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Abstract

Using a Fast Fourier integration method and a global matrix method for solution of the boundary
condition equations at _11interfaces simultaneously, a useful tool for predicting acoustic propagation
in a stratified fluid over a stratified porous-elastic solid has been developed. The model for the solid is
a modified Biot-Stoll model incorporating four parameters describing the pore structure corresponding
to the Rayleigh-Attenborough rigid-porous structure model.

The method is also compared to another Fast Fourier code (CERL-FFP) which models the ground
as an impedance surface under a horizontally stratified air. Agreement with the CERL FFP is good.

The effects on sound propagation of a combination of ground elasticity, complex ground structure,
and atmospheric conditions are demonstrated by theoretical results over a snow layer, and experimental
results over a model ground surface.

Introduction

The ground has conventionally been modelled for outdoor sound propagation as either an impedance

surface or a rigid-porous structure. These approaches have both been highly productive in the case of

high density materials. However in reality the ground is poro-elastic. Ground surfaces have hitherto been

modelled as such when the interest has been in acoustic to seismic coupling, but there has been little

interest in porous-elastic ground models in propagation in the air. For some outdoor ground surfaces

(such as snow or forest floors for example) the bulk density of the material is low enough for seismic

effects to become important for sound propagation over the surface at some frequencies.

In this paper an FFP propagation model is used to calculate sound pressure levels over a porous-elastic

ground surface. The model's predictions are compared to the predictions of other propagation models for

the high density, high seismic velocity rigid-porous limit of the porous-elastic ground model. The effects

on acoustic propagation of the elasticity of various ground surfaces is then shown by comparison to the

rigid frame limit. Using a multiply layered fluid atmosphere the combined effects of meteorology and

ground elasticity are examined.

The Biot-Stoll poro-elastic model

The ground model used in this investigation was a modified Biot-Stoll Poro-Elastic model[i,2,3]. Propa-

gation within the material is via three different modes; a fast wave, equivalent to the seismic P wave: a

slow wave equivalent to the pore wave in the Rayleigh Attenborough rigid-porous model[4]: and a shear

wave equivalent to the seismic S wave. Each wavetype causes vibration in both the solid material and

the pore fluid. Attenuation of all three wavetypes is predicted by the theory due to viscous losses on the
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pore walls, though it has been shown to underpredict the attenuation in real materials because other loss

mechanisms are not taken into account. Hence an extra attenuation is added as an imaginary part of the

fast and shear propagation constants.

The Fast Fourier Method

If one applies a Hankel transform in range to the Helmholtz equation one obtains the depth separated

wave equation:

+ (ks - k_(z) r(k,z) = h(k,_), (11

where, for a point source,

h(k,_) = _e(_- _o) (2)

Solutions to this equation are depth dependent only and are equivalent to solutions to the wave equation

for continuous plane wave incidence. In order to obtain a range dependent solution one must obtain

depth dependent solutions to the depth separated wave equation, and then perform the inverse Hankel

Transform on the solution to equation 1 , which is in terms of horizontal wavenumber.

The exact range dependent solution is in the form;

J_(kh.x).r(kh, d).dkh, (3)F(_,d)= h=0

where r is the depth dependent Greens function.

A large argument approximation to the Bessel function [5] is:

j (z)-_ + (4)
This approximation together with the replacement of the integration by a finite sum gives the approximate

equation for F(=,d) :

-I _i_mn ei_/4 -I -26kN1/2 e-i'r/4 E r(k-,d) n = e _ + r(k.,a)n _ e . (5)
F(=,,,,d) _- 2_rml/2

n=O n=O

This Fourierseriesapproximation can then be improved by correctionsto allowforthe truncationof

the integral to infinity to a finite wavenumber, kh(ma=) , and the avoidance of pole(s) on the real axis[6],

which together lead to inaccuracies and oscillations in the result, to give

N-1
": C(k,,,d)e T e TF(_,,,,d)-2_m½

_=0

N-I 2,_( N-m)_ -2_m_ ]

+ E " (6)
'n=0

where

G(k..,d) = F(k.,a) + iNr(k0,d) _[1- e (a(_-_)/N)]a/k

C(k.,a) = G(k.,d).(n -- in)-1�2 + G(kN__,d)N-1/2S *,

and S* is an approximation to the sum,

oo

s = E(J + [('_- _)/_v]) -_/_.
j=l

(9)
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The Environment

The environmentis assumed to be range independent and to consist of a fluid (air) upper half-space

overlying a set of horizontal fluid (air) layers of differing sound speeds and densities. The lowest of these

fluid layers is in contact with a ground made up of a set of horizontal elastic porous layers under which

is an elastic porous half-space. The number of layers in either fluid or ground can be set to zero.

