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ABSTRACT /i:

This report examines several differen_igh-frequency
methods for

/
modeling the RCS of plate geometries. The Method of Equivalent

Currents and a numerically derived corner diffraction coefficient are

used to model the RCS of a rectangular, perfectly conducting plate in

nonprincipal planes. The Uniform Theory of Diffraction is used to

model the RCS of a rectangular, perfectly conducting plate in

principal planes. For the soft polarization case, first-order and

slope-diffraction terms are included. For the hard polarization case,

up to four orders of diffraction are included. Finally, the Uniform

Theory of Diffraction for impedance wedges and the Impedance Boundary

Condition are used to model the RCS of a coated, rectangular plate in

principal planes. In most of the cases considered, comparisons are

made between theoretical and experimental results.
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I. INTRODUCTION

Previous reports have detailed high-frequency models for

nonprincipal-plane scattering from perfectly conducting plates [1]-[3]

and for principal-plane scattering from coated plates [4]. Results

from high-frequency models for principal-plane scattering from

perfectly conducting plates [4] and dihedral corner reflectors [4] and

for coated dihedral corner reflectors [4] have also been presented.

These are all important basic geometries serving as building blocks

for complicated target geometries. First-order models have yielded

excellent results near main lobes, away from grazing incidence angles.

O

For incidence angles away from normal (greater than 60 from normal),

the discrepancies in the comparisons of the patterns are due to

higher-order diffraction mechanisms, such as interactions between

parallel and adjacent sides of the scatterer and corner scattering.

Higher-order diffraction mechanisms are not easily modeled using

traditional applications of high-frequency techniques, such as the

Uniform Theory of Diffraction (UTD) [5] and the Method of Equivalent

Currents (MEC) [6]-[9].

Both the UTD and the MEC use the canonical infinite wedge

structure to arrive at general models that can be used to approximate

the fields scattered by objects that can be represented in a local

sense as an infinite wedge. For example, for large side dimensions, a



rectangular plate is modeled as four independent half-planes with no

mutual interaction between the edges. The UTD diffraction

coefficients are sufficient for two-dimensional scattering problems,

such as the scattering from an infinite strip of finite width and an

infinitely long dihedral corner. The three-dimensional,

principal-plane, radar cross sections (RCS's) of the rectangular plate

and of the finite-length dihedral corner reflector can be obtained

from two-dimensional solutions using a simple truncation approximation

[i0] :

212
. __ _ (i)

3-D 2-D
A

where 1 is the finite length of the three-dimensional scatterer.

For three-dimensional scattering problems that cannot be

simplified to the truncation of a two-dimensional geometry, such as

oblique-incidence scattering in nonprincipal planes from a rectangular

plate, the MEC is necessary because the UTD predicts scattered fields

along the Keller cone of diffracted rays only. The MEC involves

replacing a scatterer with nonphysical currents that radiate the same

fields as the target scatters. These scattered fields are not

restricted to the Keller cone; therefore, the MEC model can be used to

predict nonprincipal-plane scattering.

Despite the versatility, easy applicability, and high accuracy of

the UTD and the MEC for many scattering configurations, these methods

do not account for all the possible scattering mechanisms that can



occur. Especially near and at grazing incidence, where multiple

diffractions and corner diffractions seem to dominate, modifications

to the present models are necessary to obtain more accurate results.

A recent numerically formulated MEC accounts for scattering from

corners over a limited range [Ii].

application of this diffraction model,

comparisons with experimental data.

Principal-plane diffraction from

This report details the

including results and

a perfectly conducting

rectangular plate is a rather basic problem that is still an area of

intense interest because of the ability to easily isolate the

scattering mechanism between two parallel edges. The scattering

mechanism near and at grazing incidence is of special interest. Some

experimental trends remain unexplained despite the simplicity of the

problem. This report presents the theoretical model and comparisons

between theoretical and measured data.

Another area of current interest is that of coated targets and

the modeling of a thin coating with a perfectly conducting backing.

This report includes a shorted-transmission-line model for the

metal-backed coating.



II. THEORY AND RESULTS

A. NONPRINCIPAL-PLANE SCATTERING FROM A RECTANGULARPLATE

The MEC model of the rectangular plate for first-order

diffraction terms assumes that the plate is electrically large so that

interactions among the sides can be neglected and the plate can be

approximately represented as four joined half planes. Each half plane

is then replaced by the appropriate half-plane equivalent current.

