates a self-adjoint semigroup Z(t).

[_l the same way, if A has compact resolvent then so does A - BB" since B is linear

bounded. Also, C.. is a projection when Z(t) is normal.

It is interesting to note that a fourth condition which will ensure C.. to be a

projection, namely that Z(t) be a co-isometry, cannot be satisfied. Because, if Z(t)

is a co-isometry, i.e., Z(t)" is an isometry, then

Re. [(A- BB')'z,z] = 0 ,z ¢ D(A) .

Or, Ile. [A'x,x] = IIB'x]l _. Since Re. [A'x,x] <_ 0 and llB'xll = >_0, we must have

B'x = 0 for x in D(A). Hence, D(A) being dense in H, this implies B* = 0, in

which case there is no feedback.

Next, we investigate conditions for Z(t) to be completely non-isometric, or

fL(Z) = {0}.

Proposition 4.1.1 Let T(t), t >_ O, be a contraction sernigroup with generator .4

on H and B : U _ H be a linear bounded operator. Then, A - BB" generates a
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completely non-isometric contraction semigroup Z(t) (say) if and only if Hi(T) is

(A', B) controllable, i.e., H,(r) c_ Mc(A', B).

Proof. Suppose :r C H,(Z). Then, ]]Z(t)a-]] = Ilxllfor t 2 0. Differentiating with

respect to t, we have for x C Hi(Z) N D(A)

Re.[(A- aB')Z(t)x,Z(t).r]= 0 .

Or,

Re. [AZ(t).,Z(Ox] = Itg'z(t)_ll _ .

Therefore, since .4 is dissipative, IIB'Z(t)zll = 0 for t >_ 0, which, since Hi(Z) f"l D(A)

is dense in Iti(Z), shows that z E M_c((,4 - BB')',B) = M,,c(A', B). Hence

H_(Z) C_ M_c(,4", B)

The identity [2:3]

Z(t)x = r(t),r- Jo' T(t - (,)BB'Z(a)xdo" (4.3)

shows that for x • M,_(A', B), Z(t)x : T(t)x. Hence, if x is in Hi(Z), then

llz(t)xll- IIr(t)xH = tlxll, which shows that H,(Z) C_ Hi(r). Therefore,

re(z) c_ Hi(r)r-)M_JA',B) .

Conversely, if :r E Hi(T)f'IM_(A',B), then Z(t)z = T(t)xby (4.3) and IIT(t)*ll =

II_11= IIZ(tkll- Consequently,

tI,(Z) = Hi(T)_M_¢(A',B) ,

and Z(t) is completely non-isometric if and only if H,(T)('IM_(A',B) = {0}. []

We summarize the result on strong stabilization with the feedback -B" below:
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Theorem 4.1.1 Suppose for a contractive system (,4, B) either ,4 generates a seif-

adjoint semigroup T(t) or ,4 has compact resolvent. Then, the system/c = A.r + Bu

is strongly stabilizabl_ by the feedback u = -B'z if and only if the isometric subspace

H,(T) ofT(t) is (A',/3) controllable.

The above Theorem is analogous to Benchimol's result on weak stabilization

via the same feedback -B'. In our case, the isometric subspace Hi(T) may be

regarded as the (strongly) unstable subspace. Although this is not true for general

contraction semigroups, we have shown that for those with compact resolvent or for

self-adjoint semigroups, it is indeed the case. Hence, controllability of the unstable

subspace plays an important role in strong stabilizability of contractive systems as.

it did in weak stabilizability. Another interesting point to note is that in case of

strong stabilization, controllability of (A', B) comes into play rather than that of

(.t,/3). This also happens inweak stabilization if one replaces weak stability of

Y(t) by that of T(I)', which are equivalent.

State space decomposition approach also points out the limitations of using the

feedback -B" for strong stabilization of contractive systems. It is always restricted

to the class of (feedback) semigroups for which the operator C, is a projection. The

problem to be resolved then, is to characterize such semigroups, which was the case

in the study of strong stability of contraction semigroups as well.

