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I, Introduction

In order to understand the physical and chemical processes which produce the observed

spatial morphology of the cometary coma, it is necessary to analyze observational data with

physically meaningful models. With this in mind, the goals of this project have been to undertake

a coupled program of theoretical modeling and complementary observational data analysis

regarding the spatial distributions of neutral gases in the coma. More specifically, the particular

topics of interest are: (1) the theoretical modeling of the non-equilibrium dynamics of the inner

coma with emphasis on the region of the coma from the transition from collisional fluid flow out to

the free-flow region and on observable conditions in the coma (i.e. density, outflow speed, and

temperature), and (2) the model analysis of an important set of long-slit CCD spectra of comets.

A range of approaches for modeling the cometary coma have been employed by many

investigators. The Monte Carlo and the coupled hydrodynamic/Monte Carlo approaches to

modeling the cometary coma recognize that the region of the coma typically observed is that where

collisions do occur between molecules, but where not enough collisions occur to be able to

describe the coma as a fluid. Furthermore, outside this transition region, the Monte Carlo model

have already been demonstrated to be a powerful tool for representing the complexities of free

molecular flow, such as time-dependence, radiation pressure, the orbital mechanics of individual

particles, etc. The theoretical modeling involves the continued development and use of Monte

Carlo models and coupled hydrodynamic/Monte Carlo models for the outflowing cometary coma.

The observational data analysis portion of this project is an integral and important part of the

overall picture. Developing sophisticated models is not an end unto itself. The models are only

important if they can explain and be tested by observational data. Conversely, models are used for

the interpretation and analysis of observational data by necessity. The side-by-side development of

models along with the observation and analysis of data is an important and integral part of this

project. The understanding of data from Halley is a valuable endeavor for the preparation of

NASA's CRAF (Comet Rendezvous Asteroid Flyby ) mission. The scientific community has in

hand valuable observational and in s itu data regarding one comet (Halley). It is important to use

Halley as the benchmark by which other remotely observed comet data can be understood. The

self-consistent analysis of data with appropriate models is therefore of the utmost importance.

The data analysis work for this project includes the analysis of the spatial profiles of [OI],

NH2, CN and C2. It is being carried out in collaboration with Dr. Uwe Fink of the University of

Arizona who with his co-workers observed comet Halley extensively during both the pre and post

perihelion periods.



|I. Progress during this Year

Significant progress was made this year in both the theoretical and the observational data

analysis areas. Each area will be discussed separately.

II.A. Theoretical Modeling

In a collisional Monte Carlo model for the cometary coma, the trajectories of molecules are

calculated explicitly, following the the complete time history of the particle from its production at

the nucleus through various stages of photodissociation, entrainment within the outflowing coma,

and/or inter-molecular collisions. Between two collisions, the path length of a particle is calculated

given a set of random numbers and a mathematical description of the conditions regarding the state

of the background gas through which it moves. These conditions are the temperature and bulk

motion of the gas. Two special cases of the collision path length were presented in the paper by

Combi and Smyth (1988a). One was for the important limit which is correct for the fast moving H

atoms and yields a collision path integral which is integrable and therefore fast to compute in a

model. It essentially assumes that the coma is stationary and has negligible temperature. The other

case was the more general one which accounted for the relative motion of the particle with respect

to the outflowing coma, but where the coma temperature was still neglected. It should be noted

here that for the purpose of computing gas density (or similarly the resulting column density)

profiles, the simpler formulations of Combi and Smyth (1988a) are quite adequate.

On the other hand if one is interested in information about the velocity distribution function,

then neither of these formulations treats nearly thermalized heavy molecules very well. Therefore,

we have performed the derivation of the more general case of the collision rate at any location in a

radially outflowing coma with a given Maxwell-Boltzmann temperature. It has been incorporated it

into the model. The collision rate for a particle in the coma at a distance ro from the center of the

nucleus of the comet is obtained by integrating the relative velocity weighted velocity distribution

function over the three-space velocity. It is given by

exp(-U2 a ) 1QcrU [erf(U',f--d){14- } 4- ._U_--dU ,
U = 4rCro2Co

where



U = (u 2 - 2uc o cos 0 + Co 2)1/2

3 =Co/u

ot = m / 2kT

Co = coma outflow speed

u = particle speed

0 = particle direction angle relative to the outward radial

<7 = collision cross section between the particle and the coma gas

Q = coma gas production rate.

