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ABSTRACT

A technique for improving the numerical predictions of turbulent flows
with the effect of streamline curvature is developed. Separated flows, the flow
in a curved duct, and swirling flows are examples of flow fields where
streamline curvature plays a dominant role. A comprehensive literature review
on the effect of streamline curvature was conducted in the present study. New
algebraic formulations for the eddy viscosity |, incorporating the k-e
turbulence model are proposed to account for various effects of streamline
curvature. The loci of flow reversal of the separated flows over various
backward-facing steps are employed to test the capability of the proposed
turbulence model in capturing the effect of local curvature. The inclusion of
the effect of longitudinal curvature in the proposed turbulence model 1s
validated by predicting the distributions of the static pressure coefficients in an
S-bend duct and in 180° turn-around ducts. The proposed turbulence model
embedded with transverse curvature modification is substantiated by predicting
the decay of the axial velocities in the confined swirling flows. The numerical
predictions of different curvature effects by the proposed turbulence models are

also reported.
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NOMENCLATURE

a,, a,, a; Algebraic functions

C, Inertial return-to-isotropy constant of the Reynolds stress model
C, Forced return-to-isotropy constant of the Reynolds stress model
C. Empirical constant

C; Convection term of the Reynolds stress equation

C, Convection term of the turbulent kinetic energy equation

C, Empirical coefficient of the Reynolds stress model

C. Empirical coefficient of the standard k-e model

C, Modified empirical coefficient with curvature effect

C.. Empirical coefficient of the standard k-e model

C., Modified empirical coefficient with curvature effect

C, Empirical coefficient of the standard k-e model

C, Modified empirical coefficient with curvature effect

Cui--C Modified empirical coefficients for Reynolds stress tensors

Cur Cuy Modified empirical coefficients for Reynolds stress tensors

D Pipe diameter

D; Diffusion term of the Reynolds stress equation
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D, Diffusion term of the turbulent kinetic energy equation

D, Dean number

e Turbulent mixing energy

/. Algebraic function in equation (2.7)

h Step height

k Turbulent kinetic energy

L Duct length

l Length scale

ly Length scale without curvature effect

n Normal direction in the streamline (s,n) coordinate; normal
distance away from the wall

P Instantaneous static pressure

p Mean static pressure

P; Production rate of the Reynolds stress -uu;

P, Pressure strain term of the turbulent kinetic energy

P, Production rate of the turbulent kinetic energy

Ps; Pressure-strain term of the Reynolds stress equation

p Fluctuating static pressure

R Radius of surface curvature; pipe radius

R, Radius of curvature along the centerline



Re

Ri
Ri

Ri,

Reynolds number

Flux Richardson number

Richardson number

Richardson number of rotation

Turbulent Richardson number

Turbulent Reynolds number

Radial direction in the Cylindrical coordinate

Swirl number

Longitudinal direction in the streamline (s,n) coordinate

Mean velocity components in the streamwise, normal, and
circumferential directions respectively

Fluctuating velocity components in the streamwise, normal, and
circumferential directions respectively

Components of the instantaneous velocity in the direction of X
Components of the mean velocity in the direction of X
Friction velocity

Longitudinal velocity

Components of the fluctuating velocity in the direction of X;
Components of Reynolds stress tensors

Turbulence velocity scale

Width of a duct
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M.

M,

Space coordinate in tensor notation

Streamwise (axial) direction in the Cartesian and Cylindrical

coordinates

Transverse direction in the Cartesian coordinate; normal distance

away from the wall

Empirical constant

Kronecker delta function

Dissipation rate of the turbulent kinetic energy
Dissipation rate of the Reynolds stress wu;
Coefficient of fluid viscosity

Effective viscosity

Turbulent (eddy) viscosity

Laminar kinematic viscosity

Effective kinematic viscosity

Turbulent kinematic viscosity

Function defined by equation (3.17)
Function defined by equation (3.21)
Density

Summation

Empirical constants of the k-e model

Stress tensors
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&n &

Superscript

A

Subscript
ave

BL

i, j, k, m
in

ref

Circumferential direction in the cylindrical coordinate
Turbulent dissipation rate

Transformed curvilinear coordinate

Instantaneous quantities
Time-averaged quantities

Degree

Averaged value
Boundary layer
Center line

Pipe diameter
Downstream
Tensor notations
Inlet condition
Reference condition
Upstream

Channel width
Momentum thickness
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Abbreviation
SSME Space shuttle main engine
STOVL Short take off and vertical landing

TAD Turn-around duct
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CHAPTER 1

INTRODUCTION

The tremendous improvement of computer capabilities in the past few
years, including memory and speed, enables accurate numerical predictions of
turbulent flows. Due to the closure problem of the governing equations for
turbulent flows, numerous turbulence models have been proposed. The eddy-
viscosity type of turbulence closure modeling has demonstrated a variety of
good numerical predictions both qualitatively and quantitatively. Among them,
the k-¢ model is the most widely employed isotropic two-equation model. This
model has been extensively applied to different turbulent flow problems.
However, the standard k-¢ model appears to be insufficient in predicting the
complex turbulent shear layers, such as flows subjected to curvature and
rotation.

Flows with streamline curvature are particularly of interestin engineering
due to their frequent presence in real life applications. There are several types
of streamline curvature problems which may occur in the flow field. The

separated flows would be considered to involve local curvature; flows in curved



ducts can be classified as a longitudinal curvature problem; and swirling flows
typify the transverse curvature. The appearance of streamline curvature could
change the structure of turbulent flow fields dras.tically. For example,
turbulence intensity is enhanced with the application of concave curvature,
while convex curvature inhibits the turbulent mixing. The change of turbulent
structure will influence the mean flow field and vice versa. Consequently, any
models do not include the effect streamline curvature will fail when streamline
curvature occurs.

Modifications to turbulence modeling are therefore necessary to account
for the effects of various streamline curvature. The ad hoc change of modeling
constants,however, to fit experimental measurements is not desirable, as it lacks
physical rationale and generality. A large increase in computing time is not
feasible for practical applications either. In the present investigation, new
formulations for the eddy viscosity with the effects of different streamline
curvature are proposed. Since the transport equations of the Reynolds stresses
have a better description of the curvature effects, algebraic forms of the
equations, approximated from the Reynolds-stress model, are essential. By
extracting the extra straiﬁ rate and the main strain rate for the flow fields with
different streamline curvature environments, new algebraic expressions for the

eddy viscosity are derived from the algebraic Reynolds-stress model. In the
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proposed eddy-viscosity formulations, the flux Richardson number R, plays an
important tole as it dictates the effects of various streamline curvature on the
turbulence structure through the amplification or diminution of the eddy
viscosity. Different coordinate systems are employed for various effects of
streamline curvature in accordance with geometrical flow characteristics.

The implemented eddy viscosity will be incorporated with the k-e model
to predict the effects of streamline curvature on the turbulent flow field. A
Navier-Stokes flow solver embedded with the standard k-e model is employed.
A second-order finite differencing scheme for the temporal and spatial
discretizations, incorporating a quasi-damping scheme which is deduced from
second-order upwind difference concept, is adopted for the convection terms.
The proposed models will be verified by comparing computationally predicted
results with turbulent flows subjected to different streamline curvature effects.
The examples for model verification are a) the flow over a backward-facing
step, b) the flow in a curved duct, and ¢) swirling flows. The numerical
computations are performed on the Cray X-MP supercomputer at NASA-Lewis

Research Center.



CHAPTER 1II

REVIEW OF LITERATURE

During the last two decades, turbulence modeling has become the most
productive, controversial, and rapidly improving subject for researchers in the
computational fluid dynamics field. It started with simple boundary layer flows
on a flat plate, and today numerous successes of the predictions on simple shear
layer flows have been reported. However, the numerical computation of
complex turbulent flows--such as three-dimensional flows, flows subjected to
curvature and rotation, separated flows and shock boundary layer interaction--is
still being investigated.

The drastic change of flow characteristics due to the presence of the
streamline curvature has been demonstrated by many researchers [1]-[4] based
on classical laminar boundary layer theory study. The objective of the present
research work is to explore the effects of streamline curvature and swirl on
turbulent flows, which effects are much more complicated than their laminar
counterparts. A review of literature is therefore conducted in two

complementary ways--by 1) examining the experimental works to help



understand the physics of curved flows, and 2) studying and evaluating both the
theoretical research and numerical techniques--to implement the turbulence
modeling with the inclusion of curvature and swirl effect. The detailed
information of the literature review in these two categories, and their
summaries, are tabulated in Table A.1 (for experimental work) and Table A.2

(for theoretical and numerical work).

2.1 Experimental Investigations

A variety of experimental investigations have been conducted in the last
few decades. Bradshaw and his co-workers [5]-[10] conducted a series of
experiments on convex surfaces, concave surfaces and curved ducts. They
found that the turbulence intensity is reduced by the application of convex
curvature which indicates a stabilizing effect, while longitudinal vortices are
induced by the application of the concave curvature which has a destabilizing
effect that enhances the turbulence mixing. Curved shear layers exhibited non-
equilibrium behavior and required different formulation for the stabilizing and
destabilizing effects. The rapid response of boundary layers to the presence of
the convex curvature, aé well as a fairly rapid recovery when the curvature is
removed, has been experimentally demonstrated. Hence, Bradshaw et. al.

suggested that the effect of convex curvature be modeled in Reynolds-stress
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equations, at least partly as dependent on the rapid part of the pressure-strain
term in the Reynolds-stress equations. It was further proposed that the apparent
mixing length, increased due to the concave curvature, be modeled roughly
proportional to the Richardson number Ri, which is

= 2(U,R ) (2.1)
dU,/dn

z
|

where R is the radius of curvature, n is the normal distance away from the wall,
and U, is the longitudinal velocity. It was noted by Smits, Young and
Bradshaw [7] that the ratio of shear stress to kinetic energy is increased by the
concave curvature. The increment of Reynolds stress is caused by the increase
in the transverse production term in the Reynolds stress equation as the
curvature occurs. Experimental data also revealed that flows recover more
rapidly on the convex surface than on the concave surface as the curvature
disappears.