This model does not account for the joining of the planes at the

corners, which results in discrepancies between theory and experiment

near grazing incidence angles where corner diffraction terms are

relatively significant in the scattering process. A focus of much

research interest has been the formulation of a corner diffraction

model. Using numerical curve fitting and comparisons with moment

method (MM) results, Hansen [ii] has formulated a corner diffraction

model. Although this model is limited in its region of applicability,

it appears to be a promising model.

The corner diffraction model is similar to the MEC in

application. The following equivalent corner diffraction currents

were formulated from numerical curve fitting:

SOFT POLARIZATION:

I_(8',_') - A e -j [ A(8',_') (8'-45o) 2 + B(_') (8'-45 °) + C O ] (2)

where



and

A(8',_') - 0,

A(8",#') - Ao(40°-_') 1"5

B(_') - Bo(90°-_') 1"5

A o - 1.00 * 10 -6

B o = 4.40 * 10 -6

C o - 1.70 * I0 -I

o #' o8' < 45 or > 40

o o

8' Z 45 and _' _ 40

o o o

20 _ #' S 70 , 0 S 8' _ 90

HARD POLARIZATION

I8(8',_') -- A e j2"2 [ A(O') (70°-_') 2 + B(8')

o

(70 -_') + C(8') ]

whe re

A(8') - A0(8"-25°),

A(8') = Ao(8'-25°){

B(8') m Bo(90°-8 ,)

C(8") = Co(90°-8 ')

A o = 1.26 * 10 -6

B o = 3.48 * 10 -5

C o = 8.75 * 10 -4

o

8' s 55

cos (8")}°'75
cos (55)

o

8' > 55

where, once again,

O w _f O20 _ "_ 70 ,
o

0 S 8' S 90

(3)

Each corner launches two current components, one along each of the

adjoining edges. The fields radiated by these equivalent currents are

found using the vector potential:



A(r) -

where

r

_ J kr A

-Jks' eJk_" J ds' (4)
e ; I(8',#') t e

4_r
edge

-- distance from the center of the plate (origin of the

coordinate system) to the point of observation

A

t - unit vector tangent to the edge of interest

s" = distance from the corner of interest to the point of

interest

A

r - unit vector from the origin toward the observation

point

;' = unit vector from the origin toward the integration point

Finally, in the far field:

E r _ 0 (5)

E 8 _ -j_ A# (6)

E# s -j_ A O (7)

The integrals involved, for the plate geometry, simplify to a closed

form. A total of eight integrals, two for each corner, must be

evaluated.

The corner currents were formulated for a limited region of

incidence:

0 ° _ O' _ 90 ° 20 °2 _' _ 70o

Symmetry considerations do not allow the extension of this model to

other incidence angles, contrary to what was reported previously [12],

because of the interference of higher-order mechanisms, such as

scattering among sides. For those angles not included in the present



corner diffraction model, the corner diffraction terms must be set to

0. Results for this model are in Figs. 2 - 5 for the geometry of Fig.

I. The agreement between the theoretical and experimental data is

better for the soft polarization than for the hard polarization. This

indicates that higher-order scattering mechanisms are more dominant

for the hard polarization than for the soft polarization. Also, the

agreement between theory and experiment is better for a tilt angle of

o o

30 than for a tilt angle of 45 This is probably due to the

o

dominance of corner scattering at the 45 tilt angle. The biggest

disagreement, especially for the hard polarization, is in the

outermost two lobes. We are trying to isolate the mechanisms that

contribute to the formation of these lobes so that we can more closely

and carefully account for them.

The present theoretical model contains only first-order

diffraction mechanisms and terms to account for the scattering from

one of the four corners which is closest to the source. Accounting

for the scattering from only one corner results in a marked

improvement over the results from the first-order model, which does

not account for any corner diffraction, reported in [3]. A model to

account for the corner scattering from all corners is not yet

available due to the limited range of the MEC model of (2) and (3).