In the Monte Carlo model a random number on the interval from 0 to 1 is set equal to the

collision probability along the path and the collision path length corresponding to that random

number is then chosen. Since the outflow speed and temperature vary significantly only for large

changes in radial distance, we can assume (as in Combi and Smyth 1988a) that over any one

collision path they are both constant. This calculation results in the following integral equation:

-In(1 - R i) =

1 exp(-vx,2)l
v_, lerf (va,){1 + --T} +

Qcr f_. 2v), _r--_v_,
dA'

4rCCoro?'J° 1 + 22' cos 0 + 2 '2

where

v = y[1- 2 fl 2'+ cos 0
X (1+ 2Xcos O+ 2 ,2 )I/2

7= ua/-Y

X = collision path length normalized by ro.

+ f12 11/2

Unlike the special case for fast H atoms this integral cannot be solved analytically and

inverted. However, we have developed an approximation scheme which yields a single-iteration

solution, based on the fact that in realistic cases the numerator within the integral is only a weakly

varying function along the path length. The approximation is a two-step predictor corrector type

solution. The first step is to make an initial guess whereby we assume that the numerator in the

integral is a constant. This accounts for the temperature and relative velocity of the particle near the

start of the collision path. With this term as a constant the remaining integral can be done

analytically as in Combi and Smyth (1988a). This path length serves as a first guess or predictor

of the true path length. As a second step we then replace the numerator of the real integral with its



value at the half-way point along thepredictedcollision pathandproceedto recalculatethe a

correctedcollisionpath.
This wastestedby calculatingthecollision probability alongthepath from somepoint of

origin out to infinity both with the new method and by explicit numerical integration. We
concentratedon theexpectedtroublesomecaseswherethemethodmight beexpectedto do the

worst. In theinnerpartof thecomawherethecollisionpathsareall shortbecausethedensitiesare

high themethodgivesalmostanexactresult. Fortunatelyin realisticmodelstherearevery few

particleswhichhavevelocityvectorsin theregimewheretheapproximationis notasgood.

An exampleof apathologicalcasewouldbearadicalwhich is locatedat 2-5collision path
radii from the nucleusand which hasa velocity magnitudeequal to the outflow speedbut is

directedto within anangleof 10to 30degreesof thenegativeradialdirection. Note thatit is very

improbableto generatesuchradicalsasdissociationproductsof outflowing parents. However,
evenin thiscaseit is notuntil thecollisionprobabilityexceeds95%thattheapproximatecollision

pathlengthbeginsto divergeonly somewhatfrom anactualcollisionpathintegralcalculation.The
conclusionis thusthatonly averysmallfractionof collisionsfor only asmallfractionof molecules

will havesomesmallerrorin thecalculationof collisionpaths.
Oncea collision occurs,we choosearandomizedtargetparticle from thebackgroundgas,

which is amovingMaxwellian. Sinceit is easierto choosethebackgroundgasparticle from an

isotropic (in angle)moving Maxwellian ratherthan from the correctrelativevelocity weighted

distribution,wehaveemployedtheprincipleof the'prejudiced'source- or theskewedprobability

densitydistribution of Combi andSmyth(1988a)- wherewechoosefrom onedistribution and

thenweight theparticleaccordingto therelativemagnitudeof therealto theassumedprobability

densitydistribution. This preventsusfrom needingto generatelook-up tablesfor complicated
multidimensionalfunctions. This alsominimizesboth thecomputationtimesfor model runsand

developmenttime in changingthe model. Thesenew featureshavebeenincorporatedinto the

model. Theseenhancementsimproveourmodelingof thetypicalcometaryradicalsandrepresent

animportantsteptowardstudyingthefundamentalkineticnatureof muchof thecoma.
We arenow planning to apply this model to realisticcasesof NH2, C2 and CN from the

analysisportionof theprojectduringthecontinuationgrantof thisproject.

II.B. Observed Spatial Profile Analysis

Sixmonthsinto thiscurrentprojectyearourgoalwasthecompletionof theworkandthe
preparationof a paperwhichdealswith analysisof anumberof spatialprofilesof [OI] andNH2

determinedfrom thelong-slitCCDspectraof CometHalleytakenbyDrs.UweFink, M. DiSanti
andA. Schultzat theUniversityof Arizona. A summaryof thedataappearsin Table1.
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Table 1. Summary of Long Slit Spectroscopy of Comet P/Halley

Date r A

1985-86 (AU) (AU)