Gillis and Johnston [11] demonstrated the characteristics of flat-plate
boundary layers recovering from a sustained convex longitudinal curvature.
Since the radial pressure gradient acts to destroy the size of the largest eddies,
the radius of curvature is proposed to be a scaling parameter. The experimental

. results exhibited a slow recovery of Reynolds stresses from convex curvature



effect, which is contradictory to Bradshaw’s results. This is attributed to the
stabilizing effect which permanently attenuates the turbulence length-scale and
reduces the effects of the upstream condition. However, the near-wall layers
are not influenced very much by the curvature.

Streamline energy spectra for turbulent duct flow with small streamline
curvature has been examined by Hunt and Joubert [12] in terms of a
Townsend-type two-component turbulence model. Their result indicated that
the flow was primarily affec-:ted by a direct change in turbulent shear stress
through a conservative reorientation of the turbulence intensity components.

Ramaprian and Shivaprasad [13] -have performed extensive
measurements of the surface curvature effects on turbulent energy balance and
triple correlations. Turbulent energy production rate is reported to be
significantly reduced by convex curvature and confined to a region very close
to the wall; however, it is only slightly enhanced by concave curvature.
Diffusion of both momentum and turbulent kinetic energy is found to be
suppressed by convex curvature and strengthened by concave curvature.

Effects of convex and concave surface curvature with artificially
controlled constant press‘ure were tested by So and Mellor [14]-[15]). Reported
test results are similar for curvature effects with and without adverse pressure

gradients. Turbulent energy and its production rate, normalized by U,, appear
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to be similar to the flat-plate data in the near-wall region; hence, no influence
on the flow by surface curvature near the wall is concluded. A coherent
structure of Gortler vortices is generated at the onset of concave curvature and
then breaks up as flow moves downstream, due to the increase of turbulence
level.

Tani [16] performed an experimental test on concave-wall flow. He
compared the data with Gortler’s small-disturbance theory because longitudinal
vortices induced by concave curvature will intensify the growth of disturbances
into turbulence in a boundary layer. Measured data reveal a spanwise variation
having a definite wave number whether the boundary layer is laminar or
turbulent, but the determination of the wave number is unavailable in Tani’s
paper.

After inspection of individual surface curvature effects, curved duct
flows, in which there is a combination of both curvature effects, are examined.
First, an experimental study on the development of steady, laminar,
incompressible flow in a curved pipe was conducted by Agrawal, Talbot and
Gong [17]. The data indicate that at the vicinity of the curved pipe inlet, the
inviscid axial velocity pfofilc transits from a uniform distribution to a vortex-

type distribution.



White [18] also investigated wall shear stress in a coiled pipe with
various inlet Reynolds number. The results show that the friction force

increases with the Dean number D,, defined as

(2.2)

with r is the radius of the pipe.

Strong secondary flows are discovered in S-shaped ducts with square
cross section by Taylor, Whitelaw and Yianneskis (19]. In the first bend,
secondary flows are larger in the laminar flow case than in the turbulent flow
case due to larger inlet boundary layer thickness in laminar case. Taylor et al.
reported that secondary flows reach their maximum values at the exit of the first
bend, while the second bend produces the secondary flow effect in the opposite
direction.

Humphrey, Whitelaw and Yee [20] reported Laser-Doppler anemometer
measurement of the mean velocities and Reynolds stresses in a 90°-bend duct
with a square cross section. The locus of maximum velocity in laminar flow
is shown to move more rapidly toward the outer wall than that in the turbulent
flow. Low turbulence intensity and low level of anisotropy are exhibited at the

wall with convex curvature, whereas high turbulence intensity and high level



of anisotropy are introduced at the wall with concave curvature. Some
geometry with lower Reynolds number (laminar flow) was tested by
Humphrey, Taylor and Whitelaw [29], and it appears that the secondary flow
is already established at the entrance plane and persists downstream more than
10 hydraulic diameters.

Turbulent flows in a 180°-bend pipe and in a 45°/45° S-bend pipe were
investigated by Row [21]. In the 180°-bend pipe, it is indicated that the
secondary flows increase to a maximum and then decrease to a steady value.
The flow in an S-bend pipe demonstrates that the secondary flows cause a
complete interchange of fluids near the wall region and in the central core.

Humphrey and Chang [22] explored the turbulent flow field in a 180°-
bend square duct through L.D.V. measurements. According to the experimental
result, they concluded that in the downstream straight section to a curved duct,
tﬁrbulence diffusion and redistribution processes force the flow to erase all
memory of the force imbalance acting on the flow in bend. However, a very
weak secondary motion persists in the downstream straight section because of
differences in the cross-stream gradients of the Reynolds stresses.

Based on the present review, it is found that there are few experimental
studies on two-dimensional turbulent flows in S-bend ducts, and the work by
Butz [23] is one of them. Due to strong secondary flows in S-shaped ducts,

10



large aspect ratio is required to eliminate the lateral velocity component. Mean
velocities and pressure recovery coefficients were measured in Butz’s work.
Brinich and Graham [24] investigated the turbulent flow and heat
transfer in a two-dimensional 210°-turning curved channel having an aspect
ratio of 6, a radius ratio of 0.96, and adiabatic and heated walls; and operating
at three different inlet velocities. The results show that at the start of the
curved section an abrupt increase in pressure occurred for both the inner and
outer walls. This is due to the force required to change the stream direction
from rectilinear to curved flow. Another sudden pressure rise appears at 75°

station because of a change in the longitudinal vortex development.

2.2 Theoretical and Numerical Methods

Since the early parts of this century, researchers have realized the
importance and complications associated with curved flows. Some researchers,
such as Hawthorne [3] and Rowe [21], have tried to solve the problem through
a quasi-inviscid theory. Meanwhile, laminar boundary layer theory incorporated
with various techniques was employed more often in the curved flow field: for
example, Tani [16] used small disturbance theory to examine the instability of
the longitudinal vortices; White [18] proposed an empirical algebraic solution

for the resistance coefficient due to the curvature effect; Agrawal, Talbot and

11



Gong [17] adopted an asymptotic expansion correction (developed by Singh
[25]) to the governing equations of motion to compare with their experimental
measurements; Stewart, Cebeci and Chang [26] obtained an approximate
algebraic formulation by using a series expansion for three mean velocity
components; and a similar expansion technique was employed by van Dyke
[27]. Humphrey [28] and his co-workers [29] tried to use the finite
difference method to predict the flow field. Although all the above methods
have the advantage of simplicity and less computing time, none of them can
capture the characteristics of curved flows very well, especially when the
curvature is large. This is mainly because the mechanism of turbulence mixing
does not exist in these proposed theories, and hence the amplification and
atteﬁuation of turbulence could not interact with mean flow field. In the
remaining part of this chapter, we will concentrate on the turbulence modeling
and its theoretical development.

Bradshaw [30] performed a very extensive review of streamline
curvature effects generated by surface curvature, swirling flows, rotating ducts,
and/or spinning pipes. He also provided a method of distinguishing "simple”
shear layers from “complex” shear layers. A simple shear layer is defined as

one where the simple shear, dU/dy, is so much larger than any other rates of
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strain that the direct effects of the latter on turbulence are negligible. Complex
shear layers are recognized as perturbations of simple shear layers by the
imposition of extra rates of strain or body forces, or by the interaction with
other shear layers. Bradshaw [30]-[31] also deduced some characteristic
parameters for flows with streamline curvature by drawing an analogy between
meteorological flows, such as buoyancy effect, and curved-flow fields, such as
radial pressure gradient. He proposed a correction to the apparent mixing

length with small curvature effects based on the Monin-Oboukhov formula

li - 1-BRi 2.3)

0
where B is a positive empirical constant of order 10, and is the length scale
for zero curvature flows.

A critical evaluation of various turbulence models performed by
Nallasamy [32] reveals that the first generation turbulence modeling techniques
developed based on simple shear-layer flows can no longer predict complex
turbulent flows. Lakshminarayana [33] recently conducted a fairly thorough
review of turbulence modeling techniques for complex turbulent shear layers,
such as flows subjected‘ to curvature and body rotation, separated flows, and

vortex flows. The algebraic eddy viscosity and the two-equation models, with
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constant value of C,, are concluded to be inadequate for the prediction of
complex shear layers. Lakshminarayana recommended that a proper expression
for C,, incorporated with a two-equation model, be used for two-dimensional
flows with separation, curvature, or rotation. It is suggested that Reynolds
stress models be employed for cases with very severe extra strains, large
separation, curvature, or rotation effects, because of the large anisotropy.

In the following review, papers will be summarized based on the
sequence of zero-equation (algebraic stress) models, two-equation models,
modified two-equation models, and Reynolds stress models.

Hunt and Joubert [12] employed the length-scale model in equation
(2.3), proposed by Bradshaw [30], to calculate a two-dimensional curved duct.
No detailed comparison between experimental data and numerical prediction
was reported.

Towne and his co-workers [34]-[37] computed some curved-duct flows
by using a parabolized Navier-Stokes (PNS) solver with a two-layer eddy-
viscosity turbulence model embedded in it. In the outer region, the turbulence
model of Cebeci and Smith [38] is used, while in the inner region either the
model of Cebeci and Smith [38] or that of McDonald and Camarata [39] is
adopted. In spite of less computing time required for the PNS solver, the

streamwise marching technique has its own limitation (i.e., viscous flows with
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no or small separation), while streamline curvature does include flow separation
effect. Numerical predictions of turbulent cases are shown to be less accurate
than those of laminar flows because of the failure of the two-layer turbulence
model in recovering the effect of extra rate of strain.

The Baldwin-Lomax [40] two-layer eddy-viscosity model was tested by
Loeffler, Jr. [41] by applying it to an S-shaped diffuser. With the Beam-
Warming [42] implicit scheme embedded, a large separation zone was
predicted; but the numerical results were not validated by comparing them with
experimental data.

A simple mixing length model, in which the turbulent stress is
proportional to the local strain rate of the mean flow, was used by Anderson
[43] to compute duct flows with streamline curvature and streamline divergence.
In the free stream, the length scale is selected to be the duct height, while van
Driest’s [44] model is employed at the near-wall region. Detailed comparisons
with measured data are not available in the Ref. [43].

