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Summary

This progress report summarizes the work carried out during the period July 1 to December
31, 1990. During this period, work has been carried out to formulate near-wall models for the
equations governing the transport of the temperature-variance and its dissipation rate. With these
equations properly modelled, a foundation is laid for their extension together with the heat-flux
equations to compressible flows. This extension is carried out in a manner similar to that used to
extend the incompressible near-wall Reynolds-stress models to compressible flows. In this report,
the methodology used to accomplish the extension of the near-wall Reynolds-stress models is
examined and the actual extension of the models for the Reynolds-stress equations and the near-
wall dissipation-rate equation to compressible flows is given. Then the formulation of the near-
wall models for the equations governing the transport of the temperature variance and its
dissipation rate is discussed. Finally, a sample calculation of a flat plate compressible turbulent
boundary-layer flow with adiabatic wall boundary condition and a free-stream Mach number of 2.5
using a two-equation near-wall closure is presented. The results show that the near-wall two-
equation closure formulated for compressible flows is quite valid and the calculated properties are
in good agreement with measurements. Furthermore, the near-wall behavior of the turbulence

statistics and structure parameters is consistent with that found in incompressible flows.
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1. Program Objectives

With the availability of near-wall Reynolds-stress [1] and heat-flux models [2], the time is

now ripe for their extension to flows where temperature cannot be considered as a passive scalar,

such as in a compressible flow. This means that the transport equations for the temperature

variance and its dissipation rate have to be solved simultaneously with the governing mean flow

and energy equations, the Reynolds-stress equations and the heat-flux equations in a second-

moment closure of the problem. Therefore, near-wall models for the equations governing the

transport of the temperature variance and its dissipation rate are also required, in addition to the

near-wall model for Reynolds stresses and heat fluxes. The present project attempts to accomplish

these objectives using the approach outlined by Lai and So [1,2] in their modelling of

incompressible near-wall Reynolds stresses and heat fluxes. More specifically, the present

objectives can be stated as follows.

1)

2

3)

Q)]

)

To extend the near-wall Reynolds-stress and heat-flux models of Lai and So [1,2] to
compressible flows and to modify the dissipation-rate equation so that it gives a correct

near-wall behavior for the dissipation rate.
To formulate a near-wall closure for the temperature-variance transport equation.

To formulate a near-wall closure for the equation that governs the transport of the

dissipation rate of the temperature variance.
To extend all the above models to compressible flows.

To validate these models using incompressible flow data, heat and mass transfer data and

compressible flow data.



2. Progress to date

In the past year, work has been carried out to accomplish the first four objectives listed
above. The extensions of the near-wall Reynolds-stress and heat-flux models to compressible
flows have been effected by formulating the compressible flow equations into a form similar to
their incompressible counterparts. Furthermore, the compressible dissipation function is split into
a solenoidal part that is not influenced by compressibility effects and a dilatational part that is totally
dependent on the turbulent Mach number. With this split, all closure models could be expressed in
terms of the solenoidal dissipation rate. Therefore the incompressible limit of the compressible
models could be recovered in a straight forward manner. An existing high-Reynolds-number
dissipation-rate equation has been extended to describe the transport of the solenoidal dissipation
rate and the resultant equation has been modified to give the correct near-wall behavior. This work
has been reported previously by So et al. [3]. The same methodology is then used to treat the
incompressible equations that govern the transport of the dissipation rate of the turbulent kinetic
energy and the temperature variance and its dissipation rate. These studies have been completed

and a brief discussion is given below in Section 3.

In addition, a validation of a near-wall, two-equation closure for compressible flows has
been attempted. A compressible boundary layer with a free-stream Mach number of 2.5 on an
adiabatic flat plate is considered. The near-wall, two-equation closure for compressible flows
tested consists of solving the mean compressible flow equations plus the compressible form of the
modelled turbulent kinetic energy and dilatational dissipation-rate equations. A turbulent Prandtl
number is assumed for this initial validation of the two-equation closure. Once the two-equation
closure has been validated, the turbulent-Prandtl-number assumption can be relaxed and the
equations that govern the transport of the temperature variance and its dissipation rate will be
solved to give the compressible turbulent heat flux. This way, the validity of the turbulent-Prandtl-

number assumption could be assessed together with the models for the heat fluxes. The calculated



mean velocity and temperature profiles, wall shear and wall heat flux are in good agreement with
measurements. Furthermore, the turbulence statistics and their associated structure parameters near
the wall are consistent with those obtained in incompressible flows. This study has been

completed and the results are presented in Section 4.



