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Abstract

Rigorous UTD (Uniform Geometrical Theory of Diffraction) diffrac-

tion coefficients are presented for a coated convex cylinder simulated

with generalized impedance boundary conditions. In particular, ray

solutions are obtained which remain valid in the transition region and

reduce uniformly to those in the deep lit and shadow regions. These

involve new transition functions in place of the usual Fock-type inte-

grals, characteristic to the impedance cylinder. A uniform asymptotic

solution is also presented for observations in the close vicinity of the

cylinder. As usual, the diffraction coefficients for the convex cylinder

axe obtained via a generalization of the correpsonding ones for the

circular cylinder.



I Introduction

The problem of scattering by a smooth convex impedance cylinder has re-

ceived much attention. Wang [1, 2] presented ray-optical solutions for the

impedance and coated cylinders. His results are valid only in the deep

lit and shadow regions and do not apply to the case where the observation

point is in the transition region. Wait and Conda [3, 4] developed a solution

which is valid in the transition region and for observation points on and

off the surface. However, as pointed out by Pathak [5] it did not uniformly

reduce to the ray solution [6, 7] exterior to the transition regions. Also, it

is not valid on the portion of the surface in the transition region and these

limitations were the primary motivation in Pathak's work [5] for the per-

fectly conducting convex cylinder. Recently, Kim and Wang [8] presented

a solution applicable to a coated cylinder that remained valid in the tran-

sition region. They employed a heuristic approach to obtain the numerical

values of the resulting transition integral applicable to a coated cylinder.

Their solution is uniform but is not applicable to the close vicinity of the

cylinder.

In this paper we present a rigorous UTD solution of the diffraction by

a coated cylinder simulated with generalized impedance boundary condi-

tions. In addition, a uniform asymptotic solution is obtained which remains

valid when the observation point is in the close vicinity of the cylinder. An

important aspect of the paper is also the use of second order generalized

impedance boundary conditions (GIBC) for the simulation of the coating.

Their derivation has already been given in [9] and [10] and are character-

ized by the inclusion of higher order field derivatives in their definition.

Because of this they are less local which leads to an improved simulation

(with respect to the standard impedance boundary condition - SIBC) of the

coating in a manner analogous to the order of the highest derivative kept

in the condition. Recently, they were successfully applied to a number of

diffraction problems [11], [12] and have also been used in numerical simula-

tions of multilayer coatings (see fig. 1) [13]. These applications provided a

measure of the accuracy of the proposed GIBC and in particular accuracy

criteria were derived in [13] for the second order conditions as a function

of coating thickness and composition.

The UTD solution to be presented here parallels that given by Pathak [5]
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for the circular perfectly conducting cylinder. However, in the case of the

coated cylinder the resulting UTD expressions are in terms of Fock-type

integrMs whose efficient evaluation is of primary interest. In the follow-

ing we first present the eigenftmction solution based on the second order

GIBC simulation of a circular coated cylinder. By employing Watson's

transformation this is written in integral form which is then cast in a ray

representation. The ray solution is subsequently generalized to the case of a

general convex cylinder. Finally, the evaluation of the Fock-type integrals

is discussed and some results are presented which validate the accuracy

of the GIBC eigenfunction and ray solutions. In the process, we demon-

strate the improved accuracy of the GIBC solution over the corresponding

SIBC solution, and it is also shown how the presented UTD solution can

be extended to treat multilayered coated cylinders.

II Boundary Conditions

Consider the coated circular cylinder shown in figure 2(a). We propose to

simulate the cylinder with an equivalent one (see fig. 2(b)) satisfying the

boundary conditions (an e j_ time convention is assumed throughout) [13]

E¢_ = (a2 -4- aO) ZHz - a2Z 02Hz
al k2b2al 0_b2 (1)

for Hz-incidence or

Ez = + aO)ZH,_ 02E 
al k2b2(a_ + a') 0¢ 2

(2)

in the case of E,-incidence. In these Z = 1/Y is the free space intrinsic
I

impedance, k = _ is the free space wave number, and a,,, with a,,, are

constants which are dependent on the material properties of the coating.