Irwing and Smith [45] modified the Reynolds-stress model proposed by
Launder, Reece and Rodi [46], with the assumption of local isotropy as well
as local equilibrium, and obtained algebraic equations for the Reynolds stresses.

The extra Reynolds stress production term is included to calculate the effects
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of streamline curvature, according to Irwing and Smith’s observation that
curvature effects on the Reynolds stresses are quite large.

Gibson [47] introduced an explicit form for the length-scale function,
where the influence of the wall on the fluctuating pressure field is modeled to
account for the curvature effects. It was suggested in Ref. [47] that curvature
effects can be included by the relatively small production terms appearing in
each individual Reynolds-stress equation.

An algebraic turbulence velocity scale for flows with curvature was
developed by So [48). The approximation was made based on the Reynolds-
stress equations, in which the pressure-strain term is modeled by Mellor and
Herring [49], with the assumption of local isotropy and local equilibrium.
With the aid of two-dimensional boundary layer approximation, the velocity
scale is derived to be a function of Richardson number Ri.

Two-equation models probably are the most‘widely used models for
complex turbulent flows. Chang, Han and Humphrey [50] applied the
standard k-e model to a 90°-bend duct with square cross section. The
discrepancies exhibited the failure of the standard k-e model to account for
large-scale anisotropy in the flow. The standard k-e model in conjunction with
a parabolized scheme was employed both by Patankar, Pratap and Spalding

[51] and by Pratap and Spalding [52] to compute curved ducts and pipes.
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Numerical predictions appear to underestimate the strength of secondary flows.
Two suggestions were then made to modify the turbulence modeling for
complex turbulent flows: 1) solving Reynolds stress equations, and 2)
implementing the eddy viscosity based on approximate algebraic Reynolds-
stress equations.

Murthy and Lakshminarayana [53] compared the Baldwin-Lomax
eddy-viscosity model with the standard k-e model, in a curved duct,
incorporating in both models a space-marching, non-iterative algorithm.
Although the standard k-e model is found to be superior to the eddy-viscosity
model, neither model can produce quantitative agreement with the experimental
measurements.

A general algebraic expression for C, was deduced by Pourahmadi and
Humphrey [54] to modify the k-e model to account for curvature effects. A
new eddy viscosity was obtained by the combination of Bradshaw’s length-scale

model in equation (2.3), and a functional C,, which can be written as

F(yC, ) = Ciﬂ+alC“+a2CJﬂ+a3 =0 (2.4)
where a,, a,, a; = a,, a,, a(P /e, Uyr, 9U/0X)). Santi [55] applied both this
model and the standard k-e model to a 180° turn-around duct, with uniform and

non-uniform inlet flow conditions, and compared the results. Based on various
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computational results, Santi criticized Pourahmadi and Humphrey’s model for
an error in finding the root of the F(\/Cu) equation (Eq. 2.4) and for additional
difficulties which occur in specifying a selection criterion for regions with
multiple roots.

Launder, Priddin and Sharma [56] proposed that C; and C., be
functional, and that an extra term be added to the energy dissipation rate (e)
equation to include the effects of curvature. In this model, the modeling

constant C, can be expressed as

[ "3.4
C, =C (2.5)
L3 18 exp|: ( 1 + Rt / 50 )2 }

where R, is the turbulent Reynolds number, and C, = 0.09 is the value of C; in

the absence of the effects of streamline curvature. Another empirical coefficient
C., is modified to be proportional to a turbulent Richardson number Ri, (based

on a time scale of the energy-containing eddies) and is defined as

C,=C,[1-03exp(-R}}] (1-C.Ri,) (2.6)
where C_ is a constant with a value of 0.2, and C,, is the modeling constant of

the standard k-e model and equal to 1.92. An additional term appears in the

e-equation which is attributed to the curvature correction on the production term

18



of the e-equation instead of the decay part. This model was employed by
Sharma [57] and provided reasonably good predictions.

Rodi and Scheuerer [58] also compared this model with Gibson’s
algebraic stress model (Ref. [47]) in calculating the curved shear layers. The
discrepancy between numerical and experimental results demonstrated the
inadequacy of both models in capturing the curvature effects in general.

An effort to include the anisotropy in the approximate algebraic Reynolds
stress equations was conducted by Galmes and Lakshminarayana [59] in
predicting three-dimensional shear flows over curved rotating bodies. In
addition to using the same modified C; formulation as in equation (2.5), they
implemented the production term of the ¢ equation, based on their analysis, by
modifying the empirical coefficient C;, to include the rotation effect, as

follows:

CH=C,f =C,[1+03(1-Ri, )exp(-R})] 2.7)
where C,, is the modeling constant of the standard k-e model with a value of
1.44, and Ri_ is the Richardson number of rotation. A rather complicated model
was proposed by these authors in which a modified k-e model, coupled with a
set of six algebraic Reynolds-stress equations, needs to be solved

simultaneously. In each of the six algebraic equations, the pressure-strain term
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as originally proposed by Launder, Reece and Rodi [46] is noted to have been
modified by Galmes and Lakshminarayana so as to include the anisotropy and
near-wall effects caused by rotation and curvature.

Warfield and Lakshminarayana [60] implemented the algebraic
Reynolds stress model proposed by Rodi [61], to modify the Kolmogorov-
Prandtl eddy-viscosity relation and produce aﬁ anisotropic turbulence model to
account for the effect of rotation. Algebraic expressions for a vector form of
C,, which contains four components (Cu1» Cuz» Gy, and C,,), were derived so
that the Reynolds stress tensors are not necessarily aligned with the mean strain
tensor. However, the formulations for the C, vector are considered to be
relatively complicated.

Naot and Rodi [62] obtained the algebraic equations for the vector
modeling coefficient C, in the k-¢ model, composed of C,, and C,,, to consider
the anisotropic effect. The algebraic expression was derived from an
approximated algebraic Reynolds-stress model by simplifying the Reynolds-
stress equation proposed by Launder, Reece and Rodi {46], with the convection
and diffusion terms neglected (i.e., in local equilibrium).

A new eddy-viscbsity model for swirling flow, representing a type of
flow with streamline curvature, was developed by Kim and Chung [63]. With

an assumption of weakly swirling flows, an expression for eddy viscosity was
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derived through Rodi’s algebraic stress model [61]. A relatively good
agreement was displayed by choosing the modeling constant B equal to 0.25.
Nevertheless, according to Cheng [64], some inconsistency was found in Ref.
[63], and it is not certain that the success of Kim and Chung’s model is
attributable to the inclusion of Richardson number or to the ad hoc change of
the empirical coefficient C,.

Wilcox and Chambers [65] demonstrated the prediction of the
streamline curvature effects on turbulent boundary layers by using the e-®
model. It was suggested that the streamline curvature primarily affects the
equation of turbulent mixing energy e, while the equation of turbulent
dissipation rate ® remains unaffected by the curvature. A curvature correction
term was then added to the e-equation to account for the centrifugal effect.

The Reynolds stress model proposed by Launder, Reece and Rodi [46],
coupled with modeled energy dissipation (e) equation, was used by Gibson and
Rodi [66] to predict a highly curved mixing layer. The Reynolds-stress model
developed for plane flow is considered to have the advantage that neither
modification to the basic closure hypothesis nor changes in the modeling
constants are required to predict strong curvature effects. This method

apparently not only is much more complicated and computing intensive but also
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requires more modeling approximation for higher order terms. Some qualitative
agreements with the measured data were reported.

Hah and Lakshminarayana [67] investigated turbulent wake flows
including curvature and rotation effects by using three different turbulence
models: 1) standard k-e model, 2) e/algebraic-stress model, and 3) e/Reynolds-
stress model. Due to poor representation and inadequacy of the production term
of the e-equation for curved flows, different forms of this term in combination
with those three models were tested as well. It seems that the k-e model with
modified production term in the e equation can predict the streamline curvature
effect very well but fails to capture the effect of rotation. It was suggested in
Ref. [67] that the e/Reynolds-stress model or the e/algebraic Reynolds-stress
model be employed to account for the rotation effect.

Lilley [68] demonstrated the turbulent flow prediction results of several
different turbulence models, namely mixing length model, k-k/ model, Reynolds
stress model, and algebraic stress model, in turbulent swirling jets. An
analytical formula for the length scale was presented to account for swirling
effect. An extra term was introduced in the ki-equation to include the effect of

rotation, so that as the swirl number increases, kI will be enhanced. Fairly good
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agreement with measured data was shown for the mixing length model and k-k/

model.

2.3 Conclusions
Based on the literature survey, the following conclusions may be

reached:

1) Streamline curvature in the plane of the mean shear produces
considerably large changes in higher-order quantities of the turbulence
structure of shear layers: e.g., second order variables--Reynolds stresses,
turbulent kinetic energy, etc.

2) Turbulent mixing is inhibited by the presence of convex curvature;
hence, the stabilizing effect will attenuate the Reynolds stresses and
turbulent kinetic energy.

3) Concave curvature has a destabilizing effect which will not only enhance
the turbulence intensity and enlarge the length scale, but also induce the
Gortler-type vortex structure, which the extra rates of strain become

significant.
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4)

)

6)

7

8)

9)

Streamline curvature effect could be caused by surface curvature,
swirling flows, flow separations, or rotation of the whole system; and we
consider a turbulent flow field with this effect a complex shear flow.
The algebraic eddy-viscosity and the standard two-equation models are
not adequate for the prediction of complex shear layers.

Although it fails to predict the flows with large extra strains, Bradshaw’s
buoyancy analogy seems to be the simplest model to calculate the
corrected length scale, through a correlation in which a Richardson
number is involved to include the effect of streamline curvature.

The k-¢ model, with the aid of modification of modeling constants
(through the algebraic Reynolds-stress equations) or adding new terms
in k- and/or e-equations, appears to be the most plausible approach
regarding model complexity and the computing time.

The k-e model, coupled with a set of algebraic Reynolds-stress
equations, does have a better coverage of the physical characteristics of
extra strains (from the effect of anisotropy); however, it is evident that
more computing time and a more complicated modeling procedure are
required.

