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FOREWORD

Even though Appendix A contains a list of symbols used in this report, additional explana-
tion is provided. In section 2, d/dr represents the time derivative, but in section 3, in the
discussion of finite element modelling, 'x' is used. For the scalar product ' is used and
for the vector product, 'x'. Vector quantities are underlined except in the finite element
formulation. Some symbols are not listed in Appendix A, but these are used only locally in
specific subsections and are not referenced again in any other subsection.
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SUMMARY

This report is intended to serve two purposes. The first is to give a survey of the theoreti-
cal background of the dynamic interaction between a non-viscid, compressible fluid and an
elastic structure. Section 1 presents a short survey of the application of finite element
method (FEM) to the area of fluid-structure-interaction (FSI). Section 2 describes the
mathematical foundation of the structure and fluid with special emphasis on the fluid. The
main steps in establishing the finite element (FE) equations for the fluid structure coupling
are discussed in section 3.

The second purpose of this report is to demonstrate the application of MSC/NASTRAN to
the solution of FSI problems. Some specific topics, such as fluid structure analogy,
acoustic absorption, and acoustic contribution analysis are described in section 4. Section
5 deals with the organization of the Acoustic Procedure implemented in MSC/NASTRAN.
Steps which have to be performed for a complete acoustic analysis are illustrated by a
flowchart. Section 6 includes the most important information that a user needs for applying
the Acoustic Procedure to practical FSI problems. Beginning with some rules concerning
the FE modelling of the coupled system, the NASTRAN USER DECKSs for the different
steps are described. The goal of section 7 is to demonstrate the use of the Acoustic Proce-
dure with some examples. This demonstration includes an analytic verification of selected
FE results. The analytical description considers only some aspects of FSI and is not in-
tended to be mathematically complete.

Finally, section 8 presents an application of the Acoustic Procedure to vehicle interior
acoustic analysis with selected results.

1. INTRODUCTION

In many areas of everyday engineering the interaction between structure and fluid plays an
important role. Phenomena of this kind have to be considered if a structure surrounds or is
embedded within a fluid. The presence of the fluid can significantly alter the behavior of a
structure, and at the same time, the deformation of the structure alters the loads transmitted
from the fluid. This means that there exists an interaction in both directions: the structure
acts on the fluid and vice versa. These phenomena are referred to as fluid-structure interac-
tion (FSI).

These phenomena can be divided in subareas, such as: slow viscid flow, laminar flow, tur-
bulent flow, shallow water flow, meteorology, acoustic phenomena and FSL

In a 1982 paper of O.C. Zienkiewicz (ref. 1) one can find a more detailed discussion of

these subareas. In that paper, research progress and the advantages and drawbacks of the
FEM for the solution of FSI problems are described. An overview on the use of FEM in
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fluid dynamics and related areas is presented in the Finite Elements in Fluids proceedings
(ref. 2).

The present description deals only with the last two areas listed above, where the fluid is
considered to be compressible and inviscid.

There are many problems in everyday engineering where fluid structure interaction is pre-
sent. Sound radiation into passenger compartments of automobiles and airplanes is a typi-
cal example. The main purpose of acoustic calculations is to analyze the sound transmis-
sion into the passenger compartment and the coupling mechanisms between sound con-
ducted through solids and sound propagation in fluids (e.g., air). Through the use of these
techniques one can potentially influence the design of an automobile or an airplane by iden-
tifying structural components that produce high sound pressure levels in the passenger
compartment.

The calculation of sound pressure distribution in an interior domain with complex shaped
boundaries (a passenger compartment of an automobile) is not possible through the use of
empirical formulas. Instead, numerical solutions of initial and boundary value problems
for various interior domains with different types of boundaries (acoustic soft and rigid
boundaries, elastic and absorptive boundaries) are used. Although there are some restric-
tions, FEM is a very useful and powerful tool for solving these kinds of problems.

This report presents a unique capability to perform FSI analysis using the finite element
code MSC/NASTRAN. Through the use of this added capability, MSC/NASTRAN be-
comes a versatile tool for acoustic and noise control analysis.

The first work in the acoustic field was done by Gladwell and Zimmermann who presented
two papers in the mid 1960s (see ref. 3 and 4). These papers include finite element (FE)
formulations for coupled fluid-structure vibrations. Some years after these basic develop-
ments, Craggs presented, in a series of papers dated 1970-1973 (see refs. 5,6, and 7), a
variational formulation for the coupled problem in terms of fluid pressure.

Very early it was realized that the commercial finite element codes, originally developed for
analyzing structural mechanics problems, could be used to analyze scalar field problems as
well (see ref. 8). With FEM it is possible to investigate standing waves and the related fre-
quencies in any complex-shaped interior domain with rigid boundaries. In order to solve
eigenvalue and response problems for the coupled fluid-structure systems, it is necessary to
consider the elastic as well as the absorptive boundary conditions. This task is accom-
plished, in this procedure, through the use of the NASTRAN DMAP language (Direct Ma-
trix Abstraction Program) and a single Fortran program. No changes to the source code of
NASTRAN were necessary.



A description of this approach for solving the FSI problems can be found, e.g., in refer-
ences 9, 10, and 11. Specifically, for the applications to the interior acoustics of automo-
biles, refer to references 12, 13, 14 and 13.

Besides the interaction of coupled fluid-structure systems via the elastic boundary condi-
tion, sound absorption effects at the boundary also have to be considered. In the present
procedure, a simple normal impedance model was developed. This model is, in general,
sufficient for describing the absorption effects at the boundary in the low frequency range.

Using a special boundary condition of D.B. Bliss (ref. 16), an oblique absorption damping
can be described. An application can be found in reference 17. Also, A. Craggs published
some papers which dealt with the question of boundary absorption and the description of
such effects using the FE technique (see refs. 17, 18, and 19).

~ The procedure presented here can be embedded in the standard procedure of structural
analysis. The fluid medium is treated simply as another part of the structure. This allows
for a simultaneous solution of the two systems, without the need for separate analysis, as is
prcsently'done in some cases.

The procedure requires the use of superelement solution sequences, but it is not necessary
to define superelements. In many cases, though, it is highly desirable to use superelements
because of computational efficiency.

The complete procedure consists of five steps beginning with the uncoupled modal analysis
of the structure and the fluid (with rigid boundaries). Following the eigenanalysis of the
coupled system, response calculations in the time or frequency domain can be carried out.
Furthermore, it is possible to perform an acoustic contribution analysis identifying the in-
fluence of the structure on the sound pressure level at an interior fluid point.

It should be noted that this capability is particularly applicable to the interior problems; that
_is, for problems in which the fluid is contained by the structure. The exterior problem,
fluid outside the structure (e.g., submarines) is very difficult to solve with the FEM. In
this case, the boundary element method is more applicable.



2. MATHEMATICAL DESCRIPTION

In this section, a mathematical description and a mathematical derivation of the FSI phe-
nomenon are given. Because the dynamics equations for elastic media are well known (one
can find a derivation in any book on structural or continuum mechanics), the main effort
will be directed at deriving and describing the mathematics of the fluid and the FSL

2.1 Structure

The structural components can be formulated as

L(u,) = E(r,1) )

where L is a partial differential operator with respect to time and space. The vector, u,,
represents the structural displacement vector, which is a function of location r and time ¢.
Finally, F, is a time-dependent load on the structure, which can be divided into an external
time-dependent load F,(r,?) and the influence of the fluid pressure on the structure
F (r,t). Thatload will manifest itself through the surface load vector

E (r,t)=p(r,t)n (2)

where p is the unsteady fluid pressure and r is the outward unit normal vector at the fluid-
structure interface.

Note: The subscript 's' denotes structure and f' the fluid.

2.2 Fluid

The governing equations for the fluid can be obtained from most books on fluid dynamics
(see ref. 19), but it is useful to offer a complete derivation of these equations in order to get
a more complete understanding of the problem. Some of the following mathematical ex-
- planations were initially given in reference 20.
For an arbitrary fluid volume, V(¢), the mass balance is given by

4 ) :

= = dv 3

dt (IV(:)pdV) V(1) ( )

where p is the density and ¢ is the added fluid mass per unit volume and time. Reversing
the order of differentiation and integration yields

dp _
A J’V(n)(zt—-"pv'!y/ - JV(l)qu (4)



where v is the fluid velocity field.

Because the volume, V(t), is arbitrary,

dp ' ‘
—+pV.y 5
dt+P ®)

Although, when the system matrices are defined later, a Raleigh-type damping will be taken
into consideration, for now the viscosity will be neglected. Internal forces acting upon a
volume, V(1), in the fluid act at the boundary, S(t), of that volume. Furthermore, they are
perpendicular to the boundary, which is a consequence of the inviscid fluid assumption.
External forces are the body forces, b, (per mass unit). Conservation of linear momentum
yields

d - R
2 lPrav ==l pnds+ [, pbav+[ aqv.av ©)

where v, is the velocity of the added fluid mass.
Interchanging the order of space integration and differentiation with respect to time on the

left-hand side and applying the Gauss theorem to the first term on the right-hand side of
equation (6), one can obtain the following equation:

d L
jv(,){d,(p )+pu(V-v) }dV j (-Vp+pb+qy,)dv

As before, the volume will again be assumed to be arbitrary, which leads to

d,. - A
E(pz)+py(V-z)=-Vp+plz+qzq %)
Using equation (4),
d . dp ~dy _ ~dy
dt(pz) TLtp—==qv=p(V-y)r+ =

Combining this result with equation (7) results in

. d N
p-ﬁ=-Vp+pQ-q(z-zq) )

Equations (4) and (7) are sufficient if the fluid is an incompressible fluid and p is a known
and time-invariant quantity. These equations can then be solved with respect to p and v. If



the fluid is compressible, then one more relation containing p and p is needed. Assuming
the fluid motion is independent of temperature, the additional equation (equation of state) is

p=p(p) ©)
Summarizing the results so far,

-@-+“V-v— w
ar py-¥y=qg
~dy
& Vp=b—gv-v, )} 10
p=r+Vb=b-d(v-y,) (10)
p=p(p)

2.3 Linear Fluid
In the following section, some simplifications of the physical model of the fluid described
by equations (10) are introduced, because they contain effects that can be neglected for the

present purpose.

The variation of the density is divided into two parts. One contains a time-dependent part,
p; and the other contains the static part, p,. Thus

p=p,+p

where Vp, =0. The first equation of (10) can be rewritten
Py q

dp p
—+p|1+={V.yv=
dr p/( pf) v=q

Assuming the variation in time to be small compared to the static value, that is

leads to



If the second equation of (10) is dealt with in the same way, the new system equations be-
come

P, = +Vp=b-q(v~v,)} (11)

@.-QB_;.L;.VP
da dt

dv dy

— i .V

dt 3t+(¥ )¢

The convective terms in these expressions and the influence of the added fluid mass, g, on
the second equation in (11) are insignificant under a certain condition. This condition oc-
curs when the fluid velocity is considerably smaller than the speed of sound. Mathematical
derivation of that simplification is not shown.

Under such a condition, from equations (11)

Ip

'5{+PIV'}£=CI (12)
Y

P+ Vh=psb (13)

Together with the equation of state, equations (12) and (13) constitute a physical model for
a linearized flow.

A further simplification is possible. As was done in the case of density, the pressure is di-
vided into two parts, p and py (similar notation as for p), and the equation of state is lin-
earized

A N dp
P=p *P=P+p 52

I3=P/

where Py is assumed constant. Introducing a new constant

-



results in
p=cip (14)

Equation (12) is then differentiated with respect to time

’p adv) og
V -3
T (p 31) o

Substituting cquatioh (13) into this expression yields

3 .

In this relation, p is replaced by p from equation (14) and p is replaced by p+Py implying

23 dq
75—02V2p+V2pa—pr-Q+§

From the definition of Py above, the term VP, is zero and so the final result reduces to a
wave equation with source terms,

2

ap

% —5=c/Vp-p,V. b+§_‘i | (15)

or

By using equation (14), the wave equation can be expressed in terms of the pressure

%t—zf—-czvzp c;p,V- b+c2?;t] (16)

Returning to equations (12) and (13), the gradient operator, V, is applied to the first and
the partial time derivative to the second of these equations. Solving with respect to v leads
to

2%y

ob ¢
5 ctV(V-v)+ at‘—di a7

Py



It may be noted that ?
V(V-1)= V4 VX (T )

For a perfect fluid, as long as the body forces are derivable from a potential function, the
velocity field, once irrotational, remains irrotational. Thus

Vxyv=0

This may also be regarded as a constraint; only conservative solutions are of interest. If
this constraint is imposed on equation (17), once again, the wave equation is obtained in
terms of the velocity field,

82\’ 2¢12 ob cjz'
OV ET P, 9 (18)

If the displacement field, u,, of the fluid is introduced,

Equation (18) can be integrated with respect to time (disregarding the initial state for u,
and b and the convective term as before) which results in

2
u,

2
==}V, +b-=LVg (19)

Py

where
0= fqdf
0
Hence the displacement field also satisfies the wave equation.

The assumption that the velocity field is irrotational implies that the displacement field has
this property also, i.e.,

L‘szV’ (20)

where y/is a potential function to be introduced. Further, the potential associated with the
body forces is expressed as

IS

=V¢ (21)



Equation (19) yields

32
V{—at—f - C J; !/I o+ —Q}
where the function inside the brackets is independent of position and depends on time only.
Because an extra function of time can be added to y without changing the displacement
field, u,, with no loss of generality

32‘// 272 C?
=c'Vy+¢o-—0 22)
8[2 f pj

is obtained. Alternative formulations derived in this subsection are

d’p oq
—&—T—C/VZP pr b+'§t- (23)
dp oq
..é.ﬁchvzp—c}pr-Q+ C%E (24)
v .. . Ob Ci
-—==CVY_+———'-‘—VQ (25)
2 f o p/
821’_‘ 6'2
Fea =C§Vzu,+lz—;)ifVQ 26)
AP QV | @7
=c -1
8[2 f pj

In the derivation of these equations, b was introduced as the source of influence inside the
fluid. Later, the existence of a potential, ¢, to the body forces was assumed. The relation,
b=V, can be introduced into equation (24), which would then lead to

)
a?j—e,w(p pf¢)+c;‘;" ) (28)

where p,¢ can be interpreted as a prescribed pressure quantity applied inside the fluid do-
main.:
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2.4 Boundary Conditions

For a complete understanding of sound propagation processes it is obviously not sufficient
to investigate the field equations for sound propagation. Additionally, the question "What
happens at the boundary?" is of great interest.

Assuming the fluid mass inflow, ¢, in the neighborhood of the boundary is identically
zero, the fluid close to the boundary can now be treated as a continuum. A consequence of
‘the continuum hypothesis is that the displacement field at any time must be a continuous
mapping of the initial state. Therefore, boundary particles must remain as boundary parti-
cles and interior particles remain as interior particles at all times.

The fluid boundary is divided into five different parts according to their properties. The
first four types of boundary conditions are especially important for the case of interior
acoustics.

B1: elastic boundary (fluid-structure-interaction/boundary type: Neumann)

B2: open boundary (with prescribed external pressure/boundary type: Dirichlet)
B3: rigid boundary (natural boundary condition/boundary type: Neumann)

B4: energy absorbing boundary (boundary type: Neumann)

BS5: artificial boundary to imitate radiation to infinity (boundary type: mixed)

In the following paragraphs, it is desirable to formulate the boundary relations for the
quantity '

2,
at —
where n is the outward normal vector to the fluid boundary.

B1 (elastic boundary) - The motion of the structure and the normal component of the
fluid motion coincide, that is

Up-n=U, (29)

where u, is the fluid displacement vector and u, is the structural displacement component
perpendicular to the fluid boundary. The second time derivative of equation (29) yields

(30)
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Using equation (13) with p = p; +p (p,; =constant) and b =0 leads to

) 2 Pu,
@ _ 1
on P o’ 1)

B2 (open boundary) - The pressure at a point on the surface depends on the height of
the wave created at the surface and on the external pressure, p,.

p=p,glu,-n)+p, (32)

where n is a unit vector normal to the surface in the initial state, which is independent of
time. The quantity g(&,- n) is essentially the weight of the wave created at the surface and
g is the acceleration due to gravity.