Assuming a single layer coating of thickness g and denoting the associ-

ated relative constitutive parameters as e_ and p,, we have

e,,p: .- 1)ao = k6
\ tSr

(3a)

al = -j (3b)

3



and

a2= k_/_ (3c)

' = 1 (4a)

'= +jkz,_ (4b)al

?
a2 _ 0 (4c)

These constants are valid for evrg-_,p_6£ 0.15A and for higher contrast coat-

ing they must be redefined as [9]

1 tan(k6N)-tan +k6 N-_-_

(5a)

(Sb)

(5c)

/ 1)[a',, = N- _- 1 +tan(k6N)tan

al = Jr t_(k6N) - tan

._ = _-_ _ + tan(k_glt_ _-_ -

(6a)

(6b)

(6c)
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We note that (1) and (2) reduce to the standard impedance boundary
!conditions (SIBC) when az and a 2 are set to zero and

ao a'l
'7 = -- = -- (7)

I

al a o

where 77= -j _ tan(k ev/_'_'_p_/_) is the normalized impedance of the coating.

' satisfy the duality relationWe also remark that a,_ and aT,

!

a, a_+ ao
= (8)

a2 + ao a'l

The aforementioned boundary conditions can be employed for simulat-

ing multilayer coating by simply redefining the material constants am and

a_ as discussed, for example, in [10] and [13]

III Eigenfunction and Integral representa-
tion

Consider the plane wave

U i _ Uo ejkx -- UoeJkpcos_ (9)

incident on the coated circular cylinder shown in figure 2, where Uo is the

amplitude of the wave and u i denotes either the Ez or Hz component of

the incident field. An eigenfunction representation of the total field in the

presence of the cylinder can be generally written as

OO

u' = E J" [J.(kp)+ A.H_')(kp)]e-_"_ (10)
n oo

where J,(-) is the Bessel function of order n and H(2)(.) denotes the nth

order Hankel function of the second kind. To find the constants An we

enforce the GIBC given by (1) or (2) at p = b. This yields

A.= J'n(kb)+Q(n)J,(kb)

H_:)'(kb)+ Q(n)H(2)(kb)
(11)
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in which the prime denotes differentiation with respect to the Bessel or

Hankel function argument,

--j (a2+a°--n2 a..-AZ--_

X al k2b2al )

f'i g "_

,¢_n j = ( .' +__ 2 ."
-j_ o; n _)

' = O, Q(n) reduces toand when a2 = a s

for H,- incidence

for E_-incidence

(12)

! _J __

Q(n) - Q =

[ _j_ •a-3"_

for E,-incidence

for E,-incidence

(13)

To obtain a ray representation of (10) in conjunction with (12) we must

first recast u t in integral form. Employing the usual Watson's transforma-

tion [14] and noting that Q(n) = Q(-n), we find [5]

where

ttt __ It 1 -4- U s

oo J'(kb) + Q(u)J,,(kb) H(S)(kp) ] e_j,,_d_(14a )
u, =uof__ J,,(kp)- H(2),(kb)+_b) J

or

uo [oo [ H(')'(kb) + Q(v)g(')(kb) H(S)(kp)] e_j_,¢du (14b)
u, -- .-_ J-_ H(1)(kp) - H(S), (kb) + Q(u)H(2)(kb) J

and

US "--

in which

oo [ J'(kb) + Q(u)J,,(kb) ,. (s_,, ,1 ej.,/s+
(15)

e-/_(s_+_) + e-JU(s_r-_h)

1 -- e -jsulr
dl/

(16)



and Q(v) is given by (12) upon letting n ---* v. The field component Uh

defined above, includes the geometrical optics and dominant surface diffrac-

tion contributions whereas u2 denotes the creeping waves which circulate

around the cylinder more than once. We are interested in an asymptotic

evaluation of Ul and to do this we must separately consider each of the

space regions illustrated in fig. 3.

IV Field in the Deep Lit

gions

and Shadow Re-

In the deep lit region, the geometrical optics incident and reflected rays

represent an accurate first-order high-frequency approximation of the total

field. The geometrical optics field can be extracted from ul upon performing

an asymptotic evaluation of (14) yielding [18]

uaO(pL)_ U'(PL)+ u'(Qa)R,,h__ -'_t (17)

in which

Ro _ a'o - a_ cosO _ + a t cos 20' (Ez- incidence) (18a)
a" + a_ cos 0_+ a_ cos2 0i

ao- alcos0_+ a2cos20i
Rh _ (Hz-incidence) (18b)

ao + al cos 0/ + a2 cos 2 0_

are the reflection coefficients associated with the coating [9]. The parameter

0 i is illustrated in fig. 4 and _ is the distance (must be large) from the surface

reflection point QR to the observation point PL. Finally, _ is the reflected

ray caustic distance and for a convex cylinder it is given by

= pg(Qn) cos2 (19)

Pg(QR) is the radius of curvature of the surface at QR and is equal to b for

the circular cylinder.