These limits are imposed because of the inability to isolate corner

scattering terms at other incidence angles.
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Fig. I. Rectangular plate geometry.
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B. PRINCIPAL-PLANE SCATTERING

FROM A PERFECTLY CONDUCTING RECTANGULAR PLATE

The principal-plane scattering from a rectangular plate can be

modeled using an infinite strip and the truncation equation of (1).

Because this is simply a two-dimensional problem, the UTD can be used

quite accurately for the perfectly conducting plate. Near grazing

incidence the UTD theoretically fails because of the existence of

overlapping transition regions in which the UTD is not applicable;

however, for monostatic backscattering the UTD actually produces quite

accurate results.

The geometry of interest is shown in Fig. 6. According to the

UTD, diffracted fields can be represented as:

d E i -jksE (s) = (QD) o 6 A(S) e (8)

whe re

EI(Q D) - the incident field at the point of diffraction

_ the dyadic diffraction coefficient

A(s) - the amplitude spreading factor

-Jks
e m the phase factor

s m the distance from the point of diffraction to the

observation point

There are two different forms of D, the diffraction coefficient -- the

original Geometrical Theory of Diffraction (GTD) form [13] and the UTD

form [5]. In this formulation, the GTD coefficient is used for

first-order diffractions and the UTD coefficient for higher-order

14
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diffractions.

scattering from a half-plane are:

GTD COEFFICIENTS

The GTD coefficients for principal-plane, monostatic

SOFT POLARIZATION

e-J(_/4) { 1 }D s -- -I +

_-- cos (_'12 2_k

HARD POLARIZATION

e-J(_/4) { 1 }D h = -i
r-- cos (#')

2 4 2_k

(9)

(i0)

The UTD coefficients are more complicated, involving cotangent

functions and Fresnel transition functions. They are explicitly

defined in [5] and throughout the literature, and they will not be

repeated here. Subroutines for calculating the coefficients are

available in [14] and [15] . The crucial parameters that must be

specified are the polarization; the distance between the source and

diffraction point, d; the incidence angle, _'; and the diffraction

angle, _. The diffraction coefficient will thus be designated in the

form, D(polarization,d,_',_) .

Using the standard definition of the two-dimensional echo width

[15], the echo width for principal-plane, monostatic scattering from a

strip of width, w, accounting for first-order diffractions only is:

C2-D (k) cos (kw COS@' ) 2

16



Eq. (I) can be used to find the three-dimensional RCS of the

corresponding rectangular plate.

For the soft polarization case, higher-order diffractions do not

exist; however, slope diffraction terms can be included using the

theory outlined in [15]. Subroutines for calculating the slope

diffraction coefficients, DS(polarization,d,#',#), are included in

[15]. Omitting the details, the final slope diffracted field for soft

polarization is:

Eds "

-jkp

_jk-1 e
4T

a-- _ [El(Q1 )] DS 1 e jk(w/2)c°s_'

an [El (Q2) ] DS2 e-Jk (w/2) c°s#'

(12)

where

-Jkw

180 e-Jk (w/2)cos@' _ e_a tEl(Q113C )( Eo )
an 4-0-

S

-- D21

a 180 (w/2)cos_' e -jkw s

a-n [Ei(Q2)] _ ( --_ )( E° ejk ) 4T DI2

0 0 _)'D 1 = D(soft,w,l ,180 )

$ o

DI2 = D (soft,w, 1 ,_')

DS 1 = DS(soft,w, 0°,lS0°-_ ')

o

DS 2 - DS (soft,w, 0 ,#')

For the hard polarization case, higher-order diffractions play a

significant role in the total RCS. Even third-order and fourth-order

terms are relatively large at incidence angles away from normal

17



incidence. Using (8) and the UTD coefficients, the general form of

the nth-order diffraction term for the infinite strip is:

e-JkP I k { e-Jk(w/2)((-l)(n-l)c°s#') (13)

Enth " -E° _ wn-I

)< e-Jk(w/2) (cos@' + 2(n-l)) D(hard, w,@,,0 °) }

n-2

X {(D (hard, w, 0°, 0°))
D (hard, w, 0 ° 180°-@ '

• °r@r

(n=even) _

(n=odd) *)

+ eJk(w/2) ((-I) (n-l)cos@' + cos@' - 2(n-l)) D(hard, w, 180o_@,, 0 °)

{C )°2 C °@ 3)
o o o 180 (n=odd)

X D(hard, w, 0 ,0 ) D hard, w, 0 , or@, (n=even)

using (I) and the standard definition of the two-dimensional echo

width, the three-dimensional RCS for the corresponding rectangular

plate is obtained.