3. Near-Wall Compressible Flow Models
3.1 Mean Flow Equations

The compressible turbulent flow equations are obtained by applying Favre averaging to the

instantaneous Navier-Stokes equations which for Newtonian fluids can be written as:

0
e w=0 . M
a(Pun) ap 21_1
Yo% o (puin) =~ 3% ot el @
LCeT_ __ _{ du;
a (pCPTul) + ula axl + Tl]a * (3)
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uj is the ith component of the velocity vector, x; is the ih component of the coordinates and p, T,
P, K, X, G, are pressure, temperature and fluid properties, density, viscosity, thermal conductivity
and specific heat at constant pressure, respectively. Favre decomposition is applied to all variables

except p and p where conventional Reynolds decomposition is assumed. In other words

y; = (U;) + u; , (5a)
T=(8)+6" , (5b)
p=P+p , (5¢)
p=p+p" . (5d)



where u; and 6” are the Favre fluctuations and p’ and p’ are the Reynolds fluctuations. If <> is

used to denote Favre-averaged quantities and the overbar the Reynolds-averaged quantities, then

the turbulent equations become
{L -(Fawp) =0, ©)
%(p<u.>)+—-(p<u.xu,> +p(un >)--7x+%§‘;ﬁ+5;_;ji : @
2 (FTye)+ 2 FTexu + 5T ') - —( a;ff) ax,(¥%§)+§
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where p =1, x = X and G, = C;, have been assumed and
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represent the mean and time-averaged fluctuating stress tensor, respectively. These equations can
be further simplified by assuming the turbulent flow to be stationary and by making use of the
mean momentum equation (7), the Reynolds-stress and turbulent kinetic energy, k = -lz-(u;u;),

equations to be derived later. The result is

= (W) =0, ©
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As a first approximation, the underlined terms could be neglected compaxied to the terms retained in

(9) - (11). Thus formulated, the compressible flow equations are identical to the incompressible

flow equations. In the latter case, P is constant and all the variables represent Reynolds-averaged

quantities.

In the following, the modelling of the equations that govern the transport of p (u u, ) is first
presented. This is followed by the modelling of the equations that govern the transport of the

dissipation rate of the turbulent kinetic energy and the temperature variance and its dissipation rate.

3.2 Modelling of the Reynolds-Stress Equations

The Favre-averaged transport equation for the Reynolds stresses F(u;u;) could be similarly
derived as in the incompressible case [1]. That is, the ith fluctuating equation is obtained by
subtracting the mean momentum equation from the instantaneous equation. Repeat the same
procedure to obtain the jth fluctuating equation. The ith fluctuating equation is then multiplied by
the jth fluctuation velocity and vice versa. The two equations are then added together and averaged

over time. Omitting all the algebra, the final exact equation is:
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Symbolically, the above equation can be written as
Cij=D;§+Dw ';Ts, +¢ +Pj+Gij+Tij . (13)

With the exception of G;; and Tij, (13) is basically the same as its incompressible counterpart [1].
For an incompressible flow, u =0, and GlJ = T = 0. Even under this condition, (13) fails to

reduce properly to the incompressible equation given by Lai and So [1]. The reason is in the

grouping of the terms (DlJ -';SelJ +d>ij} In order to achieve this incompressible limit, a re-
grouping of the terms in (Dij - Beij + d)ij) is necessary. If the viscous diffusion and dissipation

terms in compressible flows are again defined similarly to their incompressible counterparts, or

D" 9 ( 0 u: u'.’

i oxg “_—Laxk ’ (14)
_du du

eij = axkaxk ’ (15)

then the terms (DlJ - Beu + d>ij) can be re-grouped to give

pe‘+¢u Du PE;- pe:u+<1>lJ (16)

d u d d U d
-y “h ‘5; }
where e ( Bx, o ax, x|’ (17a)
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Note that (16) reduces to its incompressible counterpart exactly because au; /oxx =0 and dp /oxy =

0. For compressible flows, an extra term ﬁ'e‘i} appears in (16). In addition, three additional terms
are found in d’; The term P ej; is a dilatational term and could be interpreted as compressible or

dilatational dissipation. This term is only important for compressible flows.

It should be pointed out that <D;,- is given by (17b) and, as a result of this particular
partitioning, there are several extra terms resulted from compressibility and variable viscosity.
However, at high Reynolds number, dimensional arguments reveal that these extra contributions
are not important. If pressure diffusion is further neglected, then the D'{i, P € and d>i‘j terms
would assume the same form as their incompressible counterparts. Therefore, the high-Reynolds-
number incompressible modelling of these terms could be naturally extended to the present case.
However, a model for the compressible dissipation term Fe% is required in order to complete the
closure. For high-Reynolds-number flows, this compressible dissipation could be assumed to be

isotropic. As a result, the following model is proposed:

(18)

The modelling of €° has been attempted by Sarkar et al. [4]. They are the first to realize that
the contribution of the dilatational dissipation term is important for supersonic and hypersonic

flows. A simple algebraic model, which is based on an asymptotic analysis and a direct numerical



simulation of the simplified governing equations, has been proposed for €°. Their proposal could
be modified for the present closure as

e€=025M%e , (19)

\2

— _' ou. }
where M12 =2k/c?,pe=} a_xt is the dissipation of k and ¢ is the local mean speed of sound.
Therefore, M, is the local turbulent Mach number. It should be pointed out that Sarkar et al.'s
definition of €€ is four times larger than the present definition due to a different splitting of the

terms in (16).

Once the high-Reynolds-number closure is obtained, the next important issue is to construct
an asymptotically correct near-wall closure. To do so, near-wall behavior has to be analysed for
each term in (13). This analysis is similar to the incompressible case except one more fluctuation

p' has to be expanded and substituted into the exact equation. The expansions are:

w=a;y+apyr+..

v"=b1y+b2y2+...
W ec 2 (20)
1Yty +..