Differentiating equation (32) twice with respect to time, leads to

(33)

or

.@ - 1 az(p—pe) (34)

B3 (rigid boundary) - On the surface with no waves the dlsplaccmcnt perpendicular to
the surface is assumed to be identically zero, so

U n=0 (35)

or after differentiating twice with respect to time

% n=0 | (36)
or
P _
P 0 (37)

B4 (absorbing boundary) - This type of boundary is meaningful only in the frequency
domain. The boundary condition belonging to this type of boundary is discussed in section
4.1.
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BS (artificial boundary approximating radiation to infinity) - If it is required to investi-
gate sound radiation from an interior to an exterior domain using discrete methods, the ex-
terior domain must be truncated. This can be achieved in different ways, for example, by
infinite element techniques or boundary integral methods.

The main purpose of this report is to present the use of MSC/NASTRAN in fluid-structure-
interaction problems, especially for the case of an interior fluid domain surrounded by elas-
tic, rigid, or absorbing walls. The discussion of radiation to infinity is based on the Som-
merfeld's method. This method is exact if the incident wave is perpendicular to the bound-
ary. If the boundary is located a great distance from the sources of disturbances, it is quite
accurate. The method is also easy to understand. A derivation of the necessary expres-
sions is given below.

Assuxﬁe that the boundary consists of a series of dampers. The force developed in a
damper is

where d; is the damping of the fluid on the boundary and

du,

o n

is the velocity éomponem perpendicular to the boundary. This term should equal the fluid
pressure, thus ‘

du
p+pf=da_5;£"ﬂ (38)
Then |
2
%[’i =d, aafﬁf n=d,2V(V-u,) n (39)

where the wave equation given by equation (26) with b =0 and VQ =0 is used. Through
the use of equations (12) and (14), noting the condition that no fluid is added at the fluid
structure interface, and assuming the initial state to be at rest, leads to

pc;-V-u,=-p (40)
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Combining equations (39) and (40) results in

dp 1 '
2L d,—Vp-n @)
o "p,

where Vp-n = dp/dn is the normal derivative of the pressure at the boundary. Far away
from the boundary the wave propagates at the speed of sound, ¢,. Therefore,

L =, V- 42)

is just the d'Alembert's solution to the wave equation, so

dg=pc

which determines the value of the damping constant (acoustic wave resistance Z,). It

should be noted that this quantity is exact only for the case of plane waves. Equation (42)
can then be written as

dp 1 dp
V . - —
pra on c, o 43)

or according to equation (13) with b =0, from equation (43) follows

Loy ' 44
o d, & “9

Note that the feature of the boundary condition as expressed in equation (43) is to transmit
a right-angle incident wave.

2.5 Coupled Initial Boundary Value Problem

Before continuing to the discrete, i.e., FE formulation of the coupled problem, the follow-
ing formulation of the problem is presented as a summary of sections 2.1 to 2.4:
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STRUCTURE (sce section 2.1)

FLUID (see sections 2.2 to 2.4)

Dynamic equation of elastic media
(displacement formulation)

L(u,) = E(r,1)

where L is a partial differential operator
with respect to space and time, u, is the
structural displacement and

E(@rt)=FE(r,0)+ E (r,1)
F (r,t) is an external time-dependent load

and F,(r,t) the fluid pressure-induced
force onto the structure.

Additionally, initial and boundary condi-
tions must be given.

Wave equation (see eq. 24)

ap 9q
o chzp—c}p,V~Q+ c}—aT

where p is the pressure depending on space
and time, p = p(r,t).

Boundary Conditions:
1. Elastic boundary (B1)

dp _ azu,,

on Py ot
(u, is the component of the structural
displacement u, perpendicular to the

fluid boundary).

2. Open boundary (B2)
p=0
(special case: "acoustically soft").

3. Rigid boundary (B3)

P _
3;1—0

(special case: "acoustically hard").

4. Absorbing boundary (B4)
(see section 4.1)

5. Radiation condition (B5)

1 op

c, ot

Additionally initial conditions must be
given.

2.6 Coupled Boundary Value Problem

In order to complete the mathematical formulation of the coupled FSI problem, the steady-
state version of the coupled problem discussed in section 2.5 is presented. Assume a
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STRUCTURE FLUID

Dynamic equation of elastic media Helmholtz equation
(displacement formulation)

- Vip+kip= F(r)
L(u,)=E(r)

where L is a partial differential operator

with respect to space, u, is the structural

where p= p(r), k= a)/cf

(k: wave number, w: radian frequency):

displacement and 'Boundary Conditions
F(r,0)=F(r,1)+ F (r,1) 1. Elastic boundary (B1)
is an external time-independent load P =-p fa)zus,
and F(r) the fluid pressure-induced load at on

the structure, which is also time-indepen- 2. Open boundary (B2)

dent. p=0

(special case: "acoustically soft").

3. Rigid boundary (B3)
P _

on
(special case: "acoustically hard").

4. Absorbing boundary (B4)
(see section 4.1)

»_ .1
‘a;%—‘wpfzp

(Z,: normal impedance of the ab-
sorber). T

5. Radiation condition (BS)

%’:; = ~ikp with k= afc,

harmonic time dependence for the structural displacement u (r,?), external load, E(rt),
pressure-induced load F ,(r,?), and pressure p(r,r). The sources inside the fluid will be
summed in F,(r,?) and assumed to have a harmonic time dependence also. For simplic-
ity, the notations for the time-independent quantities and the operator L are the same as in
the time-dependent case.
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3. FINITE ELEMENT MODELLING

The content of this section relates to the discretization of the equations derived in the previ-
ous section using FEM. In the fluid domain, the FE formulation is derived using the pres-
sure as an independent variable. A reformulation is carried out using the weak form and
Galerkin's method of choosing the test functions. In the first step, some notes referring to
the discretization of the structure are presented.

3.1 Structure

As stated in section 2.1 the structural behavior is governed by
L(u,) = E(r.1) (45)

with
E@r,t)=Er,)+E (z.1)

where F, is an external load and F,, is the fluid pressure load on the structure.

A discretized formulation for the structure yields, in matrix notation,
[m){u}+[pu}+ [k vy ={L}+{L,} (46)

where [M,], [D,], and [K,] are the structural mass, damping, and stiffness matrix, respec-
tively. {U} is the structural displacement vector, L:} is the load vector due to external
structural loads, and {L,} is the load vector due to the coupling effects.

In the derivation of equation (46) the test functions and the trial functions are of the same
type, although they may differ from the ones used for the fluid domain. That is why this

function is designated by a subscript 's', i.e., N, and the function set by {N,}. Thus the
coupling vector, L,, between the structural and the fluid domain is

L= JN,-LIpdS 47

B,
3.2 Linear Fluid

Referring to equation (24), the following form of the wave equation is used as a starting
point:
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— = C}V2p+c,%t-—c-,p,V'-b (48)

Multiplying equation (48) by a test function (or "variation") w=w(x,y,z) and integrating
over the total fluid domain: volume, V, results in

jw dV - c,jwvzpdv c,jw Lav - c,p,jwv bav 49)

Applying Green's first formula to the second integral in-equation (49):yields

Iszp dv = fw(Vp)-g ds —j(Vw)‘-(Vp) av

where § is.the boundary of V and n is the outward normal of S. Inserting this expression
in equation (49) leads to

jw dv+c,j (Vw)(Vp) aV = c,jva nds+c,jw 4 gy - c,p,jwv bdv  (50)

Noting that p = p, + p (p, = constant) from equation (13) one obtains

dy
Vp=—p; =5 +psh
Reformulate the first and the third integral on the right side of equation 50. It becomes
c,jw(Vp) nds - c,p,IwV bdv = —-c,p,jw ‘n dS+cfp,fwb ndS - c,p,jwV bdv

= —c,p,jw n dS+cfprVw -bav

The next step is to split the surface integral in equation (50) into the four boundary parts,
(B1, B2, B3, B5) discussed in section 2.4. To that end, note the reformulated integrals
above: Splitting of the surface integrals leads to.

u
c}p,jw%-gds=c}p,jw§21 ds. (51)
8, B,
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ady c; P P
cip,|w—=-ndS=-"L |w—"0" (52)
f [1{ e g‘.’,‘
c;p,jw%-gd5=0 (53)
B, .

dy dp
cip \lw—=-ndS=c,|=dS (54)
! ’,{ or ’;[a:

Now, equation (50) is transformed to the following form:

T 2 2(
8

o dS

‘J‘w%:?;— dv + c}!(Vw)-(Vp) dv =

3 (55)
—c,jw-%te das+ c}jwaq av - c}p,j(Vw) bdV
By v v

If there are no body forces and no external applied pressure, p,, equation (55) reduces to

2
jw3§7 V+c,I(Vw) (Vp)dV——cfprW sf dS+—C—f-Iw?—2;dS
en 7 (56)

The discretization of equation (55) is carried out by expanding the pressure, p, in terms of
FE basis functions or shape functions, each one associated with a unique nodal point. The
shape functions in the fluid domain are designated by a subscript ', i.e., N,, and the
function set by {N }

The discretization process of the pressure, p, leads to the expression

p(r.0) =Y NADP) (57)
i

The summation is over the number of shape functions and Py(z) is the value of the pressure
at the associated nodal point at time, ¢.

Finally, the standard Galerkin formulation with
we {N f}
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is applied to eqhation (56) and noting equation (57), gives the discretized form of equation
(55)

[m,J{B}+[D )P} + [k, JiPY=~{L} + {L}+{L} +{L} (58)

where {P} is the column vector of the unknown nodal values of the pressure, and

are the elements of the matrices [M ,] [ [] [K f] and the vectors {L } { } {L,}, and
{Lc}wherc i is the row and j is the column index.

The vector {L,} is responsible for the couplingvof the fluid with the structure and repre-
sents the action of the structure on the fluid surface. The counterpart of {Ls} is {Lf} (see
eq. 47), which describes the action of the fluid on the structure.

3.3 Fluid-Structure Coupling and Symmetrization

Following the developments in sections 3.1 and 3.2, a matrix equation of the coupled sys-
tem using equations (46) and (58) can be written. As mentioned above, the coupling be-
tween structure and fluid is fixed by the coupling terms {L,} and {L,}on the right-hand
side of equations (46) and (58) respectively. :

{L,} is a function of the fluid pressure and {Ls} is a function of the structural displace-

ment. All other vectors on the right-hand side of equations (46) and (58) are true load
Vectors.
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The definition of {L,} and {L,} is

and

Because

where the nodal index, j, runs through the set of structural trial functions, results in

{L}=[m.}{.}

where
(), =i, [N n s

Bl

Similarly,
p=Y NiP

i

and thus
{Lf} = [Kc]{P}

where

(K.),= | Ni-nNids

B

Only those structural degrees of freedom that are perpendicular to the fluid boundary need
to be considered. The same is valid for the fluid degrees of freedom, i.e., only the pres-
sure nodes along the structure, that are linked to the structure, need to be considered.

The assembled system of equations is
M, 07yl [D, O]ul |[K, —-K.[U L
.|+ NE; = (59)
M, M. |p 0 Dip 0 K, |P] |L+L+L,
It is obvious that M, = c}p K. .

If the second row of equation (59) is multiplied by the factor

Yx
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another form of equation (59) can be obtained, where ¥ = c}p ; is the bulk modulus. For
the sake of brevity, the same notation for M/, D,K,L, L,, L, as in equation (59) is used
which leads to

R R E T i P B

where C (Coupling Matrix) is the matrix -K, from equation (59).

Consider the following interesting aspects of equation (60). Assume that the acoustic fre-
quencies are all greater than the maximum structural frequency of interest. In this case, the
fluid can be considered to be incompressible. This corresponds to letting the bulk modu-
lus, x, be infinite. This leads to M, and D, = 0.

It is easy to see that for this case the coupled system can now be completely described in
terms of structural nodal displacements only. That is, equation (60) reduces to its structural
part, where an additional mass term reflects the total effect of the incompressible fluid on
the response of the structure.

It is interesting to observe that the assumptions of incompressible, small deformation be-
havior (the latter assumption was made for the acoustic approximation) of the fluid elimi-
nates the need for a coupled solution. The presence of the fluid is entirely reflected by the
additional mass term for the structure.

3.4 Aspects of Solving the Coupled Fluid-Structure Equation
3.4.1 Symmetrization

For the solution of the general FSI problem, matrix equation (60) has to be solved. Butan
important feature of the above equation is its lack of symmetry, i.e., the system has un-
symmetric mass and stiffness matrices. This can present some difficulties in extracting the
eigenvalues and in the calculation of the dynamic response of the system.

Eigenvalue equation of the coupled system can be obtained if the right-hand side of equa-
tion (60) is replaced by a zero vector, D, = D, = 0, and harmonic time-dependence of U(t)
and P(t) is assumed, i.e.,

U(t) =Uexp(iot)
and

P(t)= Pexp(iwt)
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respectively. The vectors U and P are now dependent only on the nodal position. The
eigenvalue problem of the coupled system leads to the following nonsymmetric equation:

[+ cl-ote wll-L

Equation (61) is costly to solve and it is difficult to obtain eigenvalues for large systems.
With regard to practical problems, the existing capabilities of MSC/NASTRAN are not suit-
able for solving systems of the type in equation (61). Furthermore, it can be shown that
the eigenvalues of the coupled system in equation (61) are real. The nature of the problem
suggests a symmetric formulation for equation (61). A symmetric form can be obtained
directly by using the displacement formulation for the fluid (ref. 9). This approach has a
major drawback because of an increase in the number of unknowns, especially in three-di-
mensional applications. In the literature one can find many descriptions of symmetrization
procedures for equations (61) and (60), see references 21-28. The method used in the
Acoustic Procedure presented here is described in references 25 and 28. The characteristic
feature of this method is that the symmetrization is accomplished by replacing the vector P
in equation (60) by a vector Q given by

P=Q

This vector is, except for a multiplicative constant, the velocity potential used in fluid dy-
namics.

A symmetric form of equation (60) is obtained, if the second row of equation (60) is mul-

tiplied by -1, integrated with respect to time, ¢, and finally {P} is replaced by {Q} The re-
sult is the following system:

3 A S A S A A B

G@t)= j(Lq +L,+L,)dt
0

where

The disadvantage of this symmetrization is, that in case of the eigenvalue calculation, it
leads to an additional symmetric but fictitious damping matrix, which makes it necessary to
use complex eigenvalue methods. This situation can be avoided by applying the following
matrix transform:
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T_[K,M;‘ 0} )
c'™m' I,

where /, is a unit matrix with the same size as K. Multiplying equation (61) from the left
by equation (63) results in

KMk, -KM]'C. JK. 0 1yUl_[o
[[—CTM,"KS K,+c’M;‘c]"“’ 0 M, [P]'[o] %

In practice, the systems represented by equations (62) and (64) are very large. There exists.
a method that can reduce the expense in solving these systems. It involves the use of
modal reduction.

3.4.2 Modal reduction

For very large problems it is computationally attractive to apply modal reduction for the
purpose of reducing the size of the analysis. In this case, both the fluid and the structure
are possible candidates for this operation.

Applying modal reduction to the structure (for the modes of the structure in vacuo) and to
the fluid (for the modes of the fluid in a rigid container) results in the equations listed in the
following table:

Structure (s) | Fluid ()
Variables U=¢¢, P=¢,,
Modal mass m,= ¢ZM¢S m, = ¢,TM¢ s
Modal damping d,= D¢, d,=¢;D¢,
Modal stiffness k.= ¢'Ko, k;=¢Ko,
Modal excitation f.=olL g,=9,G

The matrices ¢, and ¢, represent the modal matrices of structure and fluid respectively. In
general, both are rectangular matrices, where the number of rows is equal to the number of
physical degrees of freedom and the number of columns is equal to the number of modes
used in the analysis.

Following the transformation process given in the table above, equations (62) and (64) are

converted to a set of "modally coupled” equations, where the coupling is represented by the
"modal coupling matrix"
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$=9/Co, (65)

The resulting equation of motion for the modal coupled system is

38 2 L e SR R

The eigenvalue equation for the coupled modal system is

kmk,  —km{ oAk O} & |_[O 67
=C'mk, ky+{mC —wl:o ”’f] & _[O] )

Assuming a harmonic time-dependence for structural displacement and pressure, the fol-
lowing frequency response equation is obtained from equation (66):

[ AT A | R

3.43 Residual flexibility for the fluid

If the modal reduction is used, the analyst is alerted to the possible effects of mode trunca-
tion inherent in the method. Enhancements can be made to the above equations of motion
by adding terms for the fluid model residuals. This addition compensates for the omission
of high frequency fluid modes. Normally, high frequency modes respond "statically” and
residual flexibility accounts for their static behavior (ref. 30).

