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1. Summary

1.1 Regular Perturbation Analysis

During this reporting period research was directed at evaluating the regular perturbation method
described in details in [1]. Closed-loop simulations were performed with a first order correction

including all of the atmospheric terms. In addition, a method was developed for independently
checking the accuracy of the analysis and the rather extensive programming required to implement
the complete first order correction with all of the aerodynamic effects included. This amounted to
developing an equivalent Hamiltonian for the first order analysis and evaluating it by quadrature.
The result was compared to the Hamiltonian computed from the first order analysis. A second
order correction was also completed for the neglected spherical Earth and back-pressure effects.
Finally, an analysis was begun on a method for dealing with control inequality constraints.

To date, the results on including higher order corrections do show some improvement for this
application, however we do not know at this stage if significant improvement will result when the
aerodynamic forces are included. If the result is negative, then our recommendation is that the

method of Matched Asymptotic Expansions (MAE) be explored as the next major step in this
research effort. The results from a parallel research effort on aeroassisted orbit transfer trajectories
indicate that the regular perturbation analysis under current investigation actually plays the role of
the inner expansion in a MAE analysis. The outer solution in a MAE analysis provides a correction
currently not available from a regular expansion. We would like to explore if a similar situation
holds for the dynamics associated with launch vehicle trajectories.

1.2 Finite Element Analysis

The weak formulation for solving optimal control problems has now been extended in order to
account for state inequality constraints. The formulation has been tested on three example problems

and numerical results have been compared to the exact solutions. Development of a general-
purpose computational environment for the solution of a large class of optimal control problems is
now well underway. An example, along with the necessary input and the output, is given.

2. Research Accomplishments

2.1 Regular Perturbation Analysis

Closed-looD Simulation

Figures 1 and 2 compare the performance of the closed-loop control solutions generated by two
different methods, with the open loop optimal solution generated using a multiple shooting
method. A first order correction was made in each case for the neglected spherical Earth & engine
back-pressure effects. The simulation results are for lift and drag set to zero. In Method 1, the
control update interval was 1 second and within each interval the control was held constant. The

control was determined by repeatedly calculating a new zero order solution and performing a
quadrature at every update. Method 2 was based on a pre-calculated quadrature for a fixed zero
order solution corresponding to the conditions near launch. See [1] for details on these two

Methods. Nearly continuous control updating was used for Method 2 because the computational
effort is trivial. It amounts to solving a set of 4 linear equations to generate the on-line control. A
mid-point extrapolation scheme (accuracy equivalent to a Runge-Kutta 7/8) was used in both
methods for the simulation. Table 1 gives a comparison of the terminal conditions and the
performance index.



Table l:Terminal Values Comparison

Method 1 Method 2 Optimal

hf 148160m 148147m 148160m

Vf 7857.58m/s 7864.99m/s 7858.2m/s

_f 0.001deg 0.035deg 0

tf 355.612s 355.744s 355.591 s

The results show a dramatic improvement in comparison to the open loop solutions reported in [1]
for these two methods. In [1] the trajectories were obtained from a single calculation at launch,
and the trajectories were constructed by simply summing the zero order solution and integrated first
order dynamics. For the results shown here, the solutions were obtained by integration of the
complete dynamics, with the control computed from the perturbation analysis.

Figures 3 and 4 show the closed loop simulation results for Method 1 including the aerodynamic
forces in the first order correction. Since the zero order solution gives an unrealistically high angle-
of-attack (approximately -45 deg.) at launch, the simulation was started at an altitude of 10525

meters, so that the zero order solution for alpha was still within the range of the tabulated
aerodynamic data. Figure 3 clearly indicates the onset of an instability in alpha at this altitude. The
slight increase in alpha near the end is due to a numerical problem that can be removed at a later
date.

It was not known at this point if this instability was due to an analysis and/or programming error,
or due to the inability of the regular perturbation analysis to account for aerodynamic effects using
a first order correction. It could also be that a second-order correction would not significantly
improve matters, since at best we are forming an asymptotic series solution to the problem. Thus
we decided to develop an independent check on our results before proceeding to a second order
analysis, which is described in the next section

Checking theFirst-order Analysis

Checking was performed by monitoring a Hamiltonian function which corresponds to the first
order necessary conditions when viewed as being derived from an equivalent optimization
problem. This Hamiltonian is different from the fin'st order expansion of the original Hamiltonian

for the full nonlinear dynamics. The first order Taylor's series expansion of the original
Hamiltonian does not correspond to the costate equations and the optimality condition of the first-
order dynamics [2]. So a new Hamiltonian (H) was derived which has the following form:

H = {fT°x 1 + fT°u 1 + T_[f ° + (t-to)q] + g°}T_,l

_u x 1]+ _-[Xl
Ul]l (fxV .)ff ° ° ul

L_--3-ff-u

+{_T---1[(fTk) ° + (t- to)(fTk)_] + (gTk)_}Tx 1 + {T----1(t- to)(fxT_,.)_ + (gT_.)_}T Ul(2.1 )
I 0

Since the first order system is time-varying, the Hamiltonian is not constant. The first order
analysis is checked by realizing the following two expressions:
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dH_ _H(x, Z,,u*)
dt _t (2.2)

H = xTf(x, X, u*) (2.3)

where for the right hand side of (2.2) we mean the partial derivative of the expression in (2.1).
The Hamiltonian was computed in two ways. First by numerical integration of (2.2) along the
trajectory with an arbitrary initial condition. Second, by direct substitution of the state, costate and
control values from the first order solution into (2.3). If the analysis and programming is correct,
the difference between the two ways of computing H should be stagewise constant. This was

verified by the results in Figures 5 and 6. In this setting, both the zero and first-order optimality
conditions and their costate equations were verified because H also depends on the zero order
solution. The difference in the two calculations is zero to within 4 significant digits.

Second-order Correction

A second order analysis was also carded out to determine if any improvement results in
comparison to the first order solution. At this stage, the second order analysis including the
aerodynamic forces is not completed. However, a second order correction for the spherical Earth
and back-pressure effects was evaluated and the results are depicted in Figures 7-11. These are the
open-loop histories obtained by summing the forward integration results for each corrected term.
In integrating the second order dynamics, the first order state and costate histories are required.
This is done by a forward integration of the first order dynamics using the known initial values for
xl(to) and the calculated initial costate correction _,1(to). The histories are stored for a sufficient

number of sample points, and retrieved using a piecewise linear interpolation for the integration of
the second order dynamics.

In examining the results of Figures 7-11 it should be noted that the pattern throughout is that the
first-order correction over-corrects the zeroth-order solution, and that the secord-order correction

over- corrects the first-order solution. Unfortunately, the error is not significantly decreased by the
second-order correction in most of the results, with the exception of the _ profile which shows a
dramatic improvement. The estimates for the initial values of the costates and the final time
(performance index) are compared in Table 2.

Table 2. Performance Comparison Of The Open-loop Results

Zeroth-order

First-order

Second-order

Optimal

X_(O)/s2 m-I _ (0)/s2m-I _ (0)/sm-t tf]s

0.20156e- 1 0.19334e- 1 0.54560e-4 360.047

0.39188e- 1 0.22036e- 1 0.56468e-3 354.335

0.35344e- 1 0.20899e-1 0.57143e-3 355.254

0.37352e- 1 0.20868e- 1 0.60304e-3 355.606

Control lneauali|y Cgnstr_inA

Preliminary work on addressing control inequality constraints (C(x,u) < 0) is under investigation.
This approach makes use of a slack variable (or) to transform to a strict equality constraint [3]. The
necessary conditions are as follows:
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X = f + eg ; t e [to,tf] (2.4)

z =-fTz-Cx.- _z (2.5)

0 = fY_L + CuP. + eg_'_. (2.6)

0 = oq.t (2.7)

0 = C + ___2 (2.8)

Equations (2.4-2.6) are derived from the necessary conditions on the augmented Hamiltonian,

H = fTx + ¢gT_. + (C + _-(_2)_1. (2.9)

When the trajectory is on the constraint, o_ = 0. When it is off the constraint, I.t = 0. Note that the
product is zero at every instant. Alternatively, (2.7) can be derived if we realize that the slack

variable can be treated as a control variable and then use the optimality condition Ha = 0.

Equations (2.7) and (2.8) provides the additional information needed to determine o_ and St.

To obtain the zeroth- and higher-order formulations, we simply need to carry out the expansions
including:

_1.= _LlO+ F#I + E'2_2 + ... (2.10)

C( = (3tO + 130tl + E'20_2 + ... (2.11)

Substituting these expansions and equating like powers in e, the algebraic equations (2.6-2.8) can
be grouped as (note that for simplicity, we consider a scalar u case):

To ]IIToo(l'u_,)u+C°u.0 C° 0 uj I(l-uK)l.l+Cux.0] II "OT ]

o =0 .o .j :-/ °o /"J-
c° o _o _j L c. j

I° x°x ....' 1 212
where j = I, 2 ....