P =ey+eryl+..

It should be pointed out that, although the velocity expansions are physically correct, the expansion
for density is an assumption. In general, the density fluctuation is not necessarily zero at the wall.
Since p’ is assumed to be essentially zero over the whole field in Morkovin's hypothesis, the

present approach could be viewed as a partial relaxation of that assumption.

For incompressible flows, b; = 0 is obtained by imposing the incompressibility condition
and becomes a crucial condition in near-wall analysis. This important condition holds the key to
the present extension of the near-wall incompressible models to compressible flows. In order to
show that b; indeed vanishes under these conditions, the continuity equation for density fluctuation

p' is first derived, or



¥+%(ﬁu; +p"(Uy) + p'u;)=o. Q1)
Expansions (20) are then substituted into the above equation. If (Uy) =0 at the wall is used, it can
be easily verified that by = 0 is still a valid condition for compressible flows, irrespective of the
thermal boundary condition. Therefore, the assumed p” expansion facilitates the modelling of
compressible flows because all the expansions for compressible flows have similar forms as their
incompressible counterparts except the extra e}} term which needs to be analyzed. Using the
definition for efj, it is easily verified that efj is of order y? for the 11, 22, 33 and 13 components,
while it is of order y for the 12 and 23 components. The high-Reynolds-number model proposal
(19) provides higher order behavior when a wall is approached. Therefore, it is proposed that
model (19) could be extended to near-wall flow without modification, while the near-wall balance

provided by the exact efj is taken into consideration by combining it with the 0,} term.

On the other hand, the same near-wall behavior as its incompressible counterpart is deduced
for &jj and the incompressible model [2] could be extended to compressible flows. In other words,
€;; could be modelled by

2 €, » » » » ” ~ »
elj = 5(1 - fw‘l)t-:Sij + fw.li«ui llj> + (lli uk)nknj + (“j“k)“k“i + (ukum)nmnkninj)
/(1 + X udnmn/2k ) @2
Near-wall analysis again shows that turbulent diffusion is a higher order term near a wall
and its high-Reynolds-number model could be used because it does not affect the near-wall

balance. Hanjalic and Launder’s [5] model is suggested for this term. For compressible flows,
their model could be modified to give

.. pEW) _ .. 3wy _ . .. 9pu; u)
D= (CS%E'(P (0] ) =+ ) ol 4 i) T)) . @

10



The near-wall behavior of d’i.j and ]Teicj together could be evaluated by using the exact
equation (13). One difference from incompressible flows is the appearance of G;j and Tj; in (13).
Therefore, the near-wall behavior of Gjj and Tj; has to be analysed first before discussing the
models for the combined term (d>i'j + 'p_efj). The appearance of mean pressure in the Gj; term
makes the analysis difficult. To circumvent this difficulty, the mean momentum equation (10) is
substituted and the final analysis shows that the combined (Gj; + Tjp) term has the following near-

wall behavior; namely,
Gy + Ty = O(2); G33+ T33 5 0(y2) ; Gy3 + T3 = ou? ,
Gy + T2 = O2) ; Gz + To3 = O(y2) ; Gpp + Typ = oyd) . (24)

This means that, to the lowest order, the near-wall behavior of d)i‘j + Fe'fj is similar to the
incompressible case [2]. Therefore, the incompressible model could be extended to compressible

flows as follows:
&= %M?eﬁr : @25
+ P eu ®;; +fw1 Pijw - (26)
D, =-C Bf ((ui u;) - %&jk) -o (Pij - %&,ﬁ)

)
(Du ZSUP ) (a<U:) (UJ>) ’ @7

ox;

®ijw = -Cy Bf ((u: u;) - %sijk) —Bf ((u: u;)nxnj + (u; u;)nkni)-* a* (Pij - %-&ﬁ )’ (28)

with P.,--p((u u,‘)a< )+(u uk)a(gl:)) ,
((u uk) w") +(u, uk) gik))

11



and P= P;;/2. The re-grouping suggested in (14) to (17) is now obvious, because the
incompressible models could be straight-forwardly extended to near-wall compressible flows.

The proposed model still fails to close the equation because of the presence of T;; and Gj;

which are mutiplied by the term u.. Therefore, it is necessary to shed some light on the modeling
k

of u; , which is equal to zero for an incompressible flow. Using Favre averaging, it can be shown

that -p’u; = Bu; . In other words, u; =- p’u; /p . Previous proposals for -p'u; are based on

the gradient transport assumption; namely,

v ap
i p uk O'P an (29)

2
where v{=C, ke_ However, a more elaborate and probably ‘better’ way to model the term is to

adopt the proposal,
TP ek ®
Uy > G oe (ukuj> ox; 30)

Since these proposals are not consistent with the assumption of non-gradient transport, it is

suggested that the following form is used to evaluate u; instead, or

= ue” dp | (8)
_k_ N P N O et
WP (a<e>),, > 61)

where B equals to unity for ideal gas.

