NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

ncy of the United States
thereof, nor any of their
al liability or responsi-
apparatus, product, or

, or assumes any leg
f any information,

DISCLAIMER

express or implied

n account of work sponsored by an age
leteness, or usefulness of

ed States Government ror any agency

makes any warranty,

Government. Neither ihe Unit

employees,
bility for the accuracy, comp!

This report was prepared as a

Low?- F/0323 - -2

CONF-910223--2

pE91 €H2880

THE NASA LABORATORY TELEROBOTIC MANIPULATOR*
CONTROL SYSTEM ARCHITECTURE

J. C. Rowe, P. L. Butler, R. L. Glassell, and J. N. Hemmdon

‘l- 'E " .g N .

$% § 3= Oak Ridge National Laboratory+t
a': § 2 3 Robotics and Process Systems Division
£t g P.O. Box 2008
TeER” Oak Ridge, T '

£ E 53 ¥ ge, Tennessee 378316304
L

°¥5% .

>E8E58

i22%s

B8EES

ets O

@8 SsT

‘.= O

AL

tfEct

c2328%3 }

3:23 0%

5835¢35

%3 2 seS

SE8aT%n .

-%5':'825 The submutted manuscript has been
=58 S authored by a contractor of the U.S.
55 eE) Governmant under contract No, DE-
2. .5%> ACO5-84DR21400. Accordngly, thé U.S.
v E o088 Gowwhment retens 3 nonexclusive,
§ 8-55 &‘5 roysity-free hcense to pubksh or reprocuce
02.2."0‘;:‘ the pubkshed form of thes contribution. Of
Es E,n e 5 abwon_smuoso, tor U.S. Government
PREpst pencnn

5.%85¢

jEsEss

L2252l

Besc8s

SEZEo

g5 86 3

TERFE

EGEESD Paper to be presented at the

AMERICAN NUCLEAR SOCIETY
FOURTH TOPICAL MEETING ON ROBROTICS AND REMOTE SYSTEMS
Albuquerque, New Mexico
February 24-28, 1991

*Research sponsored by the National Acronautics and Space Administration, Langley Rescarch Center.

+Managed by Martin Marictta Energy Systems, Inc., {or the 1J.S. Department of Energy under

Contract No. DE-AC05-840R21400. _—
TE /f/‘}

IS DOSUMENT g unum#e!;‘

BISTRIBUTION oF T

THE NASA LABORATORY TELEROBOTIC
MANIPULATOR CONTROL SYSTEM
ARCHITECTURE®

J. C. ROWE, P. L. BUTLER, R. L. GLASSELL,
and J. N. HERNDON

Oak Ridge National Laboratory!
Robotics and Procr:ss Systems Division
P.O. Box 2008

Oak Ridge, Tennessee 37831-6304

ABSTRACT

In support of the National Aeronautics and Space Administration
(NASA) goals to increase the utilization of dexterous robotic
systems in space, the Oak Ridge National !.aboratory (ORNL) has
developed the Laboratory Telerobotic Manipulator (LTM) system.
It is a dexterous, dual-arm, force-reflecting teleoperator system
with robotic features for NASA ground-based research. This paper
describes the overall control system architecture, including both the
hardware and software. The control system is a distributed,
modular, and hierarchical design with flexible expansion
ga,?abilitics for future enhancements of both the hardware and
software.

INTRODUCTION

The LTM system (see Fig. 1), sponsored by the Automation Technology
Branch at NASA's Langley Research Center (LaRC), was developed at ORNL to
provide a dexterous, dual-arm, force-reflecting teleoperator system with robotic
features for NASA ground-based research. Because of the need for significant
increases in extravehicular activity and the potential increase in hazards associated
with space programs, emphasis is being heightened on telerobotic systems research
and development. Telerobotics represents the first stage in the future development
of a remotely maintainable orbiting space station utilizing teleoperated robots and
eventually fully autonomous robots to free the astronaut of hazardous and repetitive
extravehicular tasks. The LTM incorporates traction drives, modularity, redundant
kinematics, and state-of-the-art hierarchical control techniques to form a basis for
merging teleoperations and autonomous robotic operation into common hardware to
further NASA's research.