The Depth Dependent Green's function

The depth dependent Green's function F must be solved for the above environment.

In a fluid layer containing a spherical point source the depth dependent Green's function is

r = [_oei'(h'-h)'_° + RT.ei'(hl-h)'_° + Rl.ei'(h-h2)'_° ] . (10)

The R I are calculated by solution of the boundary condition equations at the interfaces.

In the porous elastic medium there are three scalar displacement potentials describing propagation
in the fluid,

_0 _
¢1 = _lJo(kh.r).kh.dkh

F¢2 = _2Jo(kh.r).kk.dkh

//¢3 =  Jo(kh.,').ekh,

(11)

(12)

(13)

the longitudinal displacement potential

the solid, to which the fluid transverse

¢1 is the longitudinal displacement potential in the solid, ¢2 is

in the pore fluid, ¢3 is the transverse displacement potential in

displacement potential is directly proportional.

In a porous-elastic layer, bounded by interfaces at depths dl and d2, in the absence of a source, the
_is at a depth z are given by.

_1 = Alle i(z-dl)B_ + A1T ei(cl2-z)_l + A21e i(z-dl)_2 + A2Te i(d2-z)B2 , (14)

_3 = A3j, ei(z-d_)_' + A3Tei(d_-z)_3 , (16)

The mi are the ratios of the amplitude in the solid and pore fluid for each wavetype, and the _i =

(k_ - k2)1/2, where the ki are propagation constants, and k is the horizontal wavenumber. The depth

dependent Green's function r for a desired output parameter in the fluid is a function of the _i. The AI
are calculated by solution of the boundary condition equations.

Boundary conditions

Boundary condition equations in cylindrical polar coordinates (r, 8, z) are needed. However the axisym-

metric nature of the problem considered here means that there is no 0 dependence.

At boundaries between two fluid layers the two boundary conditions are

1. continuity of pressure,

2. continuity of normal particle displacement,

At the interface between the fluid and the porous elastic medium there are four boundary conditions,
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1. continuity of total normal stress[3],

2. continuity of normal displacement[3],

3. continuity of fluid pressure[7],

4. continuity of tangential stress,

Six boundary conditions are required at each interface between porous-elastic layers. These boundary

conditions are the four above and two others,

5. continuity of normal relative fluid displacement, and

6. continuity of tangential frame displacement.

The range dependent parts of the boundary condition equations are identical on each side of the boundary,

therefore only the depth dependent Green's functions of the boundary conditions need to be equated.

The boundary condition equations are solved simultanaeously for the A I and R I at all interfaces. The
depth dependent Green's function is then calculated for the desired output parameter (sound pressure

level, frame displacement, etc). The range dependent solution is calculated using the FFP method
described above.

Comparison to other propagation models

For propagation above a rigid-porous halfspace the model compares well with other propagation mod-

els, such as the CERL-FFP (see figure 1)[8], and Attenborough, Hayek, and Lawther's 'exact' analytic

model(see figure 2)[7]. Above an extended reaction rigid-porous layer over a non-porous backing agree-

ment with Nicholas-Berry and Dalgle's propagation model is good for a wide variety of model surfaces(see

figures 3 and 4) [9]. Source and receiver heights are 0.5 and 0.3 metres respectively.