12



3.3 Modeling of the Dissipation-Rate Equation

The exact transport equation for the dissipation rate of turbulent kinetic energy can be

similarly derived as in the incompressible case. Omitting all the algebra, the exact compressible

equation for € is given by
-2pv aati‘) [(axJ axJ) (ax, ax.)}
-2pv (“k :xg;) 25—(%%%%1‘%)
G U sy s,

axk 0x; Oxy pv OXy OXy 32)

It has been pointed out that the e-equation is the most difficult to model even for
incompressible flows [3]. Obviously, due to a lack of measurements in compressible flows, a
rigorous modelling of the compressible €-equation is not possible at the present time. The best
suggestion probably is to extend the incompressible model to compressible flows. There are two

important extra terms resulted from compressibility effects which will otherwise disappear. These

terms are:
_du 3 — 8;? oXu;)
=- __.L = —1 1
Ssl 2v ax Ix xax, and Se2 2v BXk ax]‘axj (33)

Along the suggestion of Jones [6] for high-Reynolds-number flows, the above terms could be

modelled as

(Uyp)

axk

P
Su=-Cofu 2t and Sa=Cupe

(34)

13



For near-wall flows, these models require modifications because it is obvious that Sgy
becomes infinite when a wall is approached. A simple way is to replace e by € =€ - €, in the
above expressions where €, is the value of € at the wall. In summary, the e-equation for a

compressible flow could be modelled as

dpe  Ip(Ule ( pk ) £ —eE
x axk( axk) axkc° (kx)a + Ca P - Cafep

-Ceaﬁukgf +Cupea(uk>+fw,23(g-ca-2)ff‘-%§} (35)

The incompressible form of this equation is identical to that proposed by Lai and So [1].
Unfortunately, the incompressible equation fails to give the correct € behavior near a wall. So et
al. [3] have recently carried out a study to investigate the near-wall behavior of the incompressible
transport ¢ equation for €. They found that if the f; and fy, 5 terms in (35) are modified to give

2
( Ce2 2 pk ),whercfzisgivcn by

_ Py 2fw'2 fw‘z *2
e o2 2] s

Ca 2Co g

then the predicted € behavior in the near-wall region is in good agreement with direct simulation
data [7-9]. Here &' =€ - 2Vk/y2. Consequently, the terms,

Fer s . B2
€E —| 77 &€ 1 €
Cafo B+ fugh [(6Ce2 “2)g- T]'

el
in (35) is replaced by [-Cezfz Bif—] and the resultant e-equation is asymptotically correct as a wall
is approached.

3.4 Modelling of the Temperature Variance and its Dissipation Rate Equations

In near-wall modelling of the compressible Reynolds-stress and dissipation-rate equations,

effort is made to recast the equations to a form similar to their incompressible counterparts. This

14



means that all terms with explicit compressibility effects are grouped together so that when the
incompressible limit is approached, they will go to zero idchtically and the other terms in the
compressible equations will approach their corresponding terms in the incompressible equations.
Thus formulated, the incompressible near-wall models could be extended to compressible flows in
a straight forward manner. The only new models required are those for the terms with explicit
compressibility effects. However, this approach, attractive though it seems, requires the
knowledge of well tested incompressible near-wall models. For the Reynolds-stress and
dissipation-rate equations, the incompressible near-wall models are provided by Lai and So [1].
As for the heat-flux and temperature variance and its dissipation-rate equations, a complete
incompressible near-wall closure is not available. Lai and So [2] proposed a near-wall closure for
the incompressible heat-flux equations. However, they did not propose near-wall models for the
temperature variance and its dissipation rate equaations. In this section, an attempt is made to
model these two equations in the near-wall region. An incompressible closure is first sought.
After these equations have been properly modelled for near-wall flows, they and the near-wall

heat-flux equations [2] will be used as a base for extension to compressible flows.

If the temperature variance is denoted by 62 and the dissipation rate of 62 is defined by

06 96

E H (37

where a = x/pC, is the thermal diffusivity, then the exact equations governing 62 and €g are given
by

a a d ( ’ 00 ae 90
7 (Uke_) axk( Bxk) ax 2 9 axk axk axk +2959 ’ (38)

15
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2+ aa (U= (o 528 5 wgeol 20 ax; 9%, 9%~ 2 “1ax; T,

2 2
20,2090 i, ae@kae 2( ae)+2 20 3Se

ax; I O%; L ox; O%; Oxp | 9%idx; ax; ox; (39)

where U; is the component of the Reynolds-averaged mean velocity, u; its fluctuating velocity
component, 0 is the fluctuating temperature and Sg is the source term involving the fluctuating

viscous stress and fluctuating velocity gradient.

It is clear from the exact transport equations (38) and (39) that the relative importance of the
different terms in the 62 and £g budgets is similar to those of the corresponding terms in the
turbulent kinetic energy and dissipation-rate equations. Several experimental studies have shown
that the close similarity between k and € and 62 and €g budgets do exist. For example, the
measurements by Krishnamoorthy and Antonia [10,11] for a turbulent boundary layer indicated
that the thermal and velocity fields resemble each other. Particularly, the measurements of €g have
enabled the temperature dissipation time scale to be estimated in the near-wall region and

approximately the same distribution as the velocity dissipation time scale was obtained.