* Research sponsored by the National Aeronautics and Space Administration, Langley Research
Center.

¥ Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under
contract DE-ACO05-840R21400.

FIG. 1. The LTM system.

CONTROL SYSTEM HARDWARE

The LTM control svstem features a distributed. modular. and hierarchical
design with flexible expansion capabiliues tor tuture enhancements ot both the
hardware and software. A top-level block diagram illustraung the overall
organization of the svstem 1s shown in Fig. 2. The system 1s composed of two
VMEDbus computer systems. one master and one slave, connected by a high-speed
serial communication link to allow significant separation between the master and
slave arms. Each VME rack controls a pair of the LTM arms uulizing data acquired
from: sensors in the inc¢ividual arm joints. The sensor data acquisition [1] 1s
provided by three joint processors (JPs) in each arm, one JP for each pitch/vaw joint
(wrist roll and grip are handled by the wrist JP), and transterred in packets over
high-speed serial links to the respective VME computer system. Each JP
communicates with the VME computer svstem over a separate, full-duplex fiber
optic link. The human-machine intertace (HMI) consists ot a Macintosh I computer
tied directly to the master VME computer system and provides a graphics-based
interface for operation of the svstem. A text-based intertace 1s also provided through
a VT-100 terminal attached to the svstem control processor (CP) debug port.

Figure 3 shows a board-level block diagram of the master VME computer
svstem. The slave svstem 1s identical except tor the disk controller card. There are

‘hree 68020 singie-board computers 1n each svstem. The CP provides overall
coordination and also services tne human-machine intertace and mass storage
svstems. The other two 68020 boards. or arm processors (APs). operating

concurrentiyv, compiete the control algorithm caiculatons 1or each arm Onlv two

MASTER SLAVE
] VME e " s VME
SYSTEM SYSTEM

A A
LEFT ARM RIGHT ARM LEFT ARM RIGHT ARM
SHOULDER SHOULDER SHOULDER | | SHOULDER
JP1 JP JPY JPY
ELBOW |l || ELBOW ELBOW | —{ ELBOW
JP2 JP2 JP2 Jr2
WRST g » wasT wRIST | o] WRIST
JP3 JP3 JP3 JP3

FIG. 2. LTM block diagram.

APs are shown, but this is considered a minimal system. Additional APs can bc
added to the system as computational requirements warrant it. The system controller
(SC) provides additional functions to enhance the operation of the system such as a
real-time battery-backed clock, full VME arbitration, global interrupts, and memory
expansion. The other VME boards perform system I/O: the two link processor (LP)
baseboards service the communication links to the JPs located in each arm, the
Proteon communication boards provide the communication link to the alternate VME
computer system, the D/A converters provide drive signals to the pulse-width
modulated (PWM) amplifiers, and the disk controller board interfaces to the mass
storage devices.

Custom electronics packages were developed to reduce the number of cables
required for each arm [1]. Since the LTM utilizes an embedded cable approach with
all of the power, control, and communication cables passing through the pitch/yaw
joints, it was necessary to minimize the number of cables required. The custom
systems reduce the required cabling by acquiring, processing, and multiplexing the
many sensor signals over the serial communication links. The electronics packages
consist of four individual systems: a JP logic board (JPI) in each joint, a JP power
board (JPp) in each joint, an LP board for each joint to interface with the VMEDbus,
and the fiber optic communication system. The JPI board and the LP board are both
high-density circuit boards utilizing surface-mount technology on both sides of a
multilayer board.

The LP baseboard consists of a full-height VME baseboard with the three
custom-designed, plug-in link interface modules (LPs) each containing an 80C196
with RAM and ROM memory. The baseboard contains the VME buffers, address
generation logic, and the interrupt handlers for the individual link interface modules.
The baseboard can be configured for standard memory mapped, extended memory
mapped, or short I/O mapped addressing. It is configured in the LTM system as a
standard 24-bit memory mapped address occupying 64 Kbytes of VME address
space. The baseboard serves as an intelligent slave on the VME backplane. There
are four memory mapped windows on the baseboard associated with each of the
LPs. The interface modules each have 16 Kbytes of EPROM and 16 Kbytes of
SRAM memory. In addition, each link interface module has 4 Kbytes of dual-port
SRAM. The dual-port RAM is interfaced to the VME backplane through the

