
NASA Contractor Report 187481 

leASE Report No. 90-85 

leASE 

~-~- ~~-----

I NASA-CR-187481 
19910006681 

ON THE GQRTLER INSTABILITY IN HYPERSONIC FLOWS: 
SUTHERLAND LAW FLUIDS AND REAL GAS EFFECTS 

Yibin B. Fu 
Philip Hall 
Nicholas D. Blackaby 

Contract No. NAS1-18605 
December 1990 

Institute for Computer Applications in Science and Engineering 
NASA Langley Research Center 
Hampton, Vrrginia 23665-5225 

Operated by the Universities Space Research Association 

NI\S/\ 
NAhonAI ApronAulict; and 
Space AdmlfllstrC'ltlon 

LAngley Research Center 
Hampton, Virginia 23665-5225 

LIBRARY COpy 
11\\111\1\1\\ IIII \\111 \\111 1\\\1 1\1\1 \111 1\\1 

NF00785 MAY 2 0 1991 

LANGLEY RESEARCH CENTER 
LIBRARY NASA 

HAMPTON, VIRGINIA 



3 117601349 4738 

ON THE GORTLER INSTABILITY IN HYPERSONIC FLOWS: 

SUTHERLAND LAW FLUIDS AND REAL GAS EFFECTS 1 

Yibin B. Fu, Philip Hall, and Nicholas D. Blackaby 

Department of Mathematics 

Oxford Road 

University of Manchester 

Manchester M13 9PL 

U.K. 

Abstract 

The GortIer vortex instability mechanism in a hypersonic boundary layer on a curved wall 

is investigated in this paper. Our aim is to clarify the precise roles of the effects of boundary 

layer growth, wall cooling and gas dissociation in the determination of stability properties. 

We first.assume that the fluid is an ideal gas with viscosity given by Sutherland's law. It 

is shown that when the free stream Mach number M is large, the boundary layer divides 

into two sublayers: a wall layer of 0(M3/2) thickness over which the basic state temperature 

is 0(M2) and a temperature adjustment layer of 0(1) thickness over which the basic state 

temperature decreases monotonically to its free stream value. GortIer vortices which have 

wavelength comparable with the boundary layer thickness (i.e. have local wavenumber of 

order M-3/2) are referred to as wall modes. We show that their downstream evolution is 

governed by a set of parabolic partial differential equations and that they have the usual 

features of GortIer vortices in incompressible boundary layers. As the local wavenumber 

increases, the neutral GortIer number decreases and the centre of vortex activity moves 

towards the temperature adjustment layer. GortIer vortices with wavenumber of order one 

or larger must necessarily be trapped in the temperature adjustment layer and it is this 

mode which is the most dangerous. For this mode, we find that the leading order term in 

the Gertler number expansion is independent of the wavenumber and is due to the curvature 

of the basic state. This term is also the asymptotic limit of the neutral CortIer numbers 

of the wall mode. To determine the higher order correction terms in the Gortler number 

expansion, we have to distinguish between two wall curvature cases. When the wall curvature 

is proportional to (2:z: )-3/2 where :z: is the streamwise variable, the Mach number M can be 

scaled out of the problem and we show that in the 0(1) wavenumber regime, Gertler vortices 
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are again governed by a set of parabolic partial differential equations and therefore the higher 

order correction terms in the Gertler number expansion are not uniquely determined and 

are strongly dependent on nonparallel effects. In the large wavenumber limit, however, 

nonparallel effects become of second order; Gertler vortices evolve downstream in a quasi

parallel manner and the Gertler number expansion has its first three terms independent of 

nonparallel effects. In the more general case when the wall curvature is not proportional to 

(2:z: )-3/2, the effect of the curvature of the basic state persists in the downstream development 

of Gortler vortices; non-parallel effects are important over a larger range of wavenumbers and 

they become of second order only when the wavenumber is of order higher than O(Ml/4). 

In the latter case the Gertler number expansion has the first two terms independent of 

nonparallel effects; the first term being due to the curvature of the basic state and the 

second term due to viscous effects. The second term becomes comparable with the first term 

when the wavenumber reaches the order M 3
/
8

, in which case another correction term can 

also be found independently of nonparallel effects. Next we investigate real gas effects by 

assuming that the fluid is an ideal dissociating gas. We find that both gas dissociation and 

wall cooling are destabilizing for the mode trapped in the temperature adjustment layer, 

but for the wall mode trapped near the wall the effect of gas dissociation can be either 

destabilizing or stabilizing. 
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1 Introduction 

This paper is an extension of our previous paper Hall and Fu (1989) on the linear development 

of Gortler vortices and the reader is referred to that paper for a more detailed review of the 

relevant literature. In that paper, we assumed that the fluid was an ideal gas with the viscosity 

given by Chapman's law. It was found that when a hypersonic boundary layer first loses 

stability to Gortler vortices, the vortices are necessarily trapped in the logarithmically thin 

temperature adjustment layer over which the temperature of the basic flow changes rapidly 

to its free stream value. In other words, the mode trapped in the temperature adjustment 

layer has a smaller Gortler number than any other mode. As a consequence of this region of 

vortex activity being thin (which leads us to consider Gortler vortices of small wavelength), 

the perturbation equations governing the downstream development of the vortices reduce to 

ordinary differential equations within the order of approximation considered if the appropriate 

"fast" streamwise dependence of the instability is built into the disturbance flow structure. 

Thus the non-uniqueness of the neutral stability curve associated with incompressible Gortler . 

vortices disappears at high Mach numbers and a unique neutral curve with distinct left and 

right branches is obtained. 

However, a real fluid has its viscosity given by the more complicated Sutherland's law. 

Although in most of the previous investigations on compressible boundary layers Chapman's 

viscosity law has been adopted as an approximation to Sutherland's law, such an approximation 

is poor for hypersonic flows in which the fluid temperature varies significantly across the 

boundary layer. Thus it is of interest to investigate how our previous results are modified 

if the more realistic Sutherland's law is adopted. This is one of the problems which we are 

addressing in the present paper. 

The other problems which we consider are the effects of gas dissociation and wall cooling 

on the flow stability. For a hypersonic boundary layer, the temperature near the wall is 

typically of order O(M2) where M is the free stream Mach number, and gas dissociation must 

necessarily take place. Also, in practical situations, walls can not possibly withstand such high 

temperatures and they must be cooled. Thus it is also of special interest to clarify the precise 

roles of these two mechanisms in the stability properties of hypersonic boundary layers. 

The major difference between Gortler vortices in incompressible and hypersonic flows is that 

the presence of the temperature adjustment layer at the edge of a hypersonic boundary layer 

where the basic temperature field decreases rapidly to its free-stream value enables hypersonic 

Gortler vortices to be concentrated well away from the wall. In the incompressible case we 

know from the work of Hall (1982,1983), and Denier, Hall and Seddougui (1990) that at order 

one Gortler numbers unstable Gortler vortices are not localized within the basic boundary 

layer. At higher Gortler number the most dangerous Gortler vortices have a wavelength small 
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compared to the boundary layer thickness and are trapped near the wall. At order one Mach 

numbers this situation does not change significantly and the nonparallel problem has been 

discussed by Wadey (1990) and Spall and Malik (1989). In the latter two investigations the 

nonparallel equations were solved numerically following the approach of Hall (1983), the main 

result obtained was that the neutral position or growth rate of a Gartler vortex is a function 

of it's upstream history. However the numerical calculations of Wadey (1990) suggest that as 

the Mach number increases the position where an unstable Gartler vortex locates itself moves 

towards the edge of the boundary layer. That result is consistent with what we shall find in 

this paper. 

The present paper is limited only to the linear regime of vortex growth; nonlinear aspects of 

incompressible or low Mach number Gartler vortex growth have been discussed by Hall (1988), 

and Wadey (1990). For a detailed account of the nonlinear regime the reader is referred to 

the review paper by Hall (1990). Before going on to discuss the work presented here we 

also note that hypersonic boundary layers are also susceptible to instabilities not induced by 

streamline curvature. Thus, for example, Cowley and Hall (1990), Blackaby, Cowley and Hall 

(1990), Smith and Brown (1990) have discussed the role of Rayleigh or Tollmien-Schlichting 

wave instabilities in hypersonic boundary layers. Thus any nonlinear investigation of Gartler 

vortices at hypersonic speeds must allow for the possible interaction of the vortices with other 

finite amplitude instability mechanisms. 

This paper is organized as follows. In §2 and in the first part of §3 we discuss the basic 

state. Here we discuss the significant changes in the basic state which occur when Sutherland's 

law is used instead of the Chapman law. In particular, the logarithmically thin temperature 

adjustment layer found for Chapman fluids is now replaced by a more complex adjustment layer 

of 0(1) thickness. We shall see later that this difference will strongly affect the downstream 

evolution properties of Gartler vortices. 

In §3 we formulate the linear stability problem for a hypersonic boundary layer and the 

linear perturbation equations are obtained in the usual manner by superimposing a Gartler 

vortex structure on the basic state and linearizing the Navier-Stokes equations. When Chap

man's law is used, these perturbation equations can be reduced to a set of ordinary differential 

equations after the wavelength of the vortices is scaled by the thickness of the logarithmically 

thin adjustment layer. However, here we show that because the temperature adjustment layer 

is of 0(1) thickness when Sutherland's law is used, non-parallel effects are more pronounced 

and their effects are different for different wall curvatures. To be more specific, when the 

wall curvature is proportional to (2x )-3/2, the curvature of the basic state only gives rise to 

an 0(M3
/

2
) wavenumber independent term in the Gartler number expansion and its effect is 

not present in the downstream development of Gartler vortices in the neighbourhood of the 

neutral position; whilst in the more general case when the wall curvature is not proportional 
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to (2:z:)-3/2, the curvature ofthe basic state not only gives rise to an 0(M3/ 2) wavenumber in

dependent term in the Gortler number expansion, but it also affects the downstream evolution 

of Gortler vortices in the neighbourhood of the neutral position and thus affects the determi

nation of other higher order correction terms to the Gertler number expansion. Sections 4 and 

5 are respectively devoted to the discussion of these two cases. 

In section 4, we show that in the special curvature case K(:Z:) = (2:z: )-3/2, the Mach number 

can be scaled out of the problem; in the 0(1) wavenumber regime, the perturbation equa

tions are partial differential equations and they have to be solved numerically by a marching 

procedure. We present our numerical results which show that neutral curves depend crucially 

on what initial perturbations we impose and where we impose them. In the large wavenum

ber limit, nonparallel effects are negligible and a simple asymptotic expression is obtained for 

the Gertler number in terms of the wavenumber. In section 5, we show that because of the 

persistent effect of the curvature of the basic state, non-parallel effects are important over a 

larger range of wavenumbers and they become negligible only when the wavenumber is of order 

larger than 0(M1/ 4 ). Thus for wavenumbers of order O(MQ) with 0: ~ 1/4, the perturbation 

equations which govern the downstream evolution of Gortler vortices are partial differential 

equations and the situation is similar to the 0(1) wavenumber case discussed in section 4. 

When a > 1/4, nonparallel effects are not so pronounced and the Gertler number expansion 

has the first two terms independent of nonparallel effects; the first term due to the curvature 

of the basic state and the second term due to viscous effects. The second term becomes com

parable with the first term when the wavenumber reaches the order 0(M3/ 8 ), in which case 

another correction term can also be found independently of nonparallel effects. 

To complete our stability analysis, we devote section 6 to the wall mode which has wave

length comparable with the boundary layer thickness. This mode is nonparallel and neutral 

curves have to be obtained by solving a set of partial differential equations. Our numerical 

results show that neutral curves, although non-unique, all decrease monotonically with the 

wavenumber and tend to a constant value in the large wavenumber limit, thus matching in the 

large wavenumber limit with the mode trapped in the temperature adjustment layer. 

In section 7, we investigate real gas effects and wall cooling effects. We assume that the 

fluid is an ideal dissociating gas. After dissociation has taken place, the fluid becomes a gas 

mixture. We first determine the constitutive properties of the gas mixture and then show how 

our previous results for ideal gases are modified when gas dissociation is taken into account. 

We show for the mode trapped in the temperature adjustment layer that the -leading order 

Gortler number is decreased by both gas dissociation and wall cooling and thus we conclude 

that both these mechanisms are destabilizing. For the wall mode, neutral curves are not 

unique and so we cannot draw any general conclusion. For the case we consider, the neutral 

curves corresponding to the two models intersect, so the effect of gas dissociation can be either 
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destabilizing or destabilizing. Finally in the last section we give some further discussion. 

2 Basic state 

Consider a hypersonic boundary layer over a rigid wall of variable curvature (l/A)K.(x*/L), 

where L is a typical streamwise length scale and A is a lengthscale characterizing the radius of 

curvature of the wall. We choose a curvilinear coordinate system (x*, y*, z*) with x* measuring 

distance along the wall, y* perpendicular to the wall and z* in the spanwise direction. The 

corresponding velocity components are denoted by (u*, '11*, w*) and density, temperature and 

viscosity by p*, T* and p,* respectively. The free stream values of these quantities will be 

signified by a subscript 00. We define a curvature parameter 0 by 

L 
0= A' 

and consider the limit 0 -+ 0 with the Reynolds number R defined by 

* L * R = U oo Poo 
p,~ 

taken to be large so that the Gortler number 

(2.1) 

(2.2) 

(2.3) 

is 0(1). In the following analysis, coordinates (x*,y*,z*) are scaled on (L*,R- 1/ 2L,R-l/2L), 

the velocity (u*, '11*, w~) is scaled on (u~, R-l/2U~, R-l/2U~) and other quantities such as 

p*, T*, and J.L* are scaled on their free stream values with the only exception that the pressure p* 

is scaled on p~ 'U~ and the coefficient of heat conduction k* is scaled on J.L~. All dimensionless 

quantities will be denoted by the same letters without a superscript *. Then the Navier-Stokes 

equations are given by 
8p 8 
8t + 8x{3 (pv{3) = 0, (2.4) 

Du 8p 8 8u 8 8u 
P Dt = - 8x + 8y (J.LBy ) + 8z (J.L 8z)' (2.5) 

p Dv + ~GK.U2 = -Re 8p + ~ {(.\ _ ~p,) 8V{3} + ~(p, 8v{3) 
Dt 2 8y 8y 3 8x{3 8x{3 8y 

8 8'11 8 8'11 
+ 8y (p, 8y) + 8z (p, 8z)' (2.6) 

Dw 8p 8 { 2 8v{3 } 8 8v{3 8 8w 8 8w 
P Dt = -Re 8z + 8z (.\ - "3P,) 8x{3 + 8x{3 (p, 8z ) + 8y(P, 8y) + 8z(P, 8z)' (2.7) 

PCp DT = p,(, _1)M2[(8u)2 + (8u?] + (, _ 1)M2[1- p(8h)T]Dp 
Dt 8y 8z 8p Dt 
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+ ];.~(k {)T) + ];.~(k {)T), 
(J {)Y {)y (J {)Z {)z 

,M2p = (1 + a)pT. 