Most proposals used to model the 92 equation have adopted a gradient-type representation
for uk()2 . In order to be consistent with the velocity field, the following form could be suggested

— 20’
_u =¥ uku,k o (40)

As far as the near-wall flow is concerned, asymptotic analysis shows that this turbulent diffusion is
negligible compared with the dissipation and molecular diffusion terms in (38). Furthermore,
experimental measurements [10,11] support this assumption. Consequently, (40) could be easily
extended to near-wall flows. The diffusion coefficient C‘.’2 could be chosen as 0.11 as

recommended by Launder [12].

16



The more important term requiring approximation in the 82 equation is the dissipation rate
€g. In most previous studies, this dissipation rate is algebraically related to 02 through the use of a
time-scale ratio R [12,13] and the time-scale ratio was chosen to be 0.5 to 0.8 depending on the
flow cases considered. Unfortunately, measurements for the decay of temperature and velocity
fluctuations behind a heated grid suggested that the time-scale ratio has a rather wide scatter and is
not sufficiently constant to serve as a general method for the determination of €g. The alternative

then is to determine &g from its own transport equation which is given in (39).

The problem of closing (39) is much more difficult than that of the e-equation because there
are more time and generation-rate scales in the eg-equation. For high-Reynolds-number flows,
dimensional analysis suggests that only the 6th and 7th terms on the RHS of (39) are important.
These terms bear a close resemblance to the corresponding terms in the €-equation. Several
proposals have been made to close the €g-equation for high-Reynolds-number flows [14-18].

Among them, the closure suggested by Jones and Musonge [14] takes the following form:

%=D‘e‘,+1>¢(,-z,:9 : 41)
with Peo=CuEPy+Cagl | @2)
Teo=Ca=L +Casfey | 43)
92
L =98 _
with Pe—-ukem and P=-T; a%; (44)

Note that in the modelling of the terms, Pgg and Zg, involving the generation and destruction of
fine scale turbulence interactions, both the thermal and velocity time scales are used. In the

second-order models of Newman et al. [15] and Eighobashi and Launder [16], however, only the
thermal time scale and the thermal production rate are used for Pgg, i.c.,

17



Pep = Cdle% Py . (45)

while in the model of Nagano and Kim [17],

Pw=cdleg—;'Po+CdSEOE : (46)

is proposed. It is worth noting that recently Yoshizawa [18] is able to arrive at the same form as

(43) and (46) for the gg closure by using the statistical results from a two-scale direct-interaction

approximation. Even the model constants predicted from their direct-interaction approximation are
close to the ones used by Nagano and Kim [17], Newman et al. [15] and Elghobashi and Launder
[16].

Although it is generally agreed that both the temperature and velocity time scales and
production rates affect g, all the above models only take one of the time scales and production

rates into consideration. Therefore, it would seem that a more general form for Pgg would be

Pee=Cd16%-Pe+Cdsze+Cd3€e‘E @7

where the values of the model constants Cy; to Cys are to be discussed later.

Finally, to close the eg-equation, the turbulence diffusion, i.c. the 2nd term on the RHS of
equation (39), could be similarly modelled through gradient-type approximation as the e-equation;

namely,

¢ =9 [ceok g%
Do = 3m (Cw g "M 5y, 48)

In summary, the high-Reynolds-number 62 and €g cquations could be modelled in the

following form:

18



ak(d’ u_uT, _ae_+2 99-9-269 . (49)

"2
Dt aj ukak

Deg _ 9 [~eok g %0
D= o (O & O gy,

+ Cy1 88 Py + CprE Py + Cn gl - Cau 2 ey - Cas g . (50)
o2 k k 62 k
Since a near-wall closure is to be formulated, an extension of the above equations to near-

wall flows is required. This could be achieved in a manner analogous to the modelling of the k and

€ equations. First of all, the viscous diffusion terms should be included in the equations, that is,

Xx \ OXg (51)
o _ 9 [, 9%
Do = s \% o, (52)

With the addition of the viscous diffusion term to (49), it can be shown that the modelled equation
is in balance to the lowest order in the near-wall region. Essentially, the balance is provided by
molecular diffusion and viscous dissipation. This can be verified by the use of the expansions (20)
and (39) for the definition of €g. In view of this, the 82 equation, just like its counterpart k

equation, needs no further modifications for near-wall flows.

A similar near-wall asymptotic analysis of the eg-equation shows that the molecular
diffusion term reaches a finite value at the wall and is dominant in the near-wall region. Near-wall
analysis of other terms in (39) reveals that the generation terms are of higher order in y, while the
destruction terms approach infinite values as a wall is approached because € and €g are finite and k
and 82 are zero at the wall. This difficulty could be removed by replacing € and g by € and €g in
(43), or

—Cul £

19



2
- 2 - 2
with ee=eg-a(aa$) and e=e-2v<¥) . (54)

Thus modified, the near-wall behavior of the modelled eg-equation has the property that molecular
diffusion and destruction become dominant when a wall is approached. This behavior is consistent

with experimental observations and is analogous to the behavior of the g-equation.

Despite the above modifications, the molecular diffusion and destruction terms generally are
not in balance near a wall. However, a near-wall analysis similar to the e-equation could be carried
out for the €g-equation to ensure that certain near-wall constraints are met. This can be
accomplished by expanding the fluctuating quantities according to (20). Using the definitions of
62 and € and the substitution of (20), the following is obtained,

92=2Ay2+2By3+Cy4+... ,

(55)
€g=0(2A +4By+Dy2+..)