The derivation of the residual flexibility terms is done in terms of an unsymmetric formula-
tion (see eq. (60)). For simplicity the damping matrices in equation (60) are ignored be-
cause they have no impact on the final result. Likewise, for simplicity, assume that there
are no body forces, no added fluid mass. and ho external time-dependent pressure, i.e.,
b=0,q=0, p, =0. Therefore, from equation (60) one obtains -

I e Pt B

After transforming the lower part of equation (69) to modal coordinates, the "fluid part”
yields the following equation:



m €, +[w})é,)= 0,70 (70)

where [wﬂ =m;'k, is a diagonal matrix and @; are the fluid eigenvalues. The matrices
m, and k, are modal mass and stiffness matrices of the fluid. The next step is to separate
the fluid modes in the following manner:

8, =[o5]05l0; ] an

where
¢; : "zero" modes with w; =0
¢; : "elastic" modes with @; >0

¢, : "tuncated” modes with [/?]€; >> 3

In the same manner the quantities, &, m,, and [w}] can be separated, i.e.,

0 0 0
Sy m, o,

g=lelm=|  m  |lo)=| a | (72)

{

& my o;

Then, from equation (70) the following is obtained:

&r=(mp) gyC"U (73)
&= (m;) [s*+ 0] 0;CTU (74)
& =(m) [f] 070 (5)

where the following have been used: case (a) U = s*U and E0=52¢), case (b) E:=52E,
and case (c) the condition [coﬂé e

Using equations (71), (72), (73) through (75), and P=¢ f§ s» the following expression is
obtained:

P=%m!) 0TCTU + ¢ dm) [s*+ 0] 9;7CTU+Z,CTU (76)
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where
-1
z; = ¢y(m[?]) of a7
represents the residual flexibility.

Now, equation (76) can be solved for Z; by separating the static from the dynamic part of
the pressure, i.c.,

P=P +P?
Sets=0 (i.e., P= 0) and get

P=oi(m) oy U o) [+ 0T 07CU+ 0

Multiply equation (78) by K, and note that the exact static solution is known from equation
(69): '

KP=C'U
(79)
Furthermore, for zero modes
K¢;=0
Then from equation (78), the following expression is obtained:
' PR
K,Z,= -Kf¢f(mf) [wfz]‘f’fr (80)
By constraining zero modes, equation (80) can be solved directly for Z;, i.e.,
" -1 -2
Zy==9,(m,) (7)o 8D
Further define
-1
z}' = 9(mj) 07" (82)
Using equation (82), the following is obtained from equation (76)
P=¢¢&,+2)CTU+Z,CTU (83)

Combine equations (70) and (83) with the upper half of equation (69) and trgnsforrn to
structural modes to obtain
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{’”"’?’ o}[;’;Hkﬁ‘;’ c}m:m &
=" m ¢, 0 k& LO

Zi=¢7CZ!CT g, and Z' = 97CZ0'CT 9,

where

This section is concluded by noting that if there is an excitation in the fluid the residual
flexibility terms to be added are given by the following two equations

Z; = 9lC(K}' - o ,m} @979, (85)
Z' = ¢IC(¢,m;'¢])C"9, (86)

After symmetrization, this addition leads to an equation which has the following form:

ez oTEL[E TN 0T 4]
0 -m & 1§ 4] ¢, 0 -k |6/ &
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4. SPECIAL FEATURES

4.1 Acoustic Absorption

The effect of an absorbing wall in an acoustic cavity can be modelled in two ways, depend-
ing on the nature of the absorption. If the absorption is due to a porous material then spe-
cial porous elements must be used. The porous elements have to model the behavior of a
flexible porous material under certain assumptions regarding the structure of the material.
At the present state of the program, such elements are not available. The other possibility is
to model the absorbing wall, both in the case of a porous material or in a general type of ab-
sorption, by using the impedance formulation of the absorber. In order to obtain a bound-
ary condition in this case, the boundary condition for boundary B1 (see section 2.4, eq.
31) can be rewritten by the use of a relation between pressure, p, and the normal fluid ve-
locity, v, = du,, /ot , at the wall

_z Yy (88)

to give

g’i =—iwp,— , (89)

To use the impedance for modelling absorptive boundaries, the value of Z,_ has to be de-
termined as a function of the radian frequency, @. In some cases an analytical expression
can be formulated, whereas in others, the values can be obtained from experimental mea-
surements. In the latter case, the so-called "standing wave tube" is used, which can be
used to measure the (normal) impedance Z, (see ASTM E1050-85A)

Z,=2+iZ, (90)

where Z, is usually called the specific acoustic resistance and Z, the specific
acoustic reactance. :

If the absorber is connected to an elastic boundary, the boundary condition can be ex-
pressed as

P’__; P
== zwp,(z,.+ z,) ©1)

A surface with a "large” impedance,
surface with a "small" i

| => oo, is considered to be "acoustically hard." A
| => 0, is considered to be "acoustically soft." Relat-
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ing to equation (91), the first case leads to the elastic condition in section 2.6, where
v, = oug /o, while the second case leads top =0, i.e., "pressure release."

If the enclosed acoustic domain is discretized with finite elements, the equations of motion
are obtained as described in section 3. However, the damping matrix, D (see equations
(60) and (62)), has to be complemented by the boundary absorption, D,. It is easy to see,
that D, is given by

D,=—A, 92)

where A, is the matrix representing those parts of the boundary which are acting as ab-
sorbers.

For a lumped approximation, D, is null except for terms corresponding to the grid point lo-
cation of the absorber material.

The Area Matrix Program generates the matrix A,. With an additional input of the material
property of the absorber, it also generates the damping matrix, D,. Usually, the impedance
property of the absorber is described by the specific acoustic admittance defined by

_Z
ﬁ‘z

n

93)

where Z, = p c, is the wave resistance for plane waves in the fluid. It should be noted that
Z, is a real quantity only in the case of plane waves, because there is no phase shift be-
tween pressure, p, and the velocity, v, of the fluid particles, if the fluid is inviscid and ho-
mogeneous.

Using equation (90), the following expression is derived from equation (93)

B=y+ic (94)
where
Y= %Zl and 0= --ZZLzZz 95)

n

where Z, is defined by equation (90). Therefore, instead of equation (92), the following
expression is obtained for the damping matrix, D,:

D, = —Zl-(y +i0)A, (96)

0
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That is, as input of the absorber's material property, the quantities yand o are used, which
are defined by equation (95). They determine the specific acoustic admittance defined by
equation (94).

The condition for the validity of the normal impedance is that only plane, normal incident
sound waves will be correctly damped. If this condition is violated then reflections will oc-
cur.

It is possible that reflections may, in some cases, corrupt the solution and the results are not
what the analyst expects. To avoid this situation, it is possible for some problems to esti-
mate when sound waves, originating from a source, are plane. Nevertheless, it is ques-
tionable whether the impedance model really does represent the absorbing surface correctly.

There are examples where this model is completely confusing. '

But these reservations, which can be theoretically proven, are diminished by the experience
of others especially with regard to applications in automobile interior acoustics (ref. 14).

An improvement for the simple impedance model implemented in the present Acoustic Pro-
cedure is possible, if instead of equation (88), the following condition proposed by D.B.
Bliss (ref. 16) is used '

p+B(w)Vip=v.Z, o7

where V is the gradient operator on.the absorbing boundary (B4) and (B5).

1

B(w)= K@)

is the so-called bulk-reacting coefficient and k() is the complex wave number. The
condition in equation (97) can be applied to describe the boundary absorption effects. This
procedure was implemented in MSC/NASTRAN by Burfeindt (ref. 15).

4.2 Acoustic Contribution Analysis
This section presents a brief description of the calculation procedure for determining the
contribution of different parts of the structure to the sound pressure level at any point in the
fluid domain. A more detailed presentation is given in reference 31.
The modal solution method provides valuable information regarding the structural and

modal participation in the acoustic response. The acoustic modal participation at the
interior points, {P,} , can be calculated by
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{P}=[¢f]{§,}=§{ﬂ}(= Exdy) 98)

where n, is the total number of acoustic modes used in the analysis. Each vector {F{} rep-
resents the contribution to the acoustic response from the acoustic mode, i, or the modal
acoustic participation factor.

The structural modal participation factor can be calculated for a harmonic solution

of radian frequency, @, as follows. First, the equation of motion is solved for the fluid
modal vector:

{¢,}=[2e[¢HED) 99)
where [C ] is the modal coupling matrix defined by equation (65) and
(2] = (-@?[m, ] + &))" (100)

is the acoustic modal frequency response function, which is included also in equation (67).
Substituting equation (99) into P = ¢ ;£ ; results in

{P}=0¢,22]¢){&} = EP (101)

where n, is the total number of structural modes. Note that each vector P = {P}} represents
the contribution of the structural mode j to the acoustic response or the structural modal
participation factor.

The boundary panel participation for a boundary panel b is basically the collective
structural modal participation of all the structural nodes on that panel. The [C,] matrix,
which is the coupling matrix due to panel b, has to be computed and the global coupling

matrix [C] will be the assembly of all panels in the structure. Once the [C,,] are known,
equation (65) can be written as

[¢]= [¢;]Tg[cb][¢;] (102)

which when substituted in equation (102) becomes
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P=a’e] ZZ][%]Z Jo.lis.}= Z{P} (103)

where n, is the total number of boundary panels. Note that each {Pb} vector represents the
contribution of boundary panel b to the acoustic response.

4.3 Structure-Fluid Analogy in MSC/NASTRAN

Since there are at present no "fluid elements” in MSC/NASTRAN, the analogy between the
structure and fluid equations has to be used. The following theoretical development is re-
produced from reference 23. Rewrite equation (16) neglecting the source terms and ex-
pressing ¢, in terms of the bulk modulus x and density p, of the fluid. The following form
of the wave equation (in Cartesian coordinates) is obtained:

1 % _19% o
&(Pfax) ay[p,ay) &(Pfaz) x o (o9

An analogous equation in structural mechanics is the equation for the equilibrium of
stresses in a particular fixed direction:
2
90, , a7, 2 9% _ OU,

xx

= 105
dx ox o P or? (105)

where u,, is the structural displacement in the x direction, 0,,, 7, and 7,, are stress compo-
nents and p, is the structural mass density.

In order to establish the acoustic-structural analogy, let

u=p | (106)

p,=-;; (107)
o= pi,% = —ii, (108)
r,,=;};% =i, (109)
T, = pif%z’i =i, (110)



where. the second forms of‘equations (108), (109), and-(110) .are. obtained from-equation
(10) with:b'=0 and g = 0 and where:iij, is the x-component of fluid acceleration, etc.

In order to complete. the analogy, note that, if structural displacement components u,, and:
u, are set-equal.to.zero, the- general stress-strain.relationship, provided: by. the.
MSCG/NASTRAN-MAT9 material card is

O Gy G Gy |l€a
Ty (=1 Gy Gy N7s1. (111):
Tx sym Ges || Vs

where.G;; is-an element of the 6x6 elastic material matrix, and the strain-displacement rela-
tionships are:

- Ouy
= ok
du,, ‘
70:"37’ (112)
_ou,
¥ 9z )
Therefore; if |
1
G,=G,=G,=—,
11 44 66 D, (113)

G =G s=Gu=0

equations (111), (112), and (106) will produce equations (108), (109), and (110) exactly.

The other.components of the [G;] may be set.to any values, including zero, since €, €,,,

and 1,; are all zero. Equations (107) and (113) indicate the manner in which the MAT9
card should be filled out. Note that several MAT9 cards may be used to represent the fluids

where. p; and y vary with position in the fluid. The ‘basic coordinate system should be

~ used to define components of displacement and also the material coordinate system. (The:
symbol :0.(zero) must be inserted for CORDM on the PSOLID card.)

Note that, from equations (108), (109), and (110), normal NASTRA'N'stress data recovery
will produce the accelerations components within the fluid, with a change in sign.
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4.4 Boundary Conditions and Their Input in MSC/NASTRAN Using the

Structure-Fluid Analogy

In section 2.4 boundary conditions are discussed in a more mathematical sense. The pur-
pose of this section is to present a method of implementing the boundary conditions for the
fluid with regard to FSI calculations using MSC/NASTRAN.

1.

At free surfaces (open boundaries), set #, = p =0 by means of an SPC card.

. Atrigid walls, take no action. The acoustic boundary condition,

_,9%. . 9, p .
—=n—+n—+n—=0 114
on *ox ’dy ‘oz (114
where n,, n ,and n, are the direction cosines of the normal, implies an analogous
structural boundary condition

fi=n0,+n7 _+nt =0 (115)
where f is the x-component of traction at the boundary. Satisfaction of equation

(115) requires only that no structural forces be applied to grid points on the bound-
ary. '

. At a surface where the pressure is a known function of time, set

u = p(r)

using the large mass method described in the MSC/NASTRAN Application Man-
ual.

. At a surface where the normal component of the displacement, u,, velocity, u,, or

acceleration, ii,,, is known, apply a grid point load

171=Aiufn(t) (116)

where A, is the area associated with the grid point i. Equation 116 follows from
equations (108), (109), (110), and (115). Note that Uu,, u,, and Uz, must be in-
ward to the fluid.

. At a surface where the pressure and the normal velocity are linearly related, i.e.,

where
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p=-Wu, 117
connect a CDAMP2 element to u,, with a damping coefficient

A
D,=— 118
W (118)

w

where, again, A, is the area associated with the grid point i.
. Boundary conditions for other cases can easily be worked out. For example, if
p=—Hu, (119)

connect a scalar mass, M = A,/u to the boundary grid point i.
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5. DESCRIPTION OF THE ACOUSTIC PROCEDURE

5.1 Introductory Remarks

This section presents the summary of the capabilities of the Acoustic Procedure to perform
FSI analysis using MSC/NASTRAN. It is specifically aimed at the acoustic and noise
control analysis for the interior acoustic domains, e.g., passenger cabins in automobiles
and aircraft.

The goal of this development is to treat the fluid medium simply as another part of the
structure. This allows for a simultaneous solution of the two systems, without the need for
a separate analysis, as is presently done in some cases. The only difference between the
standard MSC/NASTRAN dynamic analysis and the Acoustic Procedure is the addition of
some Direct Matrix Abstraction Programs (DMAP) and a single FORTRAN program.

The procedure requires the use of superelement solution sequences, but it is not necessary
to define superelements. In many cases, though, it is highly ‘desirable to use superele-
ments. Since MSC/NASTRAN currently does not have special fluid elements, Structure-
Fluid Analogy (see section 4.3) is used. This capability is particularly applicable to the in-
terior problems; that is, for problems in which the fluid is contained by the structure. The
exterior problem, fluid outside the structure (e.g., submarine) is very difficult to solve with
FEM. In this case boundary element methods are more suitable.

5.2 Organization and Flowchart of the Acoustic Procedure

The analysis capabilities that have been developed include the following:

(S

. Uncoupled normal modes analysis of the structure and the fluid, SOL 63

2. Normal modes analysis of the "modal coupled"” fluid-structure system, SOL 70 (see
section 3.4). :

Modal frequency response analysis of the coupled system, SOL 71

Modal transient response analysis of the coupled system, SOL 72

. Absorption damping for the fluid medium (attention: only normal impedance, see
section 4.1)

6. Calculation of the structure grid point participation factors in the generation of the

pressure at any specified point in the fluid (see section 4.2)

wn o~ W

The Acoustic Procedure consists of five NASTRAN runs. Figure 1 illustrates the sequence
of these runs during the process of an acoustic calculation.
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( | RUN1 h
STRUCTURE & FLUID UNCOUPLED

NORMAL MODES ANALYSIS
SOL 63

GENERATION OF COUPLING AND
BOUNDARY ABSORPTION MATRICES
\__BYPROGRAM "AMP" & DMAP __/

é RUN 2 A

STRUCTURE & FLUID
MODAL COUPLED |

REAL OR COMPLEX
EIGENVALUE ANALYSIS
L 70 & DMAP

RUN 3.1 - RUN3.2

MODAL FREQUENCY RESPONSE MODAL TRANSIENT RESPONSE
SOL 71 & DMAP SOL 72 & DMAP

RUN 4

ACOUSTIC CONTRIBUTION
ANALYSIS
DMAP

Figure 1. Acoustic procedure flowchart.

The most costly run is the first run (see fig. 1). This run contains the FE models of struc-
ture and fluid, the definition of the coupling and absorbing areas, and the absorber proper-
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ties. The coupling matrix and the absorber matrices are formed by the Fortran program
AMP (Area Matrix Program), which is also involved in Run 1, see figure 1. Run 2 is the
cheapest run and the user has to decide if it should be executed. To better understand the
coupling effects, Run 2 should be carried out. The response Runs 3.1 and 3.2 can be per-
formed immediately. after Run 1. Run 4 (Acoustic Contribution Analysis) is carried out as
a restart of Run 3.1.