Solving the control constraint problem requires a guess of the switching structure. This is true of
all indirect methods. In this case, it is the switching structure on the zero order solution that

matters. The method requires that the zero order solution captures the true switching structure
because it affects the matrix on the left-hand-side of (2.12). It is this matrix which subsequently
produces the control correction that leads to a better approximation. If the matrix is singular the
method and the expansion technique will fail. On case that does lead to a singular matrix is the
touch-point switching structure, where

oto = i.t0 = 0



[(fT_.)o + COuugO

det(/ 0
[ c°

C °
0 /] 1" o 2 02

t_0 B0 ) = (fu _.)uCt0 + Cu go = 0
/

0 O_oj (2.13)

For some simple cases, it may be possible to incorporate the control constraint in the zero order

problem, thus capturing the true switching structure. However, for the launch vehicle problem,
where the dynamics are nonlinear and time varying, and incorporation of any form of control

constraint will make the derivation of an analytic solution difficult. Further analysis is required to
see whether any simplification is possible.

2.2 Finite Element Analysis

2.2.1 Extension of the Analysis. The method based on the weak Hamiltonian formulation

derived in [4] and [5] has now been extended to handle problems with state inequality constraints.
An outline of the derivation and a simple example problem are given in Appendix A. (Even more
details of the derivation can be found in [6], a copy of which will be sent to the Technical Monitor
as soon as it is complete.)

The derivation proceeds in the following manner. It is desired to develop a solution strategy for
optimal control problems with state inequality constraints based on finite elements in time. In an

attempt to make the solution scheme as general as possible, all strong boundary conditions are
transformed into naturaI boundary conditions. This is done so that the shape functions can be
chosen from a less restrictive class of functions, which enables one to choose the same shape
functions for every optimal control problem.

The idea of transforming the strong boundary conditions to natural boundary conditions [7]
revolves around adjoining a constraint equation to the performance index with an unknown

Lagrange multiplier. The variation of the performance index is then taken in a straightforward
manner. Through appropriate integration by parts, it is possible to show that the Euler-Lagrange
equations are identical to those derived in classical textbooks [8] and that the boundary conditions
are the same, only stated weakly instead of strongly.

2.2.2 Development of a General Code. The weak formulation is capable of solving optimal
control problems that have continuous states, costates, and controls, and problems with
discontinuities arising from staging (i.e., discontinuities in the system equations), control
inequality constraints and state inequality constraints. The algebraic equations which come from the
weak formulation may be derived prior to specifying the problem to be solved. It is this feature in
particular that allows for a general problem-solving environment to be created.

The main goal of the general code is to reliably solve a large class of optimal control problems with
a minimum of user interaction. Specifically, it is desired to create an environment where the user

does not have to write subroutines. To this end, the general code is being developed on a SUN
3/260 workstation and requires a FORTRAN 77 compiler, MACSYMA [9], and the Harwell
subroutine library [10]. The general procedure can be broken into three parts that must interface
together. The fin'st part is the FORTRAN code. This code contains all the subroutines necessary to
solve any of the optimal control problems described above. However, if certain problems require
table look-up routines (such as aerodynamic data for a rocket model), then these subroutines must

be given by the user and interfaced to the rest of the general code. Thus, there may be a need for
some user programming for certain problems. The second part of the general procedure is the use
of MACSYMA. The user must supply an input file specifying the problem. This input file is in
symbolic form and will be loaded into MACSYMA. MACSYMA will then evaluate all the

necessary expressions and automatically generate the FORTRAN code. This code is spliced into a
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templatefile andbecomesoneof thesubroutines.Thethirdandfinal partof thegeneralprocedure
will consistsof subroutinesto generateinitial guessesthat will reliably converge. Homotopy
methodsaretheprimecandidatesfor this. A very simpletypeof homotopymethoddescribedin
[11] is being used. This methodconverts the algebraicequationsto initial-value ordinary
differentialequations.A second-orderRunge-Kuttamethodis usedto integratetheequationsand
obtaininitial guessesfor aNewton-Raphsonmethod.This methodhasworkedon all theproblems
testedto date.

The generalcodeis still beingdevelopedat this time. Currently,thecodecanhandlep.roblems
with continuousstates,costates,andcontrols,problemswith controlinequality constraints,and
problemswith stateinequalityconstraintsthat only touchtheconstraintboundary.The general
codeis now functional (but not complete)for a large classof optimal control problems. An
exampleproblemdemonstratingtheuseof thecodeis giveninAppendixB.