Example 4.1.1 To demonstrate stabilization via the state space decomposition,

we take the semigroup of Example 3.2.1 of Chapter 3 where

H = span{6_)'2=_ O span{_,_}_=,
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and
oo oo

T(t)x = _ e(-_"+ia'*)t [x, ¢,_1¢,_ + _ ei"mt [.r, g'm]_'m •
n=l rn=l

{0,_} and {¢,_} jointly form an orthonormal basis for H, and an, 3,_, _ra are real

and a,_ > 0.

\Ve have seen that T(t), t >_ 0, is a normal contractive semigroup with the

isometric subspace

Hi(T) = span{g,m}_=l

Tile generator ,4 of T(t) is given by

)o oo

n=l m=l

Let

oo

Bx = _ bm [x, _'m]g'm
rn=l

where b,,_ are real. Then B is self-adjoint. With the feedback -B" we have

(4.4)

(A- BB'> = _(-_ + i9_) [_, ¢_1_ + Z (-6_m+ _..) Ix, ¢'r.],!'_
n=l m=l

which generates a contraction semigroup Z(t) given by

n=l m=l

Since

oo 9,o

llZ(O_ll_= llz(t)'=ll_ = _ e-_"' t[x,¢,,11_+ _ e-2bL' l[,r, t4',,,]l_ ,
n=l m=l

Z(t) is also normal. Hence the operator C_ is a projection.

Therefore, according to Theorem 4.1.1, Z(t) is strongly stable if and only if

H,(T)('IMu_(A',B) = {0}.
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\re have

Hence,

IlB'T(t)xl[ 2 = II _ b'nei_t[x,_'m] t#'m I12
rn----1

= E I[*,
m----1

M._(A', D) = _ N(B'T(t))
t>0

= span{¢n}._, ¢ span{g,,,, for m s.t. bm = 0}.

Then,

tI,(T) _ M,,_(A', B) = span{g'm, for m s.t. b_ = O} .

\Ve then conclude that the feedback -B" strongly stabilizes the system if and

only if h,,, _ 0 for any m in (4.4). This also shows that a finite dimensional feedback

cannot stabilize the system.

Example 4.1.2 Consider the distributed system

&'(t, _) O.,'(t, _)
- --+Bu ,_c[0,2rr],t>O

Ot O_

z(t,O) = x(t,2_-) .

a withIf we take H = L_[0,2_ "] and A = -_

D(A) = {x E H:x absolutely continuous, x' E H,x(O) = x(27r)} ,

then we have the abstract equation

= A.r(t)+ B,,.

We note that ,4 has compact resolvent, A = -A', and it generates a unitary

semigroup T(t)
oo

T(t)x = _ e i'_t ix, ¢,_1¢n
rt----- --OO
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where4_,_(_) = ei"_/v/_- form an orthonormal basis for the space H.

Since r(t) is unitary it is unstable and H = H,,(T). Let

where b,_ are real (B = B') and b,_ 7_ 0 for any n. Also suppose

then /3 is compact.

Since

lim I<1 = 0 ,

[IB'T(t)*II=
o_

= E b=.I[_,¢.]1_ ,

we have B'T(t)z = 0 for t > 0 e* x = O, hence (A', B) is controllable. Therefore,

according to Theorem 4.1.1, since A has compact resolvent A- B/3" generates a

strongly stable semigroup Z(t).

Note that Z(t) has the form

and since lim,___ [b,_I = 0, Z(t) is no_..Lexponentially stable. /k

Example 4.1.3 We have shown in Example 3.2.2 that the heat equation on a

bounded domain is unstable. Here, we will stabilize the controlled system

Ox 02x
+ Bu

Ot O_2

= Ax + Bu

Let B = I and u = -B"x. Then, ,4- BB" = A- I. Since

B'T(t)z=T(t)z=O fort_>0c=_x=0 ,
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(A', B) is controllable. Also, A is self-adjoint. Therefore,

semigroup Z(t) generated by A - I is strongly stable.

We note that since A has the expansion

the feedback semigroup is given by

Z(t)x = k e-('_+l)t [x, Cn]On .

