NASA Technical Memorandum

NASA TM - 103520

FY 1990 SCIENTIFIC AND TECHNICAL REPORTS, ARTICLES, PAPERS, AND PRESENTATIONS

Compiled by Joyce E. Turner
Management Operations Office

October 1990

NASA
National Aeronautics and Space Administration
George C. Marshall Space Flight Center
Title and Subtitle

FY 1990 Scientific and Technical Reports, Articles, Papers, and Presentations

Author(s)

Compiled by Joyce E. Turner

Performing Organization Name and Address

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546

Abstract

This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY90. It also includes papers of MSFC contractors.

After being announced in STAR, all of the NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available.

Distribution Statement

Unclassified – Unlimited
FOREWORD

In accordance with the NASA Space Act of 1958, the MSFC has provided for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof.

Since July 1, 1960, when the George C. Marshall Space Flight Center was organized, the reporting of scientific and engineering information has been considered a prime responsibility of the Center. Our credo has been that "research and development work is valuable, but only if its results can be communicated and made understandable to others."

The N number shown for the reports listed is assigned by the NASA Scientific and Technical Information Facility, Baltimore, Maryland, indicating that the material is unclassified and unlimited and is available for public use. These publications can be purchased from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161. The N number should be cited when ordering.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Category</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA TECHNICAL MEMORANDA</td>
<td>1</td>
</tr>
<tr>
<td>NASA TECHNICAL PAPERS</td>
<td>10</td>
</tr>
<tr>
<td>MSFC CONFERENCE PUBLICATIONS</td>
<td>13</td>
</tr>
<tr>
<td>NASA CONTRACTOR REPORTS</td>
<td>14</td>
</tr>
<tr>
<td>MSFC PAPERS CLEARED FOR PRESENTATION</td>
<td>29</td>
</tr>
</tbody>
</table>
Main Propulsion System Test Requirements for the Two-Engine Shuttle-C. E.E. Lynn and G.K. Platt. Propulsion Laboratory. N90-14282

The Shuttle-C is an unmanned cargo-carrying derivative of the space shuttle with optional two or three space shuttle main engines (SSME's), whereas the shuttle has three SSME's. Design and operational differences between the Shuttle-C and shuttle were assessed to determine requirements for additional main propulsion system (MPS) verification testing. Also, reviews were made of the shuttle main propulsion test (MPT) program objectives and test results and shuttle flight experience.

It was concluded that, if significant MPS modifications are not made beyond those currently planned, then main propulsion system verification can be concluded with an on-pad propellant loading and countdown demonstration test plus a long duration on-pad flight readiness firing.

This report presents results from the comparison study of two computer codes for crack growth analysis—NASCRAC and NASA/FLAGRO. The two computer codes gave compatible conservative results when the part through crack analysis solutions were analyzed versus experimental test data. Results showed good correlation between the codes for the through crack at a lug solution. For the through crack at a lug solution, NASA/FLAGRO gave the most conservative results.

This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY 89. It also includes papers of MSFC contractors.

The JPL has completed a test program, using multisection BATES and 5 × 10-in batch-check motors, with the objectives of measuring the effects of the parameters that were considered to most strongly influence the transition to, or threshold conditions for, erosive burning rate augmentation. A statistical analysis was performed on the test data to explore the possible relationships among the parameters believed to influence the rate of erosive burning. Multivariate methods and simple and multiple regressions were used, and a model for predicting erosive burning rates in small PBAN circular perforated grains was developed.

This report presents a summary of selected atmospheric conditions observed near Space Shuttle STS-28 launch time on August 8, 1989, at Kennedy Space Center, Florida. STS-28 carried a Department of Defense payload and the flight azimuth in this report will be denoted by a reference flight azimuth, since the actual flight azimuth is not known. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere-measured vertical wind profiles is given in this report. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-28
vehicle ascent has been constructed and represents the
best estimate of the launch environment to 400,000 ft
altitude that was traversed by the STS-28 vehicle. The
STS-28 ascent atmospheric data tape has been con-
structed by Marshall Space Flight Center’s Earth Sci-
ence and Applications Division to provide an internally
consistent data set for use in post-flight performance
assessments.

TM-100387 January 1990
Global Nonlinear Optimization of Spacecraft
Protective Structures Design. R.A. Mog, J.N.
Lovett, Jr., and S.L. Avans. Structures and
Dynamics Laboratory. N90-21095

The global optimization of protective structural
designs for spacecraft subject to hypervelocity
meteoroid and space debris impacts is presented. This
nonlinear problem is first formulated for weight
minimization of the space station core module con-
figuration using the Nysmith impact predictor. Next,
the equivalence and uniqueness of local and global
optima is shown using properties of convexity. This
analysis results in a new feasibility condition for this
problem. The solution existence is then shown,
followed by a comparison of optimization techniques.
Finally, a sensitivity analysis is presented to determine
the effects of variations in the systemic parameters on
optimal design. The results show that global optimiza-
tion of this problem is unique and may be achieved by a
number of methods, provided the feasibility condition
is satisfied. Furthermore, module structural design
thicknesses and weight increase with increasing
projectile velocity and diameter and decrease with in-
creasing separation between bumper and wall for the
Nysmith predictor.

TM-100388 February 1990
PATRAN–STAGS Translator (PATSTAGS).
Neil Otte. Structures and Dynamics Laboratory. N90-21125

This document presents a computer program used
to translate PATRAN finite element model data into
STAGS (Structural Analysis of General Shells) input
data. The program supports translation of nodal, nodal
constraints, element, force, and pressure data. The
subcategory UPRESS required for the readings of live
pressure data into STAGS is also presented.
The specimens were cut with a diamond wheel wafering saw through the impacted area perpendicular to the outer fibers. Photographs at 12 x magnification were taken of these cross-sections and examined. The results on the bidirectional samples show little damage until 1.13 J, at which point delaminations were seen in the epoxy specimens. The PEEK specimens showed less delamination than the epoxy specimens for a given impact energy level. The unidirectional specimens displayed more damage than the bidirectional samples for a given impact energy, with the PEEK specimens showing much less damage than the epoxy material.

A comprehensive description of the structural and instrumentation hardware and the experimental capabilities of the 105-meter Marshall Space Flight Center Drop Tube Facility is given. This document is to serve as a guide to the investigator who wishes to perform materials processing experiments in the Drop Tube. Particular attention is given to the Tube's hardware to which an investigator must interface to perform experiments. This hardware consists of the permanent structural hardware (with such items as vacuum flanges), and the experimental hardware (with the furnaces and the sample insertion devices). Two furnaces, an electron-beam and an electromagnetic levitator, are currently used to melt metallic samples in a process environment that can range from 10 Torr to 1 atmosphere. Details of these furnaces, the processing environment gases/vacuum, the electrical power, and data acquisition capabilities are specified to allow an investigator to design his/her experiment to maximize successful results and to reduce experimental "setup" time on the Tube. Various devices used to catch samples while inflicting minimum damage and to enhance turnaround time between experiments are described. Enough information is provided to allow an investigator who wishes to build his/her own furnace or sample catch devices to easily interface it to the Tube. The experimental instrumentation and data acquisition systems used to perform pre-drop and in-flight measurements of the melting and solidification process are also detailed. Typical experimental results are presented as an indicator of the type of data that is provided by the Drop Tube Facility. A summary bibliography of past Drop Tube experiments is provided, and an appendix explaining the noncontact temperature determination of free-falling drops is provided. This document is to be revised occasionally as improvements to the Facility are made and as the summary bibliography grows.

This report presents fracture mechanics analysis results from the following structures/components analyzed at Marshall Space Flight Center (MSFC) between 1982 and 1989: space shuttle main engine (SSME), Hubble Space Telescope (HST), external tank attach ring, B-1 stand lox inner tank, and solid rocket booster (SRB). Results from the SSME high pressure fuel turbopump (HPFTP) second stage blade parametric analysis determined a critical flaw size for a wide variety of stress intensity values. The engine 0212 failure analysis was a time-dependent fracture life assessment. Results indicated that the disk ruptured due to an overspeed condition. Results also indicated that very small flaws in the curvic coupling area could propagate and lead to failure under normal operating conditions. It was strongly recommended that a nondestructive evaluation inspection schedule be implemented. The main ring of the HST, scheduled to launch in 1990, was analyzed by safe-life and fail-safe analyses. First safe-life inspection criteria curves for the ring inner and outer skins and the fore and aft channels were derived. Afterwards the skins and channels were determined to be fail-safe by analysis. A conservative safe-life analysis was done on the 270 redesign external tank attach ring. Results from the analysis were used to determine the nondestructive evaluation technique required. A leak before burst analysis of the B-1 stand lox inner tank indicated that leakage would be detected well before burst conditions developed.

The corrosion protection of 6061-T6 anodized aluminum afforded by a newly patented polyurethane seal has been studied using the ac impedance technique. Values of the average corrosion rates over a 27-day exposure period in 3.5% NaCl solutions at pH 5.2 and pH 9.5 compared very favorably for Lockheed-prepared polyurethane-sealed and dichromate-sealed coats of the same thickness. Average corrosion rates for both specimens over the first 7 days of exposure compared well with those for a hard anodized, dichromate-sealed coat, but rose well above those for the hard anodized coat over the entire 27-day period. This is attributed both to the greater thickness of the hard anodized coat, and possibly to its inherently better corrosion protective capability.

TM-100395 April 1990
Definition of Large Components Assembled On-Orbit and Robot Compatible Mechanical Joints.
J. Williamsen, F. Thomas, J. Finckenor, and B. Spiegel. Structures and Dynamics Laboratory. N90-22043

One of four major areas of project Pathfinder is in-space assembly and construction. The task of in-space assembly and construction is to develop the requirements and the technology needed to build elements in space.

This paper identifies a 120-ft diameter tetrahedral aerobrake truss as the focus element. A heavily loaded mechanical joint is designed to robotically assemble the defined aerobrake element. Also, typical large components such as habitation modules, storage tanks, etc., are defined, and attachment concepts of these components to the tetrahedral truss are developed.

TM-100396 December 1989

This report presents a summary of selected atmospheric conditions observed near space shuttle STS-34 launch time on October 18, 1989, at Kennedy Space Center, Florida. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of pre-launch Jimsphere-measured vertical wind profiles is given in this report. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-34 vehicle ascent has been constructed. The STS-34 ascent atmospheric data tape has been constructed by Marshall Space Flight Center's Earth Science and Applications Division to provide an internally consistent data set for use in post-flight performance assessments and represents the best estimate of the launch environment to the 400,000-ft altitude that was traversed by the STS-34 vehicle.

TM-100397 April 1990
The Temperature Variation of Hydrogen Diffusion Coefficients in Metal Alloys. M.D. Danford. Materials and Processes Laboratory. N90-21836

Hydrogen diffusion coefficients have been measured as a function of temperature for a few metal alloys using an electrochemical evolution technique. Results from these measurements are compared to those obtained by the time-lag method. In all cases, diffusion coefficients obtained by the electrochemical method are larger than those by the time-lag method by an order of magnitude or more. These differences are attributed mainly to hydrogen trapping.

TM-100398 April 1990

Gamma-ray bursts display a wide range of temporal and spectral characteristics, but typically last several seconds and emit most of their energy in the low-energy, gamma-ray region. The burst sources appear to be isotropically distributed on the sky. Several lines of evidence suggest magnetic neutron stars as sources for bursts. A variety of energy sources and emission mechanisms have been proposed.