3. Future Research

In the perturbation analysis area we plan to complete the second order analysis, and to perform
both open loop and closed loop comparisons to the first order results and to the optimal solution.
However, we are skeptical at this point that second order correction will remove the instability
observed in the first order results when aerodynamic forces are included. Along this line we plan

to spend some time investigating the potential that Matched Asymptotic Expansions has for
improving the solutions that we have obtained to date. We will also continue investigating the
control inequality constraint formulation. Results will first be developed for several simpler
problems to evaluate its potential for application to launch vehicle guidance problems.

In the finite element analysis area we plan to complete the development of the general code so as to

make it applicable to all types of optimal control problems encountered so far (i.e., up through state
inequality constraints). We further plan to document the methodology through the completion of
one paper (which we are now revising in response to reviewers) on the application of the method
to launch vehicle trajectory analysis, two technical notes on control and state inequality constraints,
one paper on the general code, and a user's manual for the code. We have received several calls
from parties interested in application of the methodology in industry and, although there is nothing
concrete established as yet, hope to somehow transfer the technology to an industry application in
the future.
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Appendix A: State Inequality Constraints

Consider a system defined by a set of n states x and a set of rn controls u. Let the

system be governed by a set of state equations of the form ]c = f(x, u,t). The class of

problems to be considered is limited to the case where x is continuous, but there may be

discontinuities in the costates A. These discontinuities may be the result of state constraints

present in the problem. Elements of the performance index, J0, may be denoted by an

integrand L(x, u, t) and discrete functions of the states and time ¢[x(t), t] at the initial and
final times to and tf. In addition, any constraints imposed on the states and time at the

initial and final times may be placed in sets of functions ¢[x(t), t]. These constraints may

be adjoined to the performance index by discrete Lagrange multipliers u defined at to and

tf. Similarly, the state equations may be adjoined to the performance index with a set of

Lagrange multiplier functions A(t) which will be referred to as costates.

Now, suppose that there is a scalar constraint on the states and time defined by

S(x,t) <_ O. The constraint is said to be of pth-order if the pth total time derivative of

S is the first to contain the control u explicitly. The first attempt to solve problems with

state inequality constraints was to use the necessary conditions presented in [12]. These

necessary conditions lead to successful and accurate solution strategies for states that only

touch (i.e., do not ride) the constraint boundary. As is derived in [12], for constraints of

odd order greater than one, the solution can at most only touch the constraint boundary.

However, for cases where the states ride the constraint boundaries for a nonzero length of

thne, the algebraic equations developed by the weak form are singular. Private discussions

with Jason Speyer and Dan Moerder indicate that the cause is related to a reduced-

dimensional manifold; however, we have not been able to develop a nonsingular weak form
as of now.

Fortunately, the necessary conditions presented in [8] are accurate for first and second

order constraints where the solution often rides the constraint boundary. Thus a weak

formulation is also developed using these necessary conditions for constraints where p = 1

or p = 2. Therefore, below are presented two very similar weak formulations which are

accurate for up to a third order constraint and odd-ordered constraints beyond that. Most
practical applications will be third-order or less.

General Development

The weak formulation is now derived for touch-point cases. Without loss of generality,

assume that there is only one touch-point over the time interval of interest. In this case,

the state constraint is nothing more than an interior boundary point which creates a jump
in the costate.

The performance index 3"0 now takes the form:

Jo = [L(x,u,t)+AT(f -5c)] dr+ [L(._:,u,t)+Ar(f -._)] dt+u, Slt, +_lttlo (1)
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where • = ¢[z(t),t] + uT_b[z(t),t]. The constraints to be adjoined to Jo above to trans-

form the strong boundary conditions to weak boundary conditions are that the states be

continuous at the initial and final times. Introducing

and

Zlto _= lira z(t) and zl, s zx lim z(t) (2)
,-.,+ ,__.q

_o = Sl,0_ x(t0) and i: S = el,, _ x(ts) (3)

one can weakly enforce continuity by adjoining aT(x- 2)lttos to J0 where a is a set of

discrete unknown Lagrange multipliers defined only at to and t S. The new performance
index is

^ t!J = J0 + o?(x- _)1,o (4)

To derive the weak principle, it is necessary to take the first variation of J and set it

equal to zero. For notational convenience, the following variables are introduced.

0¢0¢ and if = _xi°=57,0
t!