Z(t) is such that

by Theorem 4.1.1, the

IIZ(t)xll e-'llxll ,

hence it is exponentially stable. This is due to the fact that Z(t) is a compact.

semigroup and for compact semigroups weak, strong and exponential stabilities are

all equivalent. /_

4.2 Application of Lyapunov Equation

In Section 3.3 of Chapter 3 we gave sufficient conditions for a uniformly bounded Co

semigroup to be weakly and strongly stable by extending the well known Lyapunov

equation. Clearly, the results hold for contraction semigroups, which are special

cases of uniformly bounded semigroups. In this section we focus on a contractive

system (A, B) and apply the abovementioned results to investigate conditions for

stabilizability via the feedback -B*.

Since A is dissipative and B is linear bounded, the semigroup Z(t) generated by

A = ,4 - BB* is a contraction. We have, for x E D(A),

d
27 IIZ(t)xll= = '_ Re. [.AZ(t)x,Z(t)x].
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Integrating from 0 to t and letting t --+ cx_, we see that Z(t) satisfies the following

equation

/jII:rll= = lira IIZ(t)xll=- 2 Re. [.AZ(t)x,Z(t)x]dt (4.5)
_-_

/0 /2= lira IlZ(t)xll=- _2 Re. [AZ(t)x,Z(t)x]dt + 2 IIB'Z(t)xll_dt
lb--* ¢'o

for x in D(A) = D(A).

Define the linear self-adjoint operator P by

/j[Px,x] = IIB'Z(t)xll2dt ,x E g. (4.63

Then, P is nonnegative and

[Px, x] _<½11xll_ (4.7)

from (4.5). Replacing x by Z(t)x in (4.6) and differentiating with respect to t yield

2 Re. [PAZ(t)x,Z(t)x] = -IIB'Z(t)x]l _ x _ D(.A).

Seting t = 0, we see that P satisfies the Lyapunov equation

2 Re. [P(A- BB')z,z] = -IlB'xll _ ,x e D(A), (4.s)

which was investigated in Section 3.3. Therefore, we have the following result on

the existence of the solution P of equation (4.8):

Lemma 4.2.1 Let A be the generator of a contractive semigroup T(t), t >_ O, and

B a linear bounded operator. Then, there ahvags exists a nonnegative operator P

satisfging the Lgapunov equation

2 Re. [P(A- BB')x,x] = -llB'xll 2 ,x ¢ D(A).
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Note that tile Lemma holds for any linear bounded B, including compact opera-

tors. We can now apply Theorem 3.3.2 to obtain conditions for the semigroup Z(t)

generated by A - BB" to be weakly stable. According to the above Lemma, the

first condition of the Theorem (existence of P) is always satisfied. If, in addition,

N(B') = {0} then fiB',fit(= Ilxll.) defines a new norm with the property

I1,11._ llB'tl Ilxll,

in which case Z(t) is weakly stable. But, for weak stability, we can prove a weaker

condition.

Theorem 4.2.1 Let (A,B) be a contractive system. If the pair (A', B) is control-

lab&, then A - BB" generates a weakly stable contraction semigroup Z(t).

P,'oof. As before, define P >_ 0 by (4.6) and let x E N(P). Then

/7[r_,_] = IIB'Z(Oxll2dt = O,

which implies B'Z(t).r = O, t >_ O, or x E M_((A - BB')*, B). Since M,,_((A-

BB')', B) = M_.(A',B), we have N(P) C_ 3I_(A',B). Conversel> let x E

3/_(A', B). Then B'Z(t)x =0, t >_ 0, or x E N(P). Hence,

NCP) = M,,+(A', B).

Consider now, for .z" in H,

[PZ(t)x,Z(t),r] = foo
t

Then,

IIa*Z(_)xll2d_.

lim[PZ(t)z,Z(t)x] = O . (4.9)
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Therefore, if ).l_,c(A', B) = {0} then P > 0, and since Z(t) is a contraction, (4.9)

implies that Z(t) is weakly stable. []

For strong stability, we have the following:

Theorem 4.2.2 If there exists a > 0 such that for every x in H

all=ll _ < fo _ IlB'Z(t).rll2dt

then, Z(t) is strongly stable.