[SRR VI S e

68020 DISK 'J
YSTEM CONTROLLE
PROCESSOR PO AD D/A oA
Only
VMEbus
SYSTEM 58020 LINK LINK 68020 COMM.
CONTROLLE ARM PROCESSOR| | PROCESSOR ARM PROCE
PROCESSOR| | BASEBOARD | | BASEBOARD |{ PROCESSOR
SC AP2 AP
(82) (AP2) My 0 R32) Ak | (APY) Prowon
r ————— — — -— e—— — pas s s smee e S 1
LEFT RIGHT I
| | Slave
' JP1 JP1 |
| P2 - JP2 i
| |
| i
| |

LOCATED INLTM ARM
R —

I s

FIG. 3. LTM board-level block diagram.

baseboard and is utlized for system global memory as well as communication with
the LPs and JPs.

The JPs are responsible for sensor data acquisition within the individual LTM
joint modules [2). Each JP communicates with the VME computer system by using
a single, full-duplex fiber optic serial link with a maximum data rate of 2 Mbaud.
Each JP module has several sensors from which it must gather data. The arm
module and contained JP have two drive trains with motors, sensors, and brakes.
Each motor/reducer has a position, velocity, temperature, and torque sensor. There
are two other position encoders (resolvers) located on the traction drive differential
output axes. The encoders are used to obtain position and velocity for both the pitch
and yaw motions. Additional temperature sensors are used to monitor the JP
temperature. Each motor also has a permanent magnet fail-safe brake over which the
JP has individual control. In addition, the wrist JP handles the wrist roll sensors
and motor as well as the grip controls. The main function of the JPs is to acquire the
sensor data and transmit that data to the VME system. The data acquisition rate is
asynchronous to the VME control system but is synchronized to 620 Hz by an
internal LP interrupt clock.

SOFTWARE

The LTM control software also supports a modular hierarchical design with
expansion capabilities for future enhancements. It is based on past ORNL
experiences in complex hierarchical manipulator systems [3] and the need to be
consistent with the overall space station NASA/NBS Standard Reference Model
(NASREM) control approach [4]. Therefore, a global or common memory concept
is utilized for sharing of data between applications and processors in the system.
Any process, current or future, can access control data directly through common
memory thereby avoiding the direct linkage of code modules.

The OS-9 operating system was chosen to meet the design requirements for
LTM. It is a modular, multiprogramming, muitilingual, and multitasking operating
system for the Motorola 68000 family of microprocessors. It has a hierarchical file
structure similar to UNIX, but with an assembly language kernel for speed in real-
time applications and for efficient memory usage. OS-9 provides a modular
software development environment structured in a layered hierarchy of named
modules that can be shared between applications. For completed applications, the
operating system is ROMable, permitting operation without mass storage if desired.

All of the major application modules are written in the C language, including the
control algorithms [5,6] in both master and slave VME computer systems, the global
memory implementation, and other high-level routines. The only exceptions are the
LP code, the JP code, and the application that interfaces to the LP/JP system, all of
which are implemented in the FORTH language. FORTH was chosen for the
embedded modules because of its small size, flexibility, and the extensive built-in
debug capabilities.

The overall organization of software applications is illustrated in Fig. 4. At this
level, the diagram is essentially a processor model with each bubble representing a
processor in the system. As indicated on the bubbles, some represent multiple
identical processors in order to keep the diagram readable and to represent the
organization more clearly.

The Macintosh Application (1.1) runs on the Mac II processor and provides a
graphics-based operator interface to the LTM control system. It is written entirely in
Think C. The only inputs and outputs are the serial link to the VME system and the
local monitor and input devices.

