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Abstract 

A celestial body produces a gravitational moment about the mass center of a 

small orbiting body, which affects the orientation of the smaller body. Each 

zonal harmonic in the gravitational potentia1 of a ceIestial body is shown to 

make a contribution to the gravitational moment which can be expressed in a 

recursive vector-dyadic form. A formal derivation is presented, followed by an 

example in which the result is employed in obtaining the contribution of the 

zonal harmonic of 2nd degree. The contribution of the zonal harmonic of 3rd 

degree is also reported. 

Introduction 

The gravitational moment about the mass center of a body in orbit about a 

celestial body has an important effect on the orientation of the orbiting body. 

The more misshapen the celestial body, and the less uniform its mass distri- 

bution, the more involved is the calculation of the gravitational moment (and 
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force) it exerts. Situations in which it might be important to calculate accu- 

rately the gravitational moment include the design of spacecraft for expeditions 

to asteroids, comets, and the moons of Mars. 

In Ref [l], a method for obtaining a vector-dyadic expression for the moment 

exerted about a small body’s mass center by an oblate spheroid was set forth. 

The derivation of that expression made use of a gravitational potential written 

in terms of the zonal harmonic of 2nd degree. When gravitational potentials 

containing zonal harmonics of degree 2 or greater are considered, each zonal 

harmonic makes a contribution to the gravitational moment. 

Recorded below is a vector-dyadic expression for the contribution of a zonal 

harmonic of degree n to the gravitational moment, produced by a body, about 

the mass center of a small body. As is the case with all vector-dyadic expres- 

sions, this result .is basis independent.- that is, the vectors and dyadics can be 

expressed in any convenient vector basis. 

The equation given below is recursive: the contribution to  the gravitational 

moment from the zonal harmonic of degree n is a function of the moment con- 

tributions from the zonal harmonics of degree n - 1 and n - 2. The equation 

contains Legendre polynomials and derivatives of Legendre polynomials of de- 

gree n - l and n - 2. The Legendre polynomials, as well as their derivatives, 

can, themselves, be generated by means of recursion formulae. 

As an example, the contribution to the gravitational moment from the zonal 

harmonic of degree 2 is worked out. The contribution of the zonal harmonic of 

degree 3 is also given. 

Assert ion 

Figure 1 shows a small body B in the presence of an axisymmetric body E .  

The distance between B*,  the mass center of B, and E*, the mass center of 
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E ,  is assumed to exceed the greatest distance from B* to any point of B.  The 

system of gravitational forces exerted by E on B produces a moment M about 

B*, and M can be written as 

where M n  is the contribution of the zonal harmonic of degree n and can be 

obtained by using the recursion relation 

M ,  = pJnREn { [(2n - 1 )  [ (n + 2 ) p n - 1 +  3 ( i  0 i ; ) p ~ - ~ ]  - (2n - 2 ) p ~ - , ]  nRn+3 
( r i x L . +  + + X L . r i )  

+ [(4n - 4) [(n + 1lpn-2 + (+ 0 A ) P A - ~ I  

-(2n - 1)(4 0 A )  [(4n + 8)Pn-1 + 4($ 0 h)PA-l]]i  x L 0 .i. 

- b(2n  - 1 ) ~ ~ - , ] r i  x 10 ri 

2 (s) ~ n - 2  ( 2 )  
2n-  1 Jn RE n - 1  Jn --- (i o A ) M n - i  - -- 

n Jn-1 R n Jn-2 
+ 

where; /I is the gravitational parameter of E ,  Jn is the zonal harmonic coefficient 

of degree n,  RE is the mean equatorial radius of E, R is the distance from E* 

to B*, P, is the Legendre polynomial of degree n and argument SA, SA is the 

Sine of A,  the latitude of B* (SA = i; oh),  PA is the first derivative, with respect 

to its argument, of Pn, i is the unit position vector from E* to B*, n is the 

unit vector in the direction of the axis of symmetry of E ,  and I is the inertia 

dyadic of B relative to B*. 
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Figure 1: Body B in the Presence of Body E 

Derivation 

The gravitational forces exerted by a body E on a small body produce a moment 

M about the mass center B" of B. M is given approximately by equation 

(2.18.1) of Ref [2], 

M = -I - z VVV(R) (3) 

where R is the position vector from E' to B* and V denotes differentiation with 

respect to the vector R. Section 2.9 of Ref [2] contains a thorough explanation 

of how one differentiates with respect to a vector. The definition of the cross-dot 

product, z ,  appears on p. 156 of Ref [2]. The gravitational potential of E is 

symbolized by V .  