For observations in the deep shadow region, a residue series representa-

tion of ul is more appropriate. From (14), we obtain

4 oo H_)(kp)e-i_,,,,(_-_)

= m.(kb)_ + O(v)H?)(kb)]_=_.
where vm are the zeros of the transcendental equation

H_)'(kb) + Q(v,n)H(_)(kb) = 0

(2o)

(21)

Obviously, (20) does not provide a ray-picture interpretation of the creeping-

wave diffraction which is desirable for generalizations to non-circular cylin-

ders. To recast (20) in a form compatible with the Keller type GTD for-

mat, the Debye approximation must be employed for the Hankel function

for kp >:> [v_ 1. This yields

u_(Po) _ u_(Q,)To,h -

where

e-Jks

v_ (22)

co

T_,h =- __, _D,,,(Q,).e -j'''°. V,,,(Q2) (23)
yrt=l

is the corresponding diffraction coefficient and for the circular cylinder

V_(Q,) = V_(Q2)
(24)
½

= k'_b (2) o {H(2)(kb)H,,,,,(kb)_ + Q(u)H(_2)(kb)},,=,,,,

with 6 as defined in figure 5.

A generalization of (22) - (24) for convex cylinders is now possible by

making the replacements

b-_ p_(Q1,2) (25)

f,'(q_)_.(t')dt,] (26)e-j_"e --* exp-JJe(Q,) pg(t') J
Consequently, the attachment coefficient _Dm(QI) is no longer equal to the

launching coefficient 2)re(Q2).
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V Field in the Transition Region

The geometrical optics and creeping wave solutions presented above are not

valid in the transition region close to the shadow boundaries as illustrated

in figure 3. New uniform expressions axe, therefore, required to overcome

this limitation. These can be derived following the procedure adopted by

Pathak [5] for a perfectly conducting convex cylinder. For the llt region we

find

" ,f P e-jU
u,(PL) _ u'(PL) + u'(Qn)R,,h v

where R,,h is now given by

r [
R,,h=--V x' exp_--3_ [2x_

F( 2kt cos2 0i ) }

_00
F(x) = 2j v/-xe -j_ e-J_2 dx

and

x' = -2re(OR) cos 0 i

• {kpg(QR)}}m(QR)= 2

p_(QR)cos0i
P= 2

F(x) is the UTD transition function [19] and G(x',q) is defined by

_-J_ jff v'(r) - q(r)v(_) _j_.a(x',q)= _ ¢¢ W_(r)__)e ar

in which

(27)

+ a(x',q)] (2s)

(29)

(30)

(31)

(32)

(33)

q(r)=mQ(u) (34)



whereas V(r) and W1,2(r) are the Fock-type Airy functions [15]

2jV(r) = Wl(r)- W_(r) (35)

1 fr e't-P/Sdt (36)= ,.,

The contour F1 runs from ooe-J_ to oo-je and F2 is the complex conjugate

of F1. We remark that in the case of an SIBC simulation, q(r) becomes a

constant.

For the shadow region, we have

e-Jks

u,(P.) _ u'(Q_)T.,h--_ (37)

where the diffraction coefficient T.,h is now redefined as

T,,h =-_/m(O,)m(O2)_/_e-Jk' [ e-j_ q)] (38)L_ {1 - F(ksa)} + e(x,

in which

and

x - f,'(Q2) rn(t') dr' (39)
Jt,(Q,) pg(t')

'(O_)
t "-- Jt'(Q,) dr' (40)

X 2

= 2m(Q_)m(Q2) (41)

As is usually the case, (27)-(40) were first derived for the circular cylin-

der and were subsequently generalized for non-circular convex cylinders.

VI Field in the Close Vicinity of the Conex

Cylinder

In all of the above derivations we have assumed that g is large. Conse-

quently, the given expressions are not adequate for field computations in
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the near vicinity of the cylinder. In this case, it is possible to obtain a

suitable approximation of the integral (14) by replacing the Hankel and

Bessel functions in terms of Airy integrals and then employing a Taylor

series expansions for these integrals.

Following a procedure similar to the one given in [5], the resulting ex-

pressions for an arbitrary smooth convex cylinder are

when PN is in the lit region, and

-!