Even with a more complicated and time-consuming Reynolds-stress

model, better predictions of curvature effects are not guaranteed.
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10) In spite of the great number of turbulence models proposed for curved
or rotating flows, most will show good predictions in only some
particular geometries but will fail predicting others.

11)  For engineering applications, modifications to the turbulence modeling,
allowing greater simplicity and less computing time, are feasible,

desirable, and necessary.
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CHAPTER III

THEORETICAL APPROACH

3.1 Governing Equations

The equations of motion for a steady, incompressible, adiabatic flow of
a Newtonian fluid are based on the following fundamental conservation laws,
and will be expressed in tensor notation for universality [69]. The continuity

equation (conservation of mass) is given by

WU _, 3.1)

The momentum equations, or so-called Navier-Stokes equations (conservation

of momentum) are written as

oo YL 98 % (3.2)
i, X, X

where U, represents the three instantaneous velocity components in X;-
coordinate direction, Pis the instantaneous static pressure, p is the density, and

the instantaneous stress tensor "fij is given by
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a0, o, 63
X, X,

]
=

ij
1

where | denotes the coefficient of fluid viscosity.

With the present computer capabilities, we know well the impossibility
of solving the instantaneous Navier-Stokes equations for all the detailed
fluctuating properties of a turbulent flow and with spatial resolution of finest
eddies. Therefore, we can only hope to resolve the time-averaged quantities.
By using the Reynolds’ decomposition, U, =U, +y, and P=P+ p, and time-
averaging procedure [70]-[71], we can obtain the system of governing
equations for the time-averaged, steady, incompressible, adiabatic turbulent flow

field, which can be written as

U,
3%,
aU. .U
ou i 9P 9ty U, Y o (3.5)
26> > > A R > S>3 i

where U, and P are time-mean parameters, and u; and p are fluctuating
components. We note that excluding the last term, pu;u;, in equation (3.5) gives

the momentum equations for laminar flows. The term of -puy; is found to play
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the same role as the simple Newtonian viscous stresses in a laminar flow,

hence, the fluctuating term is regarded as Reynolds stress or turbulent stress.

For i = j, -puy; represents turbulent normal stresses, otherwise, the Reynolds’

shear stresses. Since the Reynolds-stress term appears in equation (3.5),

additional equations are needed to solve the system of equations. A transport

equation for the Reynolds stresses can be derived from equation (3.5) by

multiplying it with u; and taking a time average of the resulting equation [38],

[72], i.e.
C.=P.+Ps.+D. -¢..
ij ij ij i} 1)

where

) du.u.
C.. (convection) = U,
Y X,

Jou. ou.

P, (production) = —[uiuk axl

Psij ( pressure-strain) = —| — + ——
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duu,
D;; (diffusion) = - ai WU~V + B(ajkui +8,u;)
k k

e.. (dissipation) = 2v Eg‘__a_u’_
Y dX, 09X,
and v is the coefficient of laminar kinematic viscosity, & and o, are the
Kronecker delta functions.
For i = j, by defining the turbulent kinetic energy as k=Y uy/2,ie.

summing the normal Reynolds stresses, equation (3.6) becomes the transport

equation of turbulent kinetic energy, which is
C,=P+P +D -¢ 3.7

where

dk
C. (convecton) = U

« { ) 79X,
P, (production) = - uu, o,
roduction) = -uu, ——
i ¢ p ik axk
.- p aui
P, (pressure-strain) = — —
p X,
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u
D, (diffusion) = - J u, U . p dk
oX, 2 p X,

( dissipation) du, du,
€ issipation ) = V—— ——
g X, IX,

and the pressure-strain term P, is usually neglected on the evidence of measured
turbulent energy balance [72].

It is obvious that every time we take time-averaging to introduce more
equations, the more unknowns (higher-order turbulence quantities) appear in our
system of equations. Turbulence closure modeling is therefore required to

balance the numbers of unknowns and the governing equations.

3.2 Turbulence Modeling

As indicated in equations (3.4) and (3.5), the time-averaged Navier-
Stokes formulation has more unknowns than the number of equations. The
technique to model the new unknown term (pﬁi_u;) to close the system of
equations is called turbulence modeling. For the last few decades, numerous
turbulence models havé been proposed by researchers for various types of

flows. Detailed discussions and comparisons of various turbulence models are
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described in the review papers by Nallasamy [32] and Lakshminarayana (33].
Despite a great variety of turbulence models which have been proposed, they
can be classified into two categories: a) eddy-viscosity model, and b) Reynolds
stress model. The eddy-viscosity models are constructed based on the
Boussinesq’s eddy-viscosity concept which probably is the widest-applied
approximation for turbulence modeling, which draws a similarity between

Reynolds stress and viscous stress, and is given by

Ju, dU. 2
—pUW = | —+ 3 |-Z8,.pk (3.8)

where 1, is named eddy viscosity or turbulent viscosity. Various methodologies
have been employed to evaluate the eddy viscosity .. Based on the number
of differential equations, in addition to the time-averaged Navier Stokes
equations, used in each technique, the eddy-viscosity models are categorized as
zero-equation (algebraic), one-equation, two-equation, and multi-scale models.
As mentioned in the review of literature and suggested in Ref. [73], the
standard k-e model, a version of two-equation models and proposed by
Launder and Spalding [74], will be employed and implemented in the present

study to predict the effect of streamline curvature because of its extensive
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verification, wide application, and easy modification. A detailed formulation
of the k-e model will be described later on.

In the Reynolds stress models, the Reynolds stress tensors are computed
directly by solving the coupled partial differential equations as shown in
equation (3.6), in which higher-order terms appear and need to be modeled. It
is obvious that the Reynolds stress models require not only more computing
time and computer memory because of more differential equations and
unknowns, but also more thorough understanding of turbulence physics to
model these higher-order terms. However, the Reynolds stress models have the
advantage of predicting complex turbulent flows such as flows subjected to
separation, rotation and the effect of streamline curvature. Hence, in the present
implementation approach, the essence of the Reynolds stress models will be
adopted to correct the formulation of the eddy viscosity.

With the aid of Boussinesq’s eddy viscosity ,formulation in equation

(3.8), the mean momentum equation, i.e. equation (3.5), may be written as

v, 1 0P 3 | K| 9U Y (3.9)
P | X, 9X,

Uj—=__—+_ + —_—
X pK oX,

and p_ = pL + W, is the effective viscosity. By using dimensional analysis, the

eddy viscosity |, can be expressed as
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o~ pVd (3.10)

where V, is the turbulence velocity scale, and [ is the turbulence length scale.
It was postulated by Prandtl and Kolmogorov and later adopted in the standard

k-¢ model that

n
K vk (3.11)

€

l
which will lead us to obtain

k* (3.12)

where C, is an empirical coefficient. In equation (3.12), two more unknowns
are introduced and will require the solution of two partial differential equations
for the turbulent kinetic energy and turbulent dissipation rate. This is why the
k-e model is identified as a two-equation eddy-viscosity model.

In the standard k-e model, the transport equation for turbulent kinetic

energy as shown in equation (3.7) was modeled as
C,=P+D, -¢ (3.13)

where
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dk

C= Y
k

— ou, dU, |dy;
= +
Top | X, dX; |IX,

S N L
¥ pIX, | o, X,

k

and as for the turbulent dissipation rate e, it is expressed as the dependent
variable of a differential conservation equation which is highly empirically

modeled and is given by

de 1 9 | K oe e L, | 9U; oU, |9V,

= + —_—

‘3K T pIK |G %, | X | 3K, oK K, .1a)

2
£
-C,—

which physically represents the convection, diffusion, production and dissipation
of the turbulent dissipation rate €, respectively. In equations (3.12)-(3.14), C.
o,, O,, C,, and C,, are modeling constants, and some typical values of these
constants in the standard k-e model are recommended by Launder and Spalding

[75} in Table 3.1:

34



Table 3.1 The values of modeling constants in the standard k-¢ model

C

18 ck C CcZ Gc

el

0.09 1.0 1.44 1.92 1.3

According to equations (3.12)-(3.14), the standard k-e model apparently
does not have the capability to account for the effects of streamline curvature.
The modeling constant C, in the eddy viscosity formulation, as shown in
equation (3.12), is empirically tuned for the simple shear layer. Meanwhile,
there is no mechanism in the model which can either amplify the turbulent
intensity or eddy viscosity in the presence of concave curvature, oOf inhibit
turbulent mixing with the application of convex curvature. Therefore, the
expression for eddy viscosity in the standard k-e model is considered to be
inadequate to account for the streamline curvature effect. It is evident that
modifications to the standard k-e model are necessary to include ‘the curvature
effects. However, the ad hoc changes in modeling constants are not desired due
to lack of physical explication. The implementation to the formulation of the

Reynolds stress should be reasonable and feasible.
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3.3 Implementation Approach

It was suggested by Muck, Hoffmann and Bradshaw [5] that the effects
of curvature be modeled in the Reynolds-stress‘equations. Lakshminarayana
[33] also indicated that the Reynolds-stress equations can interpret the physical
phenomena very well. As a result, the implementation approach will start with
the Reynolds-stress equations. Unfortunately, more higher-order unknown
turbulent parameters are exhibited in the Reynolds-stress equations. Launder,
Reece and Rodi’s [46] Reynolds-stress model is therefore adopted because of

its well validation and wide application, which is given by

Cij =P+ Ps;; + D, -, (3.15)
where
Bﬁi_uj
G =Yg
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D.=C — . u.u u u )

Tl oS B S > S &
2

cu=_3.8ije

and C, is an empirical constant with a value of 0.11. The modeling constants
C, and C, are inertial and forced return-to-isotropy constants respectively, where
their values will be discussed later on. It should be noted that in this model,
a local isotropy is assumed, which will be valid as long as the cross flow
(lateral or circumferential velocity) is not very large. Even the system of
equations now is closed, solving these six partial differential equations coupled
with k- and e- equations is still not feasible for today’s computer and
engineering applications.