?

where A, B, C and D are related to the time average of the coefficients dy, ds,.... Further analysis

of the 62 equation at a wall yields

(56

Following the suggestion of Shima [19] for the e-equation, a transport equation of the right
hand side of (56) could be derived and its behavior analyzed at a wall. This results in

3 a@)_ 3%, % ( a’@)
ot (a oxoxy/ 20 Oxy Xy ta 0XmOXm o oxioxyx/

(57)

These two equations indicate that 2deg/0t and the right-hand side of (57) should possess the same
near-wall asymptotic behavior. This constraint could be used to further modify the &g equation for

near-wall flows.
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Since a general analysis is difficult, the following analysis is restricted to the case where the
averaged quantities are only functions of y and t (distance normal to a wall and time). The near-
wall asymptotic behavior of the right-hand-side of (57) could be easily obtained by the substitution
of expansions (20) and (55) and the result is (-4a2D+240a2C). If the deg/dt equation is
considered, it could be shown that a closure is required such that the left-hand-side of (57) would
give the same value at the wall. It is sufficient to point out that an extra term Vg is required for the

€g equation in order to satisfy the above constraint and it could be deduced as

.2
‘e .af’
with €=go- 83 .

To verify that (58) indeed satisfies the modelled deg/dt behavior of (-2a2D+12a:2C), the
following near-wall expansions could be obtained by using (20) and (57):

Vo? =VIK y + (BNZE) y? + ACHZE) y* - (4B2/1283) y2 + Oly) (59)
~ B2 ) 3

go=a(D-B2.3c)y2 +0ly?) | (60)
€gfo _ o2(p_B2_

o « (D T 3C)+0(Y) (61
€ 2

? = 2&2% +q)') . (62)
In summary, the final g2 and &g equations could be modelled as:

oF 2 202 o[ —ya0?| .7 %8

Dﬁet— oxy (a 3x|:)+3xk(d2 uku_,k ) 2uk9 -;-—;x_-k-lee ' ©3)
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ok g _Eﬁ L}
Dt axk( oxy an (Ce e o) Cn=3 o2 P°
+Cof P+ Cosegh-Culey-Cosf o+ Voo - (64)

0

By considering the data obtained in decaying homogeneous scalar turbulence and
temperature variance measurements in grid turbulence, Jones and Musonge [14] was able to
determine the following model constants: Cgp = 1.7, Cg3 = 1.4, Cyg4 = 2.0, Cy5 = 0.52 with the
C4; term set equal to zero. Yoshizawa [18], on the other hand, estimated these constants using
direct interaction approximation. His results are: Cyq; = Cg4 = 1.2, Cy3 = Cy5 = 0.52 and Cyp =
0.0. Newman et al. [15] optimized the model constants to give Cq; = 1.0, Cg4 = 1.01, C45 = 0.88
while Elghobashi and Launder [16] proposed the following values, Cq; = 0.9, Cyg4 = 1.1, Cy5 =
0.80 with the Cy and Cy3 terms excluded. Nagano and Kim [17], however, adopted the same
values as Elghobashi and Launder [16] except that the Cy3 term is included and Cy3 = 0.72 is
suggested. It can be seen that all proposed constants are approximately of the same order of
magnitude and more experimental and numerical studies are required to determine their proper

values.
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4. Compressible Boundary Layer on an Adiabatic Plate
4.1 Governing Equations and Turbulence Closure

The compressible boundary layer on an adiabatic flat plate is considered. If the usual
boundary-layer approximations are made to simplify the governing equations, then equations (9) -

(11) can be written as
spwlegho o (65)
USRS )‘m] . (66)
d ¢ |o(H t U
528500 3. F m 2 ;(1 L1, u)w)B( >} , -

where the gradient-transport assumption has been used to relate the turbulent momentum and heat
fluxes to the mean gradients of velocity and temperature, respectively. In the process, a turbulent
viscosity is assumed for compressible flows. This is a first attempt to validate the k-€ closure
deduced above for near-wall compressible flows, therefore, a constant turbulent Prandtl number is
assumed so that the turbulent heat conductivity coefficient can be related to the turbulent viscosity.
The k-€ closure used to closed the above set of equations is given by the contraction of the
modelled form of (12) and (35). Their exact form will be given below. It should be pointed out in
here that the energy equation (67) is written in terms of the total enthalpy (H), which is the sum of
the enthalpy ¢(h), the mean kinetic energy ((U))2/2 and the turbulent kinetic energy k.

The turbulent viscosity i is related to k and € by C,,f, p k%/e, while k and & are obtained by
solving their respective transport equations. A modelled k-equation valid all the way to the wall
can be deduced by contracting (12) after applying the models proposed in (22), (23), (25) and (26)
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for €, D;i', €5 and ¢;j, respectively. On the other hand, the near-wall e-equation is given by (35).