(5)

Also, as is shown in [4], the Lagrange multiplier a can be chosen so that 5a = 5A. The final

form of the weak principle is obtained after integrating by parts so that no derivatives of

the states or costates appear. After defining the Hamiltonian H = L + ATf and denoting

the variations of the variables at the initiM, touch-point, and final times with subscripts

0, 1, and f respectively, then the resulting equation is

z:{ io,) 1-- s J:T A 4- 5 x T f -_- 5 _ T x -t- 5x T _ 4- _ )_

+ 5uT -_u + A dt + , -52T_ + 5ATf + 5ATz

+6uTsJ,,+'_r_l,,+'_r,(°s) 7_ _, 4- ,x_'_, _,_0r_0 _,_, +,A0r_0

[ 0,1+5_, H(_l)-H(tt)+,,,- _ +SQH(Q)=0

16
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This is the governing equation for the weak Hamiltonian method for problems with touch-

point state inequality constraints. It is easily shown by integrating the 5k and 5A terms

by parts in Eq. (6) that all the Euler-Lagrange equations are the same as in [12] and that

all boundary conditions are now of the natural type.

One simplification may be made to Eq. (6). If the control is continuous across tl (as is

often the case), then it is possible to simplify the 6t] equation since then f(t-[) = f(t +) =

f(tl) and L(t-[) = L(t +) = L(tl). From the necessary conditions that are found in [12] or

from the ones that could be found from Eq. (6), it is seen that

OS
z_T(_l) -- _T(tt) = /]l"_x (7)

Now, rewriting the coefficient of 5tl as

c3S
OS [AT(t1 -) -- AT(t+)] f(tl) + lyl--_H(t-[) - H(t+) + ul--_ =

OS. OS dS

= .,_x + .,-_ = ._ d-Y
(s)

we see that the condition for continuity of the Hamiltonian reduces to the condition that

the first total time derivative of the constraint be zero at tl if the control is continuous.

For cases where there is a boundary arc (i. c., the solution rides the constraint boundary

for a nonzero length of time), then the weak formulation must be modified. For simplicity

and without loss of generality, consider the case where the solution has an unconstrained

arc followed by a constrained arc m_d then another unconstrained arc. Introducing a new

Lagrange multiplier function 7? to adjoin the pth derivative of the constraint S to the

performance index, then J0 becomes

_l_ [ dPS][L(x,u,t) + AT(f- :b)] dt + , L(x,u,t) + AT(f-- _) + rI-j_- ]

[L(z,u,_) + _T(f_ ._)]_z_+ ,,,ATI,, + ,_"l0

dt

(9)

where N is a column matrix defined as

Again, we define

N T [S dS dP-1S: d-T " " " "_-$ ] (I0)

J = J0 + _T(._:_ ._.)I',o' (11)
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Analogous steps to those describedabovelead to a weak formulation for state constraint
problemswhich ride the constraint boundary. Thesedetails are presentedin [6].

Example

This example is taken from section 3.11of [8]. The problem is to minimize

1 _01 U2: = dt (12)

The state equations are

d:l=U

(13)
d; 2 =X 1

The state inequality constraint S(x, t) = x2 - 0 G 0 is to be imposed. For certain values of

0, the solution only touches the boundary, whereas for other values of 0 the solution rides

the boundary.

The algebraic equations were solved using a Newton-Raphson method and a FOR-

TRAN code written on a SUN 3/260. The sparse, linearized equations arc solved using

subroutine MA28 from the Harwell subroutine library [10]. This subroutine takes advan-

tage of sparsity which leads to great computational savings.

The state x2 is shown in Fig. 12 for the single touch-point case. Results for 2, 4, and

8 elements on either side of the touch-point (denoted by 2:2, etc.) are compared to the

exact solution. Note that even the 2:2 clement case lies essentially on the exact solution. In

Fig. 13, the state x_ is shown for an example case where the state rides the boundary. Here,

there are three time intervals and the number of elements in each interval is denoted by

2:2:2 etc. Again we see that the 2:2:2 case has essentially converged on the exact solution.

One drawback of the weak formulation is that two separate codes had to be written to

solve this problem. Also, one must determine in advance if the solution will ride or just

touch the constraint. However, with the general code described in Appendix B, these are

simple and quick things to do.
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Figure 12: Displacement vs. Time for a touch-point case of 0=0.2
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Figure 13: Displacement vs. Time for a boundary arc case of 0=0.1
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Appendix B: General Code Usage

As an example of how the general code is used, consider the following model of a

single-stage, four-state rocket. The four states are m (mass), h (height), V (velocity), and

7 (flight-path angle). Tile control u will be tile angle-of-attack. Letting Tv,_c be the thrust

in a vacuum, D be the drag, L be tile lift, g be tile acceleration due to gravity, [sp be the
specific impulse, tt be the earth's gravitational constant, and Re be the radius of the earth,

then the following equations of motion may be used.