TM-100399 March 1990

This report presents a summary of selected atmospheric conditions observed near space shuttle STS-33 launch time on November 22, 1989, at Kennedy Space Center, Florida. STS-33 carried a Department of Defense payload and the flight azimuth in this report will be denoted by a reference flight azimuth, since the
actual flight azimuth is not known. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of pre-launch Jimsphere-measured vertical wind profiles is given in this report. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-33 vehicle ascent has been constructed. The STS-33 ascent atmospheric data tape has been constructed by Marshall Space Flight Center’s Earth Science and Applications Division to provide an internally consistent data set for use in postflight performance assessments and represents the best estimate of the launch environment to the 400,000-ft altitude that was traversed by the STS-33 vehicle.

TM-100400 March 1990

This report presents a summary of selected atmospheric conditions observed near space shuttle STS-32 launch time on January 9, 1990, at Kennedy Space Center, Florida. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of pre-launch Jimsphere-measured vertical wind profiles is given in this report. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-32 vehicle ascent has been constructed. The STS-32 ascent atmospheric data tape has been constructed by Marshall Space Flight Center’s Earth Science and Applications Division to provide an internally consistent data set for use in postflight performance assessments and represents the best estimate of the launch environment that was traversed by the STS-32 vehicle.

TM-100401 June 1990

This memorandum develops approaches for forecasting the cost of major hardware development programs while these programs are in the design and development C/D phase. Three approaches are developed: a schedule assessment technique for bottom-line summary cost estimation, a detailed cost estimation approach, and an intermediate cost element analysis procedure. The schedule assessment technique was developed using historical cost/schedule performance data.

TM-100402 June 1990
Equivalent Circuit Models for ac Impedance Data Analysis. M.D. Danford. Materials and Processes Laboratory. N90-25277

A least-squares fitting routine has been developed for the analysis of ac impedance data. It has been determined that the checking of the derived equations for a particular circuit with a commercially available electronics circuit program is essential. As a result of the investigation described in this report, three equivalent circuit models have been selected for use in the analysis of ac impedance data at this laboratory.

TM-100403 May 1990

This report presents a summary of selected atmospheric conditions observed near space shuttle STS-36 launch time on February 28, 1990, at Kennedy Space Center, Florida. STS-36 carried a Department of Defense payload, and the flight azimuth in this report will be denoted by a reference flight azimuth, since the actual flight azimuth is not known. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of pre-launch Jimsphere-measured vertical wind profiles is given in this report. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-36 vehicle ascent has been constructed. The STS-36 ascent atmospheric data tape has been constructed by Marshall Space Flight Center’s Earth Science and Applications Division to provide an internally consistent data set for use in postflight performance assessments and represents the best estimate of the launch environment to the 400,000-ft altitude that was traversed by the STS-36 vehicle.

TM-100404 June 1990
This report provides a description of the NASA Marshall Space Flight Center’s Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during January–December 1989. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer code. The data are represented by longitudinal contours with azimuth plots.

The Advanced X-Ray Astrophysics Facility (AXAF) will be subject to several sources of charged particle radiation during its 15-year orbital lifetime: geomagnetically-trapped electrons and protons, galactic cosmic ray particles, and solar flare events. The purpose of this report is to estimate these radiation levels for the AXAF orbit for use in the design of the observatory’s science instruments.

A proposed transient response method is formulated for the liftoff analysis of the space shuttle vehicle. The proposed method uses a power series approximation with unknown coefficients for the interface forces between the space shuttle and mobile launch platform. This allows the equations of motion of the two structures to be solved separately with unknown coefficients at the end of each time step. The unknown coefficients are obtained by enforcing the interface compatibility conditions between the two structures. Once the unknown coefficients are determined, the total response is computed for that time step. The method is validated by a numerical example of a cantilevered beam and by the liftoff analysis of the space shuttle vehicle. The proposed method is compared to an iterative transient response analysis method used by Martin Marietta for their space shuttle liftoff analysis. It is shown that the proposed method uses less computer time than the iterative method and does not require as small a time step for integration. The space shuttle vehicle model is reduced using two different types of component mode synthesis (CMS) methods, the Lanczos CMS method and the Craig and Bampton CMS method. By varying the cutoff frequency of the Craig and Bampton method it was shown that the space shuttle interface loads can be computed with reasonable accuracy. Both the Lanczos CMS method and Craig and Bampton CMS method give similar results. A substantial amount of computer time is saved using the Lanczos CMS method over that of the Craig and Bampton method. However, when trying to compute a large number of Lanczos vectors, input/output computer time increased and increased the overall computer time. The application of several liftoff release mechanisms that can be adapted to the proposed method are discussed.

A test bed for a large space power system breadboard for the Hubble Space Telescope (HST) was designed and built to test the system under simulated orbital conditions. A discussion of the data acquisition and control subsystems designed to provide for continuous 24-hour per day operation and a general overview of the test bed is presented. The data acquisition and control subsystems provided the necessary monitoring and protection to assure safe shutdown with protection of test articles in case of loss of power or equipment failure over the life of the test (up to 5 years).
frequency components of a given data window. Transformation of data into different coordinate axes is useful in the analysis of experiments with different orientations and can be achieved by the use of a transformation matrix. Application of such analysis techniques to residual acceleration data provides additional information than what is provided in a time history and increases the effectiveness of post-flight analysis of low-gravity experiments.

TM-103508
June 1990

This report presents a summary of selected atmospheric conditions observed near space shuttle STS-31 launch time on April 24, 1990, at Kennedy Space Center, Florida. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of pre-launch Jimsphere-measured vertical wind profiles is given in this report. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-31 vehicle ascent has been constructed. The STS-31 ascent atmospheric data tape has been constructed by Marshall Space Flight Center’s Earth Science and Applications Division to provide an internally consistent data set for use in postflight performance assessments and represents the best estimate of the launch environment to the 400,000-ft altitude that was traversed by the STS-31 vehicle.

TM-103509
July 1990

This report documents a computer program that generates strain transformations and on-axis stresses in composites given the initial strains and the transformation angles.

TM-103511
August 1990
Reliability Growth Modeling Analysis of the Space Shuttle Main Engines Based Upon the Weibull Process. J.T. Wheeler. Structures and Dynamics Laboratory. N90-28098

The Weibull process, identified as the non-homogeneous Poisson process with the Weibull intensity function, is used to model the reliability growth assessment of the space shuttle main engine test and flight failure data. Additional tables of percentage-point probabilities for several different values of the confidence coefficient have been generated for setting $(1-\alpha)100$-percent two-sided confidence interval estimates on the mean time between failures. The tabled data pertain to two cases: (1) time-terminated testing and (2) failure-terminated testing. The critical values of the three test statistics, namely Cramér-von Mises, Kolmogorov-Smirnov, and chi-square, have been calculated and tabled for use in the goodness-of-fit tests for the engine reliability data. Numerical results are presented for five different groupings of the engine data that reflect the actual responses to the failures.

TM-103512
August 1990

This report provides a description of the NASA Marshall Space Flight Center’s Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during January–June 1990. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer code. The data are represented by longitudinal contours with azimuth plots.

TM-103513
July 1990
Mesoscale Lightning Experiment (MLE): A View of Lightning as Seen From Space During the STS-26 Mission. O.H. Vaughan, Jr. Space Science Laboratory.

This report provides information on the data obtained from the Mesoscale Lightning Experiment (MLE) flown on STS-26. The experiment used onboard TV cameras and a 35-mm film camera to obtain data. Data from the 35-mm film camera are presented. During the mission, the crew had difficulty locating the various targets of opportunity with the TV cameras. To obtain as much data as possible in the short observational timeline allowed due to other commitments, the crew opted to use the hand-held 35-mm camera.

This report presents an updated NASA atmospheric turbulence model, from 0- to 200-km altitude, which was developed to be more realistic and less conservative when applied to space shuttle reentry engineering simulation studies involving control system fuel expenditures. The prior model used extreme turbulence (3σ) for all altitudes, whereas in reality severe turbulence is patchy within quiescent atmospheric zones. The updated turbulence model presented in this report is designed to be more realistic. The prior turbulence statistics (σ and L) have been updated and have been modeled accordingly.

Large solid rocket motors release large quantities of hydrogen chloride and aluminum oxide exhaust during launch or testing. This report summarizes measurements and analysis of the interaction of this material with the deluge water spray and other environmental factors in the near field (within 1 km of the launch or test site). Measurements of mixed solid and liquid deposition (typically 2 normal HCl) following space shuttle launches and 6.4 percent scale model tests are described. Hydrogen chloride gas concentrations measured in the hours after the launch of STS 41D and STS 51A are reported. Concentrations of 9 ppm, which are above the 5 ppm exposure limits for workers, were detected an hour after STS 51A. A simplified model which explains the primary features of the gas concentration profiles is included.

This report is a description of the phase III simplified integrated test (SIT) conducted at the Marshall Space Flight Center (MSFC) Core Module Integration Facility (CMIF) in 1989. This was the first test in the phase III series integrated environmental control and life support systems (ECLSS) tests. The basic goal of the SIT was to achieve full integration of the baseline air revitalization (AR) subsystems for Space Station Freedom. Included in this report is a description of the SIT configuration, a performance analysis of each subsystem, results from air and water sampling, and a discussion of lessons learned from the test. Also included in this report is a full description of the preprototype ECLSS hardware used in the test.

The global optimization trends of protective honeycomb structural designs for spacecraft subject to hypervelocity meteoroid and space debris impacts are presented. This nonlinear problem is first formulated for weight minimization of the orbital maneuvering vehicle (OMV) using a generic monomial predictor. Five problem formulations are considered, each dependent on the selection of independent design variables. Each case is optimized by considering the dual geometric programming problem. The dual variables are solved for in terms of the generic estimated exponents of the monomial predictor. The primal variables are then solved for by conversion. Finally, parametric design trends are developed for ranges of the estimated regression parameters. Results specify nonmonotonic relationships for the optimal first and second sheet mass per unit areas in terms of the estimated exponents.

A linear elastic solution to the problem of minimum weight design of cantilever beams with variable width and depth is presented. The solution shown
is for the specific application of the Hubble Space Telescope maintenance mission hardware. During these maintenance missions, delicate instruments must be isolated from the potentially damaging vibration environment of the space shuttle cargo bay during the ascent and descent phases. The leaf springs are designed to maintain the isolation system natural frequency at a level where load transmission to the instruments is a minimum.

Nonlinear programming is used for the optimization process. The weight of the beams is the objective function with the deflection and allowable bending stress as the constraint equations. The design variables are the width and depth of the beams at both the free and the fixed ends.

Space Station Freedom environmental control and life support system testing has been conducted at Marshall Space Flight Center since 1986. The phase III simplified integrated test (SIT) conducted from July 30, 1989, through August 11, 1989, tested an integrated air revitalization system. During this test, the trace contaminant control subsystem (TCCS) was directly integrated with the bleed stream from the carbon dioxide reduction subsystem. The TCCS performed as expected with minor anomalies. The test set the basis for further characterizing the TCCS performance as part of advance air revitalization system configurations.
This paper presents a new method for determining the transient response of a discrete coordinate model of a linear structural system composed of substructures. The method is applicable to systems consisting of any number of substructures, both determinate and indeterminate interface boundaries, and any topological arrangement of the substructures. The method is simple to implement from a computational point of view because the equations of motion of each of the substructures are solved independently, and the interface boundary compatibility conditions are enforced at each integration time step by a matrix multiplication. The method is demonstrated for a structural system consisting of two beam segments and acted upon by a time dependent force. The numerical results from the demonstration problem validates the accuracy of the method. The application of this method to structural systems with changing interface boundary conditions between substructures is discussed.