(2.8) 

(2.9) 

Here we have used a mixed notation in which (Vl,V2,1J3) is identified with (u,v,w) and 

(Xl,X2,X3) with (x,y,z). Repeated suffices signify summation from 1 to 3. The functions 

.A, k, Cp and h denote in turn the bulk viscosity, the coefficient of heat conduction, the specific 

heat at constant pressure and the enthalpy per unit mass. The constants "M and (J are in 

turn the ratio of specific heats, the Mach number and the Prandtl number defined by 

where ~ is a gas constant and aoo = J,~T60 is the sound speed in the free stream. Finally, the 

function a in the equation of state (2.9) denotes the percentage by mass of the mixture which 

has been dissociated. Later in §7 we shall give the expression for a for a specific dissociation 

model used in our discussion. In equations (2.5)-(2.8), the operator D / Dt is the material 

derivative and it has the usual expression appropriate to a rectangular coordinate system. 

The basic state is given by 

(u, v, w) = (u(x,y), v(x,y), 0), T = '1'(x,y), 

p = p(x,y), J.I. = p,(x,y). (2.10) 

By substituting (2.10) into the governing equations (2.4)-(2.9) it is straightforward to obtain 

the reduced equations satisfied by the basic state. The reader is referred to the book by 

Stewartson (1964) for a detailed discussion of these basic state equations. If we define the 

Howarth-Dorodnitsyn variable y and a siinilarity variable TJ by 

Y = pdy and TJ = . ~, lo
ll -

o v2x 

then the continuity equation is satisfied if u and ii are written as 

1 1 , 1" 1 v = . 1n:"[--::f(TJ) + f (TJ) -::dTJ]· 
v2x pop 

Here the functions f( TJ) and '1'( TJ) must satisfy 

f f" + (pp,f")' = 0, 

];.(pk'1")' + Cpj'1" + p,(,- 1)M2p(fIl)2 = 0, 
(J 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

if the x-momentum and energy equations are to be satisfied. These equations must then be 

solved such that f, j' vanish at the wall, f', '1' = 1 at infinity and either '1" = 0 or '1' specified 

at the wall. The y-momentum equation gives 

{)p = 0 
8y 
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to leading order so that p = p(x). In our following analysis, we assume that there is no pressure 

gradient along the streamwise direction and therefore we can take p = constant. Equation (2.9) 

then reduces to 

[1 + a(T)]pT = 1. (2.15) 

Note that in obtaining (2.13) and (2.14) we have not made any constitutive assumptions so 

that they are valid for dissociated gases (to be discussed in §7) as well as for undissociated 

ideal gases (to be discussed in §3-§6). 

3 The perturbation equations 

We first assume that the fluid is an ideal (one component) gas undergoing no dissociation so 

that a = O. Then we can assume that (i). the specific heats are constants; (ii). the coefficient 

of heat conduction is linearly related to the shear viscosity and (iii). the enthalpy h is given 

by h = CpT. These assumptions lead to the results 

1 
k=P., cp=1, P=T' (3.1) 

(Note that all of these quantities have been non-dimensionalized). Then the basic equations 

(2.13) and (2.14) simplify to 

ff" + (~f")' = 0, 
T 

~(~T')' + fT' + (-y -1)M2~(J")2 = O. 

(3.2) 

(3.3) 

These two equations can then be solved if we make an constitutive assumption about the 

viscosity p.. In the previous paper, Hall and Fu (1989), we used Chapman's viscosity law. Here 

we use Sutherland's viscosity law, the dimensionless form of which is given by 

(3.4) 

where ih. is a constant. Equation (3.4) is exact in the sense that it is derivable from the kinetic 

theories of gases (see Chapman and Cowling (1970) for a discussion of its validity, also compare 

(3.4) with (7.9)). At high Mach numbers we know from the work of for example Freeman and 

Lam (1959) that the basic state splits up into two distinct regions. Near the wall a boundary 

layer forms in which the downstream velocity approaches it's free-stream value of unity whilst 

the temperature decreases from it's value at the wall and ultimately decays algebraically at 

the edge of the layer. In the next region this algebraic decay is taken up and the temperature 

then approaches exponentially the free-stream value of unity. 

As mentioned above an explicit analytical solution for the equations (3.2) and (3.3) is not 

possible. However, an asymptotic analysis in the large Mach number limit shows that the 
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boundary layer can be divided into two regions: an inner region." = O(M-1/ 2 ) and an outer 

region." = 0(1). In the inner region, we define Y, 'i' and F(Y) by 

Y = M 1
/

2
.", l' = M- 2T, F(Y) = M 1/ 2 f. (3.5) 

Then equations (3.2) and (3.3) give 

F" 
(1 + m)( Vri)' + F F" = 0, (3.6) 

1 + m( ~)' + FT' + (-y -1)(1 + m)(F,)/ = 0 
a vT vT 

(3.7) 

to leading order. These equations are to be solved numerically subject to the conditions 

F(O)=F'(O)=O, 1'(00)=0, F'(oo) = 1, 

1"(0) = 0 if the wall is thermally insulated, 

1'(0) = nT10 if the wall is under cooling, 

(3.8) 

where 1'10 is the wall temperature scaled on M2Too when the wall is thermally insulated and n 

is the wall cooling coefficient. 

In Fig.1 we have shown the results of our numerical integration of the wall layer equations 

(3.6) and (3.7). The temperature profiles are plotted for three values of the wall cooling 

coefficients: n=0.2, 0.6 and 1.0 and were calculated with i = 1.4, a = .72, m = .509. The 

asymptotic profile for large Y given by equation (3.10) is also plotted there for comparison. 

For large Y, equations (3.6) and (3.7) have the asymptotic solutions 

D 
F = Y - {J + (Y _ {J)3/tT + ... , (3.9) 

- 9(1 + m)2 1 
T = a 2 (Y _ {J)4 + ... , (3.10) 

where both {J and D are to be determined by a numerical calculation. The numerical values 

of {J corresponding to four values of the wall cooling coefficients are listed in Table 1 together 

with the values of F"CO), 1"(0) and 1'(0). 

Table 1 

n= 0.2 n = 0.4 n= 0.6 n = 0.8 n=l 

F"(O) 0.1517 0.1997 0.2317 0.2560 0.2758 

1"(0) 1.8192 X 10-2 1. 7976 X 10-2 1.3909 X 10-2 7.6872 X 10-2 0 

1'(0) 3.286 X 10-2 6.572 X 10-2 9.858 X 10-2 1.3144 X 10-1 1.643 X 10-1 

{J 3.1808 2.8366 2.6301 2.4840 2.3721 

7 



The asymptotic expressions (3.9) and (3.10) imply that in the region TJ = 0(1), 

On substituting (3.11) and (3.12) into (3.2) and (3.3), we obtain to leading order 

(1+ "') Cr '7'", i")' Hi" = 0, 

(1 + m) ( . .;T T')' + T' = o. 
U T+m TJ 

These two equations are to be solved numerically subject to the matching conditions 

and the conditions at infinity 

j'(oo) = 0, T(oo) = 1. 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

The result from such a numerical calculation is shown in Fig.2. In this figure the asymptotic 

result is the one given by (3.15). 

It can be shown from (3.13) and (3.14) that 

A" _ D !!.- IT! T + m _ ", l/IT 1/ ( • ) l-l/IT 

f (TJ) - (1 + m)1+l/IT (12) (U + 1)...IT ( T) , (3.17) 

so that after (3.14) has been solved numerically, the function j"(TJ) can be computed easily 

from this equation. Also, we note that whilst the solution of (3.14) is independent of the inner 

region solution and thus of the conditions at the wall, the function j is dependent on the inner 

region solutions through the matching constant D. 

We now assume, as in Hall and Fu (1989), that the flow is perturbed to spanwise periodic 

stationary vortex structure with constant wavenumber a. The linearized stability equations 

for these Gortler vortices are then found by linearizing the Navier-Stokes equations (2.4)-(2.9) 

about the basic state and retaining the leading order terms in the high Reynolds number limit. 

We obtain 
1 U 1 
r(uU:z; + vU1I ) + (jla2 + ;)U - (jlU1I )1I + rUyV 

-{;2 (UU:z; + ViLy) + (jliLy)y} T - jliLyTy = 0, (3.18) 
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121 1 v 4 
T(Vx + K/aG)U + ailvUx - ajlUXy - jlxUy + 1'(iiVx + vVy) + (jla2 + ;)V - a(jlVy)y 

1 124 
+Py - ['T2( ii1jx + VVy + jIl:Gii?) + ajlfJ,xy - aJi.viia: + a(jlvy)y + jlxiiy]T 

2 4 2 1 
- jliiyTx - [-ajlux + ajlvy]Ty + ajlyiaW - aiajLWy = 0, (3.19) 

112 
~iaU + ajLiaUx + jlyiaV + ajLiaVy - iaP - ajl(ux + vy)iaT 

1 4 
- l' (iiWx + vWy) - aJLa2W + (jlWy)y = 0, (3.20) 

2 - - 1 1 
1'3 (iiTx + vTy)T - 1'2 (iix + vy)T - 1'2 (iiTx + vTy) 

1 1 - - (W 
+ '1'(Ux + Vy) - '1'2 (TxU + TyV) + ia '1') = 0, (3.21) 

1- 2 1- 1 ) jL2 
TTxU - 2(,- l)M p,iiyUy + '1'TyV + '1'(uTx + vTy +;;a T 

- {;2(U'1'x + v'1'y) + (')' -1)M2jlu~ + ; (jl1'y)y }T - ;jl'1'yTy - ;(jLTy)y = O. (3.22) 

Here jl = dp,/dT, whilst (U, V, W), P and T denote the vortex velocity field, pressure and 

temperature, respectively. Equations (3.18)-(3.22) differ from equations (2.11a-e) given in 

Hall and Fu (198Q) only in that the bulk viscosity is taken to be zero here; that assumption is 

actually implied in that paper. 

It was shown by Hall (1982) that in the incompressible case the neutral curve for small 

wavelength vortices has G '" a4 and that the vortices are confined to a layer of depth a-1/ 2 

where the flow is locally most unstable. Hall and Malik (1989) extended this approach to the 

above system for M = 0(1) and wrote 

G 4 3 = goa + gla + .... 

They found that the leading order growth rate a20* has 0* given by 

* p,2 u21'y fJ,'iiy 
o = -;; + (2'1'3 - 0'1'2 )go. (3.23) 

In the neutral case, 0* = 0 and (3.23) then determines the neutral Gortler number go as a 

function of "I. The most unstable location "1* is where go has its minimum. In Hall and Fu 

(1989), it is found that whcL Chapman's law is used, "1* moves away from the wall as the Mach 

number increases. It is also found that the basic state temperature is 0(M2) over most of 

the boundary layer and decreases rapidly to its free-stream value over a logarithmically thin 

adjustment layer sitting at the edge of the boundary layer. It is in this thin layer that "1* 

lies and hence where go has it's smallest order of magnitude in the large Mach number limit. 

Thus it is concluded that the thin temperature adjustment layer is most susceptible to Gortler 
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vortices. From the preceding discussion in this section we see that when Sutherland's law is 

used, the logarithmically thin temperature adjustment layer corresponding to Chapman's law 

is now replaced by a more complex temperature adjustment layer of 0(1) thickness. If we 

still use (3.23) with o· = 0 to calculate the orders of go in the inner layer 1/ = 0(M-1
/

2
) and 

the outer temperature adjustment layer 1/ = 0(1), we find that go = 0(M15/2) in the former 

and go = 0(1) in the latter. Hence once again the temperature adjustment layer is most 

susceptible to Gertler vortices with wavenumber of order one or larger. It should be noted, 

however, the above conclusion is based upon a large wavenumber argument. In section 6 we 

shall show that the wall layer 1/ = 0(M-l/2) is actually of order M 3/2 thickness in terms of 

the physical variable y. Thus Gortler vortices with wavelength comparable with the boundary 

layer thickness must be trapped in the wall layer and have a = 0(M-3/ 2 ). It will be shown 

in section 6 that this wall mode has neutral Gertler number decreasing monotonically and 

has the centre of Gortler vortex activity moving towards the temperature adjustment layer as 

the wavenumber increases. Therefore, the minimum Gortler number corresponds to the mode 

trapped in the temperature adjustment layer and the latter is indeed the most dangerous mode 

when the whole range of wavenumbers are considered. It should also be noted that the result 

go = 0(1) for the temperature adjustment layer is obtained by taking the large Mach number 

limit of the 0(1) Mach number results. By doing so we have actually missed a term related 

to the curvature of the basic state which is not important for the case M = 0(1) and a ~ 1, 

but is important in the large Mach number limit. As we shall show later on, the curvature 

of the basic state produces an effective Gortler number of order M3/2 in the absence of wall 

curvature so that instability can not occur for G = 0(1). 