Proof. The proof is all but trivial. The condition in the Theorem is equivalent

to fPr, r] >__11._.1t_, in which case P defines an equivalent norm, and (4.9) implies

strong stability. [] "

Recall that a system (A, B) is conservative if Re. [Ax, z] = 0 for all z in D(A).

We now prove a generalization of Corollary 3.3.1 of Chapter 3 which also applies to

strong stabilization of conservative systems.

Theorem 4.2.3 Suppose ,4 is such that

-511B'_tl _ _ Re. [Ax,z] < 0 ,x E D(A) (4.1o)

for som_ 5 > O. Then A - BB* generates a strongly stable contractive semigroup

Z(t) if and only if there ezists a > 0 such that

fo_ll_lt_ _< ilB'Z(t)_ll_dt ,_ e g.

Pro@ One half of the theorem is already given in Theorem 4.2.2. To prove the

other half, we rewrite (4.10) as

- _IIB'_II _ _<Re. [(A - BB')z,x] (4.11)
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where7 "- _ + 1.

Since A - BB" is dissipative, the integral

fo_ I]B" Z( t)xll2 dt

exists for x C D(A) and, by extension, for all x. Therefore, replacing x by Z(t)x

and integrating both sides of (4.11), we have

-7 IIB'Z(t)xll_dt <_ lim IIZ(t)xll 2 -II_11_.

If Z(t) is strongly stable,

1 /711.11_ < liB'Z(t)xll2dt

which proves the theorem. []

Finally, we have the following result for exponential stabilization.

Theorem 4.2.4 if there ezists o_ > 0 such that

o_llxll _< IIU*xll (4.12)

for all z E H, then A-BB" generates an ezponentially stable contractive semigroup.

Proof. Since B" is already bounded, (4.12) implies that

I1.11_= [BB'.r,d

defines an equivalent norm. In this case, the Lyapunov equation (4.8) satisfies

Datko's theorem on exponential stability (Chapter 2, Theorem 2.2.6), and Z(t) is

exponentially stable. []
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Example 4.2.1 In Example 4.1.3, we have shown that the heat equation is

exponentially stabilized by the feedback-I (identity). According to Theorem4.2.4

with B = [ this result is as expected.

Now, let

135= y" n2+---7[5,¢.16.
n----- --2

"l_ hPll

Pz= _ 2(1+n2(n 2+1) 2)[x'O_]_
/l---_ --"_O

satisifies the Lyapunov equation (4.8).

Note that B is self-adjoint but it is not bounded from below. Therefore Theo-

rein {.2.4 does not apply. However, since

oo e-n_t

B*T( t)x = _ n2 + l [X, ¢,,]¢,-,
n_ --")0

wP have

B'T(t)x=O for t>O,=¢.x=O ,

which shows that the pair (A',13) is controllable. Hence, from Theorem 4.2.1,

A - 1313" generates a weakly stable contractive semigroup Z(t). It is given by

Z(t)x= E e-(n2+t"-'g_'!_7-Tz)t[z'¢n] on'
n_ -- 00

and is compact. Therefore weak stability implies exponential stability and the

system is again exponentially stabilized by the feedback -B'. &

Example 4.2.2 Suppose H = span{o,_}_=_ where {_,.,} are orthonormal. As in

Example 3.3.2, let

Ax = ___1 [z,¢,_]0,_
n

n=l

B. = E [5,¢d6_
n= 1
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Then

3
(A- BB*)x = y_ -- [z,4>,_]6,_ ,

n

I l satisfies the Lyapunov equation (4.8). A-BB" generates the semigroupand P = 5