To get an idea of the CPU time, three examples of different size, i.e., with different num-
ber of degrees of freedom (DOF), are presented.

Example 1:

Example 2:

Example 3:

This problem is a simple piston/tube model described in section 7.1. It con-
sists of only 25 structural nodes and 16 QUAD4 elements. It has 1275 fluid
nodes and 800 HEXAS elements.

The following problem is described in Section 7.2 and it is a two-dimensional
model composed of 17 nodes and 16 BAR elements for the structure and 313
nodes and 128 QUADS elements for the fluid.

This example involves a solution of a complex automobile structure composed
of 6 superelements. There are 46000 grids and 51000 assorted elements in
the structure model and 800 grids and 700 solid elements in the fluid.

Table 1. CPU time (sec) for acoustic analysis (CRAY YMP)

Run Example 1 Example 2 Example 3
1 33.3 10.9 15066.0

2 2.9 2.3 633.6
3.1 8.4 6.1 1954.4
3.2 5.8 3.4 -

4 10.5 1.0 47.6

In figure 1, the runs which have to be performed during an acoustic analysis were pre-
sented. Figure 2 shows the essential steps in acoustic analysis. These steps include the
modelling of the structure and fluid, defining the areas of coupling and absorption, fre-
quency and time response calculations, and so on.
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Figure 2. Possible analysis steps in the acoustic procedure.
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6. DESCRIPTION OF THE USER INTERFACE

6.1 Modelling Aspects
6.1.1 Fluid

In the building of a finite element model certain aspects must be considered. The acoustic
problem is a dynamic problem, hence the variation of the pressure field, both in time and
space, has to be incorporated into the model. For the sake of simplicity, the discussion is
restricted to the spatial variation of the pressure. From the basic Helmholtz equation, it can
be shown that for a one-dimensional problem,

p(x) = a,coskx + a,sinkx

where k = /c,. To obtain the behavior indicated in this equation, the finite element mesh
has to be able to reproduce a sinusoidal variation. Since this variation is dependent upon
the frequency, because of the wave number, £, it is clear that the size of the elements must
be compatible with the wavelength of the highest frequency of interest.

Given an upper frequency limit for a specific problem, the size of the elements can be de-
duced. If ND nodes are required to discretize a wavelength, then the distance between any
two nodes should be

p=-2% - (120)
ND -k

and the maximum size of an element side is of course 2-D. Depending on the type of
analysis and the desired accuracy, the value of ND can be selected as

6 <ND < 12 (121)

If the mesh is too coarse, the stiffness of the fluid will be exaggerated. It should be noted
that the rule of thumb given above is applicable to any dynamic analysis problem.

6.1.2 Coupling of structure and fluid

For the case in which the fluid interacts with a flexible structure, the considerations in sec-
tion 6.1.1 must be applied to the finite element model of the structure as well as to the
modelling of the interface coupling between the fluid and structure. Special attention has to
be given to the interface where, in general, two systems with large differences in wave
length are coupled to each other, see figure 3.
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Structure

Fluid

Figure 3. Comparison of wave length.

The most obvious approach in this situation is to use the same fine mesh in both the fluid
and the structure. But for most situations, this would result in many unnecessary nodes in
the fluid. Thus, it is desirable to use a different mesh size in the fluid and in the structure
even at the interface. This approach gives rise to a discretization error because the effect of
the structure upon the fluid is smoothed (assuming the situation in fig. 3). However, since
this effect is not very important for the strength of interaction, it is acceptable. An interface
similar to that shown in figure 4 would thus be possible.

Structural nodes

Fluid nodes

(o] o

Figure 4. Discretization at the interface between fluid and structure.

It should be noted, though, that the above approach is by no means generally valid and the
equations (120) and (121) must be considered for the fluid and the structure (ref. 32).

6.1.3 Use of superelements

One of the unique capabilities of this procedure is the capability to use superelements. In
many large problems, especially for dynamic analysis, the use of superelements can signif-
icantly reduce the cost of the analysis. There is no limitation on the use of superelements
for fluid-structure coupling as long as the fluid model is in the residual structure. Any su-
perelement can be in contact with the fluid, regardless of the number of superelement levels
used. ntl n erclements are not s . Any superelement that is in
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6.2 Fluid Media
6.2.1 Grid point definition

The fluid media geometry is described by the use of the standard GRID and element con-
nectivity cards. The fluid grid points should be distinguished from structural points by
numbering the fluid points in a different range. Thus, partition between the two systems is
easier to specify. The fluid grid points have "stiffness” and "mass" properties at only one
of the six DOF at a grid. The user can specify the active DOF by constraining all other
DOFs except that which is to be used. Typically, the T1 DOF is used (T1 is the
NASTRAN notation for the DOF in x-direction). Where the displacement coordinate sys-
tem for the fluid grid point references a cylindrical or spherical coordinate system, it is re-
quired that the T3 DOF (DOF in z-direction) must be the active DOF.

6.2.2 Element definition
The fluid medium can be modeled with any MSC/NASTRAN elements (in the three-di-

mensional case, e.g., HEXA, PENTA, and TETRA elements). It is recommended that the
user specify the consistent mass for the fluid. This leads to better results in practice.

Caution: On the PSOLID card (property definition for solids) Integration
Option 2 should be used for VERSION V65.

6.2.3 Acoustic absorption

The absorption capability has been provided and is defined by the DMIG input. DMIG
matrices are generated by the AMP. Provision has been made to define frequency depen-
dent absorption. For transient response analysis boundary absorption cannot be used since
the derivation shown in section 4.1 is valid only in the frequency domain.

6.2.4 Loading

The loading of the fluid is generally analogous to that used in structural mechanics analysis.
Several types of loading can be specified for the fluid model:

1. Constant enforced pressure at the grid points
2. Frequency or time dependent enforced pressure at the grid points
3. Acoustic source characterized by a volumetric flow rate

The pressure can be enforced in the same manner as structural base excitations, i.e., "large
mass"” approach or Lagrange multiplier method. The volumetric flow rate is specified via
standard structural load specification. Owing to the symmetrization of equations of motion




in section 3.4, the forces lied directly to the fluid first have to be integrated in tim
then multiplied by -1.0, The resulting load is applied in the usual way.

6.3 Uncoupled Normal Modes Analysis of Structure and Fluid (Run 1)
This run is based on solution sequence, SOL 63, of MSC/NASTRAN. In general, the su-

perelement capability is available to the user of the acoustic package. The input listing of
Run 1 is shown in Appendix B1.

Caution: If superelements are used, the following limitations (mentioned in

section 6.1.3) must be observed:

1. The whole fluid model must be in the residual structure.

2. Any superelement that has any interior grid points that are in contact with the fluid
must be in primary superelement. It cannot be an identical or a mirror image, i.e.,
secondary superelement.

3. Fluid grid points must be "reasonably" coincident with an adjacent structure grid
point. Coincidence is defined, see section 6.3.4.1, by the AMP parameter, TOL 1.
(Remember: An unconnected fluid surface grid point is assumed to have a
dp/dn =0 boundary condition, i.e., rigid wall).

6.3.1 Executive Control Deck

The DMAP alter must be inserted following the SOL 63 call. This instruction is in general
automatically fulfilled by the actual machine-dependent procedure, i.e., no user action is
necessary. If the analysis is performed in multiple steps, the DMAP alter must be present
during the residual structure processing. It is recommended that the alter program be in-
cluded for processing of all upstream superelements. There are no other special instruc-
tions.

6.3.2 Case Control Deck
During the residual structure processing the user is required tb do the following:

1. Specify a LOADSET = XX to select an LSEQ card in the Bulk Data Deck. LSEQ
~ will be described in the discussion of the Bulk Data Deck.

2. Define SET yy = I thru J such that all fluid grid points are in the range of I to J.
This set can include any number of nonexistent grid points.
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3. Specify DISP(...) = ALL for all superelements that have any interior grid points
in contact with the fluid.

4. Define two subcases for Fluid-Structure Interaction. Note that there is ordinarily
only one subcase for the residual structure processing. The first subcase contains
the PARTN = yy, where yy references the SET yy defined above and a METHOD
card selecting an eigenvalue extraction method for the structure only. The second
subcase contains only the METHOD card for selecting the eigenvalue extraction
method for the fluid.

6.3.3 Bulk Data Deck

The structural model is defined in the usual way. The fluid model is defined in the same
way with one exception. The material property cards define the bulk modulus and the
density of the fluid. For two-dimensional elements use the MAT2 and for three-dimen-
sional elements use the MAT9 cards. Due to the analogy described in section 4.3, the
density of the fluid is '

x
and the G;; entries are
1p,

Use of the parameter PARAM, COUPMASS requires some consideration. This parameter
selects the consistent mass formulation. If the user does not wish to use the consistent
mass for all the elements in the model, the parameter can be specified in the Case Control
Deck. Specifically, if the superelements are used then the COUPMASS can be specified for
any superelement. In any case the PARAM, COUPMASS should be used for the residual
since the fluid is in the residual structure.

Caution: The parameter specification must be placed in the first subcase
and not in the second subcase of the residual.

The two unique remaining items for the fluid model are the specification of the pressure
load data to help define the 1) coupling areas (=> coupling matrix) and 2) absorbing areas

=> absorption matrix) of the fluid surface. The definition of these areas takes place in the
two-dimensional case by FORCE cards and in the three-dimensional case by PLOAD2 or
PLOADA cards.
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Caution: The pressure magnitude must be 1.0 and its direction must be in-
ward to the fluid. If one wishes to use PLOAD2 cards the areas have to be
described by uniformly oriented surface elements, where the orientation is
prescribed by the direction of the surface normal using, e.g., the right-hand-
rule. If an error is made in the definition of the direction, it can be corrected
later in the AMP Input (see section 6.3.4.1).

The first pressure (force) load defined must be applied to the surface of the fluid in contact
with the structure.

The absorption areas are defined by specifying pressure loads on the surfaces at which ab-
sorption material is in contact with the fluid. Note that the absorption area may be internal
to the fluid, such as a seat in the automobile acoustic cavity. Each pressure load with a dif-
ferent Set Id (Id: Identification) represents a separate absorption area. The order number for
these areas is specified on the LSEQ card.

The format of the LSEQ card is

LSE SID AID LID

. The SID is selected by the LOADSET = SID in the Case Control Deck. The AID entry
" defines the order of the load vectors representing the total surface area and the absorption
- areas. The LID represents the Set Id of the applied pressure (force) loads. Each LID is
associated with a specific AID. Therefore, the absorption areas are numbered by their as-
sociation with the AID entry.

Caution: The pressure load applied to the surface of the fluid in contact
with the structure (=> coupling matrix) must have the lowest numbered
AID.

Example:

Let Sp be the total (discretized) surface of the fluid, Sgc the total surface of the fluid cou-
pling with the structure and Iz, through Jpc, the element numbers of Sz. Assume Spc=S;,
i.e., the whole surface is coupling. Further, let Sg, be the total absorbing area of the fluid
surface with Sp, C Sp consisting of m different subareas Sgai, Sgazs-..»Spam- The €le-
ment numbers belonging to these subareas are Iy, through Jgay, Iga, through Jpao,...,
Igam through Jpan.
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“ PLOAD2 and LSEQ Input “

Coupling surface
LSEQ SID AlDgc LIDgc,

Absorbing areas
PLOAD2 LIDga, 1.0 Ipas THRU JBai
PLOAD2 LIDBAg 1.0 IBAZ THRU JBA2
PLOAD2 LIDgs,, 1.0 Ipam THRU JBAm
LSEQ SID AlDg,, LIDga,
LSE SID AlIDg,, LIDga,
LSE SID AlDpsn | LIDgys

In this example each absorbing subarea Spa;, Sgaz,.-» Spamis also a coupling area, i.e., it
is SBAi C SBC (l = 1,...,m).

In this example, the assumption was: Syc=Sg. If there are subareas of Sy that are not cou-
pled, then Spc  Sp and according to this situation the element numbers, which determine
the coupling area, have to be changed on the PLOAD2 card for this case.

Other combinations of éoupling and absorbing areas have to be handled in a similar way.
6.3.4 Area matrix program input/output

Before any of the response analysis can be performed the AMP must be executed. The
purpose of AMP is to generate the coupling matrix (or matrices) between the structure and

the fluid. It also generates the absorption matrix (or matrices) if they are to be included in
the analysis.
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6.3.4.1 Inputfiles

There are two input files for AMP that by default are defined to be Fortran Units 14 and 15.
The data which are assigned to these files are generated by MSC/NASTRAN SOL 63
Normal Modes Analysis of the structure and the fluid. These data consist of the following
MSC/NASTRAN data blocks:

OUTPUT2 PFS, CSTM,PGF, SEID,PGA//0/V,Y,CSTMOUT=11 »$
OUTPUT2 GPLS, SILS, BGPDTS //0/V,Y,GEOMOUT=12 §

During the SOL 63 run (Run 1, see fig. 1) five data blocks are written to Fortran Unit 11
and three data blocks are written to Fortran Unit 12 by default. As can be seen in the above
DMAP statements these default values can be redefined by specifying parameters CST-
MOUT and GEOMOUT.

During the AMP run, data blocks PFS, CSTM, PGF, SEID, and PGA are assigned to For-
tran Unit 14. Data blocks GPLS,SILS, and BGPDTS are as51gned to Fortran Unit 15.
The contents of these data blocks are as follows:

Contents

e ————————
This is the partition vector that separates the fluid grid points from the
structure grid points in the residual.
CSTM Coordinate System Transformation Matrices.
PGF This file contains the areas associated with each fluid grid point that is

on the interface with the structure model.
SEID Contains the Superelement ID's if there are superelements in the analysis.
PGA This file contains the absorption data. Each column of this matrix defines

a different absorption area.
GPLS Grid Point List Table.
SILS Scalar Index List Table.

BGPDTS | Basic Grid Point Definition Table that defines the locations of all the grid
points in the model.

The direct input to the AMP program is input at the terminal or Unit 5. The input is rela-
tively simple and will be described by the order of appearance. The input is assumed to be
in free format, meaning that the data are separated by a comma or a blank.
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RECORD NO. 1- TOL1, TOL2 (real, real)

TOL1 If the fluid and structure grid points are within the distance less than TOL1
then they are considered to be coincident.

TOL2 In general, the area matrix terms have components in x,y, and z directions

(A,’ Ay,A,). The total area then is simply 4, = \/AZ+ A%+ A2. If for any of the
area components, A,/A, <TOL2 then A, will be ignored, ie., A =0 (i =
x,y,2). Usually, TOL2 is equal to 0.

RECORD NO. 2 - IFF, FF (integer, real)

IFF Identifies which of the structural DOFs will be used as the pressure DOF.
If the Ti DOF is used as pressure DOF, then IFF =i (i = 1,2,3), e.g., T1 is
the DOF in x direction.

FF Defines the multiplier for the area matrix terms. Used primarily to reverse the
sign of the surface normal, which must be inward to the fluid, if one made an
error.

Usually, FF is equal to 1.0.

o
—

RECORD NO. 3 - ANS (character)

ANS Y or N, i.e.,Yes or No. If Yes, then the user will be requested in the next
record to specify the search region for the determination of fluid to structure
grid points match. In some cases, by specifying the search region, the com-
putational effort may be reduced. In most cases this has been found not to
be very significant.

RECORD NO. 4 - XL XU,YL,YU,ZL,ZU (reals), required only if ANS=Y

The above six numbers define a rectangular region in the basic coordinate system. They
provide the lower (L) and upper (U) bounds for each coordinate direction X, Y, and Z.

The following records are required only if there are absorption areas. The AMP will print
out the number, NCOL, of unique absorption areas that it has found from the PGA data
block.

RECORD NO. § - (NR(), I = 1, NCOL) (integers)

NR(@) If NR(D) < 0 the absorption data will not be generated for I'th region.
If NR(D) > 0 the absorption data will be generated for I'th region.

If all NR(I) < O no further input is required.
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RECORD NO. 6 - NF (integer)

NF Specifies the number of frequencies at which the absorption data will be pro-
vided. This is required if absorption is defined as a function of frequency. If
a constant value of absorption is desired, set NF = 1.

RECORD NO. 7 - (E(I), I = 1, NF) (reals)

F() Frequencies at which the absorption data will be provided. Note that the ab-
sorption data for all retained regions must be supplied for all the frequencies
even though some regions may not have frequency dependent absorption
properties.