• %(PN)] T
u,(P) _ ui(Q1)e -'Tkt pg-'_l)] {A,(z) - A2(z)}

(43)

when PN is in the shadow region. In (42) and (43)

"h2 ' h3 h4 "'D" " hs '
Ax(D) = gl(D) + 3"_.gl(D) - .-_..g,('D) - -_.g,t ] - Y4_.gl(D) (44)

h3 h4 hS "'D"
A2(D) = hg2(D) + j_.g'_(D)- 2_. g2(D)- -5-Tg2t (45)

gl(D)= _ _W_(r)-
(46)

1 /__ q(r)e -jD_g_(D)= --_ _ W_(r)- q(,-)w_(r)d" (47)

z' = -m(PN)cos¢

for PN in the lit region and

(48)

= [,'(_-_,..(e).,,,'(¢,_p--2_dt (4o)
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for PN in the shadow region

_ f°(PN)
dr' (50)

kd(PN)
h = rn(PN) (51)

d(Pr,) = p- pg(PN) (52)

The points P and PN in the lit and shadow regions are illustrated in figure

6. We remark that when the cylinder's surface obeys the SIBC, gl,_(D)

simplify to

1 /__o e-JDr
gm(D) ---} g(D) "- --_ oo W_(7") --- qW_('r) dv

(53)

g2(D) ---* mQg(D) (54)

In the case of slowly attenuating creeping and/or surface waves (42)

is not adequate and an improved result may be obtained by adding (42)

and (43) with t > _rb (in case of a circular cylinder of radius b). Clearly,

the addition of (43) corresponds to the contribution of the creeping wave

that has travelled the minimum distance on the cylinder's surface to reach

PN. The contribution of those creeping waves that travelled more than

once around the cylinder is given by u2 and could be added to ul if greater

accuracy is required.

The functions gl(D), gu(D) and G(z,q) are Fock-type integrals that

are formally the Fourier transform of a slowly varying factor consisting of a

quotient of terms containing Airy functions and their derivatives. A compu-

rationally efficient scheme was proposed by Pearson [16] for the evaluation

of these integrals. The scheme is an extention of the Fourier trapezoidal

rule devised by Tuck [17] to treat the rotated-ray exponential behavior oc-

curing in the integrals. The sampling frequency used in the computation is

dictated by the slowly varying Airy-function factor in the integrands. Suf-

ficiently accurate results have been obtained for both lossy and non-lossy

coatings on a perfectly conducting cylinder using this scheme.
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VII Numerical Results

The UTD expressions derived in the previous sections provide a complete

set of equations for the computation of the total field in all regions of

interest. In this section, we present some calculated data which validate

the accuracy of the derived expressions by comparison with data based on

the moment method and eigenfunction solutions.

In figure 8 the eigenfunction solutions based on the GIBC and SIBC

simulations are compared with the exact for a coated cylinder and this

clearly demonstrates the improved simulation (with respect to the standard

impedance boundary conditions - SIBC) achieved with the second order

GIBC. To show the validity of the UTD solution in the case of a convex

cylinder, a special case of an elliptical cylinder (see fig. 7) is considered

in figure 9. Data based on the moment method are compared with those

obtained from the UTD solution in conjunction with the second order low

and high contrast boundary conditions.

Figure 10 verifies the asymptotic solution developed for the field point

in the close vicinity of a convex cylinder. We remark, however, that the

approximations used for the Hankel functions in the derivation of (42) and

(43) become less accurate for some values of er and pr associated with

lossless coatings, and this can be avoided by using more accurate approxi-

mations for the Hankel functions. Finally, figure 11 demonstrates the use of

GIBC in simulating multilayer coatings by simply redefining the material

constants a,_ and a" as discussed in [10, 13].

A difficulty in implementing the expressions derived in this paper was

the evaluation of the Fock-type integrals G(z, q), gl(D) and g_(D) as well

as the determination of the zeros corresponding to (21). The Fock-type

integrals were evaluated by employing the method described in [16] and

the zeros of (21) were determined using the routine given in [20].

VIII Summary

Rigorous ray solutions of the scattered fields were presented for a coated

convex cylinder. These were developed in the context of the uniform ge-

ometrical theory of diffraction and specific expressions were given for the
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scattered fields in the lit, shadow and transition regions as well as for obser-

vations in the near vicinity of the cylinder. That is, UTD expressions were

derived for all regions exterior to the coated cylinder. These are suited for

engineering computations and are given in terms of the generalized Pekeris

or Fock- type functions whose evaluation was efficiently performed via the

Fourier Trapezoidal rule suggested by Pearson [16].