,2_D

3 t
Z(t)x = Z e-7 [x, CSn]':;5r_

n---= i

which is clearly strongly stable. In order to demonstrate Theorem 4.2.:2, we observe

t hat

IIB'Z(t)x!l=dt = 2e-5*t[x,g,,dl= dt
n=l n

1

Note that, Z(t) is not exponentially stable. /N

Example 4.2.3 Let {0,_},_%1 be an orthonormal basis for H. Let the self-adjoint

operators ,4 and /3 be defined by

OO

,4x = E -'_[_,_,,]_,,
TI,_--- --OO

_/ 2 2/3x = _ 2 (n 2 + I) + (n 2 + 1)4 [x, gS_]0=
TI,= --,'3,0

Then. since .4 is dissipative and

I[B'_II_>Ilxll

according to Theorem 4.2.4, A - BB" generates an exponentially" stable contraction

semigroup. /N
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4.3 Steady State Riccati Equation for

Contractive Systems

We have shown in the previous section that the Lyapunov equation (4.8) associated

with the closed loop system (.4 - BB*, B) always has a nonnegative solution. This

result has further implications concerning a related linear quadratic regulator (LQR)

problem. The LQR problem can be stated as follows.

Consider the distributed system

,'2(t,) = Ax(t) + U_,(t) (-1.13

x(O) = Xo E H

where A generates a contraction semigroup T(t), B is a linear bounded operator

and u(.) E L:([O,:x:);_:). The LQR problem is to find u(-) in L2([0,_c); U) which

will minimize the cost functional

/0 /7J = [BB'x(t),x(t)]dt + Ilu(t)ll2dt (4.14)

It can be shown that if for each initial state :Co there exists a control u(-) for

which J is finite, then the following steady state Riccati equation (SSRE)

[0Ax, x]+[._,QAx]-llB'0xll ==-[BB'x,x] ,x_D(A)

has a bounded nonnegative solution Q [3, r11. The feedback control u(t) = -B*Qx(t)

is the optimal control which minimizes J. If, in addition, BB* is a strictly positive

operator then the control exponentially stabilizes the system (4.13). In the follow-

ing discussion, unless otherwise stated, we only assume B to be a linear bounded

operator.
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Now, let u(t) = -B'x(t) in (4.13). Then the closed loop system .i'(t) = (,4 -

BB')x(t), z(O) = Zo, has the solution

x(t) = z(t)xo

where, as before, Z(t) is the contraction semigroup generated by A - BB'. For this

choice of control we find

J fo_ f0"_= [BB'x(t),x(t)]dt -4- [l_,(t)ll2d,

/7 /7= [BB'Z(t)xo, Z(t)xo]dt + IIB'Z(t)xoll2dt

77= 2 ItB'Z(t)xolt_dt.

Therefore

(4.1.5)

J _ Ilxoll= for all Xo E H, (4.16)

by (t.6) and (4.7). \Ve conclude that for the contractive system (4.13), there always

exists a control u(.) which will make the cost functional finite for every state :r0 E H.

We then have:

Theorem 4.3.1 Let ,4 be the generator of a contraction semigroup and B a linear

bounded operator. Then the SSRE

[QAx,x] + [., QAx]- IIB'Q_II=+ [BB*_,_] = 0 ,x • D(A) (4.17)

always has a bounded nonnegatit, e solution Q.

This Theorem shows that the SSRE (4.17) in which ,4 is dissipative and B is

any linear bounded operator always has a solution. The question of existence of

such a nonnegative solution Q for an SSRE in which B is compact was raised by
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Gibson in [22]. Here,weareable to show that for a contractive system (A, B) even

when B is compact (1.17) does admit a nonnegative solution.

The question raised by Gibson in [22] was in connection with the problem of

stabilization via compact feedback. He showed that a strongly stable contractive

system cannot be exponentially stabilized by compact feedback. We must note that

although (4.17) admits a nonnegative solution Q, the control u(t) = -B'Qx(t) need

not be a stabilizing control.

Since the control u(t) = -B'Qa:(t) is optimal, the cost functional (4.14) attains

its minimum value with this control. Let Jmi,_ denote the corresponding minimum

cost. Then we know from LQR theory that

Jm,n= [Qxo, > 0

where Q is the nonnegative solution of the SSRE (4.17) and x0 is the initial state

The feedback control u(t) = -B'x(t) was investigated in the previous section.