RECORD NO. 8 - RHOC (real)

RHOC | Value representing the product of the density, p,, and the speed of sound, ¢,
for the fluid medium (see section 4.1, constant Z_ in eq. 93).

The following NF records are repeated for every absorption area that is active. At most
this number will be NCOL. Note, that in Record 5 any or all absorption areas can be ig-
nored.

RECORD NO. 9+(NF-1) - CR(NF), CI(NF) (reals)
CR() Real part of the specific acoustic admittance.

CI(D) Complex part of the specific acoustic admittance.
See egs. 93, 94, and 95 in section 4.1.

6.3.4.2 Output files

Three files are generated by the AMP program. By default, they are written to Fortran
Units 16, 19, and 20. Data contained in these files are as follows:

+ UNIT 16: MSC/NASTRAN DMI cards that define the coupling matrices, describ-

: ing the coupling area of the fluid surface. There will be as many different names
for the DMI matrices as there are superelements that have any internal points con-
necting to the fluid model. If there are absorption areas, then this file will also con-

tain the DMIG cards that describe the damping properties for each absorption area.

All absorption areas are grouped into one DMIG matrix. Since absorption matrices

can be frequency dependent, there will be as many unique DMIG matrices as there
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are frequencies at which the the absorption properties are defined. This file is re-
quired in SOL 70, 71, and 72.

« UNIT 19: MSC/NASTRAN Case Control Set card definition,
SET 911=n;,ny,n3,...,n, where n;’s represent fluid grid points that are on the sur-
face of the fluid mesh and in contact with the structure. This file will be used in the
calculation of the Grid Point Participation Factors.

« UNIT 20: This file contains some DMAP statements. These statements redefine
the names of the DMI matrices (area matrices) that are stored in the data base. It
changes the names from that of "DMIxxxx 0 0" to "AREA 0 xxxx," where xxxx is
some integer value and the other two values are the data block qualifiers. This file
is required in the SOL 70, 71, and 72. : '

6.3.4.3 Absorption property interpolation

Generally, absorption properties are frequency dependent (see section 4.1). The depen-
dency is significant and cannot be ignored. To accommodate this phenomenon, a provision
has been made to allow the user to specify any curve that defines the properties as a func-
* tion of frequency. There is a capability in the FRRD2 module (Frequency Response for
Aeroelastic Analysis) that uses a spline technique to interpolate any complex matrix quan-
tity. The user is required only to specify matrices of complex quantities as a function of
frequency. This capability originally was intended for the interpolation of aerodynamic ma-
trices. Owing to this fact, a very special form of spline interpolation is used. The user
must understand this spline form, so that the absorption function can be properly defined.

This intérpolation technique is best illustrated in figure 5.

6

4‘ /u
‘2_. //

0 1 2 3 4 5 6

Figure 5(a). Interpolation technique.
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In this figure a simple line, defined by two points, is shown. The absorption is a complex
quantity and this line represents the same variation versus frequency for both the real and

the imaginary components. Figure 5(b) illustrates the behavior of MSC/NASTRAN spline
interpolation.

n
0:/’/
-—-n’/

4 -

L

3 ' 4 ) -2 0 2 4 6
Figure 5(b). Behavior of MSC/NASTRAN spline interpolation.

For the real component the zero slope at zero frequency is assumed, i.¢., the curve is sym-
metric about the y-axis. For the imaginary component the assumption is made that the
function value is zero at zero frequency, i.e., the curve is antisymmetric about the y-axis.
Obviously, the resultant interpolation of the real and complex quantities does not produce
the correct result. To remedy this problem, additional input is required. This problem can
be avoided by specifying a slope of the curve at the first frequency value. The slope can be
defined implicitly by specifying two points spaced closely together as shown in figure 5(c).
The resultant interpolation is shown in figure 5(d).
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2 . ,g/

0 1 2 3 4 5 6

Figure 5(c). Slope defined implicitly by specifying two points spaced closely together.

0
r
2
4 POt :
-6
6 4 2 0 2 4 6

Figure 5(d). Resulting interpolation.

Caution: The absorption should not be defined at zero frequency. because

MSC/NASTRAN divides the function value by frequency when interpolat-
ing the imaginary part of the absorption quantity.

6.4 Normal Modes Analysis of the Modal Coupled Fluid-Structure System
(Run 2)

This analysis is performed only if the coupled Fluid-Structure-Interaction (FSI) modes are
required. In this case both the structure and the fluid are represented by their respective
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modal ceordinates, calculated during Run 1 (SOL63). This is, compared to Run 1, a rather
quick and simple calculation, since the problem size is generally very small. Even though
SOL 70is used, the DMAP program allows the user to calculate the real eigenvalues of the
coupled system if there are no actual damping matrices. In that case a different symmetric
formulation is used where the coupling terms are no longer in the damping matrix (see see-
tion: 3.4, e.g., eq. (64)). Before executing the MSC/NASTRAN analysis the AMP must be
run in erder to prepare coupling (DMI input) and also, if required, absorption (DMIG in-
put) data. The input to AMP for this case is

RECORD NO: 1: TOL1 = 1., TOL2 = 0.
RECORD NO: 2: IFF=1,FF=1.
RECORD NO: 3: ANS =N

RECORDNO: 5:  NR() = -1 (I=1,....NCOL) means:
-1,-1,...,-1 (NCOL "times" -1 or NCOL*-1)

The Record 5 implies that no absorption matrices will be generated. Input listing of Run 2
is shown in Appendix B2.

6.4.1 Executive Control Deck

1. Itis required that the downstream data base from SOL 63 be assigned to the read-
only data base, DBSET 15.

e NASTRAN DBSET 1=(DB01l,DB15),DBSET 2=(DBO1,DB15)
* NASTRAN DBSET 15=(DB13)

2. Include a small DMAP program (DMAP.DAT) generated by-AMP, fetched from
UNIT 20. This usually is done by a merge utility, which varies with the computer
system used. -

3. Include one of two DMAP alter programs; one is used for the real and the other is
used for the complex eigenvalue analysis. The real eigenvalue analysis capability
has been provided for the case with no damping terms.

Both DMAP programs are inserted following the SOL 70 call. This instruction is, in gen-

eral, automatically accomplished by the actual machine-dependent procedure and needs no
additional user action.
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6.4.2

[

6.4.3

N -

Case Control Deck

. Specify SET xx = 0, SEMG = xx.
. Select the usual output requests, i.e., structural or fluid grid points for, e.g., plot-

ting deformed shapes.

. Select eigenvalue extraction method, either METHOD = yy or CMETHOD = zz,

depending on the selection of real or complex eigenvalue analysis.
Where xx, yy, and zz are some user-specified integer numbers.
Bulk Data Deck

Specify the following parameters:

PARAM, DLOAD, -1

. PARAM, RESDUAL, -1

Caution: see parameter description NASTRAN USER's MANUAL Vol II.

PARAM, LMODES, XX; where xX > sum of modes for the fluid and the structure
from Run 1 (SOL 63). PARAM, LFREQ and PARAM, HFREQ must not be used.
PARAM, SMALL, EPS; where EPS is used to filter the modal area matrix terms. If
any area matrix term, A;, divided by the largest |A,l is smaller than EPS, then that
A; is discarded. If (4;.1t. A;,,,) A;; = 0. Default for EPS is 1.E-6.

Additionally, the user must specify the eigenvalue extraction method, either EIGR or EIGC
depending on the type of solution. Using the computer system merge utility, include the
contents of file on UNIT 16. This file includes the area matrix defined on DMI/DMIG

cards.

6.5 Modal Frequency Response Analysis (Run 3.1)

This is probably the most commonly used analysis technique for FSI calculations. Like the
coupled modes solution, this analysis is also restarted from SOL 63 data base (Run 1). Be-
fore executing this analysis, the AMP must be run to generate the required files (DMI,
DMIG, DMAP.DAT) as described in section 6.4. The input to AMP for this case is, e.g.,

RECORD NO: 1: TOL1 =1.,TOL2 = 0.
RECORD NO: 2: IFF=1,FF=1.

RECORD NO: .3: ANS =N
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RECORD'NO: 5: NO'ABSORPTION
NR(]) = -1 (I=1,...,.NCOL) means:
-1,-1,...,-1 (NCOL "times" -1 or NCOL*-Iy

ABSORPTION:
NR() =1 (I=1,...,NCOL) means:
1,1,..,1 (NCOL "times" 1) or NCOL*1

Input listing of Run 3.1 is shown in Appendix B3.1.

6.5.1

1.

2.

3.

Executive Control Deck

It is required that the downstream data base from SOL 63 be assigned to the read-
only data base, DBSET 15.

* NASTRAN DBSET 1=(DB01,DB15),DBSET 2=(DB01,DB15)
¢ NASTRAN DBSET 15=(DB15) N

Insert a small DMAP program (DMAP.DAT) generated by the AMP.

Insert a DMAP Alter Program for Frequency Response.

Both DMAP programs are inserted following the SOL 71 statement. This statement is, in
general, satisfied automatically by the machine-dependent procedure and needs no addi-
tional user action.

6.5.2 Case Control Deck

Nospecial instruction must be observed.

Exception: If pressure response curves at fluid grid points GPFi (i = 1,2,...) are
required, the user must use the following Case Control cards:

SET pp = GPFI,GPF2,...
VELO =pp
. ,
L]
Plot request:
XYPLOT VELO / GPFi(T1RM).

Where pp is some user specified integer number.
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6.5.3 Bulk Data Deck
Specify the following parameters:

PARAM, DLOAD, -1

PARAM, NORF, -1; no residual flexibility for the fluid.
PARAM, LMODES, XX; see section 6.4.3)

PARAM, SMALL, EPS; see section 6.4.3)

SN -

There are two possible methods for specifying the modal damping for the structure and
fluid. The first method is to use the TABDMP1 Bulk Data card. In this case, the fluid
modal damping is defined in the third quadrant, i.e., frequency and damping values must
be input with a negative sign. The second method is to input the modal damping via the
DMI cards. Damping can be specified for each structure and fluid mode, as output from
Run 1, via DMI cards. One DMI card is assigned to each mode that has modal damping.
The number of the DMI card must be the same as the number of that mode. Using the DMI
input, the DMAP program generates modal damping matrices TGDMPS and TGDMPF for
structure and fluid respectively, which are added to the total modal damping matrix of the
modal coupled system. '

The following example illustrates the modal damping input via DMI cards: Let ng be struc-
tural modes and n; fluid modes calculated in Run 1. Some of the modes are damped and
some are not damped.

Fluid:
DMI, TGDMPF,0,2,1,1,,1,nf
Mode No. Modal Dmp.
DMI TGDMPF 1 1 0.03
DMI TGDMPF 2 1 0.03
DMI TGDMPF 3 1 0.03
DMI TGDMPF n 1 0.03
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Structure: .

— 4

DML TGDMPS,0,2,1,1,,1,n¢ A
Mode No. ‘Modal Dmp.

DMI TGDMPS 1 13 0.06
DMI- TGDMPS . 2 1: 0.03-
DMI TGDMPS 9 1 0.0
DMI TGDMPS 10 1 0.02
DMI . TGDMPS 21 1 0.0
DMI TGDMPS 22 1 0.04
DMI TGDMPS n 1 : 0.0

Caution: The modal damping is input as % of critical modal damping, |} -

where 3% is specified as 0.03.

6.6 Modal Transient Response Analysis (Run 3.2)

In'many respects, this analysis is very similar to the frequency response analysis so it will
not be described in detail. The difference in the two analysis methods are the same as for
any. other; non-FSI analysis, i.e., FREQ versus TSTEP, RLOADi versus TLOADA, etc.
Furthermore, a special DMAP Alter Package is used and no absorption damping is al-
lowed.

6.7 Structural Grid Point Participation (Run 4)

Before executing this run, the frequency response analysis, Run 3.1, must have been suc-
cessfully completed. The output from this run is a very useful diagnostic tool in the acous-
tic analysis. With this output the user can pinpoint the source that causes a pressure rise or
fall at-any point in the interior of the fluid domain. Since one is usually concerned with the
structure surrounding a fluid, this information can be beneficial in the redesign of the part
of the structure that causes a noise problem.
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6.7.1

1.

2.

Executive Control Deck

It is required that the downstream data base from SOL 63/SOL 71 be assigned to
the read-only data base, DBSET 15.

NASTRAN DBSET 1=(DB01,DB14,DB15)
NASTRAN DBSET 2=(DB01,DB14,DB15)
NASTRAN DBSET 15=(DB14,DB15)

Insert a DMAP alter program

The Grid Point Participation DMAP Alter Program is automatically inserted by the machine
dependent procedure and no user action is necessary.

6.7.2

1.

6.7.3

Case Control Deck

Insert the file SET.DATA (SET 911) from UNIT 19, which contains the fluid
points that are coupled to the structure.

. DIsp = 911

Input of frequencies for which the participation factor should be calculated
SET xx = Fl,F2,F3,..,Fn
OFREQ = xx

The input frequencies F1,F2,F3, .., Fn should be approximately equal to the
frequencies used in Run 3.1 (SOL 71).

Bulk Data Deck

. User Instruction for calculating the participation factor at fluid grid point GIDi (CID

is the DOF which determines the pressure; usually it is CID = 1 (see description of
Run 1).

DMIG,PDOF,0,6,1,0

DMIG, PDOF, GIDi, CID, ,GIDi, CID,1.0

If one only wants the real displacement output set
PARAM, REAL, O
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6.7.4 Output

The output from this run requires some explanation because it is not immediately obvious.
This output describes the contribution of the structural grid points to the generation of the
pressure anywhere in the interior of the fluid domain. Obviously, the only structural grid
points that can contribute to the pressure in the fluid domain are the points on the interface
to the fluid. The AMP establishes the relationship between the fluid and structural points
on the interface. In general, one structural grid point is "connected" to a closest single fluid
grid point. In other words, there is a one-to-one correspondence between the fluid and
structural grid points on the interface. The goal of this output is to provide a numerical as
well as a graphical representation of structural grid participation factors.

In most typical applications of this acoustic procedure (such as aircraft or automobile noise
studies), the structural mesh will usually be much finer than the corresponding fluid mesh,
therefore, only some of the structural points on the interface will be "connected" to the fluid
surface. Also, the structural mesh on the interface may contain a number of different types
of elements. It is very difficult to graphically (contour plots, etc.) present the participation
information on such a mesh. The fluid mesh is usually composed of three-dimensional el-
ements and it is easy to plot contours on the outside surface of the fluid domain. To facili-
tate the graphical display, the output of the structural grid participation factors is transfered
to the corresponding fluid grid points as produced by the AMP. The results of this opera-
tion can be seen in section 8.

The output of this analysis looks like the usual SORT1 "Complex Displacement Vector"
output for frequency response. It is generated for a user-specified interior fluid point,
GIDi, at each frequency, F, (i = 1,2,...,NF), input in the Case Control Deck (see above).
The contribution to the pressure at interior fluid point, GID;, influenced by the participation
points, is given. The participation points are the structural points on the interface, but in
the output they are labeled by the corresponding fluid point on the interface as explained
above.

Ir

=

COMPLEX DISPLACEMENT VECTOR

(REAL/IMAGINARY)
Participation
Point ID Tl T2 b R1
PGP; RE(T1) RE(TZ) RE(T3) R1
(i=1,2,.,N¢) IM(T1) IM(T2) IM(T3) 0

[
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N¢ is the number of fluid coupling points on the interface and they are listed in SET 911.

1.

4.

Listed under the heading T1 is the real (RE(T1)) and the imaginary (IM(T1)) com-
ponents of all participating points PGP, (i=1,...,N¢). If all the terms are added, the
actual pressure at frequency F; for the selected fluid point, GID:i, CID, will be ob-

tained.

. Under the heading T2 each term in T1 is rotated in the complex plane such that the

real term is in the direction of the resultant pressure vector (for point GIDi) and the
imaginary term will be at 90° to that vector (see fig. 3). The new coordinate system
is labeled by ().

Moy

\ T2=T1I' g

(T2)=RE(T1)

Note the sign of RE(T2):  + means "contribute" to pressure p

- means "subtract” from pressure p.

. Under the T3 heading the output is simply the vector

T3=1%

1P

which gives the fraction of the contribution for each point. Note that only the real
term of T2 contributes to the resultant pressure. |P| is the magnitude of the pres-
sure vector.