Number of Spectra

Aug 23 2.84 3.24 3

Aug 24 2.83 3.21 1

Sep 17 2.53 2.49 3

Sep 24 2.43 2.27 3

Oct 20 2.09 1.43 5

Oct21 2.07 1.40 2

Nov 15 1.72 0.74 9

Dec 8 1.38 0.70 10

Dec 9 1.36 0.72 5

Jan I0 0.87 1.32 13

Jan 11 0.86 1.34 11

Jan 12 0.84 1.36 9

Mar 1 0.72 1.27 15

Mar2 0.74 1.25 11

Mar3 0.75 1.22 6

Mar4 0.76 1.20 6

Mar 5 0.77 1.18 9

Apr 14 1.38 0.43 22

Apr 15 1.39 0.44 19

May 9 1.75 1.05 14

Jun 5 2.13 1.93 6

Jun 6 2.14 1.96 5

r = heliocentric distance in AU

A = geocentric distance in AU
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Spatialprofiles of cometary C2 and CN were to be produced by Dr. Fink and co-workers

for a subsequent paper during the following year (during the next grant period). When we began

looking at the spatial profiles from the spectra, it became evident that sky background subtraction

procedure adopted by Fink and co-workers was effecting the shape of the spatial profiles far from

the nucleus. It is the level at distant locations along the profile which is the most important from

the standpoint of inferring lifetimes and scale lengths and constraining model parameters.

Because of these complications Dr. Fink has revised his procedure for performing the sky

level assessment and has re-reduced the spatial profiles for all four species from most of the CCD

spectra. The result of this has been to push back the publication date of the first paper, which will

deal with a simple analysis of the spatial profiles of all four species, until early in the next project

year. Whereas, the publication of the second paper, which will deal with a more substantial model

analysis concentrating on C2 and CN will still be finished on the original schedule by the end of

the first project year of the follow-up grant.

By the end of this current project year we have received all of the revised spatial profiles for

all four species and have performed the first-step Haser model analysis. There are some

restrictions regarding the fitted scale lengths and the fitting procedure, which will be discussed here

species by species. An Appendix to this report contains all of the observed profiles with best fit

Haser models.

II.B.a. [OI]

The forbidden oxygen emission is now believed to originate from oxygen atoms produced in

the metastable 1D state upon photodissociation of their parent molecules. The major sources of

O(1D) atoms are now believed to be H20 in the inner coma (Biermann and Trefftz 1964) and OH

in the outer coma (van Dishoeck and Dalgarno 1984). Roughly 100 seconds after the atoms are

produced they emit either the 6300 A or the 6364 A photon (in the ratio of 3/1), unless they are

produced in the very inner coma (<1000 km) where the 1D state can be collisionally quenched

before a photon emission (Festou and Feldman 1984). The result of this is that the O(1D)

emission is proportional to the H20 column in the inner coma (<105 km) and to the OH column in

the outer coma (>105 km). Magee-Sauer et al. (1989) have published simple model profiles for

the combined source given alternative sets of branching ratios.

The end result is that we expect the spatial distribution of O(1 D) emission to decrease as the

inverse of the distance to the nucleus and have a scale length for decay somewhere intermediate

between the scale lengths for decay of H20 and OH. Table 2 gives the results for the O(1D)

profiles. In fact all except one of the spatial profiles is well reproduced by a point source model

with a decay scale length, except for the case of December profile where a still very small source



Table 2. Haser Scale Lengths for [OI] Profiles

Date

observed

P D

rH 2 rH 1.5

P D P D

Oct 0

Dec 2.1

Jan 10 0

Jan 11 0

JanllC 0

Janl2 0

49 0 11 0 16

330 1.1 175 1.3 205

40 0 54 0 50

54 0 77 0 70

330 0 446 0 428

48 0 65 0 62

Marl 0

Mar2 0

May 0

- 0 - 0 -

33 0 60 0 52

- 0 - 0 -

P = Parent scale length in 103 km.

D = Daughter scale length in 103 km.

rH 2 = Reduced to 1 AU by an rH 2 law

rH 1.5 = Reduced to 1 AU by an rH 1.5 law
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scalelength is requiredfor a model fit. This is likely, however,to bea fictitious scalelength

wherebytheflatteningis duesimplyto theirregularactivityof thegasproduction.

Unfortunately,exceptfor theDecemberandtheJanuary11compositeprofile(createdfroma

regularexposureand one with a long integration time wherethe nucleuswasmasked),it is
possiblethatwearenot reallyseeingthetrueeffectivedecayscalelengthbut simplythefact that

theprofile becomestoo noisy.beforea significantdeparturefrom l/r canbeseen.Thefact thatwe
doseethe 1/rdistributionnearthenucleusimpliesthatthereductionprocedure,thesubtractionof
of thecontributionto the6300A emissionfrom NH2 andtheevaluationof the skylevel areall

reasonablywell done.