3.1 The strongly unstable inviscid mode 

Let us first confine our attention to the mode trapped in the temperature adjustment layer. It is 

easy to show with the aid of expressions (3.11) and (3.12) that in this temperature adjustment 

layer, 
1 -'1" -- + -- - [BM3/2 + J.L 2T-'] + (1) 

UV:z: VVy - - (2x )3/2 aT - 1/ 0, (3.24) 

where 

B d~. lim M-3/ 2 roo
'1'(.")d.,,. 

M-+oo Jo (3.25) 

An investigation of the y-momentum equation (3.19) shows that the Gertler number must be 

of order M 3/ 2 in order to enter the leading order analysis. Thus we write 

1 
-~( x)G = G·( x )M3

/
2 

, (3.26) 
2 

so that for a given constant Gertler number G we compute G· (x) using 

G·(x) = ~~(X)GM-3/2. 
2 
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For convenience, we also define another function Q(:z:) by 

B 
Q(:z:) = (2x)3/2' 

so that 

(3.28) 

(3.29) 

With the use of this relation, we can deduce from the perturbation equations (3.18)-(3.22) 

that 

V = O(M3/4T), W = O(M3/4T), P = O(M3/2T), U = O(Mi'"lT), (3.30) 

and that for fixed .", 

where 

M d~. 1/M..L+l 1 - 20' 2. 

We therefore look for asymptotic solutions of the form 

T = exp (M3/4 J:I: (3(:z:)d:Z:) {To(x,.,,) + M-3/ 4Tl (:z:,.,,) + ... }, 

U = Mi'"l exp (M3/4 J:I: (3(:Z:)d:Z:) {Uo(:Z:,.,,) + M-3
/ 4Ul (:z:,.,,) + ... }, 

V = M3/4exp (M3/4 J:I: (3(:z:)d:z:) {Vo(:z:,.,,) + M-3
/ 4Vl (:z:,.,,) + ... }, (3.31) 

W = M3/4 exp (M3/4 J:I: (3(:Z:)d:Z:) {Wo(:z:,"') + M-3
/

4Wl (:z:,.,,) + ... }, 

P = M3/2 exp (M3/4 J:I: (3(:Z:)d:Z:) {Po(:Z:,"') + M-3/4P1(:z:,.,,) + ... }, 
where the spatial amplification has been taken care of using the WKB method and (3(:z:) is 

the local growth rate to be determined. On substituting (3.31) into (3.18)-(3.22) and then 

equating the coefficients of like powers of M, we obtain a hierarchy of equations. To leading 

order, we find that Vo satisfies the differential equation 

2 -, -2 a Vo _ ~ avo _ pf2v; = k (G* _ Q)f'V; 
a.,,2 T a." 0 .;2X{32 0, 

whilst To, Wo and Po are related to Vo by 

f' 
To = -. r,:;::- Vo, y2:z:T{3 

. 1 avo 
~a Wo = - vI2Z'i' a." , 

(3.32) 

(3.33) 

and Uo does not appear in our leading order analysis. Here k d~ • .;2Xa is the local wavenumber. 

Equation (3.32) subject to Vo vanishing at ." = 0,00 is a Sturm-Liouville problem which has 

solutions if 
(G* - Q)f' 

{32 ~ O. 

11 



This means that 

since '1" < o. It then follows that neutral stability ({3 = 0) occurs at the position :z: = :Z:n where 

(3.34) 

at zeroth order. Therefore, in view of the definitions (3.27) and (3.28), the neutral Gortler 

number has the expansion 

G 2B M 3 / 2 h· h d . = ( )( )3/2 + Ig er or er correctIOn terms. 
"':Z:n 2:Z:n 

(3.35) 

For the rest of this paper we shall take G N to be the zeroth order approximation to the "critical 

inviscid Gortler number", thus G N is obtained by retaining only the first term on the right 

hand side of (3.35). An important point concerning (3.35) is that the first term on the right 

hand side is independent of :Z:n if the wall curvature varies like :z: -;3 j in the latter situation 

nonparallel effects dominate and the vortex growth rate is smaller. Thus to determine the 

higher order correction terms to the neutral Gortler number, we have to distinguish two cases, 

namely, (i). ",(:z:) = (2:z:)-3/2 and (ii). ",(:z:) ::j:. (2:z:)-3/2. They will be treated separately in the 

next two sections. 

On the other hand, equation (3.32) can also be interpreted as an eigenvalue problem which 

determines the growth rate (3(:z:) at a given value of:z: corresponding to any wavenumber k. 
The appropriate boundary conditions are deduced as follows. As "I -+ 00, '1' -+ 1 and equation 

(3.32) reduces to 
82Vo _ Pv; - 0 
8"12 a - , 

so that Vo fV exp( -kTJ) and the asymptotic condition 

8Vo +kVo = 0 
8"1 

(3.36) 

should be imposed at "infinity". As "I -+ 0, '1' -+ A2/TJ4 where from (3.15b) A = 3(1 + fh)/u. 

Equation (3.32) reduces to 

82Va + ~ 8Vo _ k2A4 Vo = _ (G· - Q)k2 . 4A2 Vo 
8"12 "I 8"1 "18 ...;2X{32 "15 

' 

which has the solution 

Hence the asymptotic condition 

kA2 
Vo fV exp( - 3"13 ). 

(3.37) 

(3.38) 

(3.39) 

should be imposed at "zero" (which is taken to be some small value in numerical calculation). 
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The eigenvalue problem (3.32), (3.36) and (3.39) was solved numerically by employing a 

fourth order Runge-Kutta method. In Fig.3, we have shown the dependence of the growth rate 

on the local wavenumber. The plot clearly shows that as k -+ 0, {32 -+ 0 whilst as k -+ 00, 

{32 -+ constant. These features are also borne out by the asymptotic analysis given in the 

following subsection. The inviscid mode we have described above therefore has growth rate 

proportional to Mt and we refer to it as the strongly unstable inviscid mode. We note that 

when G· = Q the growth rate vanishes. In this case it is necessary to look for evolution of the 

vortices on a shorter lengthscale in the streamwise direction; that problem will be addressed 

later in this paper and we shall refer to the inviscid mode in that regime as the near neutral 

inviscid mode. 

3.2 The small and large wavenumber limits of the strongly unstable inviscid 

mode 

First, we note that as k -+ 0, we are approaching the scalings for the wall mode (see §6) which 

has wavenumber k '" O(M-3/2) and which is trapped in the wall layer. Thus Gortler vortices 

are appropriately governed by (3.37). The solution (3.38) shows that vortices decay to zero in 

the thin layer TJ = O(k1/ 3 ) near the wall. This is also verified by the obvious shift to the left of 

the first mode eigenfunctions in Fig.4 with decreasing k. It can then be deduced from (3.37) 

that {32 has to be O(k) in order to enter the leading order analysis. 

Next, in the large k limit, a WKB analysis of (3.32) shows that Gortler vortices will be 

trapped in an O(k-1/ 2 ) thin layer centred at TJ = TJ· where {32 has a maximum. Thus we 

introduce a new variable ( by 

expand (G· - Q)/(V2X{32) as 

~ Q = >'0 + k-1
/

2
>'1 + k-1 >'2 + ... , 

23:{32 

and look for solutions of the form 

o - 1/2 1 - 1 2 Vo(3:,TJ) = Vo (3:,() + k- Vo (3:,() + k- Vo (3:,() + .... 

(3.40) 

(3.41) 

(3.42) 

On substituting (3.40)-(3.42) into (3.32), equating the coefficients of like powers of k, and 

then solving the resulting set of equations, we find that to leading order, >'0 is determined as 

'i'2(T") 
>'0 = - T'(TJ.)· (3.43) 

At order k-1/ 2 , >'1 is determined as >'1 = 0 if we insist that {32 attains its maximum at TJ = TJ·. 

At order k-1 , Voo is found to satisfy the parabolic-cylinder equation 

82Voo 1 4 0 0 
8~2 - 4~ Vo - aVo = 0, (3.44) 
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where 

(3.45) 

IT we impose the condition that the disturbance is confined to the k-1/ 2 layer we must choose 

a = -(1/2) - 8, where 8 is a non-negative integer. This condition determines the infinite 

sequence of eigenvalues 

(3.46) 

The eigenfunctions corresponding to the eigenvalue >'2. are given by 

V;o V;O -leH (t) ° = 0. = e· e. <" , (3.47) 

where H e.(~) is a. Hermite polynomial. 

With the aid of the numerical values forT given earlier in this section, we find that 

;::~~ = 0.5786{1 _ 0.5297
1 ~ 28 + ... }, (3.48) 

and that TJ· = 2.3228. Both these numerical values and the concentration of vortices in an 

O(k-1/ 2 ) region are confirmed by the numerical results shown in Fig.3 and Fig.5. 

In closing this section, we note that results given here for hypersonic flows are in sharp 

contrast with related results for incompressible flows. In a recent paper, Denier, Hall and 

Seddougui (1990) have discussed the spectrum of the large Gortler number eigenvalue prob

lem. It was found that the inviscid Gortler vortex eigenvalue problem has an exact solution 

with the spatial growth rate increasing monotonically from zero and tending to infinity at 

large wavenumbers. In the high wavenumber limit viscous effects become important when the 

wavenumber is O(Gt) and a maximum growth rate is achieved in that regime with the growth 

rate tending to zero in an O(Gf) regime as discussed by Hall (1982). At small wavenum

bers the growth rate tends to zero and the vortices spread out above the boundary layer. In 
-1 

fact when the wavenumber is O(GT) an eigenvalue problem related to that for Tollmien-

Schlichting waves is recovered but at even smaller wavenumbers nonparallel effects dominate 

and the problem must be solved numerically as in Hall (1983). The major difference we have 

found above for hypersonic Gortler vortices is that the growth rate tends to a finite value as 

the local wavenumber tends to infinity; we shall see later that this has a significant effect on 

the way in which viscous effects come into play at high wa.venumbers. 

4 Neutral instability with K:(x) rv (2X)-3/2 

We now proceed with the determination of the higher order correction terms in the neutral 

Gortler number expansion (3.35). In the case when the curvature K(X) = (2x)-3/2, G·(x) = 
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Q(:z:) and the 0(M3
/

2
) term on the right hand side of (3.29) vanishes for all:z:. The implication 

of this is that for this special distribution the curvature of the basic state is exactly counteracted 

by wall curvature over an 0(1) interval in :z:, in the more general case that is only the case over 

an asymptotically small interval. An investigation of the perturbation equations (3.18)-(3.22) 

with the aid of the equations (A1)-(A5) given in the Appendix then reveals that the neutral 

Gortler number must expand as 

G = 2BM3
/
2 + G + 0(1), (4.1) 

and that the perturbation quantities have relative orders 

1 
U = O( Ml V), T = O(V), W = O(V), P = O(V), 

where G = O(MO) is to be determined. We therefore look for the following form for the 

solutions for (3.18)-(3.22): 

1 - - -
U= M1U(:z:,T])+"" V=V(:z:,T])+"" W=W(x,T])+"" (4.2) 

1 - r;;---
P = /il.:'P(x,T]) + ... , T = y2xO(x,T]) +"', 

y2x 

where the insertion of the factor ..;2X is purely for convenience. 

On substituting (4.2) into (3.18)-(3.22) and then equating the coefficients of like powers 

of M, we obtain, to leading order, 

8 p,8U 8U --2- 8U 
81] (1' 81] ) + 1] 81] - p,T k U - 2x 8x 

= v'2X{ j~' iT + [~ j" - ~(jll" )]8 _ jll" 88} 
T T 81] T T a." 

aft ."T' - 8V _ -2 - - 4 8 (p, 8V) 
8." = t V + ." 8." - JLk TV + '3 81] t 81] 

+ ~ [1]21" - p,~' + ~G _ ~T~(jlT]?')] 
T aT 2 3 81] T 

4 -,88 2 -, - - 1 8 - - ) 8V 
- 31' jlT]T 8." - '3 jlT ik W + '3 p, 81] ( ik W - 2x 8x ' 

8 P, 8W -, - - 1 - 8Y - - -
81] (1' 81] ) = -jlT ikV - '3jLik 8." + ikT P 

2 -, - - 8W 4 -2 - - 8W 
- '3jlT]T ikO - ." 8." + '3P,k TW + 2x 8x ' 

8 iT ." 80 .- - ."T' 0 2x 88 
8.,,(f,)+t8T]=-~kW+(1+ l' )1'+ t8x' 
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(4.5) 

(4.6) 



1 8 P. 80 p,'i" 80 'i" -
--(-=-) = -(77+ --)- +-=-V 
cr 877 T 877 crT 877 T 

- 77'i" 1 8 p,'i" /L - -2 80 
+ 9[1 + --- - --(---) + -Tk ] + 2x-. 

T cr 8'f/ T cr 8x 
(4.7) 

Here k d,g. V2x'a. It can be seen that (4.4)-(4.7) are independent of fj and the latter is 

determined from (4.3) after (V, W, rJr, P) have been determined. Since these leading order 

perturbation equations are parabolic with respect to the variable x, they have to be solved 

by specifying the perturbation quantities at a given upstream position and then marching 

downstream. We therefore expect that neutral stability would depend crucially on what initial 

conditions we impose and where we impose them. However, before we present our numerical 

solutions of these equations, we first consider a special case: the large wavenumber limit for 

which a simple asymptotic solution is possible. 

4.1 Large wavenumber limit 

In the large wavenumber limit, the length scale over which vortices vary is small compared 

with the lengthscale over which the boundary layer grows. Then we expect that nonparallel 

effects do not come into our leading order analysis. This is indeed the case, as we show below. 

For large k, vortices are confined to a thin layer of 0 ( fl/2) thickness centred on 77 = 77· 

where, 

(4.8) 

and where 77· is the most unstable position to be determined in the course of our calculation. 