An approximation of the Reynolds-stress model proposed by Rodi [61]
is very physics-explicable and economical-- the net transport of Reynolds
stresses u,u; is proportional to the net transport of turbulent kinetic energy k

with a factor of uy;/k, i.e.

C.-D. = _i3(C, -D,) (3.16)
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In this approximation, it is assumed that wu, /k varies but slowly across the flow
field. By combining equations (3.13) and (3.15) with equation (3.16), an

algebraic expression for uyu; is obtained as

W% _Q0lp _25 p |+ 25, (3.17)
k e ij 3 ijor 3 ij
where
o = 1-C,
C-1+-2L

This approximation will be invalid only when G}ﬁj'/k change greatly, i.e. D(
uy;/k ) / Dt is not negligible, so it is not suitable for the near-wall region.
Although equation (3.17) is in algebraic form, it is difficult to incorporate with
the k-¢ model because the six Reynolds stress components are coupled. In
order to further simplify this algebraic formulation, the understanding and
analysis of flow characteristics are necessary.

There are three kinds of basic streamline curvature: 1) local curvature
such as separation bubbles and flows over an airfoil, 2) longitudinal curvature

such as flows through a curved duct, and 3) lateral curvature such as swirling
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flows. The coordinate system for each flow field is somewhat different, and

also both the main strain rate and the extra strain rate vary in each case.

3.3.1 Local curvature

For flows subjected to local curvature, the streamwise direction basically
does not change much, for example the flow over an airfoil or the separated
flow in a backward-facing step geometry. In this case, the two-dimensional
Cartesian coordinate system is selected. The streamwise direction is defined to
be along the x-coordinate, i.e. i, j, or k = 1, and the transverse direction will be
in y-coordinate as i, j, or k = 2. The velocity components are defined as U =
U,, u = u, in the streamwise direction, and V = U,, v = u, in the transverse
direction respectively. According to Bradshaw [30], the extra rate of strain is
dV/dx besides the main strain rate 0U/dy for the flows with streamline
curvature in Cartesian coordinates. By keeping terms associated with these two
strain rates, and through some elaborate manipulation, the primary Reynolds
shear stress -uv is obtained as

— K2 oU 2 P, R{ +4R,+ 1 (3.18)

—uv = — 2|1 -R, -¢—
e dy 3(1> f ¢e 1-R,

where the flux Richardson number R is
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R = - oV /ox
f oU / dy

The detailed derivation procedure will be described in Appendix B. By
collaborating with the Boussinesq’s eddy-viscosity concept as shown in equation
(3.8), an algebraic expression for the eddy viscosity [, can be derived as

k2 2¢ ok Rf +4R +1 (3.19)

e 3 € 1 -R,
With the flux Richardson number embedded in the eddy-viscosity formulation,
streamline curvature can influence the eddy viscosity and so the Reynolds stress
directly. It is evident that the flux Richardson number R; is positive for convex
curvature (stabilizing effect), and so the eddy viscosity is reduced. On the other
hand, concave curvature (destabilizing effect) gives a negative R; and will
enlarge the eddy viscosity. This modification is therefore qualitatively
consistent with the physics of the problem and conclusions reached from the
experimeﬁtal studies. The effects of streamline curvature vanish as R; =0, and

the eddy viscosity becomes
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k2 . P (3.20)
ut—p—-c-§¢[1 ¢—}

In order to determine two return-to-isotropy modeling constants, C, and
C,, in equation (3.17), the above equation will be matched with the correlation
for the eddy viscosity in the standard k-e model at the free stream condition
where there is no curvature effect and the production rate is equal to local

dissipation rate, i.e. where local equilibrium prevails, and hence

C. = §¢o(1—¢o) (3.21)
where
1-C
0 = ——

The values of C, and C, have been determined empirically by several
researchers such as Launder, Reece and Rodi [46] (C, = 1.5, C, = 0.4), Gibson
and Launder [76] (C, = 1.8, C, = 0.6), Gibson and Younis [77] (C, =3, C; =
0.3), and Gibson and Launder [78] (C,=2.2,C, = 0.55). Kim and Chung [63]
also observed that 1.5 < C, < 1.8, and 0.5 £ C, < 0.8. However, the variations

of C, and C, are expected not to affect the results substantially, which also will
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be demonstrated in the numerical predictions later on. In the present model, C,

= 1.5 is selected which will yield C, = 0.76 from equation (3.21).

3.3.2 Longitudinal curvature

The streamwise direction can change drastically for the flows subjected
to longitudinal curvature, for example the flow in an S-bend duct or any curved
ducts. Consequently, the two-dimensional Cartesian coordinates may not be
suitable in this flow field because the assumption for the extra strain rate is no
longer valid. In this case, the approximation procedure will be performed based
on a two-dimensional streamline coordinate (s,n) system, where s-coordinate is
in streamwise direction as i, j or k = 1, and n-coordinate represents the direction
normal to s-coordinate as i, j or k = 2. The velocity components are designated
as U = U, and u = u, in the streamwise direction, and V=U, and v = u, in the
normal direction. The term--U/R is known to represent the extra rate of strain
in the s-n coordinate system in addition to the main rate of strain dU/dn (see
Ref. [30]). By retaining the terms associated with these two strain rates and
following the similar procedure as that in the Cartesian coordinate, the modified

eddy viscosity jL, can be derived as shown in Appendix C, and hence
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Lok 20| g g P RicAR (3.22)
' 3 f £ 1-R,
where
4
R. =

' n)oUu U

 + — |— + —

[ R ) on R
and R is the radius of surface curvature, n is the normal distance away from the
wall. For convex curvature, the radius R has the same direction as n, so R is
positive; while the radius R is in the opposite direction as n for concave

curvature, hence R is negative.

It is interesting to note that equation (3.22) is exactly the same as
equation (3.19), except the definition of the flux Richardson number R; is
different. This. is very practical for engineering applications which implies no
change of formulation for different coordinate systems. It is easy to recognize
that the eddy viscosity in equation (3.22) will be diminished for convex
curvatures due to the positive radius of surface curvature and flux Richardson
number. The increase of the eddy viscosity of course will be introduced with
the application of concave curvature because of the negative radius of surface

curvature and negative R;.
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3.3.3 Transverse curvature

Transverse curvature occurs when flows have swirl. The cylindrical
coordinate system, X; = [x, y, 6], will be used with x = X, in longitudinal
(axial) direction, r = X, in the radial direction, and @ = X, in circumferential
direction. The symbols U; = [U, V, W] and u; = [u, v, w] represent the mean
and fluctuating velocity components in the x, r and 6 direction respectively. It
is to be noted that the additional terms introduced by the swirling component

appear not only in the Reynolds-stress productions but also in the Reynolds-

'~ stress convections, which was proved by Johnson [84], and Humphrey and

Chang [85]. The full Reynolds stress equations are complicated, as shown in
Appendix D, hence some assumptions are necessary in order to simplify the
modified model. Axisymmetric, thin-shear-layer, and weak swirl are therefore
assumed for the proposing model, which lead to 9/306 = 0, 9/or » d/dx, and W/r
< OW/or. The weak swirl approximation is also consistent with the constraint,
isotropic turbulence, of most turbulence models including the k-e model. The
anisotropic effect becomes more important as the swirl increases. With the
above assumptions and following the similar derivation procedure of two
proposed models, the rﬁodiﬁed eddy viscosity y, can be derived as shown in

Appendix D, and hence



K2 2 P 1+2R
no=p 20y r : (3.23)
3 e 1-R,
where
o W W
R = r o (3.24)

‘" (oUY}, (oW}
or “or

It is evident that the flux Richardson number R, is positive when the
extra rate of strain, WOW/(ror), is positive, and so the eddy viscosity W, is
reduced by this effect, which can be seen from equation (3.23). Whereas, the
enhancement of the eddy viscosity |1, can be achieved by the introduction of the
negative flux Richardson number, i.e. the extra rate of strain is negative.
Comparing equation (3.23) with equations (3.19) and (3.22), we can easily find
even though the eddy viscosity formulations are different, the effects of the
extra rate of strains, embedded in the flux Richardson numbers, on the eddy
viscosity |, are essentially the same.

The computational predictions by these three modified models will be
compared with the experimental measurements, and will be further discussed

in chapter V (Results and Discussions).
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3.3.4 Wall function

As indicated in the literature, [11], [13]-[15]; the near-wall turbulent
structure is not significantly affected by the surface curvature. Hence, the
standard wall function, suggested by Launder and Spalding [75] and used in
TEACH-based program, will be applied in the present research. Detailed

description is explained in Ref. [75] and Ref. [79].
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CHAPTER 1V

NUMERICAL METHOD

4.1 Equation Integration
A two-dimensional and a three dimensional Navier-Stokes flow solvers
(FDNS-2D and FDNS-3D) embedded with the k-e model, developed by Y.S.
Chen [80-82], are used to test the proposed model in the present study. The
transport equations of the mean flow and turbulence model are transformed into
the general curvilinear coordinates (§, m, ). The system of coupled
transformed equations is discretized into a set of linearized algebraic equations.
In the discretization process, several techniques are employed to stabilize the
numerical integration and maintain the same order of accuracy.
1) A time-centered (Crank-Nicholson) difference scheme is utilized
for the temporal discretization.
2) A second-order central difference method plus a damping term are
used to manage the convection terms. The damping term could
be either fourth order, deduced from second-order upwind

differencing scheme, or second order, resulted from first-order
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upwind differencing scheme. With the coefficient of the damping
term being specified explicitly, the numerical stability of the
matrix solver can be enhanced.

3) The diffusion, production and other source terms are discretized
with the second-order central differencing scheme to maintain the

same numerical accuracy.

The set of discretized linear equations is solved by an alternating
direction linear-relaxation method (ADI) with a simplified predictor-corrector
algorithm. In this pressure-based predictor-corrector solution procedure, an
explicit fourth-order pressure smoothing term is added to the velocity-pressure
coupled discfete equation, derived approximately from the discrete continuity
and momentum equations, to inhibit the instability in the pressure solution. For
each time step, the predictor-corrector loop will be executed iteratively until the

conservation of mass is satisfied.