Under the R1 heading, the output is the same as the T3 except that each term is
normalized by the largest real term.
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7. DEMONSTRATION OF ACOUSTIC CALCULATIONS AND
THEORETICAL VERIFICATION

7.1 A One-Dimensional Example

7.1.1 Description of the model

Generally, it is very difficult to obtain theoretical solutions for practical problems of FSI
Such solutions are necessary to evaluate the results and the accuracy of the finite element
analysis. A simple Fluid-Structure System for which an analytic solution exists will be
used to verify the finite element results and to demonstrate most of the capabilities of the
acoustic procedure presented here. Owing to his expertise in the mathematics of acoustics,
all the equations in this section were derived and solved by the second author.

The system consists of a straight air-filled tube with quadratic cross section. One end of
the tube is closed by a rigid wall ([Z,| = o), or by an absorbing wall (0 <|Z,| < e), and the
other end has a moveable piston supported by a spring-damper-system. Z, is the normal
impedance of the boundary. Additionally, the piston surface can be chosen to be absorb-
ing. A more general situation is to introduce flexible walls on both ends of the tube (with
or without absorbers) which can be done by a simple spring-damper system.

The natural frequency of a one-degree-of-freedom spring-damper-piston system is assumed
to be close to that of the air with a fixed piston in order to create an interaction between the
air and the structure. In view of response calculations, the piston can be loaded by an ex-
ternal force. The model is shown in the figure 6.

Viscous dampel' (Q) Piston surface:
rigid
o Rear wall:
Excitation Fg rigid or absorbin
—! g\
Piston (M, A) Fluid (g;, ¢;)
0 .
} - Displacement u
Spring (K) A : %

Figure 6. Spring-damper-piston-tube system.
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The following table gives the physical properties which are necessary to describe the cou-
pled system. '

Table 2. Physical properties
Spring-damper-piston system (Structure)
area of piston cross section A 0.000625 m
spring stiffness K, 7474.75 N/m
mass of piston M, 0.01 kg
viscous damping D, 0.50 kg/s
external load F, 2.1885 N
Air-filled tube (Fluid)
length of tube : 1 1.25 m
area of tube cross section A 0.000625 m
speed of sound (air) ¢, 344 m/s
density of air p; 1.205 kg/m
bulk modulus X 142594.17 N/m
specific acoustic resistance Z,=ReZ, 228 kg/m?2s
specific acoustic reactance Z,=ImZ, -1456 kg/m2s

Remark: Because / >> /A, it is sufficient to describe the wave propagation in the tube by a
one-dimensional wave equation along the longitudinal axis, x-axis, of the tube.

7.1.2 Theoretical solution

The equation of motion of the damped spring-piston system is given by

M.ii(t)+ D, u(r) + K u(t) = F(t) (122)

M,, D,, and K, are mass, viscous damping, and stiffness of the system. The displacement
of the piston in x-direction is u. The exciting force, F(t), consists of an external part, F(t),
acting on the piston and a part, F,(t), induced by the fluid pressure on the piston surface.
Discussion is restricted to the steady-state case, i.e., piston displacement, pressure, and
exciting force are all assumed to be harmonic in time. Therefore, the following boundary
value problem, equation (123), has to be solved:
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K,- o’M;+i@Du=F,+F o
( ) ? %p(x) +k*p(x)=0 (k = w/c,)

with: F, = —Ap(0). Boundary Conditions:
. ? 1. x=0:

dp

P

=1 QB
ox

u.

. |
=o| —iwp, =P}
( Pz’ )
with @ =0: rigid, @ =1} absorbing..
Z, is the impedance of the absorber (see }:
section 4.1) ‘

i
=

In the following, several formulas will be presented for

1. coupled eigenvalues

2. pressure.distribution in the tube along the x-axis belonging to these eigenvalues

3. expressions for the piston displacement, u=u(v), and pressure, p(x,V), in the
tube at location x '

All these formulas will depend on the excitation frequency. The derivation of the formulas
is elementary, therefore, details can be omitted. A more detailed mathematical investigation
of 'some.FSI questions can be found in reference 33.

7.1.2.:1: Coupled Eigenanalysis

With D, =0, F, =0, and dp/dx =0 atx =1, from equation (123) follows the eigenvalue
problem of ‘the the spring-piston-tube system. In order to obtain the eigenvalue equation,

first obtain selutions of the fluid boundary value problem of the form -

p(x,k) = C,coskx + C,sinkx

where C, and C, have to be determined from the boundary conditions, elastic at x = 0 and
rigidatx =1. ‘

Using k = 0fc,, 0 =2nv, and Z, = ¢,p,, the following expression is obtained.
-1
p(x,v)= 27cZOuv(tan—2—”—I v) {(tangﬂ VJ(Si" -z-ﬂx} + [cosy-‘ix)} (124)
Cy Cs Cr Cr
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and from that

~1
p(0,v) = 27tZ(,uv(tanM v) (125)
Cr

Combining the structural part of equation (123) with equation (125) yields a transcendental
equation for the frequencies, v=v; (j = 1,2,3,...), of the coupled system,

27le_ ZA Vv

= 126
¢ 2aM, vi-v? (126)

tan

where v, is the frequency of the spring-piston system (see eq. 127). Table 3 shows the
frequencies of the uncoupled and coupled structure-fluid system. The calculation is based
on the data shown in table 2.

Table 3. Coupled and uncoupled frequencies (in Hz)

Spring-Piston Tube Coupled
System (air-filled) System
137.6 137.6 128.3345
147.1835
275.2
412.8
550.4

Note that the frequencies of the spring-piston system and the air-filled tube with rigid
boundary at x = 0 and x =/ were calculated from

v =— |2 and v}“)=n-gil (n=12,3,..) (127)

It can be seen from table 3 that the interaction between the spring-piston system and the air
in the tube, with rigid boundary at x = /, leads to a considerable shift in the frequency,v,,
of the spring-piston system and v}') of the fluid. Clearly, as j increases, the frequency
shift, v, - vﬁ"’) (J =3,4,5,...), tends to zero. Moreover, the coupling increases the fluid
fr : : (i-1) i€

equencies, i.e., V; ' <V, if j>2.

In figure 7, equation (126) is solved graphically by the intersection of two curves

2nd Z,A v
v)=tan—-v v)= . 128
X(¥)=un> V) =5 o (128)
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in the case v, = V;l). This clearly shows the effect of coupling described above.

Y

y¥

Figure 7. Graphical determination of coupled frequencies.

In the uncoupled case, i.e., rigid boundary at x = 0 and at x = /, the stationary pressure dis-
tribution is given by

n)

27
Py (x) = const. cos( 7;’ x), n=123.. (129)
!

In comparison with equation (129) for the coupled case, the following pressure distribution
is obtained (see eq. 124):

-1 ’
2nv, 2nv, :
p;(x)= const. Vj(tanzﬂ vj) {(tanM vj)(sin . x)+ [cos . x)}, j=12,.(130)
€y Cr s s

As above, v}") (n = 1,2,3,...) are the frequencies of the standing waves in the rigid
bounded tube and v, (j = 1,2,3,...) represent the coupled eigenfrequencies. Both groups
of frequencies are listed in table 3. ‘

Because of condition 1. in equation (123), the coupling also changes the pressure gradient
at x = 0. For the first two coupled modes

-66-



dp,
dx

In comparison, for the uncoupled case at the rigid boundary, x =0, the pressure gradient is

null.

It is obvious that the position of the pressure node, i.e., values for which the pressure is
zero, is also influenced by the coupling. These values can be calculated from equation
(130) and compared to the corresponding pressure node positions of the standing waves in
the tube with rigid boundaries at x = 0 and x = I. There is a significant shift of the pressure
node position, x; (j = 1,2), especially for coupled modes 1 and 2, compared to /2, which
is the pressure node position of the first standing wave in the rigid tube. These effects are

shown in figure 8.

x=0

<(), ip_z

>0
dx

x=0

x=L

X [m])

Pl(x)

Figure 8. Pressure distribution, p(x), for coupled modes j = 1, 2, compared to
- pi¥(x), of the first standing wave (# =1) ina rigid tube.

Coupled case 1 (%)

Uncoupled case ("uc") : (***)

dp dp

e <0, *x) = >0
dx x=0 ( ) dx x=0

2 I

dx x=0
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7.1.2.2 Frequency response analysis

To get the response (piston displacement u and pressure p) of the coupled system, the
boundary value problem, equation (123), has to be solved. Starting with a formulation for
the pressure function, equation (124), an elementary calculation yields u(v) for the piston
displacement and p(x,v) for the pressure in the tube. The following two expressions re-
sult:

u(v)=

Iu, .
612"'622(5]—162) (132)

and

p(x,v)=2nZ v—z—@'—z—-{[é{l‘l cos vax +sin 27WJCJ+ é,T, Cosgﬂx]
!

61 + ':2 C/ L‘,

+z[§r cos——’EY-x ¢, (I‘lcos-z—l!x+sing£!xﬂ} (133)
c

! r s
respectively, where

AZ
=(v}-v)+—2Tv
él ( s ) ”MJ 1
D,+AZT,
=4 2 zy > 134
¢, 2M, (134)
F,
Tu.= 47°M,
l[1 -a’(o®+ 72)]sin£t—l v+ accos Ty
2 ¢ o
I = ) )
[ . 27l 27 , 2[ 27 )
sin—+ aocos— v | +a’y*| cos—v
s s Cr > (135)
a
L= )\/ p)
. 2nl 2nl 2.2 2nl ).
sin—+ aocos— v | +a’y*| cos—v
r s ¢y
0 :boundary atx=1/isrigid |
o=
1 : boundary atx =/ is absorbing
- zz Z,Z,
= . o=- > ' 136
r= Z:+272 VAR Y 44 (136)
Z,=p;c;, Z,=ReZ, Z,=ImZ,
J

-68-



It is useful to present the response results, i.e., piston displacement, u(v), and pressure,
p(x, V), in the tube, in terms of absolute values, [u(v)}, |p(x, v)|, and of their phase shifts,
¢,(v) and @,(x, v), due to the exciting force

F(1) = F,- exp(i-21v1)

From equation (132) one obtains

lu(v)| = @ Iu 62 CIGK (137)

and

tan@,(v) = -% (138)

Analogously equation (133) yields

—

q2
2nv_ . 2mv 2nv
|p(x,v)| =21Z, v—f—M-’-—— él(l"lcos——-x+ sm——x}+ g, cos—x|

512 +§22 ¢y Cr r J
T V2
1% 2nv . 2
+§ cos-——’—r—-x §,| T cos TV +sin=lY (139)
Cr Cr ¢ )]
and
§1I‘2cosmx—§2 I’,coszn—vx+sinzzr—vx
¢ i s
(140)

tan ¢, (V)= 2nv 2nv 2nv
gl(rl cos——Xx +sin ———x) +&,I, cos——x
s ¢y 1

The solution for a rigid boundary at x =/ can be obtained by setting a =0 (see eq. (136))
in equations (134) and (135). Then the coefficients I', and I, are reduced to

r= ymnﬂv r,=0 (141)
c
f

It is straightforward to derive the response formulas for this case from equations (137)
through (140) using equation (141); therefore, the details will not be shown.

The following figures include the graphs of the expressions for the piston displacement

le( v)|, the pressure |p(x, V)|, dependent on v with fixed x. Furthermore, the phase shifts
¢,(v) and @, (x, V) are also shown.
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Displacement (mm)

———— uncoupled

«<=«---- coupled w/out absor. at.x=|

- -~ - coupled with absor. at x=]

Y
190

Frequency (Hz)

Figure 9. Piston displacement.

Phase angle (Deg)

—uncoupled

---=+--coupled w/out absor. at x=1

= - = ~coupled with absor. at x={
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—_——r—————
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Frequency (Hz)

—_—
180

]

1640
170

160+

1504

140+

130+
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1104
1004

90
80

70
60+

504

100

Figure 10. Phase shift ¢,(v) of the piston motion.
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Ptusuxe(Nlmmz)
0.0080
0.00854 w/out absor, at x=l
0.0080
0.0075
0.0070
0.00654
0.0060+
0.0055
0.0050+4
0.0045
0.0040
0.0035
0.0030
0.0025-

- 0.0020
0.0015
0.00104
0.0005 4

1] T T T )
100 190 200
Frequency (Hz)

Figure 11. Pressure response curves at x = 0 (i.e., piston surface).

Pressure (Nlmmz)

0.00804
0.0085 w/out sbsor. at x=!
e.oo804 Y eseeeee with absor. at a=l

0.00754
0.0070
0.0065
0.00604
0.0055-
0. 0050
0.004S
0.0040
0.00354
0.0030
0.0025-
0.0020-
0.00154
0.0010
0.0005

T T
100 190 200
Frequency (Hz)

Figure 12. Pressure response curves at x = 0.15 m.
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Phase angle (Deg)
0~ \.
-104.-
-20
-304
-404
-50- \\
-60
\
\

w/out absor. at x=1 (position x=0)

% I e with sbsor. at x= {positon x=0)

3 - « = - W/out sbsor. at x=1 (position x=0.15)
\ ~ - - with absor. &t x=| (positon x=0.15)

.70—
-80 \
-90 \
-100 \
-110 \\
-120 \
\
\

-130
- 140+
-150- \
-160 \
-1704
-180 T T T T T T T T T 1

100 110 120 130 140 150 160 170 180 180 200

Figure 13. Phase shift ¢ (x, v) of the pressure response.

Figures 9 through 13 exhibit the characteristic phenomena caused by the interaction of the
piston and fluid in the tube. The discussion of these phenomena is restricted to the follow-
ing remark: In the frequency range from v{?/2 to 3v{/2, neglecting absorption at x =/,
from figure 10, the phase shift, ¢,(v), for the coupled case jumps from 180° to 0° at
v= v;’). On the other hand, figure 9 shows that u( V}‘))l = 0. That means the piston does
not move if the excitation frequency isv = v}‘). is effect occurs because the pressure-in-

duced force, F, = —Ap(0, v) (see eq. (123)), is moving in the direction opposite to the ex-
citing force, F,(t) = F,exp(i2nvt) and [Fp| =|F,(1)| if v= v}’).

The pressure on the piston surface depends on the piston displacement expressed by the
following equation:

p(0,v)=22Z,T,vu(v) (142)

which follows from equation (133) with x =0, I, = 0 and equation (132). The factor, I,
given by equation (141), in equation (142) causes p(x,0) {T u(v) for v}‘)/z <v< v}l) and
p(x,0)dd u(v) for v;') <v<3 V?)/2. For the first two coupled frequencies the terms
u(v) and p(0, v) are purely imaginary. An analogous statement is valid for x > 0.

Table 4 shows the phase relation between exciting force, F,(r) at t = 0, the piston dis-
placement, u(v), and the pressure, p(0, v), on the piston surface.
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“ Table 4. Phase relation between F(t), u(v), and p(0, v) H

v /2<v<y, v=y, v<v< v v=v¥
Re u >0 =0 <0 =0
Imu <0 <0 <0 =0
Rep <0 =0 >0 =0
Imp >0 >0 =()
E
p=0 |u=0
v=yv, v, <v<3vP/2
Re u =0 <0
Imu <0 <0 <0
Re p >0 =0 <0
Imp <0 <0 - <0
E E E
u\,p u
v p

In closing, the pressure distribution, |p(x, v)|, in the tube as a function of x at selected fre-
quencies is presented (see figs. 14 and 15). There is a significant difference in the location
of the minimal pressure which depends on parameter v . Positions, x, can be determined by
using equation (139).
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Figure 14. Pressure in the tube for (v = 100, 128.33, 137.6, 147.2, and 200 Hz)
without absorption at x = [.
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Figure 15. Pressure in the tube for (v = 100, 128.33, 137.6, 147.2, and 200 Hz)
: with absorption at x = [,

7.1.2.3 Transient response analysis
This type of response analysis is more complicated than the one investigated in section

7.1.2.2. The mathematical description of the solution procedure requires significant elabo-
ration, therefore it will not be presented.
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7.1.3 Finite element approximation and comparison with theoretical results

The coupled fluid-structure system introduced in section 7.1 is approximated by a suitable
finite element model, which can be a one-, two-, or a three-dimensional. The theoretical de-
scription and solution of the coupled problem is based on the assumption that the coupled
system is one-dimensional.

This assumption is sufficient because the condition, / >>+/A, where [ is the length of the
tube and A is the area of the cross section, is fulfilled. Therefore, it is appropriate to de-
scribe the coupled spring-piston-tube system by a one-dimensional finite element model.
In reality most problems are three-dimensional. Consequently, a three-dimensional model
is used for the FE approximation. It is left to the reader to describe the coupled system by a
one-dimensional finite element model.