We therefore define a new variable ¢ by 

An investigation of equations (4.3)-(4.7) shows that when f -+ 0, 

0= 0(f2V), W = 0(fl/2V), P = 0(f-1/2V), 

8 2) G = 0(1/f4
), 8x = O(l/f . (4.9) 

Hence we look for the following form of asymptotic solutions for (4.3)-(4.7) 

G = ~ (Go + fl/2(,'l + fG2 + f3/2G3 + ... ), 

- 1/2 V = (Vo + f VI + .. . )E, - 1/2 W=(f WO+fW1 +···)E, ( 4.10) 

- -1/2 P = (f Po + PI + ... ), - 2 5/2 9=(fOo+f 01+ .. ·)E, 

where 

E = exp {f~ JX (f30(¢) + fl/2f31( ¢) + .. . )d¢} , (4.11) 
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and where Vo, V1 etc. are functions of ¢ and x. Note that E here represents the fast variation 

of the perturbation quantities along the streamwise direction whilst the dependence of Vo, Wo 

etc. on x represent the slow variation of perturbation quantities due to the nonparallel effect 

of the boundary layer growth. In effect we have described the fast variation of the disturbance 

by a WKB type of expansion in the streamwise direction. Here we are only concerned with 

neutral stability, so we set /30 = /31 = /32 = o. On substituting (4.10) into (4.3)-(4.7) and then 

equating the coefficients of like powers of e, we obtain a hierarchy of matrix equations. To 

leading order, we have 
uT1 

00 = --=--=2 Vo, 
J.LoTo 

2 -4 
ilo 8Vo Go = _ 2ilo,!0 

Po = - To 8¢ , uT1 ' 

where To = 1'("1·),'1'1 = 1"("1.) and ilo = il(1'o). To next order, we deduce that 

G1 = o. 

At next order we find that Vo must satisfy the parabolic-cylinder equation 

82Vo 1 2 • 
8(2 - 4( Vo - aVO = O. 

Here 
-2 (2 ) .A = _ 2To 8 Go , 

3Go 8"12 • 
1'/=1'/ 

• _ G uT6 ,-1/2 
a - 2 -2 -2" , 

6J.LoTo 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

IT we impose the condition that the disturbance is confined to the e1
/

2 layer we must choose 

a = -1/2 - s, s = 0,1,···, (4.16) 

The smallest G2 corresponds to s = 0 and we then have from (4.15b) that 

(
3Go 82Go) 1/2 

G2 = 2T.2 7fT . 
o "I 1'/=1'/. 

(4.17) 

The centre of vortex activity "I. is determined by the condition that Go attains its minimum 

there: 

(4.18) 

After solving (3.14) numerically for the basic state temperature '1', we then use (4.12d) and 

(4.18) to determine "I*, and (4.12d) and (4.17) to determine Go and G2 • We find that 

"I. = 3.001, Go = 15.4834, G2 = 34.3175, 

so that 

G = 15.4834k4 + 34.3175P + .... ( 4.19) 

Finally, we remark that the above analysis is valid as long as the local wavenumber k = V2Xa 
is large. This means that the far downstream evolution of Gortler vortices can always be 

described by the above theory. 
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4.2 Numerical results for k f'V 0(1) 

When the wavenumber is 0(1), the perturbation equations (4.3)-(4.7) are parabolic with 

respect to :z: and they have to be solved numerically subject to some initial conditions imposed 

at some upstream position :c. For computational purpose it is convenient to eliminate P and 

W among (4.4)-(4.5). After some manipulation, we obtain 

1 84y 2:z: 83y 4:z:T' 82y k2T2 8Y 9 

- l' 8",4 + JL 8:z:8",2 - p,T 8:z:8", - p2:z: 8:z: = ~ai' (4.20) 

JL 828 p,T' 2jlT' 88 i' ~ 88 
uT 8",2 = (uT2 - uT -",) 8", + l' V + 2:z: 8:z: 

-, 8 -, 
+ [1 + ",~ - ]:-(p,~ ) + ~T.P]8, (4.21) 

T (18", T u 
where 
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In these equations, W3 and Ware given by 

( 4.22) 

- 1 av 
W= --=-+W3. 

T aTJ 
(4.23) 

The finite difference scheme used here is similar to that used by Hall (1983), Wadey (1990) for 

incompressible flows. The reader is referred to the latter papers for a more detailed discussion. 

Our implementation of the numerical scheme is as follows. We first specify V, Y and 0 at a 

given upstream position x. Then we use the finite difference scheme to march downstream and 

thus calculate the evolution of the initial perturbation with respect to the streamwise variable 

x. The position of neutral stability is defined as the place where a certain energy measure has 

zero growth rate. We use the following five energy measures to monitor the energy variation: 

E1 = 100 

y2dy = J2; 100 

y2'i'dTJ, 

E2 = 100 

(V2 + W2)dy = J2; 100 

(V2 + W 2)'i'dTJ, 

E3 = 100 

J2;Ody = 2x 100 

O'i'dTJ, E4 = Ymax , 

E5 = /00 (au )2dy = _1_ /00 ~ (au )2dTJ. 
Jo ay ..;2X Jo T aTJ 

( 4.24) 

( 4.25) 

( 4.26) 

( 4.27) 

We give results for several measures of the vortex strength in order to show the relatively large 

variation of growth rates associated with different flow quantities. Depending on the initial 

conditions and on which energy measure we use, the disturbance can either grow or decay 

initially. In the former case, there is only one neutral position corresponding to each pair 

(a, G): the energy will reach a maximum at some downstream location and then decay to zero 

monotonically. The corresponding neutral curves only have right branches. The region on the 

left of a neutral curve is unstable and the region on the right is stable. In the latter case, if 

the Gortler number is large enough, there are always two neutral positions: the energy will 

reach a. minimum at some downstream location, then grow to reach a maximum and finally 

decay to zero monotonically. The corresponding neutral curves have distinct right and left 

branches. The region above a neutral curve is unstable and other regions are stable. For the 

special curvature case discussed in the present section, the flow is always stable for x ~ 1, since 

according to the asymptotic result obtained in the previous subsection, the flow is neutrally 

stable where G '" k4 for k ~ 1 so that K( x) must increase at least as quickly as x1/ 2 if the 

vortex is to be unstable for x ~ 1. 
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At a neutral position, we calculate the local wavenumber ax and local Gortler number Gx 

defined by 

( 4.28) 

By fixing a and varying 0, we obtain a series of such points (ax, Gx) and thus plot a 

neutral curve. In our calculation, a is fixed at 0.1; the step lengths along :z: and TJ directions 

are taken to be 0.1 and 0.05 respectively; and the lower boundary of the 0(1) temperature 

adjustment layer is taken to be 0.8 whilst infinity is approximated by 20.8. 

In Fig.6-Fig.12, we have given the results of our numerical calculations. Fig.6 shows five 

different neutral curves obtained when we use the five different energy measures (4.24)-(4.27) 

to monitor the energy growth. Fig.7 shows three different neutral curves which are obtained 

when we impose three different initial conditions at the upstream position Xo = 20, whilst Fig.8 

shows three different neutral curves which are obtained when we impose an initial condition 

at three different upstream locations. In two of these graphs, we have also plotted the two 

term asymptotic result (4.19). As we expect, although these neutral curves have distinct left 

branches, their right branches all converge to the unique large local wavenumber limit. We 

can see from Fig.8 that as the initial location of the disturbance moves towards the leading 

edge, the neutral curves move progressively up and across to the right. This is contrary to 

the corresponding results found by Hall (1983) for incompressible flows. Finally, Fig.9-Fig.12 

show the typical profiles of the four perturbation quantities as they evolve downstream, with 

the initial conditions given by (iii) in Fig.6 and Xo = 20, G = 1000. In order to see how the 

the centre of vortex activity evolves downstream, we have normalized each of the perturbation 

quantities by its maximum. It is clear that as the vortices evolve downstream (and thus as the 

local wavenumber increases), they become more and more concentrated, which agrees with the 

asymptotic result found in the previous subsection that in the large local wavenumber limit, 

Gortler vortices are trapped in a thin layer of depth 0(k-1/ 2 ) centred at TJ = 3.001. 

5 Neutral instability with ~(x) =1= (2X)-3/2 

When the wall curvature is not proportional to (2:z: )-3/2, the 0(M3/2) term on the right hand 

side of (3.29) only vanishes at the leading order neutral position and its effect will persist in 

the downstream development of Gortler vortices. An important consequence of such an effect 

is that non-parallel effects will be important over a larger range of wavenumbers than was 

the case for the special curvature case. Suppose we measure the order of the wavenumber by 

writing it as a = O(Ma). Then we will show in this section that non-parallel effects continue to 

be dominant for a up to and including 1/4. For a > 1/4, non-parallel effects become negligible 

compared with viscous effects and an analytical expression can be obtained for the second 

order correction to the Gortler number expansion. This second order correction becomes of 
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the same order as the leading order term due to the curvature of the basic state when a = 3/8. 

In this case a higher order correction term can also be obtained. 

5.1 0(1) wavenumber regime-the near neutral inviscid mode 

In the 0(1) wavenumber regime, it is convenient to determine the stability properties by 

considering the evolution of Gertler vortices in the neighbourhood of the leading order neutral 

position Xn given by (3.34). Thus we shall fix the Gertler number as given by 

(5.1) 

and determine the second order correction say :tn to the neutral position Xn so that Gartler 

vortices with G given by (5.1) are neutrally stable at location Xn + :tn. Replacing Xn by Xn - xn 
in (5.1) then gives the appropriate expansion of the Gertler number for vortices neutrally stable 

at x = Xn • 

It can be shown that in the neighbourhood of X n , the second term in the expansion of 

K(x)G/2 will force a growth rate of order Ml/2. Hence we shall consider the evolution of 

Gartler vortices in an 0(M-l/2) neighbourhood of Xn by defining a new variable X by 

(5.2) 

and look for asymptotic solutions of the form 

T = To(X, 77) + ... , V = M 1
/

2Vo(X,77) + ... , 

W = M 1
/

2Wo(X,77) + ... , P = M Po(X, 77) + ... . (5.3) 

Equation (3.29) becomes 

1 
uti:!: + 'iHill + '2K(X)GU2 = EXM + o(M), (5.4) 

where 

(5.5) 

Note that it is this term that gives rise to a local growth rate of order Ml/2. On substituting 

(5.3a-d) into the perturbation equations (3.18)-(3.22), dropping higher order terms and then 

eliminating Vo, Wo and Po from the resulting equations in favour of To, we find that Vo, Wo 

and Po are related to To by 

V; - ~'i' 8To (5.6) 
0-- T' 8X' 

ikWo = - ~ 8Vo, (5.7) 
T 877 

(5.8) 
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and that To satisfies the equation 

where k d~. y'2xn a. We can interpret (5.9) as the turning point equation associated with the 

breakdown of the WKB structure in x of the expansions (3.31), indeed the evolution equation 

(3.32) is retrieved from (5.9) by taking X to be large. Since this breakdown is associated 

with a simple zero in x of the right hand side of (3.32) we expect that the local behaviour of 

the disturbance should now be expressed in terms of Airy functions. Equation (5.9) admits 

separable solutions of the form 

with (fi and 1/J satisfying 

(fi"(X) - wX (fi(X) = 0, 

"() 2'1''' '() [2 -2 - -/( 1 '1''' )/] () 2 E'1" () 1/J 1/ - '1" 1/J 1/ - k T - TT '1'2 - '1''1'/2 1/J 1/ - k . ~w 1/J 1/ = 0, 

(5.10) 

(5.11) 

(5.12) 

where the separation constant w is to be determined by solving the eigenvalue problem (5.12) 

subject to appropriate boundary conditions. By a simple substitution z = XW 1/ 3 , equation 

(5.11) reduces to the standard form of Airy's equation W"(z) - zW(z) = 0 which has two 

independent solutions Ai(z) and Bi(z), so the solution of (5.11) is given by 

(fi(X) = aAi(w1
/
3 X) + bBi(W1

/
3 X), (5.13) 

where a and b are two constants to be determined by initial conditions. 

To solve (5.12), we first note that in the large wavenumber limit, equation (5.12) takes 

the same form as equation (3.32). Therefore, the solution of (5.12) can be written in terms of 

Hermite polynomials as 

(5.14) 

and from (3.41) the eigenvalue w expands as 

E 1 A2. 
w. = ~AO (1 - k .1;;"" + ... ), (5.15) 

where AO, A2. and ~ are defined in turn by (3.43), (3.46) and (3.45a). 

In the 0(1) wavenumber regime, equation (5.12) has to be solved by a numerical integration, 

and in general an infinite number of eigenvalues w8 (s = 0,1,···) and eigenfunctions 1/J. can be 

obtained. Then the general solution of (5.9) can be written as 

00 

To = L: {a.Ai(w"X) + b8 Bi(w.X)} 1/J8(1/), (5.16) 
.=0 
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where a. and b. are constants to be fixed by initial conditions at X = o. From (5.6), Vo is 

given by 

Vo = - ~'i' f {a.Ai'(w.X) + b.Bi'(w.X)}w.'ifJ.("l). 
.=0 

(5.17) 

It is clear that once To(X,"l) and Vo(X,"l) are specified at X = 0, the coefficients (a., b.) and 

hence the evolutionary behaviour of the perturbation field (Vo, Wo, To, Po) will be completely 

determined. 