- Tvac
rh-

gIsp

]_ = Vsin 7

¢d= T-D
m

m V

# sin '7

+ Rc + h

#
cos 

(14)

For simplicity in this example, the atmospheric pressure has been neglected and the drag

and lift coefficients have been made constants. Note that this is not necessary in general.

Thus,

T = T,,_¢ = 8155800 N

p = 1.225 exp(-h/6700)

q = lpv2

D = qS(CDo + CNau 2)

L = qSCLo,

S = 33.468 in 2

CDo : 0.02

CNc, = 6.0

Cr_ = 5.98

(15)

The physical constants used in the above model are it = 3.9906 x 10 TM mas -2, Re = 6378000

m, g = 9.81 ms -2, and I_ 1, = 263.4 s. The performance index is the final mass. The known

initial conditions are m(0) = 520000 kg, h(0) = 1800 m, V(0) = 300 re�s, and 7(0) = 1.5

rad. The final conditions are h(tf) = 50000 m, V(tf) = 4000 m/s, and 7(tf) = 0.0 rad.

Below the input file used to solve this problem is given. The user is required to supply

the number of states NS, the number ()f control constraints NP (zero in this example),
the number of controls M, and the number of constraints on the states at the final time

Q. The next series of lines from TVAC to F[4] define the system equations as given in

Eqs. (14) and (15) above. (The lines froln TVAC to DRAG are not required but are used

2O



to simplify the actual expressionsfor F[1] thru F[4].) After the equations are formed, the
usersupplies the performanceindex L and PHI. Then the Q constraints are given in PSI
and the initial conditions aregiven in IC. Next the user suppliesthe final time TF and a
guessat the value of the final time TFGUES. Sincethe final time is unknown, TF is set
to zero and the user gives a guessat the final time. Also, guessesfor the states at the
midpoint of the trajectory and the final point are given in XGUES. Theseguessesmay
be very crude and can even be zero for many problems. Since the final value of three of

the states were known for this problem, crude guesses were easily and obviously obtained.

Finally, the number of elements to be run is given in NE.

Regardless of the value of NE, the code automatically starts with the two element

case and uses the continuation method of [11] and the Newton-Raphson method to solve

the problem. The code then interpolates the solution to this case and runs a four element

case using only the Newton-Raphson method. The code continues in this manner until

NE is met. If the Newton-Raphson fails to converge for the four or higher element case

(which is rare) then the program will start that case over and try the continuation method
to solve the four element case.

The output of the example is given after the input file and consists of the solutions

for the states, costates, controls, and Hamiltonian for 2, 4, and 8 elements. At the top of

each page is the total elapsed computer time from the start of the program. On the two
element case sheets is 15.74 secs. This is the time the code took to run the continuation

method and the Newton-Raphson method for this case. This is a rather small number

given the complexity of the problem and the fact that an accurate second-order Runge-

Kutta method was used to solve the problem. The time at the top of the four element

case is 18.84 which tells us that only 18.84 - i5.74 = 3.1 seconds was required to run the

four-element case given the solution to the two element case. Finally, the desired eight

element case solution was obtained in a total of 23.46 sees and only 4.62 sees from the

four element case. Note that this time includes the extraction of nodal values and the

production of the data files. This is a nonnegligible part of the total time.

In summary, a complicated rocket trajectory optimization problem which originally

took several weeks to program and solve is now solved in about 10 or 15 minutes. The

simple input file is typed in a few minutes and a few minutes are required by MACSYMA

to create the FORTRAN subroutines. After that, the program runs in a matter of seconds.
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Dec 8 14:57 1990 input.macsyma Page 1

NS:4;

NP:0;

M:I;

Q:3;

TVAC: 8155800.0;

ISP:263.4;

GRAV: 9.81;

MU: 3. 9906E14 ;

RE: 6378000.0;

H(X) := RE+X(2) ;

RHOSEA: 1. 225;

S:33.468;

CNA: 6.0;

CAT:0.02;

CLA:5.98;

RHO (X) :=RHOSEA*EXP (-X (2)/6700.0) ;

DP(X) :=0.5*RHO(X)*X(3)^2;

LIFT (X) :=DP (X) *S*CLA;