El Niño is conventionally defined as an anomalous and persistent warming of the waters off the coasts of Ecuador and Peru in the eastern equatorial Pacific, having onset usually in southern hemispheric summer/fall. Examined here are some of the statistical aspects of El Niño occurrences, especially as they relate to the normal distribution and to possible associations with volcanic, solar, and geomagnetic activity.

With regard to the “very strong” El Niño of 1982–83, it is noted that, although it may very well be related to the 1982 eruptions of El Chichón, the event occurred essentially “on time” (with respect to the past behavior of elapsed times between successive El Niño events; a moderate-to-stronger El Niño was expected during the interval 1978 to 1982, assuming that El Niño occurrences are normally distributed, having a mean elapsed time between successive onsets of 4 years and a standard deviation of 2 years and a last known occurrence in 1976). Also, although not widely recognized, the whole of 1982 was a record year for geomagnetic activity (based on the aa geomagnetic index, with the aa index registering an all-time high in February 1982), perhaps, important for determining a possible “trigger” for this and other El Niño events.

A major feature of this study is an extensive bibliography (325 entries) on El Niño and volcanic-solar-geomagnetic effects on climate. Also, included is a tabular listing of the 94 major volcanic eruptions of 1835 to 1986.
carbon/epoxy coupons. Four different material systems with various eight-ply lay-up configurations were tested. Specimens were placed over a 10.3-mm diameter hole and impacted with a smaller tup (4.2-mm diameter) than those used in previous studies. Force-time plots as well as data on absorbed energy and residual tensile strength were gathered and examined. It was found that a critical impact energy level existed for each material tested, at which point tensile strength began to rapidly decrease with increasing impact energy.

TP-3013 May 1990

This paper describes a general-purpose balloon-borne pointing system for accommodating a wide variety of solar scientific instruments. It is designed for precise pointing, low cost, and quick launch. It offers the option of three-axis control, pitch-yaw-roll, or two-axis control, pitch-yaw, depending on the needs of the solar instrument. Simulation results are presented that indicate good pointing capability at Sun elevation angles ranging from 10 degrees to 80 degrees.

TP-3023 June 1990

A high power CO$_2$ laser beam is known to deteriorate after a few microseconds due to a mode-medium instability (MMI) which results from an intensity dependent heating rate related to the vibrational-to-translational decay of the upper and lower CO$_2$ lasing levels. An iterative numerical technique is developed to model the time evolution of the beam as it is affected by the MMI. The technique is used to study the MMI in an unstable CO$_2$ resonator with a hard-edge output mirror for different parameters like the Fresnel number and the gas density. The results show that the mode of the hard-edge unstable resonator deteriorates because of the diffraction ripples in the mode. We use a Gaussian-reflectivity mirror to correct the MMI. This mirror produces a smoother intensity profile which significantly reduces the effects of the MMI. Quantitative results on peak density variation and beam quality are presented.

TP-3028 June 1990

This report details the loads testing on in-house-fabricated flight configuration SRM outer boot ring segments. The tests determined the bending strength and bending stiffness of these beams and showed that they compared well with the hand analysis. The bending stiffness test results compared very well with the finite element data.

TP-3029 July 1990

Low velocity drop weight instrumented impact testing was utilized to examine the damage resistance of four recently developed carbon fiber/epoxy resin systems. A fifth material, T300/934, for which a large data base exists, was also tested for comparison purposes. A 16-ply quasi-isotropic lay-up configuration was used for all the specimens. Force/absorbed energy-time plots were generated for each impact test. The specimens were cross-sectionally analyzed to record the damage corresponding to each impact energy level. Maximum force of impact versus impact energy plots were constructed to compare the various systems for impact damage resistance. Results show that the four new damage tolerant fiber/resin systems far outclassed the T300/934 material. The most damage tolerant material tested was the IM7/1962 fiber/resin system.

TP-3030 June 1990
This paper presents a new method for scanning balloon-borne experiments, free-flying spacecraft, and gimballed experiments mounted to the space shuttle or the space station. It uses rotating-unbalanced-mass (RUM) devices for generating circular, line, or raster scan patterns and an auxiliary control system for target acquisition, keeping the scan centered on the target, and producing complementary motion for raster scanning. It is ideal for applications where the only possible way to accomplish the required scan is to physically scan the entire experiment or spacecraft as in x-ray and gamma-ray experiments. In such cases, this new method should have advantages over prior methods in terms of either power, weight, cost, performance, stability, or a combination of these.

TP-3031 July 1990
Forbidden Tangential Orbit Transfers Between Intersecting Keplerian Orbits. R.E. Burns. Systems Analysis and Integration Laboratory.
N90-26028

The classical problem of tangential impulse transfer between coplanar Keplerian orbits is addressed. A completely analytic solution which does not rely on sequential calculation is obtained and this solution is used to demonstrate that certain initially chosen angles can produce singularities in the parameters of the transfer orbit. A necessary and sufficient condition for such singularities is that the initial and final orbits intersect.

TP-3042 August 1990
N90-27876

An examination of low velocity impact damage to glass/phenolic and aluminum core honeycomb sandwich panels with carbon/epoxy facesheets is presented. An instrumented drop weight impact test apparatus was utilized to inflict damage at energy ranges between 0.7 and 4.2 Joules. Specimens were checked for extent of damage by cross-sectional examination. The effect of core damage was assessed by subjecting impact-damaged beams to four-point bend tests. Skin-only specimens (facings not bonded to honeycomb) were also tested for comparison purposes. Results show that core buckling is the first damage mode, followed by delaminations in the facings, matrix cracking, and finally fiber breakage. The aluminum honeycomb panels exhibited a larger core damage zone and more facing delaminations than the glass/phenolic core, but could withstand more shear stress when damaged than the glass/phenolic core specimens.

TP-3058 August 1990

This study analyzed long-term orbital lifetime predictions. Predictions were made for three satellites: the Solar Max Mission (SMM), the Long Duration Exposure Facility (LDEF), and the Pegasus Boiler Plate (BP). A technique is discussed for determining an appropriate ballistic coefficient to use in the lifetime prediction. The orbital decay rate should be monitored regularly. Ballistic coefficient updates should be done whenever there is a significant change in the actual decay rate or in the solar activity prediction.
NASA CONFERENCE PUBLICATIONS

CP-3085 July 1990

CP-3088 August 1990
Measurement and Characterization of the Acceleration Environment on Board the Space Station. Charles R. Baugher, Editor.

CP-3089 September 1990
Current Collection from Space Plasmas. N. Singh, K.H. Wright, Jr., and N.H. Stone, Editors.

CP-3091 September 1990
CR-4260 November 1989

Final Test Report. NAS8-30490. Thiokol Corp. N90-90439

CR-183773 August 1989

CR-183774 August 1989

CR-183775 October 1989
Atmospheric Cloud Physics Laboratory (ACPL) Simulation System Mathematical Description. NAS8-32668. General Electric. N90-70090

CR-183776 August 1989

CR-183777 May 1989

CR-183778 August 1989
Solid Propulsion Integrity Program Nozzle Third Quarterly Review. NAS8-37801. Hercules Industry Team. X90-10009

CR-183779 August 1988

CR-183780 July 1989
Large Liquid Rocket Engine Transient Performance Simulation System Six Month Report. NAS8-36994. United Technologies Pratt and Whitney. X89-10602
CR-183781 June 1989

CR-183782 November 1989
Gamma Radiation Background Measurements from Spacelab 2 – Annual Report. NAS8-35354. University of Alabama in Huntsville. N90-11689

CR-183783 July 1989

CR-183784 August 1989
Space Shuttle Production Verification Motor 1 (PV-1) Static Fire Final Test Report Volume 1 (Revision B). NAS8-30490. Thiokol Corp. N90-15991

CR-183785 August 1989

CR-183786 March 1989

CR-183787 March 1989

CR-183790 March 1989

CR-183791 March 1989

CR-183792 March 1989

CR-183793 March 1989

CR-183794 March 1989

CR-183795 March 1989

CR-183796 March 1989
NASA CONTRACTOR REPORTS

(Aabstracts for these reports may be obtained from STAR)

CR-183797 March 1989
N90-70700

CR-183798 March 1989
Liquid Rocket Booster (LRB) for the Space Transportation System (STS) Systems Study, Appendix L, LRB Engine Status Aerojet Techsystems. NAS8-37136. Martin Marietta.
N90-71173

CR-183799 March 1989
N90-70608

CR-183800 March 1989
N90-71174

CR-183801 June 1989

CR-183802 August 1989

CR-183803 August 1989
The Effect of Impurity Gases on Plasma Arc Welded 2219 Aluminum. NAS8-37425. The University of Texas at El Paso. N90-26935

CR-183804 October 1989
N90-11802

CR-183805 October 1989

CR-183806 November 1989

CR-183807 September 1989

CR-183808 August 1989

CR-183809 August 1989

CR-183810 August 1989

CR-183811 June 1989

CR-183812 September 1987

CR-183813 September 1987
CR-183814 September 1987

CR-183823 October 1989

CR-183815 March 1987
Advanced Recovery Systems Study for the Next Generation Space Transportation System: Mid-Term Review. NAS8-36631. Pioneer Systems, Inc. X90-70302

CR-183824 September 1989

CR-183816 September 1987

CR-183825 July 1987

CR-183817 September 1989

CR-183826 September 1989
Cable Coupling Lightning Transient Qualification Final Test Report. NAS8-30490. Thiokol Corp. N90-13405

CR-183818 September 1989

CR-183827 September 1989
Qualification of Improved Joint Heaters Final Test Report. NAS8-30490. Thiokol Corp. N90-13594

CR-183819 September 1989

CR-183828 September 1989
Evaluation of Newly Formulated Dow Corning 321 Dry Film Lubricant Final Test Report. NAS8-30490. Thiokol Corp. N90-13661

CR-183820 September 1989

CR-183829 September 1989

CR-183821 February 1989

CR-183830 October 1989

CR-183822 March 1989

CR-183831 September 1989
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CR-183835</td>
<td>October 1989</td>
<td>Risk-Based Fire Safety Experiment Definition for Manned Spacecraft. NAS8-37750. University of California. N90-14262</td>
<td></td>
</tr>
<tr>
<td>CR-183849</td>
<td>August 1989</td>
<td>Out-Reach In-Space Technology Experiments Program: Control of Flexible Robot Manipulators in Zero Gravity Experiment Definition Phase August 16, 1988 Through August 15,</td>
<td></td>
</tr>
</tbody>
</table>
CR-183850
October 1989

CR-183851
November 1989

CR-183852
November 1989

CR-183853
September 1989

CR-183854
December 1989

CR-183855
December 1988
First Incremental Buy for Increment II of the Space Transportation System (STS) – Contractor’s Final Documentation Report. NAS8-30490. Thiokol Corp.