In comparison to the solution given by Kim and Wang [8], the ray rep-

resentations given here are based on a second order generalized impedance

boundary condition which permits the simulation of thin multilayered coat-

ing as demonstrated in the included examples. Also, in our implementation

of the transition fields we employed a rigorous rather than a heuristic eval-

uation of the Fock-type integrals. Further, we have presented accurate field

representations for observations on or near the vicinity of the coated cylin-

der and these can also be used for computing the radiated fields by a source

or an aperture on the surface of the convex cylinder.
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Appendix

Consider an elliptical cylinder as an example of a convex geometry shown in

figure 7. The geometrical and field parameters associated with this surface

are listed below:

Incident field

At the observation point (p, ¢) a unit amplitude plane wave incident

at an angle ¢i is specified by (phase of all fields will be referenced to the

origin)

ui(p, ¢) = eikp:o.(_-_,) (A.1)
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Geometry

The surface of an elliptical cylinder is described by a parameterized

vector as

r(7) = acos 74 + bsin 70 (A.2)

where the parameter 7(0 _< 7 -< 21r) is related to the angle ¢ via the relation

b
tan ¢ = - tan 7 (A.3)

a

Also, a and b are the half lengths of the major and minor axis of the

elliptical cylinder, respectively. The radius of curvature at any point 7 on

the elliptical surface is

(a2 sin2 3' + b2 cos2 7) 3/2 (A.4)
Pc(7) = ab

and the unit tangent and normal to the surface are given by

{_ F(7) = -asin'r_+ bcos'r0 (A.5)

]r'(7)[ _/a2 sin2 7 + b2 cos2 7

fi={×_= bcos74+asinTy (A.6)

_/a2 sin2 7 + b2 cos29"

Location of the reflection point QR

The direction of the incident ray at the point of reflection QR is

._i = _ cos ¢i_ - sin ¢i_ (A.7)

Let QR be the reflection point corresponding to 3' = 7a. The direction of

the reflected ray is then given by

_, = (pcos¢-acosTa)_ +(psin¢-bsinTa)_ (A.8)

_/(p cos ¢ - acos7R)2+ (p sin ¢ - bsin-m)2

Enforcement of the reflection law ,%• _ = -,% • ._"at Qn then yields the
transcendental equation

p(b cos ¢ cos-rn + a sin ¢ sin-m) - ab

¢p2 + ascos27a + b2sin7R - 2p(a cos ¢ cos 7a + bsin¢ sin7a)

= b cos ¢i cos 7R + a sin ¢i sin 7R

(A.9)
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to be solved for 7R for each observation angle ¢. The solution must of

course be done numerically using an iterative routine such as the Newton-

Raphson's method. Given _'R the incident field at QR

where

u'(QR) = e jktn (A.10)

gR = _/a2 cos2_R + b2sin2_R cos(¢r - ¢,)

with

The reflected ray caustic distance at QR is given by

(A.11)

(A.12)

where

pg(Qa)cos 0_
= 2 (A.13)

(a z sinz _'R+ b2cos2"YR)3/_
pg(QR) (A.14)

ab

cos ¢ = _(QR)" _r =
b cos ¢i cos 7R + a sin ¢i sin 7R

_/a2 sins 7R + b2 cos 2 7R

with g in (17), (27) and (28) found from

g = _/(p cos ¢ - a cos _R)2+ (psin ¢ - bsin _fR)2

(A.15)

(A.16)

Attachment and detachment points for the surface diffracted ray

The attachment point Q1 on the surface of the cylinder shown in

figure 7 can be determined by enforcing the generalized Fermat principle

implying that at Q1 (a cos 71, b sin _'1)

fi(Q,) . _' = O (A.17)
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this yields

7, = tan-1 {-b cot _b,} (A.18)

Similarly, the surface detachment point Q2(acos 72, bsin 72) is determined

by enforcing

fi(Q2) • _ = 0 (A.19)

where

= (pcos¢ - a cos-r2)_+ (psin¢ - bsin-_2)_
_/(p cos ¢ - a cos 72) 2 + (p sin ¢ - b sin 72) 2

This leads to the transcendental equation

p(a sin ¢ sin72 + bcos ¢ cos 72) - ab = 0

which can be solved numerically for 72.

Incident field at Q1 is

(A.20)

(A.21)

J(Q1) = ej_' co.(_,-¢,,) (A.22)

where

rl = _/a 2 cos 2 71 + b2 sin 2 71 (A.23)

¢1 = tan-' {b tan71} (A.24)

Also, the parameters z and t in (38) and (39) are, respectively, given by

x= {_}_/3_ d,,/ (A.25)
a2 sin_ 7 + b2 cos2 "Y

The integrals in (A.25) and (A.26) must be computed numerically.
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