Again, the boundary-layer approximations are used to simplify these equations and the results are:

2} 512 e

ok 0 M
P(U)ax"'P(V)ay ay[(l“'

0 U
(“z)pk(aw} M) i ay( aéy)) ’ (68)
— €, s 2, oU)
p(U)a—x"'p(v)g-ay )a] Celkl»lz( ay)
p82 HU)
-Caf: -+ Cafu ay( Jy ) . (69)

In (69), the near-wall correction of So et al.[3] has been substitued. The reason is the more correct

predicted behavior of € in the near-wall region. The definitions of €, €” and f,, are given by

~ —[ovk

e=e-2vW R 70)

e*=e-2vK | (71)
y2

fu=(1 +3.45/VR;) tanh{y*/120) , (72)

where R, = k2/Ve, y* = yu/V, up = V(1,,/p) and u” is defined by
dp
u = —Tig . (73)
Finally, the model constants are chosen as: C, =0.096, C¢; = 1.50, Cez = 1.83, 6y = 1.01, 6 =
1.45, 0, = 4.0 and 'y = 0.18182, and the turbulent Prandtl number Pr; is assumed to be 0.7. The

molecular Prandtl number Pr for air is calculated assumming it to be temperature dependent and the
Sutherland law is used to evaluate the fluid viscosity at the appropriate temperature.
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The boundary conditions are no slip at the wall for the velocities and zero heat flux at the
wall for the enthalpy. At the edge of the boundary layer, the free-stream conditions are assumed
for both the stream velocity and the enthalpy. Thus formulated, the above equations and the
appropriate boundary conditions can be solved numerically using the boundary-layer code
developed by So et al.[3].

4.2 Results and Discussion

The closure is used to calculate a flat plate supersonic boundary-layer flow [20], where the
thermal wall boundary condition is adiabatic and the free stream Mach number is 3.701. This case
is also calculated using a near-wall two-equation closure proposed in Ref. 21. Furthermore, some
mean flow data of this case can be found in Ref. 22. Since it is a flat plate boundary-layer flow,
there is no streamwise pressure gradient. For comparison purposes, the C¢data is taken from Ref.
20 while the other data is obtained from Ref. 22, where C¢= 21:“,/(pwU3) is the skin friction
coefficient. Here, the subscripts w and ¢ are used to denote wall and free stream condition,
respectively. In this case, the reported Cyat Re, = 1.939x107 is 1.246x10-3. The two-equation
model calculations of Ref. 21 are also compared with the present results whenever possible. This

way, the strength and weaknesses of the near-wall closure could be assessed carefully.

The present objectives are to validate the two-equation near-wall closure and to analyse the
calculated near-wall asymptotic behavior. Near the wall, the flow is essentially dominated by
viscosity and the Mach number is very low irrespective of the free stream Mach number.
Consequently, the near-wall asymptotic behavior of a flat plate compressible boundary layer
should be quite similar to its incompressible counterpart. One of the present objective is to
determine the extent of validity of this similarity, if indeed such a similarity exists. In other words,
the wall behavior of k*/y*2 = constant, k+/y+2e+ = 0.5, -uv+/y+3 = constant and -v6+/y*3 =
constant should also be valid for flat plate compressible boundary layers. Here, the wall friction

velocity is used to normalize k, £ and -uv while the free stream quantities are used 1o normalize -v0
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to give the dimensionless quantities. The extent of the similarity could then be determined from the

y* value where these relations cease to be valid.

The present calculations are carried out with a thermal energy equationrthat is identical to that
used in Ref. 21. This means that the term, 9] (U)a(U)/dyl/dy, in (67) is neglected.
Furthermore, k is omitted in the definition of (H). The influence of these terms on the calculated
results is being investigated at present. However, their overall effects could not be large because
these terms are one order of magnitude smaller than the terms retained in the final equation. The
rationale for using the same thermal energy equation as Ref. 21 is to better assess the effects of the

additional compressible terms in the k and € equations.

The calculated Cy at the same x location is 1.253x10-3. This represents an error of <0.6%
compared to the reported value [20,22]. The mean flow results are plotted in Figs. 1-3. In these
figures, the measurements and the calculations using the model of Ref. 21 are also shown for
comparison. There are several ways to define y* for compressible flows. Here, it is defined with
the fluid propreties evaluated at the wall. The mean velocity (U*) plot is shown versus Iny* (Fig.
1), while the mean temperature ((©)/(8),) and total enthalpy ((H)/(H),) plots are shown versus y*
(Figs. 2 and 3). It can be seen that the present results are in good agreement with data and with the
calculations obtained from the model of Ref. 21. There is a slight discrepancy in the mean
temperature and total enthalpy profiles near the wall. The present results give a fuller profile for
both propreties. On the other hand, the model of Ref. 21 give a slight overshoot for the total
enthalpy profile inside the boundary layer. This, of course, is not reasonable and could be the
reason for the under-prediction of (H) near the wall. One of the reason could be the less correct
near-wall turbulence model [21] compared to the present closure. More will be said about this

point when the near-wall propreties are examined.