CR-183856
December 1988

CR-183857
August 1989

CR-183858
November 1989

CR-183859
October 1989

CR-183860
December 1989

CR-183861
November 1989
Use of Solvent Vacuum Cleaning System on RSRM Casting Tooling (FINS) Final Report. NAS8-30490. Thiokol Corp. N90-90300

CR-183862
December 1989

CR-183863
November 1989

CR-183864
November 1989

CR-183865
December 1989

CR-183866
December 1989

CR-183867
December 1989

CR-183868
September 1989
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-183869 September 1989
X90-10192

CR-183870 September 1989
X90-10190

CR-183871 December 1989

CR-183872 August 1989

CR-183873 January 1990
X90-10188

CR-183874 January 1990
X90-10189

CR-183875 January 1990

CR-183876 January 1990
N90-70538

CR-183877 January 1990
Thiokol/Wasatch Installation Evaluation of the

Redesigned Field Joint Protection System (Concepts 1 and 1C) Final Test Report. NAS8-30490. Thiokol Corp. N90-70589

CR-183878 April 1990
Shelf Life Extension for the Lot AAE Nozzle Severance LSC’s Final Test Report. NAS8-30490. Thiokol Corp. N90-21813

CR-183879 November 1989

CR-183880 December 1989

CR-183881 December 1989

CR-183882 October 1989

CR-183883 December 1989

CR-183884 December 1989

CR-183885 November 1989

CR-183886 October 1989
CR-183887

CR-183888

CR-183889

CR-183890

CR-183891

The Effects of Reynolds Number, Rotor Incidence Angle and Surface Roughness on the Heat Transfer Distribution in a Large-Scale Turbine Rotor Passage. NAS8-37351. United Technologies Research Center.

CR-183892

CR-183893

Direct Arc Attachment Test Final Test Report. NAS8-30490. Thiokol Corp.

CR-183894

CR-183895

CR-183896

CR-183897

CR-183898

M-120 Aluminum Feeder Investigation Final Report. NAS8-30490. Thiokol Corp.

CR-183899

CR-183900

CR-183901

CR-183902

CR-183903

CR-183904

CR-183905

NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-183906 April 1990
Tethered Satellite System Dynamics and Control
NAS8-35835. Control Dynamics Co.
N90-70531

CR-183907 February 1990
Payload Training Methodology Study Final
Report. NAS8-37737. Essex Corp.

CR-183908 March 1990
Qualification for the 8U75686 Field Joint
Assembly Fixture (FJAF) Final Test Report.
NAS8-30490. Thiokol Corp. N90-91145

CR-183909 February 1990
Final Report on SEDS Experiment Design
Definition. NAS8-37380. Energy Science
Laboratories, Inc.

CR-183910 January 1990
Advanced Launch System Solid Rocket Booster
Systems Definition Study (Phase A) Final Study
Report, Volume I - Executive Summary. NAS8-
38131. Thiokol Corp.

CR-183911 January 1990
Advanced Launch System Solid Rocket Booster
Systems Definition Study (Phase A) Final Study
Thiokol Corp.

CR-183912 January 1990
Advanced Launch System Solid Rocket Booster
Systems Definition Study (Phase A) Final Study
NAS8-38131. Thiokol Corp.

CR-183913 January 1990
Advanced Launch System Solid Rocket Booster
Systems Definition Study (Phase A) Work
Breakdown Structure (WBS) and WBS Dictionary.
NAS8-38131. Thiokol Corp.

CR-183914 January 1990
Advanced Launch System Solid Rocket Booster
Systems Definition Study (Phase A) Environmental Studies. NAS8-38131. Thiokol Corp.

CR-183915 January 1990
Advanced Launch System Solid Rocket Booster
Systems Definition Study (Phase A) Program
Cost Estimates. NAS8-38131. Thiokol Corp.

CR-183916 January 1990
Advanced Launch System Solid Rocket Booster
Systems Definition Study (Phase A) Design
Graphics. NAS8-38131. Thiokol Corp.

CR-183917 February 1990
Advanced Launch Systems Solid Rocket Booster
Systems Definition Study (Phase A) Final
Report (DR-4), Volume I - Executive
Summary. NAS8-38133. United Technologies
Corp.

CR-183918 February 1990
Advanced Launch Systems Solid Rocket Booster
Systems Definition Study (Phase A) Final
NAS8-38133. United Technologies Corp.

CR-183919 February 1990
Advanced Launch Systems Solid Rocket Booster
Systems Definition Study (Phase A) Final
Report (DR-4), Volume III - Program Costs.
NAS8-38133. United Technologies Corp.

CR-183920 January 1990
Advanced Launch System Solid Rocket Booster
Systems Definition Study (Phase A), Volume I -
Executive Summary, Volume II - Final Report,
Volume III - Program Costs Estimates. NAS8-
38134. Hercules Aerospace Co.

CR-183921 February 1990
Advanced Launch System Solid Rocket Booster
Systems Definition Study (ALS ADS), Volume
I - Executive Summary. NAS8-38130. Aerojet
Solid Propulsion.

CR-183922 February 1990
Advanced Launch System Solid Rocket Booster
Systems Definition Study (ALS SDS), Volume
II - Technical Discussion. NAS8-38130. Aerojet
Solid Propulsion.

CR-183923 February 1990
Advanced Launch System Solid Rocket Booster

CR-183924 March 1990

CR-183925 November 1989
Modification of ET Nose Cone to Become a Line Replacement Unit. NAS8-36200. Martin Marietta. N90-91147

CR-183926 March 1990

CR-183927 March 1990

CR-183928 March 1990
OPT EMI Test Final Test Report. NAS8-30490. Thiokol Corp. N90-91148

CR-183929 March 1990
Investigation of Teflon Topcoat Peeling From the SRM Pathfinder Core Final Report. NAS8-30490. Thiokol Corp. N90-91149

CR-183930 March 1990
Transportation Monitoring Unit Qualification Final Test Report. NAS8-30490. Thiokol Corp.

CR-183931 March 1990
Qualification of the RSRM Field Joint CF Case-to-Insulation Bondline Inspection Using the Thiokol Corporation Ultrasonic RSRM Bondline Inspection System Final Test Report. NAS8-30490. Thiokol Corp.

CR-183932 March 1990

CR-183933 March 1990

CR-183934 March 1990

CR-183935 March 1990

CR-183936 March 1990

CR-183937 March 1990

CR-183938 March 1990

CR-183939 March 1990

CR-183940 April 1990
Qualification of the RSRM Field Joint Pinhole Case-to-Insulation Bondline Inspection Using the Thiokol Corporation Ultrasonic RSRM Bondline Inspection System. NAS8-30490. Thiokol Corp.

CR-183941 November 1989
Probabilistic Model for Fracture Mechanics
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-183959 April 1990 Qualification of the RSRM Case Membrane Case-to-Insulation Bondline Inspection Using the Thiokol Corporation Ultrasonic RSRM

CR-183960 December 1989
Thrust Chamber Performance Prediction Using the Navier-Stokes Solution. NAS8-36899. Lockheed Missiles and Space Co., Inc.

CR-183961 April 1990

CR-183962 March 1990

CR-183963 May 1990

CR-183964 April 1990

CR-183965 December 1989

CR-183966 May 1990
TEM-6 Fixed Housing Transducer Qualification and EA934NA Retaining Agent Usage Final Test Report. NAS8-30490. Thiokol Corp.

CR-183967 December 1989
Evaluation of Berkshire Lab Tips™ Polyurethane (Cleanroom) Swabs (Model No. LT003163R) for Precision Cleaning on RSRM Cases. Final Report. NAS8-30490. Thiokol Corp.

CR-183968 May 1990
Technical Evaluation Motor No. 6 (TEM-6) Final Test Report. NAS8-30490. Thiokol Corp.

CR-183969 April 1990

CR-183970 February 1990

CR-183971 May 1990

CR-183972 November 1989

CR-183973 November 1989

CR-183974 December 1989

CR-183975 October 1989

CR-183976 July 1988

CR-183977 July 1988
DRIRU II Quality Plan. NAS8-37741. Teledyne Systems Co.
CR-183978 April 1990
Proceedings Advisory Committee on Standardization of Carbon-Phenolic Test Methods and Specifications. NAG8-545. Mississippi State University.

CR-183979 June 1990
Flight Motor Set 360L007 (STS-33R) Final report. NAS8-30490. Thiokol Corp.

CR-183980 May 1990
Qualification of the Installation Links for the RSRM Field Joint Heater Retention Strap Tensioning Tool Final Test Report. NAS8-30490. Thiokol Corp. N90-91170

CR-183981 May 1990

CR-183982 June 1990

CR-183983 March 1990

CR-183984 March 1990

CR-183985 June 1990

CR-183986 May 1990

CR-183987 June 1990
Final Report for Certification of 1U51703 Pyrotechnic Basket Lot AAD. NAS8-30490. Thiokol Corp. N90-91177

CR-183988 May 1990

CR-183989 June 1990
EA-934NA Adhesive With Cab-O-Sil to Primer Bond Strength Test. Final Report. NAS8-30490. Thiokol Corp. N90-91179

CR-183990 November 1989

CR-183991 June 1989
Space Radiation Studies – Final Report. NAS8-35354. The University of Alabama in Huntsville.

CR-183992 June 1990

CR-183993 June 1989

CR-183994 March 1990
Lox Manifold Tee Analysis Final Report. NAS8-37285. SECA, Inc.

CR-183995 June 1990

CR-183996 May 1990

CR-183997 June 1990
External Tank Aerothermal Design Criteria
CR-183998 March 1990

CR-183999 March 1990

CR-184000 May 1990

CR-184001 July 1990
QM-6 Final Performance Evaluation Report Igniter. NAS8-30490. Thiokol Corp.

CR-184002 June 1990
Igniter Adapter-to-Igniter Chamber Deflection Test Final Report, Revision A. NAS8-30490. Thiokol Corp.

CR-184003 July 1990
Final Report for the M-52 Spray Booth Qualification Test. NAS8-30490. Thiokol Corp.

CR-184004 June 1990
Nylon and Teflon Scribe Effect on NBR to Chemlok 233 and NBR to NBR Bond Interfaces Final report. NAS8-30490. Thiokol Corp.

CR-184005 June 1990
Evaluation of EA-934NA with 2.5% Cab-O-Sil Final Report. NAS8-30490. Thiokol Corp.

CR-184006 July 1990

CR-184007 February 1990

CR-184008 June 1990

CR-184009 April 1990
Heat Treatment Study II. H-80579B. The University of Alabama in Huntsville.

CR-184010 July 1990

CR-184011 June 1990
Asbestos Bag Drying Final Report. NAS8-30490. Thiokol Corp.

CR-184012 December 1988
Historical Annotated Bibliography: Space Station Documents. NAS8-35900. Compiled by Management Operations Office.

CR-184013 December 1988

CR-184014 December 1988

CR-184015 July 1990

CR-184016 August 1990
PV-1 Final Performance Evaluation Report Igniter. NAS8-30490. Thiokol Corp.
NASA CONTRACTOR REPORTS
(AbSTRACTS FOR THESE REPORTS MAY BE OBTAINED FROM STAR)

CR-184017 May 1990
STS-33R, RSRM-007, 360L007 KSC Processing Configuration and Data Report. NAS8-30490. Thiokol Corp.

CR-184018 July 1990

CR-184019 August 1990

CR-184020 July 1990
Automated Ultrasonic Thickness Gauge of Case and Nozzle Components, Final Test Report. NAS8-30490. Thiokol Corp.