The cost functional for this control is given by (4.15). It can be rewritten as

J = 2 [Pxo, Xo]

where P satisfies the Lyapunov equation

2 Re. [P(A- BB')x,x] = -IIB'xll 2 ,x _ D(A)

Therefore, from (4.16),

0 _< [Qx0,.r0] _< 2 [Px0, z0] _< llxoll

We summarize the result below.
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Theorem 4.3.2 Let ,4 be the generator of a contraction semigroup and B a linear

bounded operator. Then the solution Q of the SSRE (4.i7) is such that

0 <_ [Qx,x] <_ IIxll _ ,x e H .

In general, if Q is the nonnegative solution of the SSRE, then ,4 - BB'Q

genarates a Co semigroup which is quasi affine transform of a contraction semi-

group [,13]. When Q is strictly positive, the semigroup generated by ,4 - BB'Q is

similar to a contraction. In order for ,4 - BB*Q to generate a contraction semigroup

it is necessary and sufficient that

" XRe.[(A-BB Q) ,x]<0 ,xE D(A) . (_.18)

Since A is already dissipative, this holds if the operator (BB'Q + QBB') is non-

nega t ive.

In particular, if the nonnegative operators BB* and Q commute then the product

QBB'(= BB'Q) is also nonnegative. In this case A - BB*Q is dissipative and

generates a contraction semigroup.

Now, if for all x E H

 llxll_ IIB*xll

or if BB" is strictly positive (invertible) then, as we have seen in Chapter 2, The-

orem 2.2.11, the optimal control u(t) = -B'Qx(t) is such that the closed loop

system

= (A- BB'Q)x(t)

is exponentially stable.

We note that, as expected, B cannot be compact in this case. Because, if/3 is

compact, so is B* and a compact operator can not be bounded from below.
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Therefore,whenBB" is strictly positive we have two different feedback controls

for exponential stabilization of the contractive system (,4, B). The control u(t) =

-B'Qx(t) is a result of the related LQR problem and it is optimal for the cost

(4.1 t). On the other hand, Theorem 4.2.4 shows that u(t) = -B'x(t) is another

control which will ensure exponential stability.

Ahhough both A-BB* and A-BB'Q generate exponentially stable semigroups,

the feedback semigroup Z(t) generated by A - BB" is contractive while it is not

always the case for ..I - Bt?'Q.

It is evident that, when BB" is invertible, there are advantages of using the

feedback -B" for exponential stabilization of the contractive system (.4, B). It

does not require solving the SSRE, which is difficult computationally. Also, the

feedback system is contractive and hence all the theory developed for contractive

semigroups apply.

For conservative systems, i.e., Re. [Ax, x] = 0, the feedback control u(t) =

-t3"x(t), where/3' is linear bounded, turns out to be optimal as well.

If A is a conservative operator, the SSRE

[OAx, x] + [m,OA_]- IIB'Q*II = = -[BB"x,x] ,x e D(A)

always admits (2 = I (identity) as a (strictly) positive solution, since

[,4=,_1+ [_,Ax]- llS'.ll = = -IIB'xtl = ,x _ D(A).

Note that this solution is valid even for compact B. Therefore, the optimal control

for the conservative system is u(t) = -B'x(t). With this choice of control the

system has the solution x(t) = Z(t)xo, t >_ O, where Z(t) is generated by A - BB"
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anti Zo is the initial state. The minimum cost is

/5Jmi,_ = 2 Ilg*z(t)zoll2dt

\Ve also note that in general Q = I may not be the only solution of SSRE (when

/3/3" is strictly positive it is the unique solution). Also, the degree of stabilization

(weak, strong or exponential) by the optimal control -B*x(t) depends on other

conditions as indicated in Theorems 4.2.1, 4.2.2 and 4.2.3.

Example 4.3.1 We illustrate the results of this section by sohing the SSRE for

tile heat equation where

Let

B_ = }2 b_[x,_.]_.

where b_ are real numbers. The SSRE (4.17) can be decomposed as follows.