II.B.b. NH2

For NH2 therejust arenot manypublishedspatialprofiles anddeterminedscalelengths

available. It hasbeensuggestedin recent,but asyet unpublishedresults, that theNH2 spatial
distributionis consistentwith primaryproductionfrom thephotodissociationof NH3 (Wyckoff et

al. 1990)andwith decayprimarily throughphotodissociationproducingthevisibleNH (Schleicher
andMillis 1989).Table3 givestheresultsfor theNH2Hasermodelscalelengths.Whenreduced

to 1AU by anrH1.5law. This variationisexpectedfromthecombinationof photodissociationof
aparentmolecule,whoselifetime variesasrH2, andtheapproximaterH-0.5variationin thecoma

outflow speedfrom photochemicalheating(Combi 1989). SincetheNH2 radicalsareproduced

generallywithin 10,000km from the nucleusthey arealsoexpect(at leastfor the heliocentric
distancescovered)to bethermalizedandfollow thesameoutflow speedasthewatercoma. The

straightforwardpowerlawfit in rH in factagreeswith thisinterpretation.
Given a variationof rH1.5 we find valuesfor the lifetimesof theNH2 parentand NH2,

respectivelyto be5500km and40,000kin. Givenanoutflow speed,at 1000-10,000km from the
nucleusof about0.8 km/sfor NH3 this impliesa lifetime for NH3of 6900secondswhichagrees

quite well with the expectedvalueof 7700 seconds(Allen, 1989private communication). A
lifetime for NH2 with anaveragevelocitycloserto 1.0km/swouldyield a lifetimeof about40,000

secondsat 1AU. Notethatfor immediate(or nearlyimmediate)thermalization,theradialmotion

assumedby theHasermodelis quiterealisticandandappropriateto first order. OH,on theother

hand,is producedmuchfartherfrom thenucleusandvectorialejectionof thetheradicalsmustbe
takenintoaccount(Festou1981).We will testthethermalizationof NH2, in thecontextof these

data,usingthenew heavymoleculecollision algorithmdiscussedin theprevioussectionof this

report.
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Table 3. Haser Scale Lengths for NH2 Profiles

observed rH 2 rH 1.5

Date P D P D P D

Oct 12.2 365 2.8 84 4.1 122

Dec 9.4 109 5.0 58 5.9 68

Jan10 4.0 46.5 5.3 61 4.9 57

Janll 2.8 59.4 3.4 80 3.5 74

JanllC 2.6 72.3 3.5 98 3.3 91

Janl2 2.6 63.2 3.7 90 3.4 82

Marl 4.4 11.9 8.5 23 7.2 19

Mar2 4.6 13.7 8.4 25 7.2 22

May 21.4 52.9 7.0 17 9.2 23

P = Parent scale length in 10 3 kin.

D = Daughter scale length in 10 3 km.

rH 2 = Reduced to 1 AU by an rH 2 law

rH 1-5 =Reduced to 1 AU by an rH 1.5 law

9



II.B.c. CN

Thelast summaryof pre-Halleyspatialprofiles for CN wasdoneby CombiandDelsemme
(1986). In thatpaperwe foundthatfrom datafor a numberof cometsthattheparentHaserscale
lengthwasabout2 x 104km andseemedto vary asrH1.5which is (like NH2 above)consistent

with productionfrom the photodissociationof a parentmolecule. The daughterscalelength
seemedto beof order3.2x 105km at 1AU but theheliocentricdistancedependencewasalways

tooirregularto determine.ForthenewspatialprofilesfromcometHalleywe find thatsomeof the

profilesdo notextendto largeenoughdistancesfrom the nucleusto enablethedeterminationof
bothscalelengths. For theseweassumea valueconsistentwith thevalueat 1AU which scales

with a squarelaw dependence.Sincethedaughterscalelength is very long comparedwith the

parentvalue,theparentscalelengthdetemainedthisway isonly weaklydependenton theassumed

daughtervalueanyway. For somewecanandhavedeterminedbothscalelengths. Table4 gives
thelist of bestfit Hasermodelsfor theCN profiles.

The values determinedso far are reasonablyconsistentwith our pre-Halley summary,

althoughwe arenow in theprocessof assemblingtheresultsfrom a numberof investigationsin

whichCN scalelengthsweredeterminedfor Halley. Theseresultswill becompiledwith ournew

dataresultsin thesecondpaperto befinishedbytheendof thefirst yearof thecontinuationproject

to thisone(Combi,Fink andDi Santi1991,in preparation).

II.B.d. C2

Perhapsthemostsurprisingresultscomefrom theHasermodelanalysisof theC2profiles.