Equation (2.13.14) in Ref [2] deals with the gravitational potential of an 

axisymmetric body and contains an infinite series of zonal harmonics. For a 

particle of unit mass coincident with B*, 
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where SA, the argument of P, , is equal to the sine of the geographic latitude of 

B*. Eq. (4) can be simplified to 
00 

when the contribution to the gravitational potential of the zonal harmonic of 

degree n, V,, is defined as 

Ref [l] shows that -I V V ( p / R )  = (3p/R3).i. x I o  i .  Hence, eq. (3) can 

be rewritten as eq. ( l ) ,  

so long as the contribution to the gravitational moment of the zonal harmonic 

of degree n, M , ,  is defined as 

The Legendre polynomial of degree n, Pn(c), is expressed recursively in 

equation (8.71) of Ref [3] in terms of Legendre polynomials of degree n - 1,  

n - 2,  and their argument, 2, for n 2 2,  as follows: 

Eq. (9) can also be produced with rn = 0 in formula I of Table 1 in Ref [4]. Sub- 

stituting from this recursion relation for the Legendre polynomials into eq. ( 6 )  

leads to a recursive expression for V,: 

v, = --- &Vn-l--- - Jn ( - 3 2 v n - 2  (10) 
2 n - 1  J ,  RE 

n Jn-1 R n Jn-2 
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Eq. (8) requires that a dyadic be formed by differentiating Vn twice with 

yields a recursion 

relation for the vector VVn, the contribution of the zonat harmonic of degree 

n to the gravitational force exerted by E on a particle of unit mass coincident 

with B*. 

. The first derivative of Vn with respect to 

The second derivative of Vn with respect to R yields a recursion relation for the 

symmetric dyadic VVV,, 

where a is the unit dyadic. 
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§§- 

We now perform the crossdot product with dyadics I and VVV,, making use 

of the right hand side of eq. (12) and the cross-dot identity 1. i = 0, which is 

set forth in eq. (19) of Ref [l], obtaining 

I (VSxR + RVSx) X 2 n - 1  Jn Vn-1 x Vn- 1 I o  VVV, = -- R E ( ~ L  e V V S ~  - - R3 - - 
Jn-1 

n - 1  J n  1 x  8Vn-2 I x - -- RE'(-L e VVV,-~ + - oRR-O 
Jn-2 R6 - 

In order to carry out the cross-dot products with L and the other dyadics on 

the right side of eq. (13), we will express these dyadics in terms of R and i i ,  a 

unit vector parallel to the axis of symmetry of E. 

The sine of X can be expressed as sinX = ( R e n ) / R  = + e n  so that the first 

derivative of SA with respect to R is 

and the second derivative of SA with respect to R is 

3(Re 'IRR - -!.- [GR + Rh + ( R e  ii)a 
R5 R3 

vvsx = 

Eq. (20) of Ref [l] is a derivation of a cross-dot identity which will be used 

repeatedly throughout the sequel: For any dyad u v  composed of vectors u and 

v ,  it is shown that L e u v  = -u x e v. By making use of this identity, and 

eq. (15) above, one can write 

X 
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where i is a unit vector in the direction of . By recalling the definition in 

eq. (6), one can evaluate the first cross-dot product on the right side of eq. (13). 

The dyadic required for the second cross-dot product on the right side of 

eq. (13) is easily constructed by using eq. (14): 

Thus, 

L (VSx R + R V S x )  = Vn- 1 - 
R3 

-pJn-l RE"-' - Rn+3 pn-l [ 2 ( i  0 n)i x L. i - n x L o  .i. - .F. x L. n] (19) 

Replacing n with n - 1 in eq. (8) allows the third cross-dot product on the 

right side of eq. (13) to be immediately expressed in terms of Mn-l. 

The fourth cross-dot product on the right side of eq. (13) contains the quan- 

tity VVn-,. Temporarily allow x to be the argument of Pn-l [See eq. (6)] and 

write the derivative of Vn-l with respect to R as 

The first derivative of a Legendre polynomial Pn with respect to its argument 

is often denoted by P,',. For n >_ 2, a useful recurrence formula for P,', can be 

found in problem 8-9 of Ref 131, p. 393, or in formula I of Table 1 in Ref [4] 

(with rn = 1): 
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Since the argument of Pn-l is known to be SA, we can make use of eq. (14) to 

rewrite eq. (21) as 

The sum of two dyadics, formed by juxtaposing the vectors VSA and VVn-l in 

opposite order, yields the symmetric dyadic 

( R o n )  2(Reh)RR]} (24) 
R3 

-- 
R4 

Consequently, the fourth cross-dot product on the right side of eq. (13) can be 

expressed as 

The dyadic required for the fifth cross-dot product on the right side of 

eq. (13) can be constructed rather easily by employing eq. (23), which yields 

so that 
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The sixth cross-dot multiplication which must be performed in order to 