CR-184021 August 1990
ANDERSON, B.J. ES44
SMITH, R.E. FWG
SUGGS, R.J. ES44
HICKEY, M. USRA

ANDERSON, B.J. ES44
SMITH, R.E. FWG
Natural Environment Definitions for Design of the Space Station. For presentation at the ESA Space Environment Analysis Workshop, Noordwijk, The Netherlands, October 9–12 1990.

ANDERSON, J.R. EH12
WILBUR, P.J.
CARRUTH, R.

ANDRE, M. ES53
CREW, G.B.
PETERSON, W.K.
PERSOON, A.M.
POLLOCK, C.J.
ENCEBRETSON, M.J.
Ion Heating by Broadband Low-Frequency Waves in the Cusp/Cleft. For publication in the Journal of Geophysical Research. Washington, DC.

ASHWORTH, B. Martin Marietta
WALLS, B. EB12
Autonomous Operation of a Space Station Freedom Type Power Testbed. For presentation at the Artificial Intelligence and Advanced Automation Techniques for Fault Diagnosis Recovery Workshop, Houston, TX. June 18, 1990.

AUSTIN, G. PT31
VINOPAL, T. Boeing
BANGOUND Boeing
Designing the Space Transfer Vehicle. For presentation at the International Astronautical Federation (IAF), Malaga, Spain. October 9–13, 1989.

AVANS, S.L. ED52
HORN, J.R.
WILLIAMSEN, J.E.

BACCHUS, D.L. ED33

BAGDIGIAN, R.M. ED62

BAKER, M. EH14

BALASUBRAMANIAM, K.S. ES52
WEST, E.A.

BALASUBRAMANIAM, K.S. ES52
WEST, E.A.

WEISSKOPE, M.C.

BRANDON, L.B.

BREWER, J.C.
JACKSON, L.G.

BROOK, T.Y.
TOKUNAGA, A.T.
CARR, J.C.
SELLGREEN, K.
KNACKE, R.F.
ALLAMANDOLA, L.J.
SANDFORD, S.A.
TAPIA, M.

BROWN, D.G.
HORWITZ, J.L.
WILSON, G.R.
GALLAGHER, D.L.

BRYAN, T.C.
ANDERSON, R.
TSUGAWA, R.
DRAZNIN, M.

BUECHLER, D.E.
WRIGHT, P.D.
GOODMAN, S.J.

BUECHLER, D.E.
NIELSEN, K.E.
GOODMAN, S.J.

BUITEKANT, A.
BOEING

BURRAGA, L.F.
WILSON, R.M.

BURNETT, T.H.
FOUNTAIN, W.F.
PARNELL, T.A.
ROBERTS, F.E.
DERRICKSON, J.H.
WATTS, J.W.

CACIOPPO, E.
MUNSON, S.
PUSEY, M.L.
Protein Solubilities Determined by a Rapid Technique and Modification of That Technique to a Micro-Method. For publication in the Journal of Crystal Growth. The Netherlands.
CALVERT, J.A.
EP63

CAMPBELL, J.
ES52
DAVIS, J.
EMSLIE, A.G.

CAMPINS, H.
ES63
DECHER, R.
TELESCO, C.M.
LIEN, J.J.
Groundbased Thermal IR Images of Comet Tempel 2. For publication in Icarus, Ithaca, NY.

CARDELINO, B.H.
ES74
MOORE, C.E.
STICKEL, R.E.
Static First-Order Hyperpolarizability Calculations for Large Molecular Systems. For publication in the Journal of Physical Chemistry, Columbus, OH.

CARDELINO, B.H.
ES74
MOORE, C.E.
STICKEL, R.E.

Carpenter, D.L.
ES53
GILES, B.L.
CHAPPELL, C.R.
Observations of Plasmaspheric Bulge Dynamics. For presentation at the Workshop on Plasmaspheric Refilling, Huntsville, AL, October 15–16, 1990.

CARRINGTON, C.K.
PD12

CARRUTHERS, M.R.
EH12
VAUGHN, J.
DeHAYE, R.F.
NORWOOD, J.K.
WHITAKER, A.F.

CARTER, D.C.
ES76
HE, X.-M.
Structure of Human Serum Albumin. For publication in Science, Washington, DC.

CASALE, E.
WENISCH, E.
HE, X.-M.
RIGHETTI, P.G.
SNYDER, R.S.
JUNGBAUER, A.
TAUER, C.
RUKER, F.
CARTER, D.C.

CHAN, Y.T.
ES75
CHOI, S.K.
Magnetic Float Zone Microgravity Crystal Growth With Application to Titanium Carbide. For publication in the Journal of Crystal Growth. The Netherlands.

CHANDLER, M.O. ES53
WAITE, J.H., JR.
MOORE, T.E.
Observations of Polar Ion Outflows. For publication in the Journal of Geophysical Research. Washington, DC.

CHANDLER, M.O. ES53
Circulation of Core Ions Within the Plasmasphere. For presentation at the 1990 Spring Meeting of the American Geophysical Union. Baltimore, MD. May 31–June 1, 1990.

CHANDLER, M.O. ES53

CHANDRASEKAR, V. UAH
GOODMANN, S.J. ES44

CHEN, C.P. EP55
SCHAFER, C.
Three-Dimensional Computations of Flow Passages in SSME. For publication in the Journal of Propulsion.

CHOU, S.-H. ES42
MILLER, T.

CHOU, S.-H. ES42

CHOU, S.-H. ES42
LOESCH, A.Z.

CHRISTIAN, D.C. ED23

CHRISTIAN, H.J. ES43

CHRISTIAN, H.J. ES43

CHYLEK, P. ES43
JARZEMBSKI, M.
SRIVASTAVE, V.
PINNICK, R.
Pressure Dependence of the Laser-Induced Breakdown Thresholds of Gases and Droplets. For publication in the Applied Optics Journal. Atlanta, GA.

CIKANEK, H.A., III HA31

CLARK, B. ES62
WATTS, J.W., JR.

CLELAND, J.G. ES74
KORNFIELD. D.M.
Optimization of the Parameters for a Rotating.
CLINTON, R.G. EH34
TURNER, J.E.

COHEN, L.M. ED25
CERNOCH, L.
MATHEWS, G.
STALLCUP, M.

COMFORT, R.H. ES53
RICHARDS, P.G.
CRAVEN, P.D.
GALLAGHER, D.L.
CHAPPELL, C.R.

COMFORT, R.H. ES53
RICHARDS, P.G.
CHANDLER, M.O.
CRAVEN, P.D.
CHAPPELL, C.R.
KOZYRA, J.U.

COMFORT, R.H. ES53
RICHARDS, P.G.
CRAVEN, P.D.

COMFORT, R.H. ES53
CHANDLER, M.O.

COOK, J. EP52
DUMBACHER, D.
ISE, M.
SINGER, C.

COOK, J. EP01
DUMBACHER, D.
ISE, M.
SINGER, C.
Test Results of the Modified SSME at the MSFC Technology Test Bed Facility. For presentation at the 1990 JANNAF Propulsion Meeting, Anaheim, CA, October 2–4, 1990.

COOK, W.R. ES65
PRINCE, T.A.
GRINDLAY, J.E.
RAMSEY, B.D.
WEISSKOPF, M.C.
SKINNER, G.K.

CRAFT, H.G., JR. JA61
WICKS, T.G.
Space Station Transition Through Spacelab. For presentation at AIAA, Huntsville, AL, September 25, 1990.

CREMIN, J.W.

CURREN, P.A.

DAVIES, J.M.

DAVIES, J.M.

DEAN, N.F.

Publication: Solidification Processing of Monotectic Alloy Metal Matrix composites (TMS-AIME). Warrendale, PA.

DELCOURET, D.C.

MOORE, T.A.

PEDESEN, A.

SAUVAUD, J.A.

DELCOURET, D.C.

SAUVAUD, J.A.

MOORE, T.E.

Cleft Contribution to Ring Current Formation. For publication in the Journal of Geophysical Research, Washington, DC.

DERRICKSON, J.H.

DAKE, S.

DONG, B.

DERRICKSON, J.H.

PARNELL, T.A.

ROBERTS, F.E.

WATTS, J.W.

DeSANCTIS, C.E.

Science and Application Payloads in the 90's. For presentation at the 27th Space Congress, Cocoa Beach, FL, April 24–27, 1990.

DeSANCTIS, C.E.

Mission to Planet Earth Overview. For presentation at TABES '90, Huntsville, AL, May 15–16, 1990.
DEWBERRY, B.S. EB42

DOBSON, C.C. EP55
ESKRIDGE, R.H.

DOLLMAN, T.S. ES44
Software Support Environment Design Knowledge Capture. For presentation at the Space Station Evolution – Beyond the Baseline, Houston, TX, February 6, 1990.

DORESWAMY, R. EB12

DOUGHERTY, N.S.
HOLT, J.B., Rockwell
NESMAN, T.E. ED33
FARR, R.A. ED33

DOWDY, J.F., JR. ES52

DUGAL-WHITEHEAD, N.R. EB12
LOLLAR, L.F.

DUMBACHER, D.L. EP01

ELAM, S. EP62
LINDSAY, J. University of Michigan
KOBLISH, T. Textron Corp.
LEE, P. Textron Corp.
McAULIFFE, D. Textron Corp.

ELLIS, H.B., JR. ES63
LESTER, D.F.
HARVEY, P.M.
JOY, M.
TELESCHO, C.M.
DECHER, R.
WERNER, M.W.
High Spatial Resolution Mapping of the Cepheus a Region at 20 µm and 100 µm. For publication in the Astrophysical Journal, Tucson, AZ.

ELSNER, R.F. ES65
WEISSKOPF, M.C.

ELSNER, R.F. ES65
WEISSKOPF, M.C.
KAARET, P.
NOVICK, R.
SILVER, E.
EMRICH, W. PD13
YOUNG, A.
MULQUEEN, J.
Nuclear Stage Configuration Studies for Mars Missions. For presentation at the AIAA Space Programs and Technologies Conference and Exhibit, Huntsville, AL, September 25–27, 1990.

ESKRIDGE, R.H. EP55
DOBSON, C.C.

ETHRIDGE, E.C. ES75
JOHNSON, B.
FENG, C.
Reluctant Glass Formers and Their Applications in Optical Lens Design. For presentation at the Workshop on Containerless Experimentation in Microgravity, Pasadena, CA, January 17–19, 1990.

EUDY, R.G. PF24

EUDY, R.G. PF24

EZELL, T.G. EL64

FENNELLY, J.A. ES51
TORR, D.G.
RICHARDS, P.G.
TORR, M.R.
SHARP, W.E.

FERNANDEZ, K. EB44
An Update on the Use of Simulation in the Development of Robotic Systems. For presentation at the 41st International Aerospace Federation, Dresden, German Democratic Republic, October 6, 1990.

FICHTL, G.H. ES01
1990 Atmospheric Environment Highlights. For publication in Aerospace America, New York, NY.

FINCKENOR, M. EH15

FINESCHI, S. ES52
FONTENLA, J.M.
LJEPOJEVIC, N.N.

FINESCHI, S. ES52
DEGL’INNOCENTI, L.
A Triangular Property of the Associated Legendre Functions. For publication in The Journal of Mathematical Physics, New York, NY.

FISHMAN, G.J. ES62
HARMON, B.A.
PARNELL, T.A.