The correction term to the neutral position can be defined as the position where a certain 

energy measure has zero growth rate. It is obvious that such a position would depend upon 

what initial conditions we impose at X = 0 and what energy measure is employed to monitor 

the energy growth. In principle then it is an easy matter to determine the local neutral position 

associated with any initial perturbation, we note however that before growth of the vortices 

occurs they will have an oscillatory behaviour in X since both Airy functions are oscillatory 

on the negative real axis. Clearly this occurs because the boundary between instability and 

stability is controlled by inviscid effects in this regime, there is no counterpart to this result in 

the behaviour of Gortler vortices or for that matter Tollmien-Schlichting waves in incompress

ible flows. We further note that appropriate forms for the initial conditions can be obtained 

from the receptivity problems associated with wall roughness or free stream disturbances, see 

Denier, Hall, and Seddougui (1990) and Hall(1990). We merely note in passing here that it is 

reasonable to expect that the type of mode discussed above is more likely to be stimulated by 

free-stream disturbances since the effect of wall roughness is diminished by the wall layer over 

which the wall roughness must diffuse before reaching the unstable adjustment layer. 

This is certainly typical of the evolution of Gortler vortices in growing boundary layers. In 

the present problem, non-parallel effects dominate in the evolution of Gortler vortices mainly 

through the O(M3/2) curvature of the basic state. As we increase the wavenumber, viscous 

effects will gradually come into play in the evolution of Gortler vortices and nonparallel effects 

will become less important. In the following subsection we consider wavenumbers of order 

Ml/4. This is the maximum order at which nonparallel effects are dominant. We shall show 

that when the wavenumber is increased further above this order, nonparallel effects become 

negligible. 

5.2 The O(Ml/4) wavenumber regime-the nonparallel viscous mode 

When the wavenumber reaches the order Ml/4, the streamwise lengthscale is still O(M-1/ 2 ) 

(implying that the local growth rate is O(M1/ 2 )), but the verticallengthscale becomes of 

O(M-1
/

8
) (as we expect that vortices would be trapped in an O(M-l/8 ) thin layer). We 

therefore define two new independent variables X and e by 

(5.18) 
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where 7]* is the center of vortex activity. For convenience, we define a small parameter £ by 

d~. M- l / S £ - • (5.19) 

An analysis of the perturbation equations (3.18)-(3.22) shows that 

(5.20) 

We now assume that T = 0(1) and scale (V,W,P) by (£-4,c 3 ,C5 ). Then by neglecting 

terms of relative order higher than £2 in the perturbation equations (3.18)-(3.22), we obtain 

+ £2 • _1_ ap _ £2 P. aw = 0 
.J2zn a~ 3V2Xn a~ , (5.21) 

1 aw - 4 _ - - p. av fJ,'i" 
fJ.2 ax - T P + 3 JLTW + 3V2Xn a~ + £ • -.J-2z-n V 

2 1 a p. aw 
- £ • (2zn)a2 a~('i' ae ) = 0, (5.22) 

(5.23) 

(5.24) 

where W d~. ifJ.W, fJ. d~. M- l /4 a and where we have used the same notation to denote the scaled 

perturbation quantities. Elimination of V, W, and P in favour ofT among these equations then 

gives 
a

2
T (1 1).2 - T, aT 1.4 - 2T, 2T EXTl T 

aX2 + + - a Jlo 0ax + -a Jlo 0 +. rrr=- 2 
q q y 2ZnTO 

=0. (5.25) 

where To = T(7]*), Tl = T'(7]*), Ji.o = P.(To) and where 7]* is chosen at higher order such that the 

vertical structure of T can be expressed in terms of parabolic cylinder functions which vanish 

at 7] = ±oo. The solution ofthe above equation is easily found to be expressible as the product 
-X(1+i-lIl2Ilo To 

of an Airy function multiplied bye 2 • As before the Airy function grows or decays 

exponentially for large X and is oscilatory on the negative real axis. However the presence of 

the exponential factor now leads to a crucial change in the nature of the streamwise evolution 

of the disturbance. We refer to the fact that the exponential factor, induced by viscous effects, 

now means that in the stable regime the disturbance decays exponentially rather than oscilating 

as was the case previously. This result is consistent with the usual result of stability theory 

that inviscid disturbances change from being oscilatory to being exponential in character when 
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insta.bility occurs; viscous insta.bilities on the other ha.nd a.re exponential in na.ture either side 

of the sta.bility boundary. The local. neutral. position ca.n only be obtained by specifying a.n 

initial. disturba.nce a.nd finding where the solution of the evolution equa.tion begins to grow. 

If we let a ~ 1, then to lea.ding order equa.tion (5.25) reduces to 

2 -
8 T + EXTl T= 0 
8X2 v'2xn Tl2 

(5.26) 

which ma.tches with the a.symptotic form of (5.9) when k ~ 1. 

On the other hand, if we let a ~ 1, then to lea.ding order (5.25) reduces to 

( 
EXTl 1 -4-2T- 2) T - 0 ----;;'2 + -a J1. 1 -, 

v'2xn T l (1 
(5.27) 

which shows tha.t the second order correction term to the lea.ding order neutral. position becomes 

independent of nonpara.llel effects and is given by 

v'2xn -2 -4-4 X = Xn = -----J1.oTo a , 
(1ETl 

(5.28) 

On repla.cing Xn by Xn - M- l / 2 Xn in (5.1) a.nd expanding the resulting expression in the 

neighbourhood of Xn , we obtain the following expression for the Gortler number for Gortler 

vortices neutra.lly sta.ble a.t loca.tion x = Xn: 

(5.29) 

where 

(5.30) 

The expression (5.29) is va.lid for wa.venumbers of order Ma,1/4 < a < 3/8. When the 

wa.venumber rea.ches the order M3/ 8 , the second order correction term in (5.29) is a.s large a.s 

the first term a.nd a. more a.ccura.te a.symptotic expression ca.n be obtained. Tha.t situa.tion will 
1 

be discussed in the following subsection. We ha.ve seen a.bove tha.t in the O(M'i) wa.venumber 

regime viscous effects come into pla.y and modify the evolution of the near neutral inviscid 

mode, for tha.t rea.son we refer to the mode in this ca.se a.s the nonpa.ra.llel viscous mode. We 

further note tha.t the strongly unsta.ble inviscid mode connects directly with the pa.ra.llel viscous 

mode discussed below. Thus we ha.ve shown a.bove tha.t the nonpa.ra.llel viscous mode connects 

with the near neutral inviscid mode in the vicinity of the right hand branch of the neutral 

curve. Hence the initial stages in the evolution of the right hand branch of the neutral curve 

are governed by an interpla.y between viscous and inviscid effects. We further note tha.t, in 

view of the limiting form (5.29) va.lid for large a, as the wavenumber increa.ses the neutral 

Gortler number will also increa.se. 
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5.3 The O(Mi) wavenumber regime-the parallel viscous mode 

When the wavenumber becomes of order M 3 / 8 , viscous effects are of the same order as the 

centrifugal acceleration of the basic state in the determination of the Gortler number, and the 

leading order inviscid result (3.35) is to be modified. We assume that to leading order the 

Gortler number now expands as 

(5.31) 

Here the first term is due to the curvature of the basic state and the second term is due to 

viscous effects and is to be determined. 

For convenience, we introduce a small parameter € and an 0(1) constant N by 

def. 1 
€ = a' 

N d~. M3/2 4 - E, (5.32) 

so that (5.31) can be written as 

G - 2BN . ..!.. + go 
- K:( Xn )(2Xn )3/2 €4 €4 • 

(5.33) 

To determine the higher order correction terms to the Gortler number expansion, we shall first 

fix the Gortler number as given by (5.33) and consider the evolution of Gortler vortices in the 

neighbourhood of the leading order neutral position Xn defined by (5.31), aiming at finding the 

second order correction say fin to the neutral position. As we have remarked at the beginning 

of the first subsection, replacing Xn by Xn - EXn in (5.33) would give the appropriate expansion 

of the Gortler number for vortices neutrally stable at x = x n • 

The vortices under consideration vary on small lengths cales in both x and 17 directions. 

In the streamwise direction, their growth rate can be shown to be O(l/€) so that they evolve 

on an O(€) lengthscale. In the 17 direction, they are confined to an 0(€1/2) thin viscous layer 

because of their small wavelength character. We therefore define two new variables X and ( 

by 
X _ x - Xn 

- € ' 

17 - 17* 
(=-;ri2' (5.34) 

where 17* is the centre of vortex activity and is to be determined. 

We now look for asymptotic solutions of the form 

T = (Jo(X, () + €1/2(Jl(X, () + €(J2(X, () + "', 

V = €-2[Vo(X, () + €1/2Vi(X, () + €V2(X, () + ... ], 

w = €-3/2[WO(X,O + €1/2W1(X, 0 + €W2(X,() + ... J, (5.35) 

p = C 5
/
2[PO{X,O + €1/2 P1(X, () + €P2{X, 0 + ... ]. 
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Here the relative orders of the perturbation quantities are deduced from the perturbation equa

tions (3.18)-(3.22). On inserting these expansions into the perturbation equations (3.18)-(3.22), 

expanding all coefficients there about x = Xn and." = ."., and then equating the coefficients 

of like powers of E, we obtain a hierarchy of equations. To leading order, the Gortler number 

90 in (5.31) is determined as a solvability condition for (Vo, 00 ) and is given by 

(5.36) 

whilst 00 , Wo and Po are related to Vo by 

a'1'l . 1 avo ilo avo 
00 = - 2jloTJXn V

o, ~Wo = - ~To a(' Po = - '1'0 a( , (5.37) 

whereTo = '1'(.".), '1'1 = '1"(.".), fLo = fL('1'o) ~o = K(Xn). Note that (5.36) is of the same 

form as (5.30), as we would expect. 

To next order, we obtain three expressions similar to (5.37) for 01 , WI and PI in terms of 

VI and Vo and the condition that 

(5.38) 

which implies that .". is where 90 attains its minimum. 

If we carryon one order higher, we find from a solvability condition for (V2' O2) that Vo 

must satisfy the evolution equation 

where 

a2vo _ 2(1 + a)'1'oxn avo _ -r2v; bXVi = 0 
a(2 3110 ax a.. 0 + 0 , 

(5.39) 

(5.40) 

and where KI = K'(Xn). The solutions of (5.39) which satisfy the conditions Vo ~ 0 as 1(1 ~ 00 

can be written as 

3fLob 1 y4ii { - ( ~)2} Vo = Vom(X,() = exp 4(1 + a)Toxn X - (m + '2)T 

(5.41) 

where U is a parabolic cylinder function. The neutral position xn can be taken to be the point 

where avo/ax = 0, so that the mth mode is neutrally stable at 

(5.42) 
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The most unstable mode corresponds to m = O. We therefore have 

_ va 
:Z:n = ---. 

b 
(5.43) 

With the expression for 3:n determined, we can now replace :Z:n by :Z:n - f3:n in (5.33) and then 

expand the two terms on the right hand side up to and including the 0(1/f3) term, hence 

obtaining the expansion 

(5.44) 

for Gertler vortices which are neutrally stable at position :Z:n' 

As is to be expected, the Gertler number expansion (5.44) agrees in the special case 

K. = (2:z:)-3/:l with the combination of (4.1), (4.10a), (4.12d) and (4.17) (note that the small 

parameter f there corresponds to E/..,tEC;: here). This means that in the large wavenumber 

limit, the relation (5.44) is a universal expression for the neutral Gertler number, which is 

valid for all wall curvatures. 

Finally in this subsection we stress that a more unstable version of the parallel viscous mode 

can be obtained by taking 90 bigger than the value given by (5.36), in that case we must allow 

for a growth rate of order Mt and then (5.36) is replaced by an equation to determine that 

growth rate. This structure then enables a direct connection between the strongly unstable 

inviscid mode and the parallel inviscid mode at relatively high Gertler numbers with G - GN IV 

M~. The analysis for this more unstable regime is essentially identical to that given by Denier, 

Hall, and Seddougui (1990) in the incompressible case. 

6 The wall mode 

It has been established in section 3 that as the wavenumber becomes large, Gertler vortices 

become increasingly trapped in the 0(1) temperature adjustment layer. Thus the preceding 

three sections are devoted to Gertler vortices which have wavelength of 0(1) or smaller and 

which are trapped in the temperature adjustment layer. Clearly it is possible for vortices 

of wavelength smaller than the thickness of the transition layer to be excited, far enough 

downstream the local wavenumber will become comparable to the adjustment layer thickness 

and the previous analysis will apply. However before this occurs the vortices must be described 

by an analysis which takes account of the fact that they are of wavelength much larger than 

the adjustment layer thickness, we shall now address that situation. In fact it can be deduced 

from the definition (2.11) and (3.1c) that the variation dy of the physical variable y and the 

variation of the similarity variable d." satisfy 

(6.1) 
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The wall layer which corresponds to TJ = 0(M-1/ 2) with 'i' = 0(M2) is therefore actually of 

0(M3/2) thickness in terms of the physical variable y, whilst the temperature adjustment layer 

is still of 0(1) thickness. Thus a na~ural scale for larger wavelength vortices is provided by the 

thickness of the wall layer, the appropriate size of the Gortler number is found by rescaling 

the vortex wavelength and velocity field by the scales relevant to the wall layer. Such Gortler 

vortices are referred to as the wall mode and are studied in the present section to complete 

our stability analysis. 