DRAG (X, U) :=DP (X) *S* (CAT+CNA*U (i) ^2) ;

F [I] :-TVAC/(GRAV*ISP) ;

F[2] :X(3)*SIN(X(4) ) ;

F[3] : (TVAC-DRAG(X,U)) /X(1) - MU*SIN(X(4)) /H(X)^2;

F[4] : (TVAC+LIFT(X))*U(1)/ (X(1)*X(3)) + (X (3) /H (X) -MU/ (X (3) *H (X) **2) ) *COS (X(4) ) ;

L:0.0;

PHI:X(!) ;

PSI[l] :X(2) - 50000.0;

PSI[2] :X(3)-4000.0;

PSI [3] :X(4) ;

IC[I] :520000.0;

IC[2] :1800.0;

IC[3] :300.0;

IC[4]:I.5;

TF:0.0;

TFGUES:I00.0;

XGUES[I,I]:260000.0;

XGUES[I,2] :i000.0;

XGUES[2,1]:25000.0;

XGUES [2,2] :50000.0;

XGUES[3,1] :2000.0;

XGUES [3,2] :4000.0;

XGUES [4, I] :0.5;

XGUES[4,2] :.0;

NE:8;
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Dec 8 14:37 1990 STDATA Page 1

NODAL VALUES FOR THE STATES

NUMBER OF ELEMENTS = 2 TOTAL ELAPSED TIME = 15.74

Xl

0.52000E+06

0.30215E+06

0.84297E+05

X2

0.18000E+04

0.37957E+05

0.50000E+05

X3

0.30000E+03

0.I1357E+04

0.40000E+04

X4

0.15000E+01

0.13600E+00

-.27756E-16

TIME

0.00000E+00

0.69021E+02

0.13804E+03
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Dec 8 14:37 1990 STDATAPage 2

NODALVALUESFORTHE STATES

NUMBEROF ELEMENTS= 4 TOTALELAPSEDTIME = 18.84

Xl X2 X3 X4 TIME

0.52000E+06

0.41393E+06

0.30786E+06

0.20179E+06

0.95716E+05

0.18000E+04

0.14334E+05

0.26293E+05

0.40027E+05

0.50000E+05

0.30000E+03

0.57867E+03

0.12035E+04

0.21967E+04

0.40000E+04

0.15000E+01

0.52797E+00

0.29367E+00

0.19185E+00

-.83267E-16

0.00000E+00

0.33606E+02

0.67212E+02

0.I0082E+03

0.13442E+03
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Dec 8 14:37 1990 STDATAPage 3

NODALVALUESFORTHE STATES

NUMBEROF ELEMENTS= 8 TOTAL ELAPSED TIME = 23.46

Xl X2 X3 X4 TIME

52000E+06

46737E+06

41474E+06

36211E+06

30948E+06

25685E+06

20422E+06

15159E+06

98964E+05

0.18000E+04

0.71167E+04

0.12224E+05

0.17557E+05

0.23577E+05

0.30505E+05

0.38270E+05

0.45939E+05

0.50000E+05

0.30000E+03

0.39732E+03

0.60461E+03

0.88158E+03

0.12259E+04

0.16554E+04

0.22047E+04

0.29391E+04

0.40000E+04

0.15000E+01 0

0.80861E+00 0

0.50716E+00 0

0.38264E+00 0

0.31682E+00 0

0.26830E+00 0

0.21910E+00 0

0.14049E+00 0

-.24980E-15 0

00000E+00

16674E+02

33349E+02

50023E+02

66697E+02

83371E+02

I0005E+03

I1672E+03

13339E+03
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Dec 8 14:37 1990 UDATAPage 1

ALL VALUESFORCONTROLANDHAMILTONIAN

NUMBEROF ELEMENTS= 2 TOTALELAPSEDTIME = 15.74

U1

-.92485E+00
-.27303E+00
0.42760E+00
0.74199E-01
0.33028E-01

U2 U3 HAMIL TIME

0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00

0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00

-.46274E+03
-.82633E+03
-.71640E+03
-.98340E+03
-.10640E-08

0.00000E+00
0.34510E+02
0.69021E+02
0.I0353E+03
0.13804E+03
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Dec 8 14:37 1990 UDATAPage 2