VVV, is one of the easiest to carry out. That is, 

The seventh cross-dot product on the right side of eq. (13)  can be expressed 

in terms of Mn-2. Replacing n with n - 2 in eq. (a), we get 

The eighth cross-dot product to be evaluated is simpIy 

The dyadic required for the final cross-dot product is similar to that needed 

for the fifth cross-dot product, 

-/A Jn-zREn-2 { & Rn- 1 [?% + $6 - 2(i; 0 li)i;..i] - 2(n - Rn- 1)Pn-2 1 i i ; } ( 3 1 )  

so that 

2 x  
R4 - -I 0 (VVn-zR+ RVVn-2) = 

Substituting from eqs. (17 ) ,  (19) ,  (20), (25),  (27)  - (30) ,  and ( 3 2 )  into ( 1 3 )  

and then into (8) leads to  eq. ( 2 ) ,  which is a recursive vector-dyadic expression 

for the contribution of the nth zonal harmonic to the gravitational moment. 

Examples 

In order to demonstrate the use of eq. ( 2 ) ,  we will use it to obtain M2, the 

contribution to the gravitational moment from the zonal harmonic of degree 2 .  
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The two required Legendre polynomials are Pl(Sx) = SA = + 
Po(Sx) = 1. Legendre polynomials of degree greater than or equal to 2 can 

be obtained recursively by using eq. (9). The two derivatives of Legendre poly- 

nomials which will be needed are Pi(Sx) = 1 and p { @ ~ )  = 0. Derivatives with 

respect to the argument of Legendre polynomials can be generated with the 

recursion formula (22) for n _> 2. 

Eq. (2) also requires knowledge of Mo and M1 in order to produce Mz.  

Eq. (8) is helpful in developing expressions for Mo and M I .  

The Legendre polynomial of degree zero is equal to 1, regardless of its argu- 

ment, and the scalar Vo [See eq. (6)] is 

The dyadic formed with VO is then 

(34) 
J 

VVVo = VV(-pJo/R) = V(pJoR/R3) = R3 - 3?+) 

Eq. (8) tells us that 

JO is an undefined constant, but the coefficient of Mo in eq. (2) contains JO in 

the denominator. Hence, a numerical value of Jo is not required for constructing 

M2. 

A similar process leads to M I .  The value of the Legendre polynomial of 

degree 1 is identical to the argument, so the scalar VI is 

The dyadic formed with VI is 

3 
R5 

-p J1 RE { l5'"R,' RR - - [Rfi + fiR + ( R  0 .)a} (37) 
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so that 

M I = -  3pJ1RE [n x L o  i; + i; x L 0 n - 5(+ . n)+ x L (38 )  R4 

Like Jo, the constant J1 is undefined, and unneeded for the purpose of obtaining 

Mz. Note that Mo and M I  do not represent contributions to the gravitational 

moment, but are required to begin the process of recursion which will generate 

moment contributions beginning with M2. 

By substituting from eqs (35) and (38) into (2), we arrive at the following 

result with n = 2:  

Mz = - pJzRE2{ [30(?  o i i ) ] ( A  x L . 9  ++ x L o ~ )  
2 ~ 5  

+ [ 1 5 - 1 0 5 ( 6 0 A ) ~ ] ?  x L 0 ? - 6 i i x L o i i  } (39 )  

If eq. (1) of Ref [l] is expressed as M = (3p /R3) i ;  x L o  ? + M z ,  it can be seen 

that Mz from Ref [I] is identical to eq. (39), above. 

The contribution M3 can be obtained in a similar manner, using the values 

of PZ(SX), Pl(%), wb.), P:(sX), MZ, and M1. 

M3 = - PJ3RE3 { [315(c 0 T i y  - 451 (?% x L o  e + e x L 0 i i) 
6R6 

+ [315(+ 0 A) - 945(? 0 A)3] i; x L o  i: - 90(? 0 h)fi x L o  f i }  (40) 

Conclusions 

A recursive vector-dyadic expression for the contribution of a zonal harmonic 

of degree n to the gravitational moment about the mass center of a small body 

can be obtained by a procedure which involves differentiating a celestial body’s 

gravitational potential twice with respect to a vector. The recursive property 

of the result is a consequence of taking advantage of a recursion relation For 

Legendre polynomials that appear in the gravitational potential. When a celes- 

tial body’s gravitational potential includes zonal harmonics, the vector-dyadic 
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expression above is useful for calculating their contributions to the gravitational 

moment. The contribution of the zonal harmonic of degree 2 is consistent with 

the gravitational moment exerted by an oblate spheroid. 
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