FISHMAN, G.J. ES62
et al.
Observation of Be on the Surface of the LDEF Spacecraft. For publication in Nature, Washington, DC.

FISHMAN, G.J.
BATSE: The Burst and Transient Source Experiment on the Gamma Ray Observatory. For presentation at the Los Alamos Workshop on Gamma-Ray Bursts, Taos, NM, July 29–August 3, 1990.

FONTENLA, J.M.
DAVIS, J.
3-D Description of Vertical Current Sheets With Application to Solar Flares. For publication in The Astrophysical Journal, Chicago, IL.

FUNSTON, K.M.

GALLAGHER, D.
CRAVEN, P.
COMFORT, R.

GARY, G.A.

GARY, G.A.

GARY, G.A.

GERLACH, L.
EDGE, T.M.

GOLBEN, J.
VLASSE, M.
MITCHELL, T.
Aligned Sintered Compacts: Routes Toward Higher Jc’s in Bulk High Tc Superconductors. For presentation at the Second World Congress on Superconductivity, Houston, TX, September 10–13, 1990.

GOLDEN, H.
SAENGER, E.

GOODMAN, H.M.
GOODMAN, S.J.
SMITH, M.
LaFONTAINE, V.
MOSS, D.

GOODMAN, S.J. WRIGHT, P.D.
Lightning and Precipitation Characteristics of New Mexico Thunderstorms. For presentation at the AGU Fall Meeting, San Francisco, CA, December 4–8, 1989.

GOODMAN, S.J. CHRISTIAN, H.J.

GOODMAN, S.J.
Climate Variability as Measured by Observations of Lightning Activity. For presentation at the AMS Annual Meeting/Special Session on Climate Variations, Anaheim, CA, February 4–9, 1990.

GOODMAN, S.J.
BUECHLER, D.

GRANT, R.L.
HOPSON, G.D.
Space Station Freedom Pressurized Element Designs. For presentation at the 41st International Astronautical Congress, German Democratic Republic, October 6–13, 1990.

GRANT, R.L.
HOPSON, G.D.
Space Station Freedom Pressurized Element Designs. For presentation at the 41st International Astronautics Congress, Dresden, Germany, October 6–13, 1990.

GREGORY, J.C.
PETERS, P.N.

GUO, J.
ABBAS, M.M.
NOLT, I.G.
Stratospheric H$_2$O Distribution From Far Infrared Observations. For publication in the Geophysical Research Letters (GRL), Washington, DC.

HABBAL, S.R.
DOWDY, J.F., JR.
WITHBROE, G.L.
A Comparison Between Bright Points in a Coronal Hole and a Quiet Sun Region. For publication in Astrophysical Journal, Chicago, IL.

HAGYARD, M.J.
The Significance of Vector Magnetic Field Measurements. For publication in Memorie della Societa Astronomica Italiana, Rome, Italy.

HAGYARD, M.J.
HENZE, W., JR.

HALE, J.P. II

HALE, J.P. II

HALE, J.P. II

HALE, J.P. II
Dining in Space, II. For publication in the
HALL, D.K.
LOLLAR, L.F.

HARRISON, J.K.
RUPP, C.C.
CARROLL, J.A.
MARIN, D.

HATHAWAY, D.H.
WILSON, R.M.

HATHAWAY, D.H.
HARVEY, K.L.
Analysis of a 116 Year Record of Sunspot Positions and Sizes. For presentation at the 175th Meeting of the American Astronomical Society, Albuquerque, NM, June 10-14, 1990.

HAYES, B.C.
WILSON, G.R.
SINGH, N.

HE, X.M.
CARTER, D.C.
TWIGG, P.D.
MODELING ABSORPTION OF AREA-DETECTOR DATA USING SPHERICAL HARMONICS – A FORTRAN SCALING PROGRAM SPHAB. For publication in ACTA Crystallographica, Munksgaard, DK-370 Copenhagen K, Denmark.

HEAMAN, J.P.
WILSON, R.M.
Design and Performance of an Air Preheater for Aerodynamic Facilities. For presentation at the 73rd Semiannual Meeting of the Supersonic Tunnel Association, Urbana-Champaign, IL, March 26-27, 1990.

HICKEY, M.P.
WHITAKER, A.
In Situ Measurements of Scattering from Contaminated Optics in the Vacuum Ultraviolet. For presentation at the 20th International Conference on Environmental Systems, Williamsburg, VA, July 9-12, 1990.
HOEKSEMA, M.T. ES52
SUESS, S.T.
The Outer Magnetic Field. For publication in Memorie della Societa Astronomica Italiana, Rome, Italy.

HOFMEISTER, W.H. ES75
BAYUZICK, R.J.
ROBINSON, M.B.

HOFMEISTER, W.H. ES75
BAYUZICK, R.J.
ROBINSON, M.B.
Dual Purpose Pyrometer for Temperature and Solidification Velocity Measurement. For publication in Review of Scientific Instruments, New York, NY.

HOFMEISTER, W.H. ES75
BAYUZICK, R.J.
ROBINSON, M.B.

HOLMES, R.R. EH43
BURNS, D.H.
McKECHNIE, T.

HOOD, R.E. ES43
SPENCER, R.W.
JAMES, M.W.

HOOVER, R.B. ES01
Design and Analysis of Asperical Multilayer Imaging X-Ray Microscope. For publication in Optical Engineering, Bellingham, WA.

HOOVER, R.B. ES52

HOOVER, R.B. ES52
HOOVER, R.B. ES52

HOOVER, R.B. ES52

HOOVER, R.B. ES52

HOOVER, R.B. ES52

HOOVER, R.B. ES52
et al.

HORWITZ, J.L. ES53
MOORE, T.E.
et al.

HORWITZ, J.L. ES53
COMFORT, R.H.
CHAPPELL, C.R.

HUETER, U. PT21
SUMRALL, P. PT21
HOLDRIDGE, J.
SHEPARD, K.

HUFFAKER, C.F. PT31
KELLEY, D. Martin Marietta

HUMPHRIES, W. ED62

HUMPHRIES, W.R. ED62
WIELAND, P.O.

HUNG, R.J. ES42
LEE, C.C.
LESLIE, F.W.

JARZEMBSKI, M.A. SRIVASTAVA, V. The Electromagnetic Field Enhancement in Small Liquid Droplets Using Geometrical Optics. For publication in Applied Optics Journal, Atlanta, GA.
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

JOY, M. ES65
HARVEY, P.M.
TOLLESTRUP, E.V.
McGREGOR, P.J.
HYLAND, A.R.

JOY, M. ES65
HARVEY, P.M.
TOLLESTRUP, E.V.
SELLGREN, K.
McGREGOR, P.J.
HYLAND, A.R.

JUSTUS, C.G. ES44
JAMES, B.

KAARET, P. ES65
NOVICK, R.
MARTIN, C.
SHAW, P.
HAMILTON, T.
SUNYAEV, R.
LAPSHOV, L.
WEISSKOPF, M.C.
ELSNER, R.F.
et al.

KAUKLER, W.F. ES75
ROLIN, T.
ETHRIDGE, E.

KEHTARNAVAZ, H. NAG8-106
DANG, A.L.
CHIU, H.H.
GROSS, K.W. EP55

KELLER, V. PS02
LEE, J.

KIM, J. ES53
SHINAGAWA, H.

KIM, J. ES53
NAGY, A.F.
CRAVENS, T.E.
SHINAGAWA, H.

Temperatures of Individual Ion Species and Heating Due to Charge Exchange in the Ionosphere of Venus. For publication in the Journal of Geophysical Research, Washington, DC.

KINTNER, P.M. ES53
SCALES, W.
VAGO, J.
YAU, A.
WHALEN, B.
ARNOLDY, R.
MOORE, T.

Harmonic H+ Gyrofrequency Structures in Auroral Hiss Observed by High Altitude Auroral Sounding Rockets. For publication in the Journal of Geophysical Research, Washington, DC.

KISSEL, R. EB24

Auburn Neural Network Panel Discussion

Letson, M.A. Thiokol Corp.
Bunker, R.C. Thiokol Corp.
Clinton, R.G. EH34

Li, H. EB24
Workman, G.
Hinman, E.

Characterization and Improvement of Robot Dynamics Through Simulation. For presentation at the Southeastern Simulation Conference '90, Huntsville, AL, October 22-23, 1990.

Linton, R. EH12

Liu, B.L.
O'Farrell, J.M. Rockwell
Jones, J.H. ED33

Lollar, L.F. EB12

Lowery, J.E. EB12

Lanier, J.R., Jr.
Hail, C.I.
Whitt, T.H.

Lyne, J.E. ES76
Carter, D.C.
He, X.M.
Stubbs, G.

Hash, J.

Preliminary Crystallographic Examination of a Novel Fungal Lysozyme From Chalaropsis. For publication in the Journal of Biological Chemistry, Baltimore, MD.

McCabe, D.E. EH21
Ernst, H.A.
Newman, J.C.

McCarty, J.P. EP01
Hawk, C.W.

McConnaughey, H.V. ED32
Brown, G.B.
Oliver, T.A.

McConnaughey, P. ED32
Lee, H.
Moore, C.

McCool, A.A. CR01
Ross, P.A. Rocketdyne

McDonnell, J.J. ES42

A Proposed Mechanism for Old Water Discharge Via Macropores in a Steep, Humid
Catchment. For publication in Water Resources Research, Washington, DC.

McDONNELL, J.J. COSTES, N.C. ES42

McDONNELL, J.J. BONELL, M. STEWART, M.K. PEARCE, A.J. ES42
Deuterium Variations in Storm Rainfall: Implications for Stream Hydrograph Separation. For publication in Water Resources Research, Washington, DC.

McKEAGNEY, D. ANDREWS, R.N. WALCK, S.D. LEHOCZKY, S.L. SZOFRAN, F.R. ES75

McKEAGNEY, D.B. ANDREWS, R.N. LEHOCZKY, S.L. SZOFRAN, F.R. ES75
The Microstructural and Defect Characterization of Hg_{0.8}Cd_{0.2}Te As a Function of Growth Rate. For presentation at the ACCG-8 Conference, Vail, CO, July 15–20, 1990.

McPHERSON, W.B. MOORE, D.R. VESELY, E.J. JACOBS, R.K. EH23 IITRI

MAHAFFEY, W.A. MUKERJEE, T. COSTES, N.C. ES42
Simulation of Cold Flow Test in Rockwell Axisymmetric Turn Around Duct. For publication in the AIAA Journal, San Diego, CA.

MAHORTER, L.J. MCDANIELS, D. CHIK, J. ED35
Airflow Model Testing to Determine the Distribution of Hot Gas Flow and O F Ratio Across the SSME Main Injector. For presentation at the 1990 JANNAF Propulsion Meeting, Anaheim, CA, October 2–4, 1990.

MAYNARD, W.F. EJ63

MILLER, T.L. CHOU, S.-H. ES42

MILLER, T.L. PAYNE, K. ES42
A Numerical Study of the Transition Between Axisymmetric Flow and Wave in the Baroclinic Annulus, Including Hysteresis. For publication
in the Journal of the Atmospheric Sciences, AIAA, New York, NY.

MOORE, C. ES74
CARDELINO, B.

MOORE, R.L. ES52
AN, C.-H.
SUESS, S.T.
MUSIELAK, Z.E.