In the following sections, the finite element model of the spring-piston-tube system is de-
scribed first. Subsequently, the finite element results for the usual types of analysis are
presented. These analyses consist of 1) uncoupled and coupled eigenanalysis of the spring-
piston-tube system, and 2) frequency response analysis. In many cases, transient response
analysis can be performed by transforming the problem to the frequency domain via the
Fourier transform. Then the same solution scheme can be used.

The finite element results were calculated by applying modal and direct (or physical) cou-
pling of structure (spring-piston system) and fluid (air in the tube) and compared to theoret-
ical results, which were presented in section 7.1.2. Equations (67) and (68) were used for
the modal coupling and equations (62) and (64) for direct coupling (see section 3.4).

A detailed description of the NASTRAN runs can be found in Appendix B. NASTRAN
user decks (Executive, Case and Bulk Data Deck) are shown for all runs. The background
can be found in section 6 (sections 6.3 through 6.7). Various cases of boundary absorp-
tion input data are presented.

7.1.3.1 Finite element model

The fluid in the tube is modelled by 800 8-node hexa elements. In this case, they are the
NASTRAN CHEXAS elements. The appropriate FE mesh consists of 1275 nodes.
Boundary conditions need only be introduced at the ends of the tube. At the rear end, the
boundary is either a rigid wall or an absorbing wall. Only the latter case needs an addi-
tional input. The absorbing wall is defined in the same way the coupling surface of the
fluid (air) is defined, by 16 NASTRAN CQUADA4 plate elements. Both surfaces belong to
the fluid model. The piston, combined with a spring, represents a flexible wall (coupling
surface) at the front boundary of the tube. The finite element model of the spring-piston
system consists of a central node with a CONM2 element, representing the mass of the
piston, and connected to ground via the CELAS?2 element. The remaining 24 nodes define
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the piston surface and are connected to the center point by MPC conditions. Damping is
provided by a CDAMP2 element.

Viscous damper
(CDAMP2,I))

Coupling wall

Piston (CONM2, M;)
with rigid surface
using MPC's

Spring (CELAS2, K )

Figure 16. Finite element model of the spring-piston-tube system.
7.1.3.2 Uncoupled and coupled eigenanalysis
NASTRAN input decks are shown in Appendixes B1, B2. In tables 5 and 6 the analyti-

cally computed frequencies of the structure (spring-piston system without damping) and
fluid (air-filled tube) are compared to FE results.

Table 5. Eigenfrequencies of the spring-piston

_ system
v,=-L K (Hz) (Hz)/ FE (NASTRAN)
fo2n\M, .
137.6 137.6
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Table 6. Frequencies of the first four standing
waves (longitudinal)
Ve = n;—; (Hz) v (Hz)/ NASTRAN
137.6 137.6226
275.2 275.3812
412.8 _ 413.4115
550.4 551.8498

Table 7 demonstrates the variation of frequencies with respect to different FE-model dis-
cretization. Frequencies of the first four longitudinal waves versus four different mesh
sizes are shown. The analytic values are listed once again.

Table 7 Frequencies of tubes with different mesh sizes

v=in Hz 275 nodes 650 nodes 1275 nodes | 2525 nodes
"analytic"” 160 hexa 400 hexa 800 hexa 1600 hexa

137.6 138.1667 137.6907 137.6226 137.6057
275.2 279.7465 275.9251 275.3812 275.2452
412.8 428.1957 415.2490 413.4115 412.9529
550.4 586.9007 556.2116 551.8498 550.7625

Table 8 shows the frequencies of the coupled system calculated from equation (126) and
from the finite element model using modal and direct coupling between the structure and
fluid. |

= =y
Table 8. Frequencies of the coupled system
v in Hz v in Hz/FE
"theoretical” direct coupled modal coupled
128.3345 128.3430 128.4463
147.1835 147.1987 147.3315
276.2529 276.2570
413.9049 413.9070
552.2022 552.2039
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As mentioned in section 7.1.2, the coupling shifts the pressure node position and changes
the pressure gradient at x = 0 compared to the uncoupled case (rigid boundary at x = 0), see
figure 8. These effects can also be shown by using the finite elements to describe the dy-
namics of the coupled system. The quality of this approximation depends on the mesh size
of the FE-model as well as the type of coupling.

Table 9 shows the dependence of the coupled frequencies on the mesh size of the FE-
model. In this case only the mesh size of the fluid model was varied. Furthermore, the
computations were carried out using only modal coupling with four fluid modes.

Table 9. Air-filled tube coupled frequencies versus mesh size

Rﬂcl:x(:lrtesu(cfllz) Finite Element Results (Hz)
275 nodes 650 nodes 1275 nodes 2525 nodes
160 hexa 400 hexa 800 hexa 1600 hexa
128.3345 128.6230 128.4690 128.4463 128.4406
147.1835 147.6648 147.3728 147.3315 147.3212
280.6546 276.8048 276.2570 276.1200
428.7420 415.7506 413.9070 413.4470
587.3251 556.5737 552.2039 551.1145

Assuming that the mesh size of the FE-model is "good enough," the best approximation is
obtained by "direct coupling," which means that the structure and fluid are coupled in the
physical coordinates before any modal transformation, see section 3.4. In realistic prob-
lems, like automobile interior acoustics, where the FE-models of a car body and the air in
the passenger compartment are very large, modal reduction must be applied, (see also sec-
tion 3.4), to reduce computation time. As a consequence of this action, the quality of the
coupling approximation is reduced. The analyst has to select the number of structure and
fluid modes needed for the analysis. That is, how many modes are required to obtain a
sufficiently accurate approximation for the physics of the coupled problem? The user
should be careful at all times in applying modal reduction.

The result of direct and modal coupling for the pressure distributions corresponding to the
first two coupled modes is shown in figures 17 and 18. For the case of direct coupling, the
deviation from the theoretical result (see figs. 17 and 18) is imperceptible. In comparison,
the result based on modal coupling with a reduced fluid modal matrix shows a considerable
deviation.
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Modal coupling
(using first four fluid modes
and rigid body mode; not listed above)

x=L (rigid bomdary\
X

, \x=0 (coupling boundary)

Direct couplin
and analytical

Figure 17. First coupled mode pressure distribution computed by using direct and modal
coupling.

Py

Direct coupling

x=L (rigid boundary\
X

'\FO (coupling boundary)

Modal coupling
(using first four fluid modes
and rigid body mode not listed above)

Figure 18. Second coupled mode pressure distribution computed by using direct and modal
coupling.

7.1.3.3 Frequency response results
This section presents the results for the boundary value problem, equation (123). The re-
sults were calculated using the finite element method and compared to analytic results (see

figs. 19, 20, and 21). See Appendix B3.1 for the NASTRAN input of the frequency re-
sponse run. '

-79-



Displacement (mm)

—~—— analytic, w/out absor.

- « - = analytic, with sbsas.
- « = modal coup/FE, with absor.

A T T
100 l;U 150 130 140 150 160 170 180 180 200
Frequency (Hz)

Figure 19. Piston displacement response.
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Figure 20. Pressure response at x = 0.
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Figure 21. Pressure response at x = 0.15 m.
7.1.3.4 Acoustic contribution analysis

During this analysis the influence of the fluid surface, which is coupled to the surrounding
structure, is determined. This is performed in Run 4, which is a restart of Run 3.1.

A description of the NASTRAN input deck can be found in section 6.7. The NASTRAN
input for Run 4 of the coupled system, presented in figure 16, is listed in Appendix B4.
Contribution of fluid surface points, which are coupled to structure, to the pressure at any
interior fluid point "GIDi" is only of formal interest so that the results of Run 4 can be
shown. Description of the output and its interpretation is given in section 6.7.4.

The following figure shows the FE-model of the piston and the coupling surface of the
fluid with numbered grid points. The numbers of the fluid coupling points (the so-called
"participation points" PGPi (i = 1,2,...,25), see section 6.7.4 can be found in table 10.
The "participation factors" of these grid points for frequencies v = 128 Hz and v = 147
Hz are listed in tables 10 and 11, respectively.
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10010 Coupling surface of the
fluid (with participation

0005 points PGPi, i=1,2,...,25)

Figure 22. Coupling surface of the fluid and piston.
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Table 10. Particigation factors for goint 553 at 128Hz

POINT ID.

1
2
3

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25

TYPE

O O 0 O O & 606 606 60 60 60 60 60 60 606 6 606 0 0 606 60 6 6 6

COMPLEX

Tl

.434522E-06
.172005E-04
.869054E-06
.344014E-04
.869051E-06
.344013E-04
.869055E-06
.344015E-04
.434528E-06
.172007E-04
.869044E-06
.344011E-04
.373808E-05
.688019E-04
.373806E-05
.688011E-04
.373808E-05
.688019E-04
.869044E-06
.344011E-04
.869044E-06
.344011E-04
.373805E-05
. 688009E-04
.373803E-05
. 688003E-04
.373805E-05
.688007E-04
.869036E-06
.344008E-04
.869063E-06
.344017E-04
.373812E-05
.688032E-04
.373813E-05
.688036E-04
.373812E-05
.688031E-04
.869055E-06
.344014E-04
.434535E-06
.172010E-04
.869094E-06
.344028E-04
.869106E-06
.344032E-04
.B869093E-06
.344028E-04
.434535E-06
.172010E-04

DISPLACEMENT VECTOR
(REAL/IMAGINARY)

T2 T3 Rl
1.172508E-04 1.562499E-02  2.499992E-01
2.710505E-20  3.612052E-18 0.0
2.345020E-04  3.125002E-02 4.999991E-01
0.0 0.0 0.0
2.345019E-04  3.125001E-02 4,999989E-01
5.421011E-20 7.224104E-18 0.0
2.345021E-04  3.125003E-02 4.999992E-01
2.710505E-20  3.612052E-18 0.0
1.172510E-04 1.562501E-02  2.499996E-01
1.355253E-20 1.806026E-18 0.0 :
2.345017E-04  3.124998E-02 4.999984E-01
2.710505E-20  3.612052E-18 0.0
4.690031E-04  6.249992E-02 9.999963E-01
5.421011E-20  7.224104E-18 0.0
4.690024E-04  6.249982E-02 9.999947E-01
0.0 6.0 0.0
4.690031E-04  6.249991E-02 9.999962E-01
5.421011E-20  7.224104E-18 0.0
2.345017E-04  3.124997E-02 4,999984E-01
5.421011E-20  7.224104E-18 0.0
2.345017E-04  3.124998E-02 4.999984E-01
2.710505E-20  3.612052E-18 0.0
4.690022E-04 = 6.249979E-02 9.999942E-01
0.0 0.0 0.0
4.690015E-04  6.249970E-02° 9.999928E-01
5.421011E-20  7.224104E-18 0.0
4.690020E-04 6.249976E-02 9.999938E-01
5.421011E-20 7.224104E-18 0.0
2.345014E-04  3.124994E-02 4.999978E-01
5.421011E-20  7.224104E-18 0.0
2.345023E-04 3.125006E-02 4.999998E-01
5.421011E-20 7.224104E-18 0.0
4.690045E-04  6.250009E-02 9.999991E-01
5.421011E-20 7.224104E-18 0.0
4.690049E-04 ° 6.250015E-02 1.000000E+00
0.0 0.0 0.0
4.690043E-04  6.250007E-02 9.999988E-01
5.421011E-20 7.224104E-18 0.0
2.345021E-04  3.125002E-02 4.999992E-01
0.0 0.0 0.0
1.172513E-04 1.562505E-02  2.500001E-01
1.355253E-20 1.806026E-18 0.0
2.345034E-04  3.125020E-02 5.000020E-01
2.710505E-20 3.612052E-18 0.0
2.345038E-04  3.125026E-02 5.000029E-01
2.710505e-20 3.612052E-18 0.0
2.345034E-04  3.125020E-02 5.000020E-01
0.0 0.0 0.0
1.172513E-04 1.562505E-02  2.500001E-01
1.355253E-20 1.806026E-18 0.0
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Figure 23. Grid point participation for fluid point 553 (x = 0.15) at 128 Hz (Re(T3) from
table 10).
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REGE

Table 11.

POINT ID.
1

2

17
18
19
20
21
22
23
24

25

Participation factors for point 553 at 147 Hz

TYPE

O O 0 O O 60 6 60 606 O 60 606 0 0 6 66 0 66 606 60 6 0 0 6

COMPLEKX

Tl

.901086E-06
.260128E-04
.802178E-06
.520259E-04
.802177E-06
.520258E~-04
.802179E-06
.520259E-04
.901090E-06
.260130E-04
.802173E-06
.520255E-04
.604342E-06
.040508E-04
.604330E-06
.040500E-04
.604342E-06
.040508E-04
.802173E-06
.520255E-04
.802173E-06
.520255E-04
.604326E-06
.040497E-04
.604316E-06
.040490E-04
.604323E-06
.040496E-04
.802169E-06
.520252E-04
.802183E-06
.520262E-04
.604363E-06
.040522E-04
.604370E-06
.040527E-04
.604361E-06
.040520E-04
.802179E-06
.520259E-04
.901094E-06
.260132E-04
.802200E-06
.520273E-04
.802207E-06
.520278E-04
.802200E-06
.520273E-04
.901094E-06
.260132E-04

W\ INTENTIONALLY BLANK

DISPLACEMENT

(REAL/IMAGINARY)

FENROMNRNNONNRFRFRNONNOOOUOOUNRNNONOOOOOORDNNNNOOOOUORNDNDREEDNDNDNNDNNERE

T2

.260271E-04
.423015E-19
.520546E-04
.710505E-19
.520545E-04
.710505E-19
.520546E-04
.574980E-19
.260273E-04
.287490E-19
.520542E-04
.846031E-19
.041081E-04
.421011E-19
.041073E-04
.692061E-19
.041081E-04
.421011E-19
.520542E-04
.710505E-19
.520542E-04
.439455E-19
.041071E-04
.421011E-19
.041064E-04
.692061E-19
.041069E-04
.963112E-19
.520539E-04
.981556E-19
.520549E-04
.574980E-19
.041096E-04
.421011E-19
.041100E-04
.421011E-19
.041094E-04
.692061E-19
.520546E-04
.710505E-19
.260276E-04
.355253E-19
.520560E-04
.846031E-19
.520565E-04
.710505E-19
.520560E-04
.846031E-19
.260276E~-04
.423015E-19
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VECTOR

T3 R1
.562499E-02 2.499992E-01
.764271E-17 0.0
.125002E-02 4.999991E-01
.360516E-17 0.0
.125001E-02 4.999989E-01
.360516E-17 0.0
.125003E-02 4.999992E-01
.192490E-17 0.0
.562501E-02 2.499996E-01
.596245E-17 0.0
.124997E-02 4.999984E-01
.528542E-17 0.0
.249991E-02 9.999963E-01
.721032E-17 0.0
.249981E-02 9.999947E-01
.057084E-17 0.0
.249991E-02 9.999962E-01
.721032E-17 0.0
.124997E-02 4.999984E-01
.360516E-17 0.0
.124997E-02 4,999984E-01
.024465E-17 0.0
.249979E-02 9.999942E-01
.721032E-17 0.0
.249970E-02 9.999928E-01
.057084E-17 0.0
.249976E-02 9.999938E-01
.393136E-17 0.0
.124994E-02 4.999978E-01
.696568E-17 0.0
.125006E-02 4.999997E-01
.192490E-17 0.0
.250009E-02 9.999991E-01
.721032E-17 0.0
.250015E-02 1.000000E+00
.721032E-17 0.0
.250007E-02 9.999988E-01
.057084E-17 0.0
.125002E-02 4.999992E-01
.360516E-17 0.0
.562505E-02 2.500001E-01
.680258E-17 0.0
.125020E-02 5.000020E-01
.528542E-17 0.0
.125026E-02 5.000029E-01
.360516E-17 0.0
.125020E-02 5.000020E-01
.528542E-17 0.0
.562504E-02 2.500001E-01
.764271E-17 0.0
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Figure 24. Grid point participation for fluid point 553 (x = 0.15) at 147 Hz (Re(T3) from
table 11).

It is very clear that grid points, PGPi (i = 7,8,9,12,13,14,17,18,19) (see figure 22), have
the most influence on the pressure level at fluid interior point 553, (x = 0.15). This is also
shown by table 10 with figure 23 and table 11 with figure 24.

7.1.3.4 Transient response

This analysis is not performed here. It can be easily done considering the remarks in sec-
tion 6.6.