The highest level of control in the overall control hierarchy is provided by the
System Control Processes (1.2) running on the first CPU in the master VME rack.
In addition to overall coordination of lower levels in the system, the high-priority
communicarion routines that provide data, commands, file transfer, and
synchronization between the master and slave racks execute from a periodic clock
interrupt on this processor. Some low-priority utilities also execute on this CPU.
The system control processes interact with the arm control processes on other CPUs
through common memory and through pipes to each processor. Low-priority
functions, such as starting new tasks and copying files, are handied through the
system pipes, but changing modes or gains on an arm processor are handled through
the common memory. Through the common memory interface, a mode or even the
full control algorithm can be changed from the control processor within one loop of
the control algorithm. With the system pipes, the timing is much less deterministic.
Interaction with the LP/JPs is also through common memory on the LP cards.

The primary system coordination task executes on the system control processor.
It communicates commands and data to lower level rack control tasks that execute on

common
STereny
Siave Cortrol Procssses
1.3
“ommon
Semey
- Arm Controt Proosssss
1.4
fyp. ol 2)
Brakes
COMMMmon COMMoN
remony memoy
Joirt Procs, Joint Procs.
1.5 common 1.8
.0l ey .ol

1 Joint Procs, .
(Sensors j (Brakes) . ‘:' Sensors

Seneors) (Brakes

FIG. 4. LTM software architecture.

the system control processor in the master control rack and on the slave control
processor in the slave control rack. This communication is through system pipes,
allowing the interface to the two rack control tasks to be identical even though one
resides in a separate rack. The rack control tasks on the master and slave racks are
essentially identical and coordinate the arm control tasks executing on the balance of
the CPU cards in each rack. The appropriate commands or functions are written (o
the AP's common memory, depending on the task to be completed. The use of
common memory for direct control of the arm processor functions, in addition to the
usual data transfer, leads to great flexibility in coordination of the control functions
and will be described in more detail in the discussion of the arm control processes
below.

The Slave Control Processes (1.3) are essentially that subset of the System
Control Processes which control only the local (in this case, slave) system, and
communication with the master rack. As described above, the subset is identical to
that in the master rack, except for the path taken by the data on input and output to
higher layers in the the control hierarchy. It is possible to make them identical

because the system pipes implemented through the Proteon communication link
essentially make the master-slave communication link transparent to the software.
There are some necessary differences between the lowest-level communications
software on the slave and that on the master but they are handled through conditional
compilation of the same source code.

The Arm Control Processes (1.4) execute on CPUs 2 and 3 in both master and
slave VME racks, a total of four processors in all. The arm control calculations are
completud on these processors with inputs from common memory and outputs to the
PWM amplifiers. The Arm Control Processes interface to the local LP/JPs through
the common memory on the individual LP cards and the interaction between the Arm
Control Processes and the LP/JPs is completely asvnchronous. All of the Arm
Control Processes are written in the C Language.

The APs serve as function execution engines for the high-pricrity algorithms
and hardware control code on the LTM system. The code is completely modular at
the functional level (i.e., functions in memory on the processor can be dynamically
inserted or removed from the control loop while it is executing in order to alter
system operation). This is done through insertion or removal of function vectors in
an execution table in the common block, thus providing great flexibility in the
configuration of the control loops. For example, the data input function could be
replaced with a function that reads data from a simulation rather than from the actual
joints without altering the rest of the control calculations. Functions can be inserted
in the table on a joint by joint basis (i.e., the control algorithm for one joint can be
changed independently of those for other joints and the functions can be changed at
the loop rate if necessary). For functions that are not required to complete every
loop, such as electronic counterbalance calculations, the algorithms can be split into
several sequential functions that spread the required calculations over a number of
loops thus requiring minimal time within a single loop—each function completes a
portion of the calculation, then enters the address of the nexi function in the required
sequence into the execution table.

. The Joint Processes (1.5) execute on the LP and JP pairs associated with each
joint—three for each arm, for a total of twelve in all. Because of limitations in the
VME baseboard into which the LPs are installed, the LP processes cannot access
VME memory. Therefore, the only interface to the rest of the system is through the
portion of common memory residing on the individual LPs. All of the software for
the LPs and JPs is written in the FORTH language.