In thepre-Halleysummary(CombiandDetsemme1986),we foundthatboth theparent1.6x 104

km) anddaughter(1.1x 105km) scalelengthsvariedasthesquareof theheliocentricdistance.In
this newdatawehaveprofileswhichextendbothverycloseto thenucleusandfairly far away,as

comparedgenerallywith thedatawehadin our 1986summary.In theold datatheprofilesnever

did goascloseto thenucleus.
For all of thenewC2profiles,werequireaHasermodelwheretheparentanddaughterscale

lengthsareequal. Furthermore,the value variesasthe squareof theheliocentric distanceas
opposedto the slowervariation implied by the CN, and NH2. Note that for the old summary

CombiandDelsemme(1986)found a ratioof about7 betweenthedaughterandtheparent.The

reasonanequalscalelengthmodelis requiredis becauseall of theprofilesarevery flat nearthe

nucleusandturnoververyrapidly. This behaviorhasbeennotedby otherinvestigators(Cochran

1985;Wyckoff et al. 1988)goingasfar backasDelsemmeandMiller (1971).
Varioussuggestionsfor theunusualappearanceof theC2profilesincludinga2-step

photodissociation(grandparent-to-parent-C2)andagrainsourcehavebeenmade(seeWyckoff et

10



Table 4. Haser Scale Lengths for CN Profiles

observed rH 2 rH 1.5

Date P D P D P D

ct ....

Dec 24 550 12.4 293 14.9 343

Janl0 22 413 29 546 27.1 509

Janll 25 376 34 508 31 471

JanllC 31 (400) 23 (540) 39 (501)

Janl2 21 (375) 14.8 (531) 27 (487)

Marl 15 730 29 1408 25 1195

Mar2 45 45 82 82 71 71

May 44 (980) 14 (320) 19 138

P = Parent scale length in 103 km.

D = Daughter scale length in 103 kin.

rH 2 = Reduced to 1 AU by an rH 2 law

rH 1.5 = Reduced to 1 AU by an rH 1.5 law

Values in parentheses are daughter scale lengths assumed either from the value on an adjacent day

or from the 3.2 x 105 km extrapolated to the actual heliocentric distance.
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al. 1988). Continuedwork on theunusualappearanceandbehaviorof the C2profiles andtheir

heliocentricdistancedependencewill beoneof theprincipal subjectsof thesecondpaperto be

written later thisyear(Combi.Fink andDi Santi,199l, in preparation).Table5 showsthelist of

thebestfit Haserscalelengths.
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Table 5. Haser Scale Lengths for C2 Profiles

Date Observed rH 2

Oct 255 59

Dec 107 57

Janl0 40 53

Janll 41 55

JanllC 44 59

Janl2 39 55

M_I 26 50

M_2 28 51

May 284 93

rH 2 = Reduced to 1 AU by an rI--I2 law

For all C2 profiles the parent and daughter scale lengths are equal and in units of

103 km.
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APPENDIX

A Comparison of Haser Models vs. Observed Profiles

The following is a set of Figures for all of the determined spatial profiles of O(1D), NH2,

CN and C2. Each figure is a plot of Log Brightness (Arbitrary Units) vs. Log Distance from the

Nucleus in (km). For some of the figures the fitted scale lengths are printed at the bottom. Below

is a Table containing the coded name for each of the spatial profiles giving the date and species.

The coded name contains the name of species also. In some cases the spatial profile was created

from the sums of spectra taken on consecutive days (e.g. Oct 20-21, Dec 8-9). There is a set of

profiles taken on Janqary 11 (denoted as Jan 11C) which was created as a composite of a "normal"

spectrum plus a "masked" spectrum of long integration time which yields a better signal-to-noise

ratio than the normal spectra alone. The orbital geometry parameters are given in Table 1 in the

main body of this report.

Table A.1. Identification of Spatial Profile Name Codes

Date

1985-1986

O(1D) NH2(0,8,0) C2(1-0) CN(1-0)

(red)

Oct 20-21

Dec 8-9

Jan 10

Jan 11

JanllC

Jan 12

Mar 1

Mar 2

May 9

i85oicsu i85n08sb i85c2sum i85cnlsu.

kl90oicd k85n08su kl90c2cd kl90cncd

a174oib a174nh8 a174c2 a174cnl

janoiasu jann08su janc2sum jancnlsu

jlloiasu jlln08cd jl lc2cbd jl lcnlcd

jl2oiasu jl2n08su jl2c2sum jl2cnlsu

m01oibsu m01nh8su m01c2sum m01cnlsu

m02oibsu m02nh8su m02c2sum m02cnlsu

e86oisum e86n08su e86c2sum e86cnlsu
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