7.2 Two-dimensional fluid-structure system

In section 7.1 a one-dimensional, even though it was solved as three-dimensional, example
problem was described in detail. In this section a simple two-dimensional system for
which a solution exists will be used to illustrate all the capability in this development. De-
tails of the theoretical solution can be found in reference 31. Although this problem is two-
dimensional, all the capability is directly applicable to any three-dimensional system.
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The unique aspect of this problem is the use of water as the fluid medium. In this particular
case one can expect to see a greater effect of the fluid on the structure than in the previous
example where the fluid medium was air. Through the use of these two sample problems
one can observe that FSI is dependent on the type of the two interacting mediums. In prac-
tice, the structure will always have influence on the fluid, whereas the fluid may or may not
have a significant effect on the structure. This effect depends, to some extent, on the fluid
density, or the relative weight of the fluid and the structure.

7.2.1 Problem Description

A simply supported beam has one side in contact with a finite acoustic fluid, water, as
shown in figure 20. A unit width of the fluid is considered.

x4

/
75 7
75
AYA
73
75
¥
?a, A 3.048 m
ﬁw“”“ A AAAAAAAAIAFLU (10 fr)
A AAAAAAANAAAARI R e
/§ Beam
7
A
75
Y _
6.096 m
(20 ft)

Figure 25. Beam with finite acoustic fluid
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The physical properties of the beam and fluid used are listed in the following table.

l Beam l

Weight Density (p,) 7.682E4 N/m3 | (0.283 Ib/in3)
Young's Modulus (E) 2.068E11 Pa (30E6 psi)
Moment of Inertia (I) 0.1675E-4 m*4 (40.2412in%)
{Length (L) ] 3.048m (10 fv)

C — o
Weight Density (py) 9802.25N/m3 | (62.4 1b/f13)
Acoustic Speed (cy) 1524 m/sec (5000 ft/sec)
Height of the Fluid (H) 6.096 m (20 fr)

7.2.2 Theoretical solution

The coupled modal frequencies of the fluid-beam system are to be determined. The equa-
tion of motion of the beam is

m%:y?+ El% = q(x,t)

where m is the mass of the beam per unit length, E is Young's modulus of the beam, / is
the section moment of inertia, and g(x,¢) is the distributed load on the beam.

The govering acoustic field equation in Cartesian coordinates can be written as

*p N *p N d’p _1dp

=— 143

x* oy 9 o (143)
The boundary conditions for the beam and fluid are

y=0
Beam: , R atx=0andx=L (144)
9y _ 0 '
ox’

Fluid: p=0 atx=0,Landy=H (145)

The fluid boundary condition implies that the fluid has a free surface on three sides. Of
course, this is an impossible real condition, but it presents a solvable mathematical prob-
lem.
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2
At the Beam-Fluid interface: &P _ -p 9y (146)
ay ! (912

Solving equations (143) thru (146), the following frequency equations can be obtained:

n

2 2 tanh(ct,H) | ¥
for a2 =22 -(—"Z) >0, wf{m+——————p’ a“a( - )}=EI(—'%T—); n=123 (147
c .
!

2

2 2
W (nn .
for a2 =—2 —(—) <0; let &> =-c?, then
c

1

tanh{a H 4
wf{m+&-ﬂ&(ﬂ—)}=m(5‘g); n=12,3, (148)

)

The mode shapes of the acoustic fluid pressure are expressed by

2
w
for a’>0, O, (x,y)= E—g——"—(sin %)(sin a,y—tana,Hcosa,y) (149)
for a?>0, andlet & =-a’
‘ w? . . .
@, (x,y)= P; p (sin f‘—L”i)(sinh &,y — tanh &,H cosh &,y) (150)

The frequency equations (147) and (148) are numerically solved for w, and the acoustic
fluid pressure modes are calculated with the given set of input data.

7.2.3 Two-dimensional Nastran finite element model

The two-dimensional finite element model for FSI analysis consists of the beam and the
fluid. Owing to symmetry about the center of the beam and fluid, only half of the beam
and the fluid are modeled, using 16 BAR elements and 128 QUADS elements, respectively.

“The fluid-beam finite element model is shown in figure 26. MSC/NASTRAN MSGMESH
program was used to generate the finite element models and the listing of the input data
deck is shown in Appendix C1.
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AN
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Beam
Figure 26. Beam/fluid - FE mesh.
To illustrate the use of superelements, the beam was modeled with one superelement and a
residual structure. The grid point on the plane of symmetry is in the residual structure and
all other points are in superelement 1.

7.2.4 Normal Modes Analysis - SOL 63, 70

To understand the basic dynamic characteristics of the system and to compare with theoreti-
cal results, the normal mode analyses for the following cases were performed:

» normal modes of the structure only
-« normal modes of the fluid only
+ normal modes of the combined system

7.2.4.1 Beam-only results
Five modes were computed below 5000 Hz. The first four natural frequencies and mode

shapes are shown in figure 27. These are the typical mode shapes one would expect from a
pinned-pinned beam.
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Figure 27. Mode shapes of the beam only.
7.2.4.2 Fluid with rigid boundary results

Thirteen acoustic pressure modes were computed below 1000 Hz. The first four modes are
displayed in figure 28, plotting the pressure variation along the x-axis. The first mode
along the line of symmetry is identified as a vertical acoustic quarter wave mode, the sec-
ond mode as a 3/4 wave mode, the third as 1-1/4 wave mode, etc.
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Figure 28. Mode shapes of the fluid only.
7.2.4.3 Coupled fluid-structure modal results

This analysis was performed using SOL 70. The input deck is shown in Appendix C2.

Five dry structure modes and 13 fluid modes were included in the analysis of the coupled
system. The lowest modes of the acoustic pressure are shown in figure 29. The second
mode at 270.14 Hz is slightly longer than a quarter wave. The third, fifth, and sixth modes
are close to 3/4, 1-1/4, and 1-3/4 waves, respectively. The results also indicate that the
structural motion shifts the dominant acoustic frequencies. The finite element results are
compared with the theoretical results based on the equations (147) and (148). Excellent
agreement is obtained. The comparison of the nawral frequencies is shown in table 12.
Note that the fundamental beam frequency of 50 Hz has been shifted to 40.3 Hz in the
coupled solution. This illustrates a significant effect of the fluid on the structural behavior.
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Figure 29. Mode shapes for the coupled fluid-beam system

theoretical solution and finite element results

Table 12: Comparison of coupled natural frequencies between

Mode Structure only Fluid only Coupled Coupled exact
no. NASTRAN
1 5.0000E+01 2.5692E+02 4.0318E+01 3.9810E+01
2 4.5000E+02 3.1151E+02 2.7014E+02 2.6997E+02
3 1.2500E+03 3.9880E+02 3.2894E+02 3.2818E+02
4 2.4501E+403 5.0188E+02 4.1455E+02 4.0321E402
5 4.0504E+403 6.1270E+02 4.2373E+02 4.1401E+02
6 7.2758E+02 5.1554E+02 5.1540E+02
7 7.4855E+02 6.2504E+02 6.2519E+02
8 7.6877E+02 7.3956E+02 7.3976E+02
9 8.0763E+02 7.5634E+02 7.5689E+02
10 8.4474E+02 7.8106E+02 7.7955E+02
12 8.6249E+02 8.2183E+02
13 9.3032E+02 8.5742E+02
14 9.6321E+02 8.7754E+02
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7.2.5 Modal frequency response analysis - SOL 71

It is difficult to obtain a frequency response theoretical solution for this problem. This cal-
culation was performed only to further illustrate the Acoustic Procedure. Several different
analyses were performed, each with the intent of demonstrating a different feature of the
procedure. Two areas of absorption were defined on the interface of the beam and the
fluid. Only the first area of absorption was considered in the following analyses. The first
area started at x = 0 and continued to x = //4. The other area started at x = //4 and ended at
x =1f2. The analyses that were performed and the respective inputs are listed below:

«  Without absorption, with residual flexibility effects, Appendix C3.1

«  Uniform absorption, without residual flexibility effects, Appendix C3.2

« Linearly varying absorption, without residual flexibility effects, Appendix C3.3
+ Linearly varying absorption, with residual flexibility effects, Appendix C3.4

It should be noted that all these calculations were done as restarts from SOL 63 data base.
Before each run, the Area Matrix Program was executed to create the appropriate input ma-
trices.

The load was applied to the structure and its location is shown in figure 26. Because of as-
sumed symmetrical boundary condition, there is a symmetric load implied on the right-hand
side. Also note that the load is applied to the interior point of superelement 1. Owing to
this fact, one must make use of the LOADSET card in the Case Control Deck and LSEQ
card in the Bulk Data Deck. For further input details refer to Appendix C.

Some of the selected results are shown in figure 30 through 33. As can be expected, the
peak pressure occurs at the first coupled mode (primarily a beam mode) and at the second
coupled mode (primarily a fluid mode). From figures 30 and 31 it can be seen that absorp-
tion does not affect the response of the first mode whereas the second peak is significantly
reduced.
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Figure 30. Fluid-beam system: no absorption damping - NORF=1.
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Figure 31. Fluid-beam system: uniform absorption damping - NORF=-1.

Since the calculations represented by figures 32 and 33 have the same damping, without
and with residual flexibility effects, one can evaluate the effect of residual flexibility. In
this case the effect is quite small and is only noticeable near the second peak. Unfortu-
nately, it is very difficult to predict whether residual flexibility will have an important role.
Since it is not expensive to calculate, it should be included in all cases.
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Figure 32. Fluid-beam system: linearly varying absorption damping - NORF=-1.
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Figure 33. Fluid-beam system: linearly varying absorption damping - NORF=1
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7.2.6 Fluid-beam grid participation factor calculation

To complete the last step in the analysis sequence, a sample grid point participation calcula-
tion was carried out for this problem. Following the instructions in section 6, the input
data were prepared which essentially consisted only of selecting the fluid grid point for
which the structural grid point participation was required. In this case, point 21216 was
selected. Also the frequencies for which the calculation is to be made have to be selected.
Only one frequency, 40 Hz, was chosen which corresponds to the first peak in the fre-
quency response curves. The listing of the input deck can be found in Appendix C4. table
13 presents a selected output of points. As expected, the maximum contribution comes
from the point closest to the middle of the beam since the first mode has a peak motion at
- the center.

Table 13 Participation factors for point 21216 at 40 Hz
COMPLEX DISPLACEMENT VECTOR
(REAL/IMAGINARY) ‘
POINT ID. TYPE T1 T2 T3 R1

20001 G -1.109855E-02  3.724580E-02  2.018416E-03  1.335892E-02
3.555394E-02  1.053499E-04  5.709099E-06 0.0

20003 G -9.526432E-02  3.198780E~01  1.733476E-02  1.147304E-01
3.053643E-01  8.489896E-04  4.600826E-05 0.0

20005 G -2.410586E-01  8.103863E-01  4.391628E-02  2.906606E-01
7.737055E-01  1.851216E-03  1.003207E-04 0.0

20007 G -4.124141E-01  1.389196E+00  7.528301E-02  4.982618E-01
1.326569E+400 2.317275E-03  1.255773E-04 0.0

20009 G -5.732617E-01  1.936381E+00 1.049359E-01  6.945202E-01
1.849580E+00  1.558949E-03  8.448224E-05 0.0

20011 G -6.990637E-01  2.368622E+00  1.283599E-01  8.495518E-01
2.263113E400 -3.561608E-04 ~-1.930099E-05 0.0

20013 G -7.806732E-01  2.651931E+00  1.437129E-01  9.511660E-01
2.534422E+00 -2.497307E-03 -1.353335E-04 0.0

20015 G -8.196042E-01  2.788084E+00  1.510913E-01  1.000000E+00
2.664897E+00 -3.828808E-03 -2.074899E-04 0.0
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8. VEHICLE ACOUSTIC ANALYSIS

In recent years, the designers of airplane and automobile structures have been increasingly
concerned with the noise in passenger compartments. These concerns occur because of
government regulations and competitive pressures. In modern automotive designs, for ex-
ample, there is a greater possibility'of "boom" and "harshness" noises because of the use
of lightweight structures and elimination of fully isolated chassis frames. In the past these
problems were attacked by experimental testing methods alone. This process is time-con-
suming, expensive, and is performed only when the prototype models are available. Itis
also difficult to pinpoint the sources of the noise problems.

The main purpose of the development of the acoustic procedure is to provide the design
engineer with a noise analysis program that can be used in the preliminary design stage. It
is unlikely that an absolute quantitative noise prediction can be obtained for a particular de-
sign owing to the large number of uncertainties in the structure model and the attendant
complications in finite element modeling of such structures. Nevertheless, using this. pro-
cedure, a relative comparison can be made between two competing designs. The number
of prototype tests will be significantly reduced by using this approach. Combining this
procedure with testing should lead to an effective and timely method for solving these diffi-
cult problems.

This chapter is devoted to an example analysis of a realistic automobile structure. The
choice of this particular example was motivated by the second author who spent most of his
professional career at Daimler Benz. Most of the steps in the acoustic procedure have al-
ready been discussed in detail in previous sections. The main purpose in this section is to
illustrate the practicality and simplicity of the procedure. One of the most important goals
of this procedure is to present acoustic analysis as a simple extension of the typical struc-
tural dynamic analysis where the fluid domain is treated as if it were just another part of the
structure with different properties. Therefore, the acoustic analysis can be performed early
in the design process by a structural dynamic engineer rather than being treated as a stand-
alone acoustic problem. ' <

8.1 Structural Model

The hidden line plot of the structural model is shown in figure 34. The internal structural
details could not be shown because most of the picture would be black due to the fineness
of the finite element model. This structural model consists of 26144 grid points. In this
particular case the whole model is subdivided into 36 superelements and one residual
structure. In the MSC/NASTRAN terminology, this model consisted of three superelement
levels. There are 33 tip superelements, 3 collector superelements, and one residual struc-
ture. For the purpose of normal modes calculation, the Guyan reduction method was used
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to approximate the modal behavior of the grid points on the interior of each superelement.
The number and the type of elements used in the structural model are shown in table 14.

| Table 14 Structural model

e - e e e e

Element Type Number
CBAR 338
CELASI1 786
CQUAD4 19424
CTRIA3 8225

The total number of structural grid points in the residual structure is 663. From the acous-
tic analysis point of view the only additions to this model were the grid points and elements
of the air in the passenger compartment.

An example of a different and smaller structural model is shown in figure 35. This exam-

ple illustrates a coarser modelling approach for the structure. This problem was solved
without the use of superelements.
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Figure 35. Coarse vehicle structural model.

8.2 Fluid Model of the Passenger Compartment

The model representing the air on the interior of the structure is shown in figure 36. This
model consists of 973 fluid grid points, 394 CHEXA, and 494 CPENTA elements. Note
that each fluid grid point has only one degree of freedom associated with each fluid grid
point. It is easily seen that the fluid model is an extremely small addition to the total struc-
tural model. Clearly, the fluid model is much coarser than the structural model. The mesh
size was determined based on the frequency of the fluid that had to be accurately repre-
sented. In this particular analysis, the maximum frequency of interest in the fluid model is
only 200 Hz. In addition, it is known from previous experimental measurements that the
structural model is capable of predicting reasonably accurate response only up to 100 Hz.
Knowing the speed of sound in the air, and assuming a need for eight elements per wave-
length, the resulting mesh is obtained.

The only additional required input for the fluid model is the application of the unit pressure
to the outside surface of the fluid. This is used by the Area Matrix Program to determine
the coupling points between the structure model and the fluid model. If absorption were to
be specified, additional unit pressure loads would have to be applied to the fluid on the sur-
faces that are in contact with the absorbing materials.

The fluid model corresponding to the structural model in figure 35 is shown in figure 37.
The size of this model is approximately the same as the one in figure 36. This points out
the fact that even though the structural models can be significantly different in size, the fluid
mesh is very similar since the volume that is modelled is approximately the same.
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Figure 37. Vehicle fluid model (corresponding to coarse str. model).

8.3 Modal Analysis of the Complete Model, Structure and Fluid

This analysis is a standard SOL 63 in MSC/NASTRAN. Only the key portions of the input
deck are shown in Appendix D1. The Bulk Data Deck could not be listed since it contains
nearly 100,000 records. The only unusual aspect of this calculation is the use of two sub-
cases for the residual structure in the Case Control Deck, otherwise it is the same as any
other structural normal modes calculations. Note that the component modes were not
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calculated for any superelement since there is no METHOD card request for any superele-
ments. Guyan reduction was used for each superelement and only the modes of the resid-
ual structure were calculated. This is performed in two subcases. In the first, the modes of
the residual for the structure model are calculated and in the second, the modes of the fluid
model are calculated. A total of 200 modes were calculated for the structure with the first
flexible mode at 7 Hz and the last mode at 150 Hz. Only 10 modes were extracted for the
fluid with the highest mode at 200 Hz. For il<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>