MOORE, R.L. ES52

MOORE, R.L. ES52

MOORE, R.L. ES52
RABIN, D.M.
DOWDY, J.F., JR.

MOORE, T.E. ES53
GARBE, G.P.
ARNOLDY, R.L.
KINTNER, P.M.
Topside Ionospheric Heating in an Auroral Arc. For presentation at the 1990 Spring Meeting of the American Geophysical Union, Baltimore, MD, May 28–June 1, 1990.

MOORE, T.E. ES53
The Earth’s Ionosphere (Book Review). For publication in Science Magazine, Washington, DC.

MOORE, T.E. ES53
POLLOCK, C.J.
ARNOLDY, R.L.
CAHILL, L.J.
KINTNER, P.M.
Three-Dimensional Thermal/Superthermal Ion Composition Measurements Obtained During the ARCS IV Sounding Rocket Flight. For presentation at the 1990 Fall Meeting American Geophysical Union, San Francisco, CA, December 3–7, 1990.

MORGAN, S.H. ES01
Science From a Lunar Base. For presentation at TABES ’90 Symposia and Workshops, Huntsville, AL, May 15–16, 1990.

MOWERY, D.K. ED13
TOMLIN, D.D.

MULLINS, L.D. EL58
Calculating the Entry/Exit Positions and Times of an Earth Satellite Passing Through the Umbra and Penumbra of the Earth’s Shadow. For publication in the Journal of Astronautical Sciences, Springfield, VA.

MUSIELAK, Z.E. ES52
FONTENLA, J.M.
MOORE, R.L.

MYERS, W.N. EP64
WEIR, R.A.
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

MYERS, W.N. EP64
FORBES, J.C.
BARNES, W.L.

NAUMANN, R. ES71

NEIN, M.E. PA01
FIKES, J.C.

NETTLES, A.T. EH33

NETTLES, A.T. EH33
HODGE, A.J.

NOEVER, D.A. USRA/ES76
Bioconvective Patterns. For publication of Environmental Science and Health, Baton Rouge, LA.

NOEVER, D.A. ES76
The Ternary Baroeffect With a Nondiffusing Component. For publication in Physical Review Letters, New York, NY.

NOEVER, D.A. ES76
A Note on the No-Slip Condition Applied to Diffusing Gases. For publication in Physics Letters, American Institute of Physics, New York, NY.

NOEVER, D.A. ES76

NOLL, K.S. ES63
LARSON, H.P.
The Spectrum of Saturn from 1990–2230 cm⁻¹; Abundances of AsH₃, CH₃D, CO, GeH₄, NH₃, and PH₃. For publication in Icarus, New York, NY.

NORWOOD, J. EH12

O’FARRELL, J.M.
LIU, B.L.
LOWREY, G.A.
NESMAN, T.E. ED33
Reduction of Vortex-Induced Vibration in Vane Geometries. For presentation at the International Congress on Recent Development in Air and Structure Borne Sound and Vibration, Auburn University, Auburn, AL, March 6–8, 1990.

OWEN, J.W. ED64
PAGE, A.
GOODE, B.
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

OWENS, S.F.
COSTES, N.C.
VLACHOS, N.S.
FICHTL, G.H.
Analysis of Coolant Flow and Heat Transfer in the SSME HPOTP No. 4 Bearing Assembly. For publication in the AIAA Journal, San Diego, CA.

OWENS, S.
COSTES, N.

OYEDIRAN, A.A.
RICHMAN, M.W.
COSTES, N.C.

PARNELL, T.A.
BURNETT, T.H.
DAKE, S.
DERRICKSON, J.H.
et al.

PATTERSON, W.J.

PENN, B.
CARDELINO, B.
MOORE, C.
SHIELDS, A.
FRAZIER, D.

PETERS, P.N.
CHAPPELL, C.R.
Electrostatic Reflection of Ion Streams Near the Geomagnetic Equator. For presentation at the 1990 Spring Meeting of the American Geophysical Union, Baltimore, MD, May 29–June 1, 1990.

POLLOCK, C.J.
CHANDLER, M.O.
A Survey of Upwelling Ion Event Characteristics. For publication in JGR, Washington, DC.

POLLOCK, C.J.
CHAPPELL, C.R.

POLLOCK, C.J.
CHAPPELL, C.R.

POLITES, M.E.
ED12

POLLACK, W.J.
CHAPPELL, C.R.
Electrostatic Reflection of Ion Streams Near the Geomagnetic Equator. For presentation at the 1990 Spring Meeting of the American Geophysical Union, Baltimore, MD, May 29–June 1, 1990.
HORWITZ, J.L.
WINNINGHAM, J.D.

POLOK, C.J.
MARTINEZ, N.J.
MOORE, T.E.
SLOAN, M.A.

POLOK, C.J.
CHAPELLE, C.R.
Electrostatic Reflection of Ion Streams Near the Geomagnetic Equator. For presentation at the UAH Plasmasphere Refilling Workshop, Huntsville, AL, October 15–16, 1990.

PORTER, J.G.
MOORE, R.L.

PORTER, J.G.
DERE, K.P.
The Magnetic Network Location of Explosive Events Observed in the Solar Transition Region. For publication in the Astrophysical Journal, Chicago, IL.

PORTER, L.Z.
DeMAR, P.

POWERS, W.T.
ZACCARDI, V.A.

POWERS, W.T.
ZACCARDI, V.A.

POWERS, W.T.

PRESTWICH, A.H.
JOY, M.

PRESTWICH, A.H.
JOSEPH, R.D.

PRICE, M.W.
ANDREWS, R.N.
SU, C.-H.
LEHOCZYK, S.L.
SZOFRAN, P.R.

PRIEST, C.C.
SUMRALL, P.
WOODCOCK, G.
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

PRIEST, C.C. PT01
WOODCOCK, G.

PRINCE, A.S. Thiokol
BUNKER, R.C. Thiokol
LAWRENCE, T. EH34

PRZEKWAS, A.J.
CHUECH, S.G.
GROSS, K.W. EP55

PUSEY, M.L. ES76
MUNSON, S.
A Micro Apparatus for Rapidly Determining Protein Crystalline-Soluble Phase Equilibrium Concentrations. For publication in the Journal of Analytical Chemistry, San Diego, CA.

RAMACHANDRAN, N. USRA/ES42

RAMSEY, B.D. ES65
BOWER, C.R.
DIETZ, K.
WEISSKOPF, M.C.

RAMSEY, B.D. ES65
BOWER, C.R.
DIETZ, K.
WEISSKOPF, M.C.

RAO, D.K. ES63
DILL, J.F.
DECHER, R.
PETERS, P.N.
Application of Superconducting Magnetic Suspensions in Space. For presentation at the World Congress on Superconductivity, Houston, TX, September 9–13, 1990.

RANDOLPH, J.L. TA51
SHEPARD, K.E. Lockheed

RATHZ, T. ES75
ROBINSON, M.
HOFMEISTER, W.
BAYUZICK, R.

REASONER, D.L. ES53
Rapid Thermalization of Pickup Ions Created in the Shuttle Orbiter Outgassing Cloud. For publication in the Journal of Geophysical Research, Washington, DC.

REASONER, D.L. ES53
Rapid Thermalization of Pickup Ions Created in
the Shuttle Orbiter Outgassing Cloud. For publication in the Journal of Geophysical Research. Washington, DC.

REASONER, D.L. ES53

REDUS, J.R. EP51
HUFFAKER, C.F. EP51
KELLEY, D.L. MMC

REYNOLDS, N.D. ES42

REYNOLDS, N.D. ES42
A Note on Linear Baroclinic and Orographic Instability. For publication in the Journal of Atmospheric Sciences. New York, NY.

REYNOLDS, N.D. ES42

RICHMAN, M.W. ES42
OYEDIRAN, A.A.

RICHMOND, R.J. ER21

RIDGEWAY, S.E. ED63
JEWITT, D.
CAMPINS, H.
LUU, J.
JOY, M.
SISK, C.
TELESO, C.
An Albedo Map of Comet Brorsen-Metcalf. For publication in the proceedings to the Astrophysics and Infrared Arrays Conference. Tucson, AZ. February 1990.

ROBERTS, B. ED62
CARRASQUILLO, R.
DuBIEI, M.
OGLE, K.
PERRY, J.
WHITLEY, K.

ROBERTSON, F.R. ES42
PERKEY, D.J.

ROBERTSON, F.R. ES42

ROBERTSON, F.R. ES42
PERKEY, D.J.

ROCKER, M. EP55
CFD Simulation of Liquid Oxygen in a SSME Preburner Injector Element. For presentation at

RODGERS, E.B. EH32
HUFF, T.L.
OBENHUBER, D.C.

Microbial Contamination of the Environmental Control and Life Support System for Space Station. For presentation at the Microcontamination '90 Conference, Santa Clara, CA, October 30–November 2, 1990.

ROTHERMEL, J. ES43
JONES, W.D.
HAMPTON, D.
SRIVASTAVA, V.
JARZEMBSKI, M.

RUPP, C.C. PS04

RYAN, R.S. ED01

Lessons Learned in Engineering. For presentation at the Pressure Vessel and Piping Conference, Nashville, TN, June 18–21, 1990.

SAFIE, F.M. CT13

SAFIE, F.M. CT13

SAKURAI, H. ES65
NIIZEKI, H.
NOMA, M.

A Hard X-Ray Polarimeter Utilizing Compton Scattering. For publication in SPIE – The International Society of Optical Engineering, Bellingham, WA.
SCHMIDT, G.R. EP53
VAUGHN, D. MMC
Analytical Modeling of No-Vent Fill Process.
For presentation at the AIAA/ASME/SAE/ASEE 26th Joint Propulsion Conference,

SCHMIDT, G.R. EP53
JONES, O.
MESEROLE, J. Boeing
Conceptual Design of Subscale Orbital Fluid Transfer Experiment (SOFTE). For presentation
at the AIAA/ASME/SAE/ASEE 26th Joint Propulsion Conference, Orlando, FL, July

SCHONBERG, W.P. EH15
DARZI, K.
Effect of Projectile Shape and Material on the Hypervelocity Impact Response of Aluminum

SCHONBERG, W.P. EH15
BEAN, A.J.

SCHUBERT, G. ES44
WALTERSCHEID, R.L.
HICKEY, M.
Gravity Wave-Driven Fluctuations in the OH Nightglow From an Extended, Dissipative Emission Region. For publication in the Journal of Geophysical Research, Washington, DC.

SCHUTZENHOFER, I.A. ED32
McCONNAUGHEY, H.V.
McCONNAUGHEY, P.K.

SCHWINGHAMER, R.J. ES01

SEAFORD, M. ED33
SALADINO, A.
PRAHARAJ, S.
Upgrade of PARC2D to Include Real Gas Effects. For presentation at the AIAA 28th Aerospace Science Meeting, Reno, NV, January 8–11, 1990.

SEAFORD, M. ED33
LIVER, P.
PRAHARAJ, S.

SHEALY, D.L. ES52
HOOVER, R.B.

SHELTON, B.W. PD01
STS Derivative Cargo Vehicles for the 1990’s Decade and Beyond. For presentation at the 27th Space Congress, Cocoa Beach, FL, April 24–27, 1990.

SHINAGAWA, H. ES53
SHINAGAWA, H. ES53
KIM, J.
NAGY, A.F.
CRAVENS, T.E.
SILVER, E. ES65
HOLLEY, J.
ZIOCK, K.
NOVICK, R.
KAARET, P.
WEISSKOPF, M.
ELSNER, R.
BEEMAN, J.