The near-wall distributions of the turbulent quantities are plotted in Figs. 4-7. In these plot,

y* is defined using local fluid propreties. Since there are no measurements in this region, the
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comparisons are made with the calculations obtained using the model of Ref. 21 whenever
possible. It can be seen that the present prediction of €* in the near-wall region is totally different
from the model of Ref. 21. The present calculation is similar to that obtained by Spalart [9]
through direct simulation of the Navier-Stokes equations. It is essentially identical to the
distribution obtained by So et al. [3] for the case of an incompressible boundary layer. On the
other hand, the calculation of €* is about the same for both models for y* > 35. This means that
the near-wall closure of Ref. 21 is not quite correct and could contribute to an incorrect prediction
of H in the near-wall region. Further evidence that the near-wall model of Ref. 21 is not quite
correct could be gleaned from the near-wall plots of k+, Zuv+ and -vO+ (Figs. 5-7). The model of
Ref. 21 gives a k* distribution that is quite a bit lower than the present calculation. For example,
the peak value of k* is calculated to be about 3.1 using the model of Ref. 21 (Fig. 5), while the
present calculation gives a value of about 5.2. This latter value is in agreement with that obtained
by Spalart [9] and So et al. [3] for an incompressible boundary layer. Furthermore, the drop of k+
after the maximum is relatively steep for the present closure, while it is essentially constant for the
model of Ref. 21. This behavior is also incorrect compared to incompressible flow data. The low
value of k* suggests that turbulence is being severely damped in the near-wall region and this, in
turn, could influence momentum and heat transport and could possibly lead to lower values for
-uv+ and -vB+. The overall distributions of kt, -uv+ and -vO+ are shown in Figs. 8-10,
respectively. It can be seen that the model [21] prediction of k* in the outer region agrees well

with the present result.

Finally, the near-wall asymptotic behavior of the turbulent propreties are examined in Figs.
11-14. The slope of k* versus y*2 is indeed constant and is equal to 0.094 (Fig. 11); a value that
is about 4% lower than that obtained by So et al [3]. Therefore, it follows that the wall value of €*
is 0.188 and again is in very good agreement with the incompressible value [3]. On the other
hand, the ratio k*/y*2et is 0.501 (Fig. 12) and verifies that expansions (20) are valid for

compressible flows. This implies that there is great similarity between incompressible and
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are also constant and are very small (Figs. 13 and 14). These results are consistent with
incompressible flow calculations. However, the region in which the slopes are constant is limited
to y* = 1.0. This compares with a region of y* = 2.0 for incompressible flows. Therefore,
compressibility tends to decrease the region in which expansions (20) is valid, but it fails to
climinate this region altogether. Perhaps, when the free stream Mach number is sufficiently high,
this viscosity dominated near-wall region will become so thin that it could be considered to be

essentially non-existent.

It should be pointed out that the above results are obtained with a Cgofy = 1.83f5(1.0 +
BM?,) where B is determined to be 0.0044 based on a series of calculations at different M. One
could interpret this to mean that Cgy is Mach number dependent, or it could be assumed that f; is
influenced by M,,. Based on the physics of near-wall flows, it would seem reasonable to assume
f5 to be dependent on M,,. This assumption would keep intact the closure’s ability to predict
decaying turbulence in a homogeneous field. Another point to note are the additional compressible
terms in (68) and (69). If these additional terms are neglected, the calculated near-wall behavior is
very much like that given by Ref. 21. In other words, these terms are very important and are
probably solely responsible for the correct prediction of compressible turbulence in the near-wall
region. This means that compressiblility effects on the turbulence field could not be correctly
modelled by a simple extension of the incompressible equations to compressible flows. The
additional terms in the turbulence equations are partly responsible for the compressibility effects.
Therefore, these terms should be retained in the modelled equations if the compressibility effects

were to be accounted for properly.

4.3 Conclusions
The present calculations and comparisons help bring out the following points. These are:

(i) Morkovin's postulate [23] is justified as far as the calculation of the mean field is concerned.
On the other hand, the calculation of the turbulence field is not quite correct if compressibility
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(i)

(iii)

(iv)

effects were assumed to be solely accounted for by the variable mean density. This is
particularly true in the near-wall region where Morkovin's postulate would lead to a drastic

under-prediction of the turbulence propreties.

The additional compressible terms in the k and € equations play a significant role in the
calculation of near-wall turbulence. If these terms are neglected, compressibility effects on
turbulence could not be accounted for properly and the result is under-prediction of the

turbulence propreties.

These additional terms are responsible for providing the correct near-wall asymptotic
behavior for the turbulence propreties. With their inclusion, the near-wall asymptotic
behavior of compressible flows is found to be similar to that of incompressible flows. This

result is reasonable because viscosity dominates in the very near-wall region.

The expansions (20) are found to be valid for the present calculations. Their validity for

other thermal boundary condition remains to be verified.
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§. Plans for Next Period

®

(i)

(iii)

The plans for the next period are:

To further validate the compressible near-wall k-€ closure, such as applying it to calculate

other types of boundary-layer flows.

To validate the compressible near-wall Reynolds-stress closure by applying it to calculate the
boundary-layer flow on an adiabatic plate and compare the results with measurements and the

calculations of the compressible near-wall k-€ closure. In both calculations, a constant
turbulent Prandtl number is assumed. This assumption will be relaxed after the near-wall
compressible heat-flux models are formulated and their incompressible counterparts are

properly validated.

To validate the incompressible near-wall 9_2-89 closure using plane channel flow data with
heat transfer. The data sets are chosen from direct simulation calculations as well as from
measurements. They will cover both types of boundary conditions; that of constant wall heat

flux and constant wall temperature.
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