ALL VALUESFORCONTROLANDHAMILTONIAN

NUMBEROF ELEMENTS= 4 TOTALELAPSEDTIME = 18.84

U1

- 61026E+00
- 23120E+00
- 12248E-01
0 73313E-01
0 14683E+00
0 91624E-01
0 56181E-01
- 14828E+00
- 32205E+00

U2 U3 HAMIL TIME

0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00

0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00

-.17105E+03
-.28890E+03
-.23618E+03
-.24606E+03
-.23657E+03
-.26451E+03
-.21651E+03
-.38816E+03
0.24727E-II

0 00000E+00
0 16803E+02
0 33606E+02
0 50409E+02
0 67212E+02
0 84015E+02
0 10082E+03
0 I1762E+03
0 13442E+03
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Dec 8 14:37 1990 UDATAPage 3

ALL VALUESFORCONTROLANDHAMILTONIAN

NUMBEROF ELEMENTS= 8 TOTALELAPSEDTIME = 23.46

U1

- 55186E+00
- 32779E+00
- 16595E+00
- 38584E-01
0 44739E-01
0 79906E-01
0 I0973E+00
0 I1215E+00
0 12021E+00
0 I0770E+00
0 I0186E+00
0 67127E-01
0.29691E-01
-.66484E-01
-.18969E+00
-.28902E+00
-.37039E+00

U2 U3 HAMIL TIME

0 00000E+00
0 00000E+00
0 00000E+00
0 00000E+00
0 00000E+00
0 00000E+00
0 00000E+00
0 00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00

0 00000E+00
0 00000E+00
0 00000E+00
0 00000E+00
0 00000E+00
0 00000E+00
0 00000E÷00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0,00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00

- 51935E+02
- 95367E+02
- 62856E+02
- 76463E+02
- 69769E+02
- 71521E+02
- 70243E+02
- 72219E+02
- 69462E+02
-.74437E+02
-.67925E+02
-.79036E+02
-.64306E+02
-.92023E+02
-.52356E+02
-.14072E+03
0.16485E-I0

0 00000E+00
0 83371E+01
0 16674E+02
0 25011E+02
0 33349E+02
0 41686E+02
0 50023E+02
0 58360E+02
0 66697E+02
0 75034E+02
0 83371E+02
0 91709E+02
0 I0005E+03
0 I0838E+03
0 I1672E+03
0 12506E+03
0 13339E+03
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Dec 8 14:37 1990 CODATAPage 1

NODALVALUESFORTHE COSTATES

NUMBEROF ELEMENTS= 2 TOTAL ELAPSED TIME = 15.74

L1

0.38777E+00

0.50266E+00

0.10000E+01

L2

0.23895E+00

0.13755E+00

0.12191E+00

L3

0.33772E+02

0.33298E+02

0.32653E+02

L4

-.95589E+04

0.20419E+04

0.I0502E+04

TIME

0.00000E+00

0.69021E+02

0.13804E+03
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Dec 8 14:37 1990 CODATAPage 2

NODALVALUESFORTHE COSTATES

NUMBEROF ELEMENTS= 4 TOTALELAPSEDTIME = 18.84

LI L2 L3 L4 TIME

0.24671E+00
0.30216E+00
0.38809E+00
0.54729E+00
0.10000E+01

0.31034E+00
0.28438E+00
0.26974E+00
0.25414E+00
0.22100E+00

0.41713E+02
0.42814E+02
0.38756E+02
0.36560E+02
0.36298E+02

-.77904E+04
-.22655E+03
0.41327E+04
0.14102E+04
-.I1383E+05

0.00000E+00
0.33606E+02
0.67212E+02
0.I0082E+03
0.13442E+03
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Dec 8 14:37 1990 CODATAPage 3

NODALVALUESFORTHE COSTATES

NUMBEROF ELEMENTS= 8 TOTALELAPSEDTIME = 23.46

L1 L2 L3 L4 TIME

0 19901E+00

0 22653E+00

0 25878E+00

0 29819E+00

0 34844E+00

0 41599E+00

0 51405E+00

0 67453E+00

0 10000E+01

0.34293E+00

0.32947E+00

0.32159E+00

0.31294E+00

0.30244E+00

0.29121E+00

0.28441E+00

0.27907E+00

0.22278E+00

0 42300E+02

0 47525E+02

0 44891E+02

0 42327E+02

0 40402E+02

0 38903E+02

0.37713E+02

0.36970E+02

0.37315E+02

-.71441E+04

-.28336E+04

0.I1449E+04

0.37755E+04

0.47900E+04

0.39834E+04

0.96373E+03

-.49726E+04

-.13459E+05

0 00000E+00

0 16674E+02

0 33349E+02

0 50023E+02

0 66697E+02

0 83371E+02

0 I0005E+03

0 I1672E+03

0 13339E+03
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