4.2 Grid Generation
Although there will be a variety of flow geometries, orthogonal grids
system would be generated to avoid the ill-conditioned matrix caused by large

grid skewness. Figure 1 illustrates the grid system for a backward-facing step,
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and the mesh system for a 30°-45° S-bend duct is exhibited in Figure 2. Grid

packing near the wall and large gradient zones may also be observed in Figures

1 and 2.
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CHAPTER V

RESULTS AND DISCUSSIONS

To evaluate the performance of the proposed turbulence model, various
curved flows are examined in the present study. According to the previous
classification of streamline curvature, numerical computations are performed on
different geometries for each type of curvature effects. The numerical
predictions and discussions are divided into 1) local curvature, 2) longitudinal

curvature, and 3) transverse curvature.

5.1 Local Curvature

A backward-facing step with separation and reattachment provides the
geometry for local flow curvature. Driver and Seegmiller [83] conducted an
experimental investigation on the incompressible turbulent flow over a
backward-facing step with an area ratio of 8:9. The grid system is shown in
Figure 1 and the detailed information about the test configuration is provided
in Figure 3. To study the effect of varying modeling constant values (C, and

C,) and the dependence of the cell size on the numerical predictions, two sets

50



of grid systems (61 x 41 or 111 x 45) along with different values for modeling
constants (C, = 1.5 or C, = 1.8) are tested for the present model.

First, a comparison is made between the present model and the standard
k-e model with C, = 1.5 and 61 x 41 grids. The improvement by the present
model is discernible from the locus of flow reversal illustrated in Figure 4. The
result shows that the flow separation from the step wall generates the effect of
convex curvature, which attenuates the eddy viscosity and actually causes the
flow to reattach further downstream. Since there is no mechanism in the
standard k-¢ model to simulate the curvature effect, a predicted convex shear
layer exhibits higher viscosity and early reattachment takes place. Figure 5
demonstrates better predictions by the present model on the streamwise velocity
profiles.

The more rapid change of the velocities in the recirculation zone
predicted by the standard k-¢ model indicates the higher energy generated by
the larger eddy viscosity. The turbulent kinetic energy profiles shown in Figure
6, indicate the reduction of the turbulent kinetic energy by the convex curvature
in the present model. However, both models underpredict the turbulent kinetic
energy when the flow Ais near the reattachment location. This is possibly

attributed to the effect of large-scale eddy, which becomes pronounced inside
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the recirculation zone; and the current single-time-scale model fails to capture
this phenomenon.

The prediction on the Reynolds shear stress -puv by the present model,
as shown in Figure 7, appears to be reasonably accurate. The success of the
prediction of the Reynolds shear stress in the recirculation zone reveals validity
of the eddy viscosity formulation. Meanwhile, it is worth noting that the
present model costs 755 seconds of Cray X-MP CPU time (for 3122 time
iterations) to converge to an accuracy of 5 x 10, while 572 seconds of Cray
X-MP CPU time (for 2486 time iterations) are required by the standard k-e
model to converge to the same accuracy. It is encouraging that with all the
improvements of the numerical predictions by the present model, only three
minutes of Cray X-MP CPU time in addition are introduced. This shows the
practicality and feasibility of the current approach for the complex engineering
applications involving curvature. The velocity contours, static pressure
contours, and velocity vector plots for both the standard k-e model and the
present model are displayed in Figures 8-13.

To demonstrate the insensitivity of the modeling constant C, value on
computational results, a-comparative investigation between C, = 1.5 and C, =
1.8 is performed. Figures 14-17 illustrate almost identical results of the flow

reversal locations, streamwise velocity profiles, turbulent kinetic energy profiles,
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and Reynolds shear stress profiles between the two C, values. The above
exercise satisfies our previous statement that the performance of the present
model is insensitive to a reasonable variation of C, value. The remaining
computations are performed with the empirical coefficient C, specified as 1.5.

By increasing the grid numbers from 61 x 41 to 111 x 45, a better
description of not only the change of streamline curvature but also the discrete
flow field is expected to be achieved. From Figures 18-21, it appears that the
numerical calculations of the locus of flow reversal, streamwise velocity,
turbulent kinetic energy, and the Reynolds shear stress profiles are independent
of the grid size. With the same accurate results, the medium grids instead of
finer grids will be employed to save the computing time.

To achieve further verification of the proposed model with local
curvature effect, the numerical prediction on a backward-facing step with an
area ratio of 2:3, tested by Kim, Kline, and Johnston [86], is conducted and
the computational result is compared with the experimental data. The layout
of the backward-facing step is sketched as shown in Figure 22 and will be
discretized into an 85 x 51 mesh system. The improvement of the present
model, as indicated in Figure 23, is consistent with the result of the previous
backward-facing step case. It is evident that the locus of flow reversal, plotted

in Figure 23, reveals the superiority of the proposed model over the standard
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k-e model in predicting the larger recirculation zone. This is indicative of the
attenuation of the eddy viscosity caused by the effect of convex curvature. The
measured reattachment length x; is 71 step heights; and it verifies the
prediction of the present model with later reattachment. The variation of xg is
due to the inherent unsteadiness of the flow field.

Figure 24 exhibits better performance of the present model in capturing
the streamwise velocity profiles. The reduction of the turbulent kinetic energy
by the effect of convex curvature in the recirculation zone is substantiated by
the agreement between experimental data and numerical predictions of the
present model, which is illustrated in Figure 25. The Reynolds shear stress -uv
profiles shown in Figure 26 reveal better predictions of the present model. The
successful predictions of the turbulent kinetic energy and the Reynolds shear
stress by the present model indicates that the proposed formulation for the eddy
viscosity is capable of describing the characteristics of the flow separation with
curvature effect. Figure 27 also illustrates that the proposed model can predict
the wall static pressure coefficients better than the standard k-¢ model.

Although the overall predictions of the present model are reasonably
successful, there is sorﬁe discrepancy between experimental results and
numerical predictions. The disagreement can be attributed not only to the

unsteadiness of the flow field but also to additional turbulence phenomena, such
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as large-scale eddy and anisotropy not accounted in our theory. Therefore, it
is suggested that further improvement on the proposed model be made by taking
into account the physics of the large-scale eddy and anisotropy. This will be
explained further in chapter VI--"SUMMARY" of this report. The detailed
descriptions of the flow field computed by both the standard k-e and the present
model, such as velocity contours, velocity vectors, and particle traces, are

shown in Figures 28-31.

5.2 Longitudinal Curvature

The most typical longitudinal curvature occurs in a flow through a
curved duct. An S-bend duct is a more complicated geometry because the
second bend of the duct creates an effect opposite to that of the first bend. In
this case, if the model can not capture well the effect of curvature in the first-
bend section, the error will accumulate in the second bend and cause the
collapse of the model. A 30°-45° S-bend duct with an aspect ratio of 5.6,
measured by Butz [23], will be tested against the present model. The detailed
description of the facility and the inlet flow conditions are shown in Figure 32.
An 88 x 51 grid systerﬁ is constructed, as shown in Figure 2; and the inlet

velocity and turbulent intensity profiles are prescribed.
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The comparison of static pressure coefficients along the curved wall is
illustrated in Figure 33. It seems that in the first bend, both models fail on the
upper surface (concave side), but succeed on the lower surface (convex side).
In the second bend, the present model does a better job in predicting surface
pressure than the standard k-e model. One might question the success of the
predicted results on the upper surface (convex side) in the second bend by the
present model. However, as the measured data exhibits some randomness and
the present model predicts the exit static pressure relatively well, the numerical
prediction of the present model can be considered to be reasonably successful.
The discrepancy on the upper surface in the first bend is suspected of being
caused by the Gortler-like secondary flows. This occurs at the onset of the
concave curvature, where the normal velocity is numerically set equal to zero
numerically at the entrance plane. There is no experimental measurement of the
normal velocity component at the entrance plane. The error of predicted static
pressure on the upper surface (concave side) in the first bend is considered to
be the primary source of deviation of the numerical calculation from
experimental result on the same surface (convex side) in the second bend.

The longitudinal Qelocity profiles at the inlet, inflection and exit planes
from the experimental results and both computational models are compared in

Figures 34-36. The results demonstrate that the proposed turbulence model has
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a better agreement with the experimental data than the standard k-¢ model. The
slight deviations of the longitudinal velocity from the measured data at the
inflection and exit planes are attributed to the effect of the small secondary
flow. With 88 x 51 grids, the present model converges to 5 x 10* in 110
seconds of Cray X-MP CPU time with 199 time iterations, while the standard
k-¢ model consumes 116 seconds with 218 time iterations. It is interesting to
note that the present model has improved the numerical predictions without
increasing the computing time substantially. The contour plots of x-component
velocity, y-component velocity, and static pressure are also shown in Figures
37-39 for both the present and the standard k-e models.

The 30°-45° S-bend duct does not demonstrate the superiority of the
proposed model over the standard k-e model very well because the surface
curvature is relatively small. The centerline radius of curvature is five times the
duct width, and hence the effect of streamline curvature does not dominate the
flow field significantly. A 2-D curved duct with small radius of curvature
(strong curvature), therefore, is required to evaluate the performance of the
present model in predicting the development of turbulence structures subjected
to strong curvature effect. A 10-by-100 centimeter, 180-degree-turn water
tunnel, with a 10 cm centerline radius of curvature, investigated by Sandborn

and Shin [87], is employed as the next test case. The configuration of the 180°
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turn-around duct (TAD) and inlet conditions are described in Figure 40. The
flow field in the 180° turn-around duct with strong curvature, especially, is of
great engineering interest due to its resembiance to the flow passage
downstream of the turbine in the fuel preburner of the Space Shuttle Main
Engine (SSME) as well as STOVL applications. Complex shear layers, regions
of separation, high levels of unsteadiness, and three-dimensional structure may
occur in this type of flow field. A 141 x 41 orthogonal grid system is
constructed for this case, as shown in Figure 41.