Let, Q be defined by

where, since Q is nonnegative, q,_ >__0 are real numbers. Then SSRE becomes

'3O

(-2n2q,_ - ]bnl_q_ + Ib_[2) {[x,¢_]l 2 =0 ,

which, for each n, is a quadratic equation in q,_. Hence, since q,_ _> 0,

n 2- _/n 4 -t-lb,_[ 2

q,_ = _lb.l 2

for n such that b,_ ¢ 0, and q,_ = 0 otherwise.

For B = [, The solution is

Qx = _2 (--_ + _ + _)ix,6.]_. ,
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and [Qx, z] _< Ilxll_ as expected.

Since BB'(= I) is strictly positive, the optimal control u(t) = -B'Qx(t) ex-

ponentially stabilizes the heat equation. With the optimal control, the closed loop

operator .4 - BB'Q generates the semigroup _q(t):

_¢(t). = _ e-e_-vr 'Ix, 6n]_

which is exponentially stable. Moreover, since tile operators BB" and Q commute,

S(t), t >__0, is a contractive semigroup. If z is the initial state the minimum value

of the cost associated with the SSRE in question is

.I,_,_ = [Ox,*l
c_

= _ (-n 2 + v'_ + 1)[[z, qSn][2

In Example ,.1.3, we showed that for B = I, ,4 - BB" also generates an expo-

nentially stable contractive semigroup Z(t):

z(0* = _ e-_+'_' [*,_]¢_

We observe that although for any initial state x E H,

tlz(t)xll <_IlS(t)zll ,t > o,

S(t)x is the optimal trajectory for the cost functional (4.14).

Now, as in Example 4.2.1, if we take

8.= _ ,_+---i-[_,,_,,]o,,

then B is self-adjoint, nonnegative, and since limn__ II/(n2+ 1)1 = 0, it is compact.
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SSREstill hasa nonnegativesolution Q given by

Q_= E (-_(,_ + _ ; + _/_(,_ + 1)_+ _)[_,_]_

,4 - BB'Q generates the semigroup

_o x/n4(n2+l')4 +t t
(n_+l)_ [_, (_n]

which is again exponentially stable. In other words, the compact feedback -B'Q

exponentially stabilizes the contractive system (A, B). This may seem in violation of

(;ibson's negative result on exponential stabilization, but we note that the original

contractive system (.4, B) is not strongly stable (see Example 3.2.2). Therefore the

abovementioned result does not apply and it is possible to exponentially stabilize

the system via compact fedback.

Also, note that S(t) is again contractive due to the fact that BB* and Q com-

mute. /h

Example 4.3.2 Let H = span{0_}_=l. In Example 3.3.2 we have shown that

the operator

_o __1 [x, _.]_,_Ax= __, n
r_l

generates a strongly stable contractive semigroup T(t). Then, in Example 4.2.2, we

showed that with the control u = -B*x where

_x = _2 [x,_1_,

the closed loop operator A- BB" also generates a strongly but not exponentially

stable contractive semigroup Z(t).

Note that since

lim _ = 0 ,
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B is a compact operator and -B" can not exponentially stabilize the strongly stable

system (A, B).

The SSRE (4.17) admits the nonnegative solution

v_-I
Qx: ----T--._ .

Since the operator -B'Q is compact, the control u(l) = -B'Q,r(t) can not expo-

nentially stabilize the system either. To see this, we observe that the semigroup

generated by ,4 - BB'Q is given by

oo

s(t)x = _ e-_ ' [x,cn]_
rt----1

which is only strongly stable. Also note that the operators BB" and Q commute,

hence S(/) is contractive. ,G
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Chapter 5

Conclusions

5.1 Results

In this dissertation we have investigated strong stability of distributed systems.

Specifically, we have used three different approaches to find conditions for a Co

(mainly contractive) semigroup to be strongly stable. Each one resulted in a differ-

ent characterization. Based on these characterizations, we have studied the problem

of feedback stabilization.

The theory of dilations of contractions and contractive semigroups was well de-

,,eloped in [IS, 25, 51]. It was applied to scattering theory by Lax and Phillips [36].