Since in the large Mach number limit the boundary layer thickens by 0(M3/2), we should 

rescale (y,z) by a factor M 3/ 2 and the corresponding velocity components likewise. This 

effectively replaces all "R-1/ 2"S by "R-1/ 2 M3/ 2". It is therefore appropriate to rescale the 

Gortler number G and the wavenumber a by defining 

(6.2) 

In the wall layer, the basic state is from (2.12) and (3.5) given by 

M 3/ 2 

v = . rn= [-1' F(Y) + F'(Y)O(Y)], 
v2x 

11 = F'(Y), (6.3) 

where 

(6.4) 

The various partial derivatives of 'IL, v and J1. which appear in the perturbation equations 

(3.18)-(3.22) have to be computed before we can deduce the relative orders of the pertur

bation quantities. Such expressions are given in the Appendix to this paper. With the aid of 

these expressions, we can show from (3.18)-(3.22) that the relative scalings of the velocity, 

pressure and temperature disturbance fields are given by 

v = 0(M3/2U), W = 0(M3/2U), T = 0(M2U), P = O(MU). (6.5) 

We therefore look for solutions of the form 

U=U(x,Y)+ ... , 3/2 -V = M V(x, Y) + ... , 
3/2 -W = M W(x,Y)+ ... , 2 -P = M P(x,Y) + ... , (6.6) 

On substituting (6.6) into the perturbation equations (3.18)-(3.22) and then equating the 

coefficients of like powers of M, we obtain to leading order the following set of partial differential 

equations which govern the evolution of Gortler vortices in the wall layer: 

:(F,8U _~8U)+(I+m)/f..'k2 _ F"~)U_(I+~) 8 (_1_8U) 
T 8x 2x 8Y 2x 2xT2 2xT 8Y vT 8Y 
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F" iT _ (1 + m)F" 80 {FFII _ 1 + m . '1'~ ( F" )} ~ = 0 
+ V'2X'1'2 2 . (2:1: )'1'5/2 8Y + 2 8Y '1'3/2 2:1:'1'2 ' 

(6.7) 

{
,A - (' '1" F ) F" 2 } U 

F l:i + T F - F - l' 0 - l' 0 (2:1:)3/2'1' 

(1 + m)1" 8U 0 8U 1 + m { 82U 1 (lOT' 8U 0 82U} 
+ 3V'2XT3/2 (8:1: - 2:1:T 8Y) - 3V2:fl 8:1:8Y - 2:1: - T2 ) 8Y - 2:1:T 8y2 

1 + m OT' 8U 1 ,8iT F 8iT 
+-2-' (2:1:)3/2'i'5/2 8Y + T(F 8:1: - 2:1: 8Y) 

+ [(1 + m)#. k
2 

+ ~(-T'F + FIIO)] iT _ 4(1 + m} 8 (_1_ 8iT) 
2:1: 2:1:T2 3 . (2:1:)T 8Y ../T 8Y 

+~ 8ft _ {~[!GF'2 + TFF' + T'F2 - (F'2 + FF")O] 
.,f2XT 8Y T2 2 

1 + m II F"'O F"T'O (1 + m)F"T' 
- 6T3/2 (F + T - T2 ) - 6T7/2 0 

2(1+m) 8 1 -, II l+m OT'FII } 0 
+ 3T 8Y[T3/2(-T F + F 0)] + -4-' T7/2 (2:1:)3/2 

_(1+m)FII(80 _~80)_ l+m (3F"O-2FT')80 
2.,f2XT3/2 8:1: 2:1:T 8Y 3 . (2:1: )3/2T5/2 8Y 

(1 + m)T' "k-W- _ (1 + m) 8(ikW) _ 0 + -/zt;i; -, 
3· (2:1:)T3 2 3. (2:1:)v1' 8Y 

(6.8) 

(6.9) 

(6.10) 

OT' - F" 8U T'-
- 2:1:T2 U - 2(,- 1)(1 + m) . (2:1:)1'3/2 8Y + V'2X1'2 V 

+ : (F' 80 _ ~ 80 ) + (1 + m)P JT 0 
T 8:1: 2:1: 8Y (J' • 2:1: 
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{ 
FT' 1 F,I2 1 + m 8 T' } ~ 

- -2:1:T2+2(1+m)(,-1)2:1:T5/2+2u(2:1:)T8Y(T3/2) 0 

_ (1 + m)T' 80 _ 1 + m 8 (_1_ 80 _ 0 
2u(2:1:)T5/28Y u(2:1:)T8Y .../T8Y)- . (6.11) 

Obviously, this set of partial differential equations have to be solved numerically to deter

mine the evolution properties of Gortler vortices in the wall layer. We further note that the 

downstream velocity component of the perturbation now does not decouple from the other 

disturbance quantities. For the purpose of numerical calculation, it is convenient to eliminate 

the pressure perturbation P and W from the above five equations. After some manipulation, 

we obtain 

(6.12) 

820 _ uF'../T. 2:1: 80 = _ uF../T 80 + uT' . v!2iv _ unT' f) 
8y2 l+m ()8:1: 1+m8Y (l+m).../T (1 + m).../T 

,,8f) {~2 ~2 u FT' 1 F,I2 1''' 3T'2} ~ 
- 2u(, - l)F - + k T + - -u(, - 1) . -~- - -~ + -~- 8, 

8Y (1 + m).../T 2 T 2T 4T2 
(6.13) 

8
4
V _ F'../T . (2:1:) 8

3V + (31" F' _ F"). ../T . (2:1:) 8
2
V 

8Y4 1 + m 8:1:8y2 T 1 + m 8:1:8Y 

F' (F"T' 3T,2 Til ~2 ~5 2) 8V 4 
+ 1 + m ../T F' - T3/2 + ../T + k T / . (2:1:) 8:1: = t; ai, (6.14) 

where 
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a = {F:' n2 (F' _ '1'~F)n _ '1' F _ OF' (1 + m)( '1" ~'1''' _ 3~'1"2)} . 
3 T + T + 2 VT + T3/2 2T5/2 

. k2'1'5/2U + n'1" . p'1'8U _ ~P'1'2'1" . .j2;8U 
(1 + m)y'2"X 2y'2"X 8Y 2 8~ , 

a4 = { 1 ~ in [~OF'2 + '1' F F' + '1" F2 - (F'2 + F F")n] 

+--+-yTF - ~ - +-~- kT/.-
F(3)n 1 r.;,,, 3F"n'1" '1'''F + '1"F' 3F'1'I2} ~2 ~3 2 0 
2VT 2 4T3/2 VT 2T3/2 y'2"X 

+_l_p '1'( ~F"n _ F'1") 80 + ~k2'1'2 F" . .j2;80 
y'2"X 2 8Y 2 8~ , 

n 8U F 80 8U F' 80 
W3 = ~ ~- 8Y - . ~~ 8Y - .j2;-8 + -;;-. y'2;-8 

v2~T v2~T ~ T ~ 

n'1" ~ F'1" ~ 
y'2"X'1'2 U + y'2"X'1'2 0, 

- 1 8fT '1"-
W = --=-8Y + -::-V + W3. T T2 

The above equations are to be solved subject to the following boundary conditions: 

At Y = 0, 
~ - 8V 
U = V = 8Y = 0, 

80 
8Y = 0, if the wall is thermally insulated (6.15) 

o = 0, if the wall is under cooling. 

As Y -. 00, 

~ - 8V ~ 
U -. 0, V -. 0, 8Y -. 0, 0 -. o. (6.16) 

The precise large Y decay behaviour of the perturbation quantities can be deduced from 

the perturbation equations (6.12)-(6.14), but the derivation is tedious. However, the far 

downstream limit of such decay behaviour can be deduced very easily from the condition that 

the solutions of the wall mode under consideration in the double limit k -. 00 and Y -. 00 

should match with the inviscid solutions (3.32) and (3.33) when k -. 0 and." -. 0 there. In the 

limit k -. 0, equation (3.32) reduces to equation (3.37) and the latter has solutions confined 
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to a thin layer TJ = O(P/3) near the wall. It can be shown that in the further limit TJ --t 0, the 

solution of (3.37) has 

and from (3.33), 
C3 

Wo --t 4' 
TJ 

(6.17) 

(6.18) 

where C1, C2 and C3 are all functions of:z:. By the above-mentioned matching condition, the 

relations (6.17) and (6.18) with 'fJ replaced by Yare also the far downstream, large Y decay 

behaviour of the perturbation quantities in the present problem. 

For any initial disturbance located at a given downstream position, we can determine the 

position at which the disturbance becomes neutrally stable by integrating these equations using 

the same marching procedure as the one used in solving the system of equations (4.3)-(4.7). 

As an illustrative example, we impose the following initial disturbance at the location :z: = 50: 

U(50, Y) = y5e-y3 , V(50, Y) = 8(50, Y) = O. (6.19) 

The wall curvature is taken to be y'2; and the yvall is assumed to be thermally insulated. For 

a given wavenumber and a given Gortler number, we can march downstream until we reach 

the neutral position where a certain energy measure has zero growth rate. We then calculate 

the local wavenumber k and the local Gortler number G at the neutral position. By fixing 

the wavenumber a( = k(2:z: )-1/2) at 1 and varying the Gortler number M-3/2G from 0.0001 to 

0.03, we obtain a series of neutral points (k, G). Fig.13 shows the neutral curves corresponding 

to the following three energy measures: 

E1 = 10
00 

U2dy = V2XM3
/
2 fooo 

U2TdY, 

E2 = 10
00 

(U2 + V2 + W2)dy = V2XM3
/
2 100 

(U2 + V2 + W2)TdY, 

E3 = /00 (au )2 dy = M-
3

/
2 /00 : (au )2 dY. 

Jo ay v'2X Jo T ay 

(6.20) 

(6.21) 

(6.22) 

Fig.14-Fig.17 shows the downstream evolution of Gortler vortices corresponding to the above 

conditions with M-3/ 2G = 0.001. We observe that all neutral curves decrease monotonically 

with respect to the local wavenumber and that Gortler vortices become increasingly more 

and more shifted to the right (Le. towards the temperature adjustment layer) as they evolve 

downstream. This is certainly to be expected since in the large local wavenumber limit the 

wall mode has to match with the mode trapped in the temperature adjustment layer. By 

taking the large wavenumber limit of the wall mode equations we can show that the neutral 

curve should tend to the limit G = 2B = 1.2543. In order to realize this limit numerically we 

have to carry out our calculation at very large wavenumbers. This presents some numerical 
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difficulties, because on one hand, if we fix the Gartler number and vary the wavenumber, 

the initial conditions soon become incompatible with the differential equations since for large 

wavenumbers Gartler vortices have to be trapped in a region away from the wall; on the 

other hand, if we fix the wavenumber and vary the Gortler number, a large local wavenumber 

corresponds to a large downstream neutral position and there contamination from the "finite 

infinity" becomes important because of the algebraic decay behaviour (implying that we have 

to choose a larger infinity). Finally, we remark that the x-derivative of 0 in the expressions for 

W3 and W could be eliminated with the aid of equation (6.13) to give a different formulation 

and thus to provide a check on our numerical scheme. We have done so and have obtained 

identical results. 

We conclude this section by stating the most important results of our investigation of the 

wall mode. We have shown that the wall layer can support a disturbance trapped in the wall 

layer with wavelength comparable with the wall layer thickness. This mode is dominated by 

nonparallel effects and has a neutral Gortler number which is a monotonic decreasing function 

of the vortex wavenumber. In the limit of high vortex wavenumbers the mode takes on a struc

ture essentially identical to that found for the small wavenumber limit of the inviscid modes of 

wavelength comparable with the adjustment layer thickness. Moreover in this limit the vortex 

has a neutral Gortler number which approaches from above the zeroth order approximation to 

the neutral Gortler number of the wall modes. 

7 Real gas effects 

In our previous discussions, we have assumed that the fluid under consideration is an ideal gas 

undergoing no dissociation. Our asymptotic analysis based on the large Mach number limit 

has yielded some revealing results about the stability properties of hypersonic boundary layers. 

However, in the large Mach number limit, we would expect that the wall temperature should 

be well above the temperature at which dissociation takes place. Take a boundary layer over 

a thermally insulated wall as an example. The temperature at the wall is given by 

1 2 
Tw = 2h' - l)M Too 

when the Prandtl number is unity. At a standard altitude of 53 km, the air temperature Too 

is 283K. If we take i = 1.4, M = 25, then Tw = 35,375 K. Since at the far lower temperature 

of 2500 K, the oxygen molecules in the air have already begun to dissociate, it is clear that an 

investigation which takes gas dissociation into account is vitally important! 

A complete theory on real gas effects should at least incorporate the following important 

chemical reactions: 

34 



N +0 ~ NO, 

However, in order to expose the most important features and at the same time keep the algebra 

to a minimum, we begin our investigation by eliminating the less essential complications which 

arise from the detailed composition of air and confining our attention to a pure dissociating 

diatomic gas. The dissociation process is therefore denoted by 

A2 ~ A+A. (7.1) 

In our following discussion, 02 and N2 will be chosen for numerical illustration. Furthermore, 

we assume that the fluid under consideration is an ideal dissociating gas which satisfies the 

relation 

(7.2) 

(see Becker (1968), p. 36, or Lighthill (1957), p.6). Here a, p and T have the same meanings 

as defined in §2, whilst Pd and Td are respectively the characteristic pressure and temperature 

for dissociation. 

For the gas mixture of A and A2 , Dalton's law gives 

n1lRT n2 lRT 
P =Pl +P2 = V- + V-' (7.3) 

where Pi is the pressure which the ith component would exert individually if alone in volume 

V at temperature T, ni are mole numbers and lR is the universal gas constant. Here we use 

subscript 1 to signify component gas A2 and subscript 2 for A. Assume that the weight of a 

mole of gas A is m, the molar weight of gas A2 is then 2m. We therefore have 

nl·2m+ n2·m 
p=-----::-::----

V 

n2' m n2 
a= =. 

nl . 2m + n2 . m 2nl + n2 

With the use of (7.4) and (7.5), we can rewrite the equation of state (7.3) as 

P = (1 + a)!RpT, 

where ~ = '!t/(2m) is a gas constant. 

On inserting (7.6) into (7.2), we obtain 

2 
_a _ _ Pd e-Td./T 
1- a - p , 

(7.4) 

(7.5) 

(7.6) 

(7.7) 

where Pd = Pd/(!RTd) is the characteristic density for dissociation. Pd, Pd and Td are in 

general functions of T, but their variations over a large temperature range are very slight. 