Bragg Crystal Polarimeters. For publication in the Journal of Optical Engineering, Bellingham, WA.

SMITH, R.E. FWG
ANDERSON, B.J. ES44
CATLETT, K. FWG

SPENCER, R.W. ES43
CHRISTY, J.R.
GRODY, N.C.

SPENCER, R.W. ES43
CHRISTY, J.R.

SPRINGER, W.T. ET53
COLEMAN, A.D.
DRISKILL, T.C.

STONE, N.H. ES53

SU, C.-H. ES75
LEHOCZKY, S.L.
SZOFRAN, F.R.

Directional Solidification of HgCdTe and HgZnTe in a Transverse Magnetic Field. For publication in the Journal of Crystal Growth, The Netherlands.

SU, C.-H. ES75
LEHOCZKY, S.L.
SZOFRAN, F.R.

Directional Solidification of HgCdTe and HgZnTe in a Transverse Magnetic Field. For presentation at The Eighth American Conference on Crystal Growth, Vail, CO, July 15–20, 1990.

SUESS, S.T. ES52
McINTOSH, P.S.
MAI, J.

SULLIVAN, R.M. ED24
SALAMON. N.J.

SUSKO, M. ES44
Space Shuttle’s Externally-Induced Environment (Rocket Exhaust) Compared With Skylab’s Natural Environment (Micrometeoroids). For presentation at the Fifth Annual Technical and Business Exhibition and Symposium (TABES), Huntsville, AL, May 16–17, 1989.

Convective Effects in the Compositional Redistribution During Solidification of HgZnTe and Related Materials. For presentation at the Eighth American Conference on Crystal Growth, Vail, CO, July 15–20, 1990.

SZOFRAN, F.R. ES75
PERRY, G.L.
LEHOCZKY, S.L.

TAYLOR, K.R. PS05
Space Station Payload Adaptation System. For presentation at the 27th Space Congress, Canaveral Council of Technical Societies, Cocoa Beach, FL, April 23–27, 1990.

TELESCO, C.M. ES63
BENSON, C.M.
CAMPINS, H.
TEGLER, S.C.
Comet Austin. For publication in the IAU Circular, Cambridge, MA.

TELESCO, C.M. ES63
Observations of G29-38 at 10 pm. For publication in the Astrophysical Journal Letters, Cambridge, MA.

TELESCO, C.M. ES63
CAMPINS, H.
JOY, M.
DIETZ, K.
DECHER, R.
Infrared Mapping of M82: A Starburst in an Edge-on Barred Galaxy. For publication in the Astrophysical Journal, Tucson, AZ.

TELESCO, C.M. ES63
CAMPINS, H.
JOY, M.
DIETZ, K.
DECHER, R.
Infrared Mapping of M82: A Starburst in an Edge-on Barred Galaxy. For presentation at the...

TEPOOL, R.E. EP71

THOMAS, F. ED52
FINCKENOR, J.

TINKER, M.L. ED22
CLAYTON, J.P.

TINKER, M.L. ED22

TOMLIN, D.D. ED13
MOVEREY, D.K.

TORR, D.G. ES51
TORR, M.R.
EUN, J.W.
RICHARDS, P.G.
GORDON, T.D.
Preliminary Interpretation of the Vacuum Ultraviolet Glow Observed on Spacelab 1 and the S3-4 Spacecraft. For publication in the Journal of Geophysical Research, Washington, DC.

TORR, M.R. ES51
TORR, D.G.
RICHARDS, P.G.
YUNG, S.P.
Mid- and Low-Latitude Model of Thermospheric Emissions: $1.0+{(2p)} 7320\text{A}$ and $N_{2}(2\text{P}) 3371\text{A}$. For publication in the Journal of Geophysical Research, Washington, DC.

TORR, M.R. ES51
TORR, D.G.
GORDON, T.
Studies of the Lower Thermosphere Using a Tethered Satellite. For publication in the Journal of Spacecraft and Rockets, Washington, DC.

TUCKER, D.S. EH34
SPARKS, J.S.
ESKER, D.C.
Publication in the Bulletin of the American Ceramic Society, Westerville, OH.

TUCKER, D.S. EH34
Dynamic Fatigue of a Li$_2$O-Al$_2$O$_3$SiO$_2$ Glass Ceramic. For publication in the Journal of the American Ceramic Society, Westerville, OH.

TUCKER, M.W. PS04
THRASHER, D.
Space Station Freedom Evolution Logistics. For presentation at the Society of Allied Weight Engineers 15th Annual Southeastern Regional Conference, Lake Guntersville, AL, October 5–6, 1990.

TUCKER, M.W. PS04
Space Station Logistics System Evolution. For presentation at the Space Station Evolution Beyond Baseline, League City, TX, October 31–November 2, 1989.

TUCKER, S.P. PD22
HONKONEN, S.C.
LIGGETT, N.W.
TAYLOR, W.J.
WILLIAMS, G.E.
The Cryogenic On-Orbit Liquid Analytical Tool: A Program for Evaluating Thermodynamic Performance of Orbital Cryogenic Storage Facilities. For presentation at the AIAA 29th

TURNER, R.E. ES44
HILL, C.K.
FROST, W.
DURHAM, A.S.
THEON, C.J.
Environmental Criteria Guidelines for the National Aerospace Plane (NASP) Space Vehicle and Space Design. For publication in the Bulletin American Meteorological Society, Boston, MA.

VAUGHAN, O.H., JR. ES43
VONNEGUT, B.
Recent Observations of Lightning Discharges From the Top of a Thundercloud Into the Clear Air Above. For presentation at the IEEE IGARSS 1990 Symposium, College Park, MD, May 20–24, 1990.

VAUGHAN, O.H., JR. ES43

VAUGHAN, W.W. UAH
ANDERSON, B.J. ES44
Management of Environmental Risk. For presentation at the Workshop on Environmental Risk Analysis, Indian Institute of Technology, New Delhi, India, December 12–16, 1989.

VAUGHN, J.A. EH12

VIKRAM, C.S. ES74
WITHROW, W.K.

VOLZ, M.P. ES74
SZOFRAN, F.R.
SU, C.-H.
LEHOCZKY, S.L.
Far Infrared Characterization of Directionally Solidified Hg$_{1-x}$Zn$_x$Te. For presentation at the Eighth American Conference on Crystal Growth, Vail, CO, July 15–20, 1990.

VOLZ, M.P. ES75
SZOFRAN, F.R.
LEHOCZKY, S.L.
SU, C.-H.
Lattice Vibration Spectra of Hg$_{1-x}$Zn$_x$Te Alloys. For publication in Solid State Communications, Paris, France.

VON PRAGENAU, G.L. ED14

VON PRAGENAU, G.L. ED14

WALKER, A.B.C. ES52
HOOVER, R.B.
et al.
The Multispectral Solar Telescope Array. For publication in Optical Engineering, Bellingham, WA.

WALKER, A.B.C. ES52
HOOVER, R.B.
et al.
The Ultra High Resolution XUV Spectrohelio-

59
WALKER, A.B.C. ES52
BAILEY, W.
CHUPP, E.
HOOVER, R.B.
et al.
The Advanced Solar Observatory. For presentation at the Society of Photo Optical Instrumentation Engineering (SPIE), San Diego, CA, July 8–13, 1990.

WALLS, B. EB12
RIEDESEL, J.

WANG, T.-S. ED32

WANG, T.-S. ED32
CHEN, Y.-S.

WATSON, J.K. Rockwell
SCHNITZGRUND, G.D.
NUNES, A.C., JR.
DICKINSON, D.W.
Welding for In-Space Construction. For publication in the Journal of Aerospace Engineering.

WATTS, J.W. ES62

WEBSTER, K.L. EB43
SUNG, C.C.
University of Alabama Mode-Medium Instability and Its Correction With a Gaussian Reflectivity Mirror. For publication in Applied Optics, Mid 1990.

WEEKS, D.J. EB12
Summary of Astronaut Inputs Concerning Automation. For presentation at the Space Station Evolution Beyond the Baseline Symposium, League City, TX, February 6–8, 1990.

WEEKS, D.J. EB12
Astronaut Community Inputs on Automation and Robotics. For presentation at the Workshop on Neural Networks, Auburn, AL, February 5–6, 1990.

WEEKS, D.J. EB12
BECHTEL, R.T.
WALLS, B.K.
Automation of the Space Station Module PMAD. For presentation at the OAST Technology for Space Station Evolution Workshop, Dallas, TX, January 16–19, 1990.

WEEKS, D.J. EB12
Summary of Astronaut Inputs on Automation and Robotics for Space Station Freedom. For presentation at the XXXXIth International Astronautical Congress (IAF), Dresden, German Democratic Republic, October 6–13, 1990.

WEEKS, D.J. EB12
WALLS, B.K.
BECHTEL, R.T.
Autonomous Operation of the Space Station Freedom Hab/Lab Module Power Management and Distribution System. For presentation at the XXXXIth International Astronautical Congress (IAF), Dresden, German Democratic Republic, October 6–13, 1990.

WEEKS, D.J. ER01
Summary of Astronaut Inputs on Automation and Robotics for Space Station Freedom. For presentation at the International Symposium on Artificial Intelligence, Robotics, and Automation in Space (I-SAIRAS), Kobe, Japan, November 18–20, 1990.

WEST, E.A. ES52
BHAIIA, S.S.

WEST, E.A. ES52

WEST, E.A. ES52

WHITAKER, A.F. EH11

WHITAKER, A.F. EH11
Effects of RF Oxygen Plasma on Materials. For presentation at the Southeastern Section of the American Physical Society, Tuscaloosa, AL, November 8-11, 1989.

WHITT, T.H. EB12
BUSH, J.R., JR.
Payloads on Space Station. For presentation at AIAA. Huntsville, AL, September 26, 1990.

WIELAND, P. ED62

WILCYNSKA, B. ES62

WILLIAMSEN, J.E. ED52
TIPTON, J. USACOE

WILSON, C.D. ED25

WILSON, G.R. ES53
GALLAGHER, D.L.

WILSON, G.S. ES41

WILSON, R.M. ES52

WILSON, R.M. ES52

WOJTALIK, F.S. TA01

WORKMAN, G.L. UAH
WANG, M.
BRYSON, C. EH13

WORKMAN, G.L. UAH
HINMAN, E.M. EB24

YATES, I.C., JR. JA83

YOUNG, A. PD32

ZUKIC, M. ES51
TORR, D.G.
SPANN, J.F.
TORR, M.R.
Vacuum Ultraviolet All-Dielectric Narrowband Filters. For publication in Applied Optics. New York, NY.
ZUKIC, M. ES51
TORR, D.G.
SPANN, J.F.
TORR, M.R.

Optical Constants of BaF₂, CaF₂, LaF₃, MgF₂, Al₂O₃, HfO₂. Thin Films in the VUV. For publication in Applied Optics, New York, NY.
AAPPROSSAL

FY 1990 SCIENTIFIC AND TECHNICAL REPORTS,
ARTICLES, PAPERS, AND PRESENTATIONS

Compiled by Joyce E. Turner

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or nuclear energy activities or programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

C.D. BROWN
Director, Administrative Operations Office

U.S. GOVERNMENT PRINTING OFFICE 1990–531–081/20263