Here we have applied the dilations theory to strong stability of contractive sys-

tems and showed that it results in a characterization of strongly stable contractive

semigroups in terms of the left shift semigroup. Left shift semigroup is a canonical

example of a strongly stable contractive semigroup. Via the dilations approach we

have proved a sufficient condition for a contractive semigroup to be strongly stable

but not exponentially stable. Although this approach results in (so far the only
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known) necessary and sufficient condition for strong stability of a contractive semi-

group, the results are not very suitable for application to control problems. This is

mainly because it is generally difficult to compute the dilation of a given semigroup.

In real-life problems even the semigroup asociated with the distributed system may

be dimcult to compute analytically. In such cases, the theory of dilations may still

be applied via tile notion of a co-generator for contractive semigroups.

A main contribution of this dissertation has been the development of a decompo-

sition for the state space which identifies the strongly stable and unstable subspaces

of a contractive semigroup. A similar approach has previously been used in tile case

of weak stability and resulted in a necessary and sufficient condition for weak stabi-

lization [7]. This has been our motive. The decomposition developed here provides

a clear picture of the structure of the state space with regard to strong stability.

Based on the decomposition we have proved several conditions for strong stability

of contractive semigroups.

Extension of Lyapunov's theorem to infinite dimensional Hilbert space was done

by Datko [11, 12]. Datko proved that the existence of a positive (operator) solu-

tion to tile infinite dimensional version of the Lyapunov equation is necessary and

sufficient for exponential stability of the semigroup associated with the equation.

ttere, we have extended Lyapunov's theorem further to weak and strong stabilities

of uniformly bounded semigroups. The uniform boundedness assumption is not a

restrictive one since a (weakly, strongly or exponentially) stable semigroup is always

uniformly bounded. By replacing the right hand side of the Lyapunov equation with

a new norm which is weaker than the original norm, we proved that the existence

of a nonnegative solution is sufficient for weak stability. In the same way, if the new
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norm is stronger the same result holds for strong stability.

By applying the above characterizations to a distributed system 5: = Ax + Bu

with the control u = Fx, one can obtain conditions for strong stabilization. In our

case we have taken F = -B'. The feedback -B" is robust in the sense that it

does not depend on the system characteristics as reflected in the operator ,4. Also,

no operator equations need to be solved in determining the feedback. Benchimol

showed that the same feedback weakly stabilizes the system if weakly unstable

states are controllable [7]. By applying tile state space decomposition developed for

strong stability we have proved a similar necessary and sufficient condition for strong

stabilizabilit v by -B'. Application of the extensions of the Lyapunov equation also

resulted in sufficient conditions for weak, strong and exponential stabilizations by

the same feedback. Finally, we have proved an existence result concerning a linear

quadratic regulator problenl for contractive systems and the associated steady state

Riccati equation. This fact was not pointed out before.

5.2 Future Directions

In this dissertation we have focused mainly on contractive systems. To our knowl-

edge, there is still no result which gives a necessary and sufficient condition for a

general C0 semigroup to be strongly stable. For contractive semigroups, application

of the theory of dilations resulted in a necessary and sufficient condition for strong

stability. However, the result is not very suitable for practical applications. Tile

first step for future work may be developing a more practical characterization for

strongly stable contractive semigroups. The state space decomposition developed
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in Chapter 3 also suggestsa topic for further research:Identifying thosecontrac-

tive semigroupsfor which the subspace._[ is trivial or characterizing the class of

contractive semigroups for which the operator C is a projection (see Theorem 3.2.2

for definitions).

The extensions of the Lyapunov equation gave sufficient conditions for weak

and strong stabilities. We have only modified the right hand side of the Lyapunov

equation. Further extensions need to be investigated in order to find necessary and

sufficient conditions for weak and strong stabilities.

For strong stabilization of contractive systems we have only considered the feed-

back -B'. A major consideration was preserving contractivity. However, any

feedback operator F such that Re.[BFz, :r] <_ 0 will preserve contractivity. Further

research max involve application of the characterizations developed in Chapter 3 to

more general feedbacks.
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