Their typical values are given in Table 2 (taken from Lighthill (1957)). 
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Oxygen 

Nitrogen 

Td(OK) 

59000 

113000 

Table 2 

Pd(atoms) 

2.3 X 107 

4.1 X 107 

It should be noted that for atmospheric values of p, Pdf P is at least 105 • Thus although 

Pd, Td and Pd are called characteristic quantities, they are not typical of the actual values 

of p, T and P at all. For Pd/p = 105
, (7.7) shows that ex is 0.05 (5% dissociation) when 

T/Td = 0.057, and ex is 0.95 (95% dissociation) when T/Td = 0.116. For densities typical of 

the upper atmosphere, with (say) Pdf P = 107, these values of T /Td would be reduced to 0.045 

and 0.076 respectively. For a fixed value of Pd/P = 4 X 108 and Td/Too = 4 X 103, the variation 

of ex with respect to T/Too is plotted in Fig.1B. 

Relation (7.7) was first obtained by Lighthill (1957) from quantum mechanics, and there

fore the ideal dissociating gas discussed here is also called the Lighthill gas. Using a purely 

mathematical argument, Becker (1968) has shown that the Lighthill gas is a special case of a 

more general class of gases. An important property of Lighthill gases is that A2 and A have 

the same specific heats at constant volume, that is, 

(7.8) 

7.1 Constitutive properties of a dissociating gas 

In order to see the complications which arise from gas dissociation, let us first recall that an 

ideal gas has the following properties which have greatly simplified our previous analysis: 

(i) The equation of state has the simple form P = ~pT as compared with (7.6)j 

(ll) Specific heats cp and c" can be taken to be constantj 

(iii) The coefficient of thermal conduction k is proportional to the shear viscosity JL and the 

Prandtl number (1 = JLCp/k is usually taken to be constantj 

(iv) The viscosity can be taken to be related to the temperature by Chapman's law, or more 

accurately, by Sutherland's law. 

When part of an ideal gas has been dissociated, the gas becomes a mixture of two component 

gases and all of the above properties are changed. We have shown above that the equation of 
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state is modified to the form given by (7.6). In this subsection, we derive the corresponding 

expressions for IL, k and cpo Our derivation is based on work discussed in "The mathematical 

theory of non-uniform gases' by Chapman and Cowling (1970). 

The viscosity IL 

In the kinetic theory of gases, different expressions for the transport properties IL and k have 

been found depending on what model is used for the interaction of the gas molecules. For 

example, for a simple gas which consists of smooth rigid elastic spherical molecules, IL is 

pr()portional to -IT, whilst if the gas is taken to consist of smooth rigid elastic spherical 

molecules each of which is surrounded by a field of attractive force, IL is given 

= _5_(!RmT)1/2/(1 S) 
IL 16c2 7r + T ' (7.9) 

where c is the diameter of the molecule, S the potential energy of the mutual attraction of two 

molecules when in contact, m the molecular weight. Relation (7.9) is known as Sutherland's 

viscosity law. 

For a binary mixture of gases, Wilke's law gives an approximate expression for the viscosity 

of the mixture: 
Xl X2 

IL = .:1. +.=a.. + ..:1.. + :z.' (7.10) 
1-'1 1-'12 1-'21 1-'2 

where ILl and IL2 are the viscosities of the two component gases; Xl and X2 denote the propor-

tions by volume of the two gases in the mixture. Since by Avogadro's law equal volumes of 

different gases contain an equal number of molecules or moles, we have 

nl 1- a n2 2a 
Xl = - , X2 = = -- (7.11) 

nl + n2 1 + a nl + n2 1 + a 
In (7.10), IL12 and IL21 are the mutual viscosities of the two component gases and are given by 

5ml [!RT(ml +m2)]1/2 S12 m2 1 
IL12 = -16 2 2 /(1 + -T)' IL21 = -IL12 = -2IL12, (7.12) c12 7rml m2 ml 

where C12 can be taken to be (Cl + c2)/2, whilst the expression for S12 has to be found empir

ically. Lindsay and Bromley (1950) suggested that S12 = ~. Here Ci and Si (i=1,2) are 

constants appearing in (7.9), associated with ILi. 

With the aid of (7.9) and (7.12), we can now write down the appropriate expressions for 

the viscosities of the component gases. These are 

A ·T3/2 A T 3/2 
• . 1 2 3 ILi = T + Si' t = , , IL12 = '=T"';+-S"'-1-2' IL21 = IL12/2, (7.13) 

Here 

A. - _5_J!Rmi 

• - 16c~ 7r' 
(7.14) 

where we have made use of the fact that ml = 2m2. 
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Coefficient of thermal conduction k 

For a pure gas, the coefficient of thermal conduction is related to the viscosity JL by the simple 

formula 

k = !cvJL, (7.15) 

where! is a constant and , /! is usually defined as the Prandtl number. 

For a binary gas mixture, Wassi1jewa's formula gives 

k _ Xl X2 

- !!1.+S + ~+:a.' 
kl k12 k21 k2 

(7.16) 

where kl and k2 are the thermal conductivities of the two component gases and k12, and k21 

are the mutual thermal conductivities. 

It is suggested in Chapman and Cowling (1970, p.256) to put 

(7.17) 

where the coefficients a12 and a21 are regarded as functions of ml/m2, which are determined 

semi-empirically, and for Sutherland's model the diffusion coefficients Dll, D12 and D22 are 

given by 
6 6 . 6 

Dll = -5 JLl, D12 = -5 JL12, D22 = -5 JL2, 
Pl Pl P2 

(7.18) 

where Pi is the density of the ith component gas, when pure, at the pressure and temperature 

of the actual mixture. 

If we take a12 = a21 = 1 for simplicity and further make use of the above relations, relation 

(7.16) then becomes 

(7.19) 

where we have used the fact that for an ideal dissociating gas, Cvl = Cv2 d;j. Cv ; whilst It and 

h are the constants appearing in (7.15) corresponding to gases A2 and A respectively. 

For easy comparison, we rewrite (7.10) here, making use of the relation (7.12), 

(7.20) 

Comparing (7.19) with (7.20) shows that we can almost write k = cvhJL for the gas mixture, 

only if h = h. It is therefore desirable to investigate the values of It (for diatomic gases) and 

h (for monatomic gases). 

For all smooth spherically symmetrical molecules, it has been shown that taking h = 2.5 

provides a very good approximation. However, for diatomic and polyatomic gases, a variety of 

expressions have been suggested for !. One of these is Eucken's formula: 

1 
! = 4(9, - 5). (7.21) 

38 



This formula is valid under the assumption that the transport of momentum and translational 

energy is unaffected by the internal molecular motions, and that internal energy is transported 

at the same rate as momentum. 

For diatomic gases, there are 3 translational degrees of freedom, two rotational degrees of 

freedom and on the average one vibrational degree of freedom (may vary between zero and 

two depending on whether vibration has been fully excited or not). Thus the internal energy 

is given by 
1 ~T 3~T 

el = - .-(3+2+ 1) =-
2 (2m) 2m ' 

(Recalling that 2m is the molecular weight of A). Consequently, the specific heats are 

We then have 
Cpl 4 

'Y = - = - = 1.33, 
Cvl 3 

~ 
Cpl = Ctll + 2m' 

7 
f= 4 = 1.75. 

At lower temperatures when the vibrational mode is not excited, 

and therefore 

5 ~T 
el = -(-) 

2 2m ' 

7 
'Y = '5 = 1.4, f = 1.90. 

At the other limit when the vibrational mode is fully excited, 

and hence 

Therefore, in general, 

9 ~ 
Cpl = -(-) 

2 2m ' 

9 
'Y = "7 = 1.29, f = 1.68. 

1.68 < f < 1.90. 

(7.22) 

(7.23) 

(7.24) 

(7.25) 

In passing, we note that for monatomic gases, there are only three translational degrees of 

freedom and therefore 
1 ~T 3~T 

e2 = -·-·3= --. 
2 m 2m 

(7.26) 

Comparing (7.26) with (7.22) then shows that monatomic and diatomic gases have internal 

energies differing only on their zero point energies and that the basic assumption Ctll = Cv2 for 

an ideal dissociating gas is indeed valid. Also, the f value 2.5 for a monatomic gas can actually 

be read off from Eucken's formula (7.21) by noting that Ctl2 = 3~/(2m), Cp2 = 5~/(2m) and 

'Y = 5/3. 
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We now return to (7.19). From the above discussion, it is appropriate to put c" = 
3!R/(2m), h = 7/4, h = 5/2. The coefficient of thermal conduction k for the mixture 

is then given by the formula 

k _ 21!R {1'1 10 . 1'2 } 
- 8m 1 + =a.'& + 7 1 + ~.&. • 

:1:1 ~12 :1:2 ~12 

Specific heats of the mixture 

The specific internal energy for A and A2 both have the same expression 

3!RT e=--. 
2m 

The total internal energy of the mixture is then given by 

3!RT 
E = 2m (2m. n1 + m . n2). 

(7.27) 

(7.28) 

Since A and A2 do not necessarily have the same zero-point energy, relation (7.28) should be 

modified to 

(7.29) 

where the last term represents the difference of zero-point energies of A over A 2 • 

On dividing (7.29) by the total mass of the mixture (2mnl +mn2), we obtain the expression 

for the specific internal energy of the mixture: 

(7.30) 

With the aid of this relation and the equation of state (7.6), we can easily calculate the 

specific enthalpy as follows: 

(7.31) 

To calculate specific heats, we have to first of all evaluate (8a/8T)p and (8a/aT)p·. From 

(7.7), 

( 
8a) = Td a(1- a) 
8T p T2 2 - a ' 

It then follows from (7.30) and (7.31) that 

= (~) = 310 !R(Td)2. a(1- a) 
c" aT t1 :1\.+ T 2-a' 

8a 1 Td 1 2 
(-)p = -(1 + -). -a(1- a ) 8T T T 2 . (7.32) 

(7.33) 

The quantity (8h/8p)T which appears in (2.8) can now be calculated with the use of (7.31) 

and (7.2). The result is 

(8h)T = _ !R(T + Td) . a(1- ( 2) = -.!:.(1 + Td) . a(1- a). (7.34) 
8p 2p 2p T 
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7.2 Modification of the basic state 

As we have remarked before, the basic state equations (2.13) and (2.14) are independent of 

constitutive assumptions and therefore also valid for the gas mixture under consideration, 

although now p, ji., k and Cp are calculated from the more complicated expressions (7.6), 

(7.10), (7.27) and (7.33), respectively. In these expressions, the function 0: is given by (7.7). 

After non-dimensionalization, these equations become 

p = (1 + o:)T' 
1 

(7.35) 

_ (1 + ml )'i'3/2 ..42 (1 + ml )'i'3/2 

J1. = T + ml + * . l:aa('i' + m3) + 'i' + ~ + 4! . l~a('i' + m3)' 
(7.36) 

k = (1 + ml)'i'3/2 (10..42/7)(1 + ml)'i'3/2 

'i' + ml + * . l:':x('i' + m3) + 'i' + m2 + t . l~a(T + m3)' 
(7.37) 

1 1 Td)2 ( 2) Cp = 1 + -0: + -(1 + --- .0: 1 - 0: , 
4 8 TooT 

(7.38) 

0:2 Pd - _....!rL 
-- = -Te TooT 
1- 0:2 Poo ' 

(7.39) 

where 

(7.40) 

For the purpose of asymptotic analysis, it is convenient to define two new constants a and b 

by 

(7.41) 

Then equation (7.39) becomes 

(7.42) 

which displays the physical fact that dissociation will take place in the hottest region where 

'i' = 0(M2). 

An asymptotic analysis of equations (2.13) and (2.14) shows that the boundary layer struc

ture in the present case is similar to that for an ideal gas. In particular, the boundary layer 

can be divided into two regions: an inner region 'Tl = 0(M-l/2) and a temperature adjustment 

region." = 0(1). In the inner region, we define new variables Y, T as in (3.5), but now (3.6) 

and (3.7) are replaced by 

(1 + m ) (hl (0:) . FII) I + F F" = 0 
1 1+0:.,fT , 
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(7.44) 

where 
h de!. Aa(l- a) A2 Aaa 

1 = 2a+Aa(1-a)+ Aaa+A2(1-a)' 
(7.45) 

h2 d,g. Aa(! - a) + _ (10A2~a/7)a , 
2a + Aa(l- a) Aaa + A2(1 - a) 

(7.46) 

_ 1 1 ( b )2 ( 2) 
Cp = 1 + :ta + 8" 1 + T . a 1 - a , (7.47) 

and where a satisfies 
a 2 

- l' -- =aTe-b/ 
1- a 2 

(7.48) 

As Y -. 00, T -. 0 and we expect that a -. O. From (7.45), (7.46) and (7.38) we have 

hl -. I, h2 -. 1 and Cp -. 1. Equations (7.43) and (7.44) can then be approximated by 

F" 
(1 + ml)( v'T)' + F F" = 0, (7.49) 

1 + ml ( ~)' + FT' + (, _ 1)(1 + ml) (F';J2 = 0, 
U vT vT 

(7.50) 

which have asymptotic solution 

D T = [3(1 + ful )] 2 • 1 ... 
F = Y - {3 + (Y _ f3)3/tT + ... , U (Y _ f3)4 + , (7.51) 

where both D and f3 are constants. Therefore, equations (7.43) and (7.44) are to be solved 

subject to the boundary conditions (3.8) and the asymptotic conditions (7.51). Results from 

such a numerical integration are shown in Fig.1 together with those results corresponding to 

the undissociated model. 

In the temperature adjustment layer." = 0(1), a is exponentially small which means that 

no dissociation takes place in this region. The basic state equations (2.13) and (2.14) reduce 

to (3.13) and (3.14) which are appropriate for an ideal gas and which are to be solved subject 

to the same matching conditions (3.15) and the conditions (3.16) at infinity. 