Comparisons between theory and measurements are included in Figs.

7 - I0. The soft polarization model includes the first-order and

slope-diffraction terms and the hard polarization model includes up to

fourth-order terms. The agreement between theory and experiment is

very good, even for diffraction distances as small as A/2. The small

errors near and at grazing incidence are probably due to the

approximation of (I). There appears to be a scattering mechanism

associated with the two edges of the plate parallel to the plane of

diffraction for which the UTD does not account.

18
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C. PRINCIPAL-PLANE SCATTERING FROM A COATED, RECTANGULAR PLATE

The principal-plane RCS of the coated, rectangular plate of Fig.

11 is formulated in the same manner as the principal-plane RCS of the

perfectly conducting rectangular plate except that the diffraction

coefficient is the impedance-wedge diffraction coefficient formulated

by Griesser and Balanis [16]. In order to use this diffraction

coefficient, the equivalent impedance of the coated conductor must be

found. The impedance boundary condition will be used so that the

equivalent impedance normalized to the impedance of free space is:

neq " Jn tan(kt sin(_t))

where

k =

t =

pc,co

(14)

4 pc/C c

_4 pc

the coating thickness

the relative permeability

permittivity of the coating

and relative

_,e - the permeability and permittivity of the coating

_t = the angle of the transmitted ray as measured from

the surface of the coating

Assuming cylindrical-wave incidence and plane-wave diffraction

and using, the two-dimensional echo width for an infinite, coated

e - jk_)l' -J (kw/2) cos_'
= e (15)

_2-D 2_p' D1 4"Pl'

strip is:

23
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+ D 2

2

e-JkP2'4P2' e-J (kw/2}cos_'}

where

D 1 - DC (polarization, #i', #i, ,80' 8n)

D 2 DC(polarization,_2',_2,_ 8o'8n)
" 2 '

DC(polarization,_',_,d,8 o ,8 n) is the diffraction coefficient for an

impedance wedge presented in [16] . @' and @ are the angles of

incidence and diffraction, respectively. 8 o and 8 n are the Brewster

angles associated with the equivalent impedance of the surface of

interest:

SOFT POLARIZATION

80 = sin-l(i/Wo ) (16)

en = sin-l(I/Wn) (17)

HARD POLARIZATION

80 = sin-i (Wo) (18)

-I
8 n = sin (Wn) (19)

where

GO s surface impedance of face "o", normalized with

respect to the free-space impedance as in (8)

_n surface impedance of face "n", normalized with

respect to the free-space impedance as in (8)

Comparisons between the theoretical model and experimental data

were included in the last report [4]. The theoretical model included

no higher-order terms, such as surface wave terms and second-order and

third-order diffraction terms. Consequently there was a great deal of

25



discrepancy between the theoretical and the experimental results. A

more sophisticated model is currently being formulated. Results will

be included in the next report.

III. FUTURE WORK

After examining several basic plate geometries, it is obvious

that, despite the relative maturity of high-frequency scattering

prediction methods, there remain many scattering mechanisms that are,

as of yet, unexplained. Future work will concentrate on developing

and improving high-frequency scattering models so that all the

observed mechanisms may be explained and predicted. Specific work

includes improving the corner diffraction model for nonprincipal-plane

prediction, accounting for the influence of all four edges of the

plate in principal-plane scattering, and improving the model for

coated plates. The coated dihedral corner reflector model will also

be revised and improved to more effectively account for the

finite-thickness coating.

Another objective that will be pursued in the next reporting

period is to experimentally isolate the scattering mechanisms on the

rectangular plate. This will be accomplished by performing an

extensive set of measurements of the plate RCS with various prominent

scattering points covered with absorbing material. For example, to

26



isolate the scattering from the corner nearest the source, the

scattering from the other three corners will be suppressed by covering

them with absorbing material. Diffractions among edges will also be

studied in this manner. This experimental work will pinpoint

important diffraction mechanisms to add to the present theoretical

model of the plate.
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