Effects of ground surface elasticity on sound propagation

The largest effects of ground elasticity on sound propagation over it are likely to be where the bulk density

of the ground surface is small. The most common ground cover where this is so is a snow layer. Measured

normal surface impedance over snow cover sometimes shows low frequency peaks [10,11]. These could be

interpreted as seismic resonances in a snow layer. Figure 5 shows the predicted excess attenuation over an

8cm thick snow layer overlying a rigid nonporous halfspace at twenty metres range, using a rigid-porous

model, and porous-elastic model. The pore structure and elastic parameters are taken calculated from

Sommerfeld[12], Johnson[ll] Ishida[10] and Attenborough and Buser[13]. A resonant effect can clearly

be seen at about 810Hz in the porous elastic model output which is not present for the rigid-porous

model. Figure 6 shows the predicted excess attenuation over the same snow layer at 810Hz as a function

of range. This figure demontrates that at this frequency a seismic resonance in the snow layer leads to

an apparent hardening of the snow surface at a short range, leading to less attenuation due to ground

absorption. The behaviour at longer ranges shows that away from the source the attenuation due to

the ground is unaffected by the elastic effects, but the signal amplitude is increased due to the reduced
attenuation near to the source.

Combined effects of elasticity and atmospheric sound velocity gradients

Continuous sound velocity gradients can be modelled by thin homogeneous layers as long as the layer

thickness is much less than the wavelength of the sound [14]. In figure 7 the combined effect of the

logarithmic downward refracting sound velocity gradient(roughness length 5.10-3metres, temperature

difference between ground and 4.0 metres 7° Centigrade) and an elastic surface are shown. The difference

between elastic and rigid models remains approximately the same as for no gradient.
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Comparison with experiments

In order to test the validity of this porous-elastic propagation model, measurements of the level

difference between two vertically separated microphones were made over a thin (4cm) layer of low density

foam material. The foam was attached to a non-porous concrete surface. A point noise source was

suspended over the foam surface.

The elastic and porous parameters of the foam were separately measured using non-acoustic tech-

niques. The measured level difference was compared to the level difference predicted using both rigid

and poro-elastic models. The results are shown in figure 8. The geometry used for this figure was source

height 0.2 metres, receiver heights 0.01 and 0.2 metres,and range 0.4 metres. The results show a better

agreement with the elastic model than with the rigid model.

Conclusions

An FFP model for propagation over porous-elastic surfaces has been developed. It has been shown that

in the rigid frame limit it agrees well with other propagation models. For sound propagation over low

bulk density layered materials it has been shown that ground elasticity can have a substantial effect on

received sound pressure levels for both real and theoretical results.
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Table 1: Material

Parameter
_arameters used in the prediction of excess attenuation

Rigid-porous

Half space

Rigid-porous Snow

layer layer

Unit

Flow resistivity a MKSraylsm -1 100000 10000

Porosity _ 0.3 0.3

Pore shape factor ratio & - 0.5 0.5

Grain shape factor n' - 0.5 0.5

Bulk density kgm -3 -

P-wave velocity vp ms -1 -

S-wave velocity vs ms -1 -

- -

gm-2Grain bulk modulus K,

Layer depth m 0.1

15900

0.804

0.5

o.5
184.0

130.0

90.0

0.08

Foam

layer

18400

0.97

0.5

63.8

32.0

79.0

56.0

0.085

1.1010

0.04
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Figure 1 Comparison of CERL FFP and FFLAGS for propagation over a

rigid-porous halfspace in a 12 layered atmosphere. Frequency=50Hz.
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Figure 2 Comparison of FFLAGS to the predictions of Attenborough, Hayek,
and Lawther's exact extended reaction model for propagation over an

extended reaction rigid-porous halfspace. Range=20 metres.
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Figure 3 Comparison of Nicholas Berry and Daigle's model for predicted ex-

cess attenuation over an extended reaction rigid-backed layer at 100Hz.
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Figure 4 Comparison of FFLAGS to Nicholas Berry and Daigle's model for

predicted excess attenuation over an extended reaction rigid backed

layer at 20 metres.
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Figure 5 Predicted excess attenuation over thin snow layer using FFLAGS

with rigid-porous parameters, and porous-elastic parameters. Range

20 metres.
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Figure 8 Measured Level difference between two vertically separated micro-

phones (heights 0.2 and 0.01 metres) at a range of 0.4 metres from a

point source over a thin (4cm) rigidly backed foam surface• Compared

to the predicted level difference using rigid-porous and porous-elastic

models, calculated from direct measurement of the pore and elastic

parameters of the foam.
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