The longitudinal velocity profiles in Figure 42 display the similarity
between the predictions of the present model and those of the standard k-e
model upstream of the flow separation. However, the results demonstrate the
success of the present model and the collapse of the standard k-¢ model in
capturing the separation bubble on the inner surface (convex curvature) near the
180° turn. Once again, as with its failure to predict the flow in a backward-
facing step, the standard k-¢ model is inadequate in describing the change of
the eddy viscosity (or the length scale) attributed to the effect of streamline
curvature. The larger eddy viscosity along the inner surface predicted by the
standard k-e model prevents the occurrence of flow separation; whereas, smaller
eddy viscosity computed by the present model, benefiting from curvature

correction, enables the natural onset of flow separation. The numerical results
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of the present model reveal that flow starts to separate after 170° turn. Figure
43 provides a detailed description about the longitudinal velocity distribution in
the separation bubble downstream of 180° turn. The results indicate that the
proposed implementation to the standard k-e model is necessary and proper.
The wall static pressure coefficient C, is plotted as shown in Figure 44.
It is surprising that the standard k-e model predicts much better than the present
model even without predicting flow separation. However, the pressure
distribution calculated by the present model does show the signature of flow
separation where the static pressure recovery along the inner surface is retarded.
That is the location where the predicted static pressure coefficient C, by the
present model starts to deviate from the measured data. Hence, the relative
value of the measured static pressure is doubtful. It was later discovered in
Ref. [87] that screens were placed at the outlet of the channel, which is about
four channel widths downstream of 180° turn, to increase the flow exit
resistance such that the water completely filled the channel. However, the
screen raised the adverse pressure gradient at the exit and caused the exit static
pressure to be larger than it would have been. To support this argument,
another 180° turn-around duct will be examined next. Some information about
the flow field such as x- and y-component velocity contours, static pressure

contour, velocity vectors, and particle traces are shown in Figures 45-49. The
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separation bubble can be observed clearly from the plots of the velocity vectors
and particle traces.

A further validation will be made by examining a 2-D U-duct
investigated by Monson and Seegmiller [88]. The geometry of the coordinate
system, and the inlet conditions, are illustrated in Figure 50. The ratio of the
centerline radius of curvature to the channel width is equal to unity, while a 234
x 101 mesh system is constructed due to longer inlet and exit ducts as well as
higher Reynolds number.

The numerical results reveal that both the present and standard k-e
models predict flow separations. Nevertheless, the flow field calculated by the
present model is observed to separate earlier (ahead of 180° turn) and reattach
later, which is consistent with the experimental measurement. A later flow
separation (preceded by 180° turn) and an earlier reattachment are suggested by
the standard k-e model. This is confirmed by the comparison of longitudinal
velocity profiles as shown in Figure 51. Nevertheless, the present model seems
to under-estimate the thickness of the separation bubble. It is then found in
Ref. [88] that the thickness of the separation bubble in the Re = 10° case is
larger than that in the Re = 10° case: while most of the turbulence models,
including the present model, predict it differently. From the physical

arguments, the Reynolds number trend in experimental results seem to be doubtful.
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The distribution of wall static pressure coefficient C,, plotted in Figure
52, supports the previous argument. The present model has better agreement
than the standard k-e model in predicting the static pressure. Furthermore, the
signature of flow separation presented by the proposed model does match the
flow characteristic near the exit of 180° turn. However, both models fail to
predict the static pressure at the downstream exit plane. It seems that the actual
flow separates earlier than the present model, and this causes the present model
to predict larger static pressure recovery at the exit. It is apparent from these
comparisons that the present model performs a better overall prediction, due to
the adjustment to the effect of surface curvature, than the standard k-e model,
especially on the convex surfaces where the attenuation of the eddy viscosity
plays an essential role in the occurrence of flow separation. The contour plots
of x- and y-component velocities as well as static pressure are illustrated in
Figures 53-55, respectively. The plots of velocity vectors and particle traces,
as shown in Figures 56-57, indicate an earlier, larger flow separation by the

present model and a later, smaller flow separation by the standard k-e model.

5.3 Transverse Curvature
One representative of the class of flows with transverse curvature is the
swirling flow. There are two constraints in selecting the test cases to validate
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the proposed model with the effect of transverse curvature. First, the flow must
have small swirl number such that the characteristics of the flow is consistent
with the assumptions, i.e. weak swirl and isotropic turbulence, made in the
present model. Second, confined swirling flows in straight pipes would be
employed for the purpose of avoiding the interference from other curvature
effects such as surface curvature effect, and also maintaining the axisymmetry
of the flow. The numerical computations of the standard k-e and the present
models for the effect of transverse curvature will be conducted in the form of
2-D axisymmetric instead of truly three-dimensional test case.

An experimental study on a confined swirling coaxial jet in a straight
pipe with the swirl number equal to 0.21, investigated by Roback and Johnson
[89], is therefore chosen to be the test case. A 151 x 45 grid system is built up
for this flow geometry, and the schematic of the configuration along with the
inlet conditions are illustrated in Figure 58. The inlet velocity profiles and
turbulence quantities are specified at 5 mm downstream of the jet nozzle. With
such a small swirl number, a vortex breakdown occurs in this flow field
because of the combination of axial and radial pressure gradients. The radial
pressure gradient is induced by the centrifugal force, while the axial pressure
gradient is attributed to both centrifugal force of the swirling flow and the

diffusing geometry of the experimental set up, i.e. dump diffuser.
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Consequently, the comparison of the mean axial velocity along the centerline,
demonstrated in Figure 59, is one indication for the performance of both
models. Although both models fail to depict the size of the central recirculation
zone, as caused by overpredicting the eddy viscosity, the present model appears
as an improvement over the standard k-e model. The large eddy viscosity
computed by both models is suspected to be strongly related to the specification
of the length scale at the inlet boundary. The inlet length scale is not available
from the experimental results, and is assumed to be one percent of the pipe
diameter. The change of the inlet length scale is expected to greatly alter the
numerical results; but it is not the main concern in the present study.

A detailed comparison of the mean axial velocities is illustrated in Figure
60. The experimental results show some random scatter, which is partially
caused by the non-axisymmetric phenomenon. It is evident that the present
model does provide minor improvements over those by the standard k-e¢ model,
but the improvements are insufficient to satisfy the physical characteristics of
the flow. In addition to the uncertainty of the inlet length scale, the following
reasons may be cited: 1) the additional streamline curvature caused by the
central recirculation zone affects the flow field, 2) asymmetric flow, 3)
anisotropic turbulence characteristics, and finally, the inadequacy of the current

implementation approach for swirling flows. To identify the causes for only a
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minor improvement by the present model, another confined swirling flow case
will be examined later on.

The mean azimuthal and radial velocity profiles, plotted in Figures 61-62,
indicate that the present model predicts better than the standard k-e model, but
the results are relatively similar. A detailed description of the flow field such
as the axial and the radial velocity contours, the velocity vectors, and the
particle traces are reported in Figures 63-66. The central recirculation zone
predicted by the present model is larger than that suggested by the standard k-¢
model, and can be clearly observed from the particle trace plot.

The next test case for the transverse curvature effect is the confined
swirling flow studied by Weske and Sturov [90]. The layout of the test
section and the specification of the inlet conditions are exhibited in Figure 67.
With the inlet velocity profiles and turbulence quantities prescribed at 3.5 cm
downstream of the swirl generator, the inlet swirl number is calculated to be
0.43 and has a distribution of solid body rotation.

The axial velocity profiles are compared in Figure 68 but with the
absence of experimental data, because it is not reported in Ref [90]. As shown
in Figure 68, almost identical numerical results are predicted by both models.
In Figure 69, the comparisons of the circumferential velocities illustrate that the

standard k-¢ model predicts slightly better than the present model. This is
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contrary to the results in the previous swirling flow case. However, both
models predict faster mean flow decay of the swirling flow than the
experimental results indicate. The present implementation approach to include
the effect of transverse curvature (swirling effect) is proved to be inadequate
based on the results of two swirling flows. It is believed that the derivation of
the eddy viscosity W, from the equation of the Reynolds shear stress uv is
improper. The reason for the deficiency is that the other Reynolds shear stress
components, Uw and vw, are of the same order of magnitude as the shear stress
tensor uv in the swirling flows. Therefore, difficulty will be encountered in
choosing the Reynolds shear stress component from which the scalar eddy
viscosity would be determined. Employment of the scalar eddy viscosity is not
considered to be suitable for the flow with swirling effect. Instead, a vector
eddy viscosity for each Reynolds shear stress, or calculating each Reynolds
stress tensor through algebraic equations, as derived similarly in the present

study, is recommended for this type of flow for future studies.
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CHAPTER VI

SUMMARY

6.1 Conclusions

The results of the test cases, employed to study the effects of local and
longitudinal curvatures, show the success of the proposed eddy viscosity
formulation in improving the numerical prediction capability of the standard k-¢
model consistently. Moreover, the present model offers the following
advantages, namely 1) generality--same formulation for the eddy viscosity in
both Cartesian and Streamline coordinates, 2) convenience--the formulation for
the eddy viscosity is easy to be adopted into various one- and two-equation
models, 3) efficiency--the required computer CPU time by the present model
is nearly the same as the standard k-e model.

In the backward-facing step flows, the present model is indeed capable
of dictating the effect of local curvature rendered by flow separation and hence
capturing the attenuation of the eddy viscosity. The present model, however,
still underpredicts the reattachment point. This problem is attributable to the

effects of large-scale eddy and anisotropy in the recirculation zone, especially
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the latter one. The flow inside the recirculation zone is basically dominated by
a large-scale eddy with low Reynolds number. This is a deficiency of the high-
Reynolds-number k-e model used in this study. It is also known that the
anisotropic effect becomes dominant as the flow approaches the wall, thus the
effect plays an important role near the reattachment region. Consequently, the
proposed model could be significantly improved with the consideration of these
two effects.

In the curved-duct flows, the present model demonstrates a good
agreement with the measured data. The major success of the present model is
to predict the flow separation in curved ducts by accounting for the effect of
wall curvature. With the absence of the curvature effect, the standard k-e
model appears to predict the flow without separation or with later and smaller
separation zone. However, the discrepancy between the measured data and the
numerical results takes place when the present model estimates the size of
separation bubbles. As discussed in chapter five, the experimental results are
believed to be questionable. Hence, a more detailed and reliable experiment for
the 180-degree turn-around duct is required to further validate the present model
in predicting the size and location of the separation bubble.