All except the very highest level (lowest speed) communication for system
coordination, development-related communications, and file transfer occur through
common memory. Common memory is not in a single block, but is distributed
throughout the VME system. It is common in that any VME control processor has
access to the data over the bus even though it may not reside locally on that
processor. LPs can only access their own local micmory, but they are implemented
as data acquisition systems that run asynchronously to the rest of the LTM system so
there is no need for them to access the other common memory. They update the data
in their memory as fast as possible and the rest of the system reads it whenever
required. Allocation of common memory was based on keeping bus traffic to a
minimum and keeping access speed high where it was critical. Therefore, portions
of common memory that are critical to a process are kept local to the processor
where that process executes. All of the critical joint data are maintained in the
common memory of both the master and slave racks, with the transfer occurring at
the highest available loop rate, but data not needing to be updated at the loop rate are
not maintained in both racks. Status and errors are returned to the master rack and
HMI through system pipes at lower speeds.

CONCLUSION

In summary, the LTM control architecture is a modular and flexible architecture
in which a list of control functions can simply be written to a table for execution at
the loop rate. The list of control functions can vary from loop to loop as necessary.
It is a hierarchical architecture in which APs receive commands and data from the
higher level coordination processes and data from the lower level processes on
individual joints,. The LTM is currently at NASA's Langley Research Center where
it is being used for testing to resolve teleoperation and robotics issues for space.

REFERENCES

1. R.L. Glassell, et al., "Custom Electronic Subsystems for the Laboratory Telerobotic
Manipulator”, Proc. of the ANS Fourth Topical Meeting on Robotics and Remote Systems,
Albuquerque, New Mexico, February 24-28, 1991,

2. P.L.Butler, R. L. Glassell, and J. C. Rowe, "A Distributed Data Acquisition Software
Scheme for the Laboratory Telergbotic Manipulator”, Proc. of the ANS Fourth Topical Meeting on
Robotics and Remote Systems, Albuquerque, New Mexico, February 24-28, 1991.

3. J. C. Rowe, R. F. Spille, and S. D. Zimmermann, "Integrated Digital Control and Man-
Machine Interface for Complex Remote Handling Systems", Proc. of the International Topical
Meeting on Remote Systems and Robotics in Hostile Environments, Pasco, Washington,
March 29-April 2, 1987.

4. R. Lumia, J. Fiala, and A. Wavering, "NASREM: Robot Control System and Testbed",
Robotics and Mapafacturing (ASME Press, 1988).

§. J.Jansen and J. N. Herndon, "Design of a Telerobotic Controller with Joint Torque Sensors",
IEEE Intemational Conference on Robotics and Automation, Cincinnati, Ohio, 1990.

6. J. Jansen and J, N. Herndon, "Design of a Telerobotic Controller with Joint Torque Sensors
Using 2-port Network Theory", Third International Symposium on Robotics and Manufacturing,
Vancouver, British Columbia, Canada, July 18-20, 1990.

	1991007072.pdf
	0020A01.tif
	0020A02.tif
	0020A03.jpg
	0020A04.tif
	0020A05.tif
	0020A06.tif
	0020A07.tif
	0020A08.tif
	0020A09.tif

	notice_poor quality MF.pdf
	0001A04.JPG
	0001A04.TIF
	0001A05.JPG
	0001A05.TIF
	0001A06.JPG
	0001A06.TIF
	0001A07.TIF
	0001A08.TIF
	0001A09.TIF
	0001A10.TIF
	0001A11.TIF
	0001A12.TIF
	0001A12a.JPG
	0001A12a.TIF
	0001B02.JPG
	0001B03.TIF
	0001B04.JPG
	0001B04.TIF
	0001B05.JPG
	0001B06.JPG
	0001B07.JPG
	0001B08.JPG
	0001B09.JPG
	0001B10.JPG
	0001B11.JPG
	0001B12.JPG
	0001B12a.JPG
	0001C02.JPG
	0001C03.JPG
	0001C04.JPG
	0001C05.JPG
	0001C06.JPG
	0001C07.JPG
	0001C08.JPG
	0001C09.JPG
	0001C10.JPG
	0001C11.JPG
	0001C12.JPG
	0001C12a.JPG
	0001E02.JPG
	0001E03.JPG
	0001E04.JPG
	0001E05.JPG
	0001E06.JPG