7.3 Modification of the stability properties 

Since the boundary layer structure is similar to that for an ideal gas when dissociation is taken 

into account, the qualitative stability properties are also similar with appropriate quantitative 

modifications. In particular, we can still show that the mode trapped in the temperature ad

justment layer is most susceptible to Gortler vortices and the neutral Gortler number expands 

as in (3.35), but now the coefficient B is modified since it is the leading order contribution to 

the integration of basic state temperature across the whole boundary layer. As for higher order 
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correction terms to the Gertler number expansion, The effect of gas dissociation is dependent 

on the wall curvature. In the special curvature case, since the second term G in (4.1) is de

termined by solving partial differential equations in the undissociated temperature adjustment 

layer, it is not affected by consideration of gas dissociation; whilst in the more general curva

ture case, we can see from (5.9) that gas dissociation affects the second order correction term 

through E, but in the higher wavenumber case discussed in §5.3, the second order correction 

term is not affected by gas dissociation, as is clear from (5.44). 

In Fig.19, we have plotted the variation of B with respect to the cooling coefficient both for 

the real gas model discussed here and for the ideal gas model used in section 3. It is clear from 

Fig.19 that the values of B is decreased by gas dissociation as well as by wall cooling. Therefore, 

both gas dissociation and wall-cooling are destabilizing. In our numerical integration of the 

boundary layer equations (7.43) and (7.44), we have taken ml = m = 0.508, ..42 = ..43 = 1, a = 

1.225 X 109, b = 3.2653. We have also repeated our calculation for a few sets of different values 

for the above five constants. We find that the above prediction is still valid. 

In order to determine the effects of gas dissociation on the wall mode, we have integrated 

the perturbation equations (6.12)-(6.14) with the basic state given by the solutions of (7.49) 

and (7.50), subject to the same conditions as those used to produce the neutral curves in 

Fig.13. Fig.20 to Fig.22 give a comparison of the neutral curves corresponding to the ideal gas 

model and the real gas model with dissociation. We observe that in each of these Figures, the 

two neutral curves corresponding to the two models intersect. Therefore, gas dissociation can 

have either a destabilizing effect or a destabilizing effect on the wall mode. 

8 Further discussion 

We have seen above that the Gertler mechanism in a hypersonic boundary layer of a Sutherland 

law fluid behaves in a predominantly viscous or inviscid manner depending on whether or not 
3 

the wall curvature varies like :Z:-2 where :z: denotes distance along the wall. When the wall 

curvature does not have this special form the vortices evolve over almost the whole of the 

wavenumber space in a nonparallel manner subject to viscous effects. The only exception to 

this case is at extremely high wavenumbers where the vortices evolve in a quasi-parallel manner 

essentially identical to that described for incompressible flows by Hall(1982). Since the special 

curvature distribution is possibly of little physical relevance we shall now concentrate on the 

results we have found for the more general curvature situation. 

The results we have found for the different wavenumber regimes for the general curvature 

distribution are summarized in Table 3 below. 
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Table 3 

wavenumber growth rate neutral value of G 

wall mode O(M-~) 0(1) 
3 

O(M2") + ... 
strongly unstable inviscid mode 0(1) O(Mt) no neutral G 

near neutral inviscid mode 0(1) O(Mt) GN+O(M)+ ... 
nonparallel viscous mode O(Mt) O(Mt) GN+O(M)+ ... 
parallel viscous mode O(Mi) O(Mt) 

3 
O(MI) + ... 

where G N is as defined below (3.35). 

The wall mode which was discussed in section 6 is in fact the counterpart of the so-called 

'acoustic mode' of the inviscid hypersonic instability theory of flat plate boundary layers. The 

latter Rayleigh instability has been discussed by Cowley and Hall(1990) and Smith and Brown 

(1990) for Chapman law fluids, and a limited discussion of this mode for Sutherland law fluids 

can be found in Blackaby, Cowley and Hall(1990). The acoustic mode and the wall mode 

discussed in section 6 have the property that they are concentrated in the wall layer where the 

streamwise velocity component ofthe basic state varies from zero at the wall to almost it's free

stream value. The Rayleigh acoustic mode in general evolves in a quasi-parallel manner though 

in the presence of strong shocks this is not necessarily the case. The wall mode discussed in 

this paper evolves in a nonparallel manner and becomes progressively concentrated towards 

the edge of the wall layer as the local wavenumber increases. 

When the wavenumber of the vortex becomes 0(1) then the disturbance modifies itself so 

as to become concentrated in the adjustment layer where the basic state temperature adjusts 

rapidly to it's free-stream value. The counterpart of this mode in the Rayleigh instability 

problem is the so-called 'vorticity' mode investigated by Blackaby, Cowley and Hall (1990) for 

Sutherland law fluids, and by Smith and Brown (1990) for Chapman law fluids. We found in 

the present paper that when the Gortler number G is as given by (3.27) with G· > Q and Q 
given by (3.28), then the appropriate expansion ofthe disturbance field is given by (3.31). Thus 

the mode has growth rate O(Mt) and the growth rate is given by the solution ofthe eigenvalue 

problem specified by (3.32) subject to the condition that Vo should vanish at 0,00. Fig. 3 

shows that the growth rate increases monotonically from zero as the wavenumber increases 

and tends to a constant at large wavenumbers. At large wavenumbers the growth rate can be 

matched onto the parallel viscous mode growth rate when the vortex wavenumber becomes 

formally O(Mi). We note here that the inviscid mode matches directly onto the parallel 

viscous mode structure at sufficiently high Gortler numbers. This is exactly the situation with 
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the inviscid-viscous connection between temporally growing Gortler vortices in incompressible 

:flows and is a direct consequence of the fact that the growth rate of the inviscid mode shown 

in Fig.3 tends to a constant at large values of the wavenumber. In the corresponding spatia.lly 

growing problem for incompressible flows Denier, Ha.ll and Seddougui (1990) show that an 

intermediate region is required to make the inviscid-viscous connection and indeed that the 

maximum possible growth rate is achieved in that interval. We stress that this intermediate 

regime has no connection with the nonpara.llel viscous mode discussed in section 5. The latter 

regime is appropriate only to the inviscid-viscous connection problem at mildly supercritical 

values of G. In Fig. 23 we have sketched the dependence of the growth rate on the the 

wavenumber for the cases when the Gortler number is mildly supercritical (ie when G differs 
3 

only slightly from its value required to overcome the strong O(M2") curvature of the basic 

state) and the strongly unstable case with G I'V O(M~). The broken parts of the curve denote 

regimes where the growth rate is given by a nonpara.llel calculation. In Fig.24 we sketch the 

neutral curve in the local Gortler number-local wavenumber plane. In this figure we have 

indicated the corrections to the neutral curve associated with nonpara.llel effects. 

There are no available experimental results with which we can compare with our calcula.

tions, this is because experiments at the high Mach numbers, say 10 - 30, appropriate to our 

work are exceedingly difficult to perform. Thus for design purposes it is fair to say that a 

theoretical approach is the only means at this stage to predict the likely evolution of Gortler 

vortices in growing hypersonic boundary layers. Current transition prediction methods are a.ll 

based on some amplitude growth criterion based on the linear growth of a disturbance. We 

have seen above that for a realistic hypersonic boundary layer the regime where vortex growth 

is likely to occur is the strongly unstable inviscid one. Hence in any transition prediction 

method for a hypersonic boundary layer it would be appropriate to simply compute the local 

Gortler number and obtain the corresponding growth rate from Fig.3j this of course should 

only be done for wavenumbers less than the neutral value associated with para.llel viscous mode 

structure. 

Finally we close by mnking a few remarks about the results of section 7 which concerned the 

effect of gas dissociation <wJ. wa.ll cooling on vortex growth. First let us make a few remarks 

about the effect of wa.ll cooling, since the most unstable vortices correspond to the strongly 

unstable inviscid mode we concentrate on that situation. In that case the main effect of wall 

cooling or real gas effects is to alter the quantity B which fixes the scaled Gortler number 

above which instability can occur. Fig. 19 shows that for an ideal gas the effect of wall cooling 

is to reduce B by a factor of about .5 when the wall temperature is cooled from it's adiabatic 

value by a factor of 10. We find that the eigenvalue problem associated with (3.32) has the 

maximum value of {3 altered only by a small amount when this happens so that at a given 

value of the Gortler number the growth rate is increased by a factor of about 1.4 when the 
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wall temperature is reduced by a factor of 10 from it's adiabatic value. By contrast real gas 

effects have a negligible impact on the growth rate of the strongly unstable mode. Thus for 

example in Fig. 19 we see that, at a fixed value of the cooling coefficient, B varies by only 

about 10 percent when the real gas model is used. Thus the critical Gortler number or the 

disturbance growth rate is altered only slightly by real gas effects so it would seem that any 

transition prediction method could quite sensibly ignore such a complication; certainly the 

error associated with doing so would be negligible compared with the inherent error of the 

prediction method. 
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Appendix: Basic state properties 

Listed here are various derivatives related to the basic state, which are used frequently in the 

determination of the relative orders of the perturbation quantities. 

The temperature adjustment layer 

'11:1: = _...!..... {" 'i'd'll = _ B _M3/2 + ... , 1 
"I, 2xT Jo "I 2xT "',y = V2Z'i" 
_ Bj"(.,,) M 3 / 2 _ j"(.,,) 1 
U:I: = - 2xT . Ml + ... , Uy = ..,fiX'i' . Ml + ... , 

V:I: = - (2x~3/2(1- "';' )BM
3
/
2 + ... , Vy = - ;:; + ... , 

The wall layer 

8 8 8 ." 8 
u- +V- = - - -- + ... , 

8x 8y 8x 2x 8." 
-, 

1 [ 3/2 P.T _ 2 -'] ••• 
UV:I: + VVy = (2x)3/2 EM + u'i' ." T + . 

U = F'(Y), 
M3/ 2 

V = ro::- [-TF + F'(Y)O(Y)], 
v 2x 

M-1/ 2 

.,,:1: = - - O(Y), 
2xT 

1 
Y:I: = --_ O(Y), 

2xT 

46 

M- 2 

"'y = V2ZT' 
M-3/2 

Yy = V2ZT' 

(A1) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

(AB) 



ii.z = F"(Y)Y:!:, iZy = F"(Y)YlI , 

M3/2 _ I T'F F" 2 

(2X)3/2[-TF+(F - T )0+ TO J, 

- 1 [-I /I J Vy =--_ -TF+F 0, 
2xT 

_ a _a I a F a 
'/Lax +vay = Fax - 2xaY' 

M3/2 
~,.."....,.".[-TFF' - T'F2 + (F/2 + FF")OJ 
(2x)3/2 ' 

FF" 
'ii/u:!: + 'iiiiv = - 2;""' 

where 
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equaUaIlO aad lhal theyhnelhe ... ual £ealurea of G"rtlu yom ... in incompreuibl. boudary layen. J.. Ih. local waYea"mba inc:reus, Ill. Ilcutn1 GOrtIeo 
IlUmbe2 decreuea and the cellire of Yorlez actinty mona Iowarda the tempenlure adjulmeallayer. COrt1C2 yorlieea with .. ueaamber or order olle or luceo 
muat Il..-arily be lrapped ill Ihe lemperalure adj ... tmenllayer aud it ia IIaiI mode .. hich ia Ibe moll dauceoou. For IIaiI mode, ... fiad lhal Ill. leadine order 
term in Ihe G"rtI .. lIumba apanaiOIl ia independenl of Ihe waYeaumber aud ia due 10 the C1Uft\ure of Ill. buic alate. Thia term ia oIao Ihe UJIIIPlotic Iimil or 
Ih. Ileulral COrtier lIambera of Ih. wall mode. To d.termiDe lIle hiP.r ord .. COrrectioll \erma in Ill. Gort1er lIamber apauiOIl, ... haft 10 diatincui&la bet_ 
lwo .. all curn.lure CUe&. Wh.1l Ill ... all curn.lur. ia proporliollallo (2%)-'" .. h ... '" ia Ih. llreamwiae nriable, Ih. Mach Ilumba JI cau be acaIed 0,,1 of th. 
problem and we &lao .. thai in Ih. 0(1) waYCJIamber regime, COrti .. yorIieea are apia SOYerlled by a aeI orparaboliA: parlial dil£C2CJItiai equtiona aad Ih...rare 
the Jai&her order COrrectiOIl \erma in Ih. Gertler IlUmbe2 apauiOIl are nol wq"ely determined aud are aIro"llY depeadelll 011 1l0llParall.el decla. III Ihe larce 
waYeD.umber limit, howenr, nonpanlld dectl become or aecond order. GOrtler TOmes eTolYe do1r1l.dream. i.a. & qlluipan.lld mULDI!:f aad the COrtler namber 
apauiOIl hu ita first Ihree leoma independelll of 1l0llparallel decla. IIllh. more "",era! cue .. henllle .. a11 curn.lure ia nol propomollallo (2z)-o,·, Ih. dfecl or 
the CllIT&t.ure of the buic ltate pe:nilt.I in t.he dOWlllt.ream deTelopment. or GOrtler TOnica; non-pua1lel dedi are imponu.t. Oftl' a larger RACe o£ waft:llumbcn 
aud Ihey become a aecolld ord .. only .. hen Ihe .. annamber ia of order hiP .. Ihan 0(Jl1'<). IIllh.lalleo cue Ih. Gertler lIamber apauaiOIl baa Ill. first 1-
lerma independenl of 1l0llparallel decla; Ihe finl tum beine due 10 Ih. C1UY&lllre of Ih. buic alale and Ih. aecolld term due 10 naco ... dfecla. Th. aecolld term 
becom .. companble wilh Ihe tinl term .. hell the .. uellambeo reach .. Ill. order JI"", ill .. hich cue auolher correctioll lerm can "'0 be Coud indepeadeally of 
1l0llparallel decla. Nat .. e in_ligal. real gu declo by _amine lIlal the lIuid ia &II ideal diIaoc:iati.ue gu. We find lhal bolll ,U diIaoc:iaUall and wall coo1ine 
are d .. labilioing £Or Ihe mode lrapped iD Ihe lemperalure adjutmCllliayer, bul Cor Ih ... all mod. trapped Ilear lIle wall Ihe e!fecl or cu dinociaUaIl cau be 
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