For the flows with swirling effect, the present model does not improve

the numerical predictions consistently. In spite of depicting the size of vortex
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breakdown in the confined swirling coaxial jets better than the standard k-e
model, the present model overpredicts the eddy viscosity and results in faster
decay of the circumferential velocity in the confined swirling pipe flow. The
current approach to include the effect of transverse curvature, deducing the
scalar ecidy viscosity from the equation of the Reynolds shear stress uv, is thus
considered to be improper for the flows subjected to swirling effect. With the
dominance of the anisotropic effect in the swirling flows, each Reynolds shear
stress term can be of the same order of magnitude and should have its
corresponding eddy visccl>sity formulation, respectively. Therefore, the effect
of transverse curvature should be accounted for either by employing a vector
form of the eddy viscosity or by solving for each Reynolds stresses directly
through approximated algebraic equations. Although, the numerical predictions
of the swirling flows by the present model show deficiencies, a qualitative
impl:ovement is accomplished, which reveals that the extra rate of strain should
be included to account for the effect of transverse curvature. The
implementation of transverse curvature is expected to be more complicated than
those for the local and longitudinal curvatures due to turbulence anisotropy.
The present model demonstrates improvements to the prediction
capability of turbulent flows dominated by local and longitudinal curvatures

over the standard k-¢ model. The effect of transverse curvature, as in swirling
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flows, requires more elaborate formulation of the eddy viscosity and should be

included in future work.

6.2 Recommendations for Future Work

1)

2)

3)

The present model demonstrates good predictions in the backward-facing
step cases, where the effect of local curvature prevails. It is
recommended that the anisotropic effect be included, hence the
reattachment length can be predicted more precisely.

A more extensive experimentation on the 180-degree turn-around duct
is required to evaluate the performance of the present model in
predicting the separation bubblc;, rendered by the effect of wall curvature
(longitudinal curvature).

A vector form of the eddy viscosity or solving the algebraic Reynolds
stress equations should be employed to account for the effect of
transverse curvature (swirling flows). The effect of strong anisotropy
will result in the breakdown of the algebraic eddy viscosity approach.
The adoption of the extra rate of strain induced by the curvature effect
should still be valid, but each components of the vector eddy viscosity

should be attained from corresponding Reynolds stresses.
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(a) present model

(b) standard k-e model

Figure 8 Streamwise Velocity Contour in a Backward-Facing Step Flow
(61 x 41 grids)
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(a) present model
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(b) standard k-e model

Figure 9 Streamwise Velocity Contour near the Backward-Facing Step
(close view)
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(a) present model

(b) standard k-e model

Figure 10  Transverse Velocity Contour ina Backward-Facing Step Flow (61
x 41 grids)
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(a) present model




(a) present model

-

(b) standard k-e model

Figure 12 Static Pressure Contour in a Backward-Facing Step Flow (61 x 41
grids)
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Figure 13 Velocity Vectors in a Backward-Facing Step Flow (61 x 41 grids)
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© Data : Driver and Lee Seegmiller [ 83 1]
— -2 :c, =18
:C, =15
W, = 8h, Re, = 35800
h (step height) = 1.27 cm, Grids : 61 x 41
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Figure 14  Locus of Flow Reversal in a Backward-Facing Step Flow with

Different Modeling Constants
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O Data : Driver and Lee Seegmiller [ 83 ]
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© Data : Kim, Kline, and Johnston [ 86 ]
— — — — . Standard
———— : Present (C, = 1.5)
W, = 2h, Re, = 45000
h (step height) = 3.81 cm,  Grids: 85 x 51
0.3 —
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o - -
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0.1 —
- O . . —
- Opposite—side wall ]
0.0 = o —
o Lt 1| TSR I T N U N N T T U T A N B S B
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VX L S e s A T N L B L LA T T T T
- Q’oQOD-O-‘"e'—'—m‘—-C_—::
0.3 —
02 -
a n ]
(&) [ ]
0.1 .
u Step—side wall .
0.0 — o) —
> Y000 .
oq Lt 11 T T T I TN U NN N T T T T I T T N W
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x / h

Figure 27  Static Pressure Coefficient Distributions along the Wall in a
Backward-Facing Step Flow (85 x 51 grids)
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(b) standard k-¢ model

Veloci .
elocity Vectors in a Backward-Facing Step Flow [86] (85 x 51 grids)

Figure 30



(b) standard k-e¢ model

Figure 31  Particle Traces in a Backward-Facing Step Flow (close view)
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45°

= 30° W=41in

R, = 45W

R, =55W
Rey, = 131200
U,,. = 63 ft/sec

Aspect ratio = 5.6

A 30°-45° S-Bend Duct Geometry and Inlet Conditions by L.A.
Butz [23]

Figure 32
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Figure 33

O : Upper Surface [ 23 1, O : Lower Surface [ 23 1]
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— : Present
W (inlet width) = 4 in, Rey, = 131200
R, = SW, Aspect Ratio = 5.6
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© Data : L. A. Butz [ 23 1
— — — — : Standard

: Present

W (inlet width) = 4 in,

R, = 5W,

Re, = 131200
Aspect Ratio = 5.6
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Figure 34
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Longitudinal Velocity Profile at the Entrance Plane of a 30°-45°
S-Bend Duct (88 x 51 grids)
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Figure 35

O Data : L. A, Butz [ 23]

— — — — : Standard

——— : Present

W (inlet width) = 4 in, Rey = 131200

R, = 5W, Aspect Ratio = 5.6
v rl 1 1 ] 1 i — : T 1 _]
- .
— a =
— d
E ]
— © .
- @ =
IR DR R | : .
.0 0.2 0.4 1.2

Longitudinal Velocity Profile at the Inflection Plane of a 30°-45°

S-Bend Duct (88 x 51 grids)
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Figure 36

O Data : L. A. Butz [ 231

— — — — : Staondard

—— : Present

W (inlet width) = 4 in, Re, = 131200

R, = W, Aspect Ratio = 5.6
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U / UOVG
Longitudinal Velocity Profile at the Exit Plane of a 30°-45° S-

Bend Duct (88 x 51 grids)
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(a) present model

(b) standard k-e model

Figure 37  X-Component Velocity Contour in a 30°-45° S-Duct (88 x 31
grids)
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(a) present model

-

(b) standard k-¢ model

Figure 38  Y-Component Velocity Contour in a 30°-45° S-Duct (88 x 51 grids)
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(b) standard k-e model

Figure 39  Static Pressure Contour in a 30°-45° S-Duct (88 x 51 grids)
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DO w
— 1l 1

= L,
6 = 90°
“"——/ — L,

[

E Exit

\
Test Section Geometry Inlet Conditions
W=10cm U, = 281.9 cm/sec
R,=5cm Rey = 213000
R.=10cm
R,=15cm
L,=17.27 cm
L,=432cm

aspect ratio = 10

Figure 40  The Geometrical Sketch and Inlet Conditions for a 180° Turn-
Around Duct by Sandborn and Shin [87]
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O : Inner Surface [ 87 ],
: Standard
——— : Present

W (inlet width) = 10 cm,
R, = W,

O : Outer Surface [ 87 1

Re,, = 213000
Aspect Ratio = 10

|
-

Pressure Coefficient Cp

_41|||||1|1|11|1

I

IS IR A I A A

10
Inner Wall Distance (cm)

20 30

40

Figure 44  Wall Static Pressure Coefficient Distribution in a 180° Tumn-

Around Duct [87]
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(b) standard k-¢ model

(a) present model

Velocity Vectors in a 180° Turn-Around Duct [87] (141 x 41 grids)

Figure 48
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Present (C, = 1.5)

Standard,

Monson and Seegmiller [ 88 ],

O Data

x = +4W

Angle = 180°

1.5 2.0

10 1.5 2.0-05 0.0 05 1.0 1.5 20 -0.5 0.0 05 1.
U / Uref

1.5 2.0 -0.5 0.0 05

1.0

-0.5 0.0 0.5

U / Uref
Longitudinal Velocity Profiles in a 2-D U-Duct (234 x 101 grids)

U / Uref

U / Urcf

Figure 51



© : Inner Surface [ 88 ], O : Quter Surface [ 88 1

— — — — : Standard

———— : Present

W (inlet width) = 3.81 cm, Re, = 1 x 10°
R, = W, Aspect Ratio = 10

o&
c —
2
0 -
=
Q
o ——
o
0 -
3
2 |
n
d -
a
-3 P R N FENE TR SN TR VAN NN TR TR SEN NN EN TR S
15 20 25 30 35
s / W (oxial centerline Distance)

Figure 52  Wall Static Pressure Coefficient Distribution in a U-Duct (234 x

101 grids)
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(a) present model

(b) standard k-¢ model

Figure 53  X-Component Velocity Contour in a 2-D U-Duct [88]

143






model

(a) present

(b) standard k-e model

in a 2-D U-Duct [88]

Contour

55 Static Pressure

Figure
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(b) standard k-e model

Figure 56  Velocity Vectors in a 2-D U-Duct [88]
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(a) present model

3

(b) standard k-e model

Figure 57  Particle Traces in a 2-D U-Duct [88]
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O : Data by Roback & Johnson [ 89 ],

— — — — . Standard

——— : Present

S (swirl no.) = 0.21, Re, = 8188
R=61Tmm

1.0

71 771 v 1 1T T 1/

~~
Q
['})
[’
~
E
0
)
-0.5
o
Figure 59

150 200 250 300 350 400 450

Axial Distance (mm)

Mean Axial Velocity along the Centerline in a Confined Swirling
Jet (151 x 45 grids)
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(a) present model

(b) standard k-e model

Figure 63  Axial Velocity Contours in a Confined Swirling Jet [89]
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(a) present model
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(b) standard k-e model

Figure 64  Radial Velocity Contours in a Confined Swirling Jet [89]
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(b) standard k-e¢ model

Velocity Vectors in a Confined Swirling Jet [89]
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(a) present model

(b) standard k-& model

Figure 66  Particles Traces in a Confined Swirling Jet [89]
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