
L --_ .......... + ......................

NASA Contractor Report 4339

Algorithm to Architecture

Mapping Model (ATAMM)

Multicomputer Operating System

Functional Specification

R. Mietke, J. Stoughton,

S. Som, R. Obando,

M. Malekpour, and B. Mandala I-II:T_T..............ii__--:i-i

COOPERATIVE AGREEMENT NCC1-136 +
NOVEMBER 1990 .................

HI/33

,-+l

+__

Uncl as
0311983



++ , .....

--r ....

_--7 _ T

..... E

........ -_ --_ 7------

+ _+__

+ +

z
............ +

_-27--_-_ - ....

+_

_+ + .... ----

-- _+ .......

L m

._+ --

--_ -- _ _

m

_ ..... _ ........ T-: L



NASA Contractor Report 4339

Algorithm to Architecture

Mapping Model (ATAMM)

Multicomputer Operating System

Functional Specification

R. Mielke, J. Stoughton,

S. Som, R. Obando,

M. Malekpour, and B. Mandala

Old Dominion University Research Foundation

Norfolk, Virginia

Prepared for

Langley Research Center

under Cooperative Agreement NCC1-136

N/ A
National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Division

1990





TABLE OF CONTENTS

I. INTRODUCTION ....................................................

II. THE ATAMM MODEL .................................................

III. PERFORMANCE ANALYSIS AND DESIGN .................................

III.i

111.2

III.3

Performance Measures ..................................

Graph Play and Resource Requirements ..................

ATAMM Performance Plane ...............................

IV. AMOS IMPLEMENTATION IN THE ADM ..................................

IV. 1

IV. 2

IV. 3

ADM Description .......................................

AMOS Description.

System Capabilities ...................................

V. AMOS ENHANCEMENT FOR THE GVSC ...................................

V.I

V.2

Multiple Concurrent Instantiations of Node Operations.

Multiple Graph Strategies .............................

Parallel Strategy ...............................................

Time Multiplexing Strategy ......................................

Priority Interrupt Strategy .....................................

V.3

V.4

Distributed Sources and Sinks .........................

Fault Tolerant Strategies .............................

Fault Detection .................................................

Damage Assessment ...............................................

System Recovery .................................................

System Return to Service ........................................

REFERENCES

LIST OF FIGURES

Algorithm marked graph for discrete system equation ..........

2 ATAMM node marked graph model ................................

ATAMM computational marked graph model for discrete

system equation ..............................................

4

12

13

14

19

31

31

32

39

40

43

49

52

56

58

59

63

64

66

66

67

68

6

8

I0

a ..ll_JNImIL 0U l

iii

pR_CEDiNG PAGE BLA_'_?( NO'f FILMED



Figure

4

5

6

7

8

9

i0

II

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

TABLE OF CONTENTS (continued)

LIST OF FIGURES (continued)

ATAMMmodel components .......................................

AMG for performance example ..................................

CMG for Figure 5 .............................................

SGP diagram for Figure 5 .....................................

TGP diagram for Figure 7 with TBO - 2 ........................

ATAMM performance plane ......................................

Injection control implementation .............................

ATAMM performance plane for Figures 5 and 12 .................

Modified AMG for Figure 5 ....................................

Modified CMG for Figure 12 ...................................

(a) SGP diagram and (b) TGP diagram for Figure 12 with

TBO - 2 ......................................................

Advanced Development Module (ADM) System .....................

Major components of the ATAMM Multlcomputer Operating

System (AMOS) ................................................

AMOS functional unit state diagram ...........................

(a) Simplex and (b) TMR AMG node pair representation .........

Generic VHSIC Spaceborne Computer (GVSC) System ..............

The NMG for the enhanced ATAMM model .........................

AMG example to illustrate the enhanced ATAMM model ...........

(a) SGP diagram (b) TGP diagram for TBO - 2 for the AMG

of Figure 21 .................................................

Enhanced CMG for the AMG of Figure 21 ........................

Ideal throughput improvement using the enhanced ATAMM Model..

A collection of algorithm graphs (G) .........................

Parallel execution strategy for multiple graphs ..............

iv

Ii

15

16

18

20

22

23

25

28

29

30

33

36

37

41

42

45

47

48

50

51

53

55

m



Figure

27

28

29

3O

TABLE OF CONTENTS (concluded)

LIST OF FIGURES (concluded)

Time multiplexing strategy for multiple graphs ...............

Control strategy for GVSC ....................................

Modified Examine and Execute states for GVSC .................

AMOS fault management process for GVSC .......................

57

6O

62

65

V





ALGORITHM TO ARCHITECTURE MAPPING MODEL (ATAMM)

MULTICOMPUTER OPERATING SYSTEM FUNCTIONAL SPECIFICATION

I. INTRODUCTION

The purpose of this document is to describe the ATAMM

Multicomputer Operating System. ATAMM, an acronym for Algorithm To

Architecture Mapping Model, is a marked graph model which describes

the implementation of a decomposed algorithm on a data flow

computer architecture. AMOS, the ATAMM Multicomputer Operating

System, is an operating system which implements the ATAMM rules.

A first generation version of AMOS has been developed for the

Advanced Development Module (ADM), a four processor architecture

based on the Westinghouse VHSIC 1750A instruction set processor.

A second generation version of AMOS is being developed for the

Generic VHSIC Spaceborne Computer (GVSC), a spaceborne four

processor breadboard which also is based on the VHSIC 1750A

instruction set architecture.

AMOS is a special purpose operating system suitable for

periodic execution of decomposed signal processing and control

algorithms in real-time on a variety of multicomputer

architectures. An algorithm is expressed as a directed graph

where vertices represent algorithm operations and edges represent

data sets or operands_ It is assumed that the algorithms are



decision-free and large-grained. Decision-free refers to the

absence of data dependent paths in the algorithm graph

representation. Large-grained refers to the assumption that the

time required to perform algorithm operations is large compared

to the time required to move data from one graph node to another.

The computer architecture is assumed to consist of two or more

identical functional units or computing resources, each having a

capability of processing, communication and memory. Functional

units communicate with each other through an interconnecting bus.

The functional units share a common global memory which may be

either centralized or distributed. Coordination of resources in

relation to data and control flow is directed by a graph manager
!

which also may be centralized or distributed. Assignment of a

functional unit to a specific algorithm operation is made by the
z

graph manager according to ATAMM rules. In a specific hardware

setting, the graph manager, global memory and functional unit

activities together form the ATAMM Multicomputer Operating System

or AMOS.

The ATAMM model is important because it specifies criteria

for a multicomputer operating system to achieve predictable and

highly reliable performance. When sufficient resources are z

available, the system executes algorithms with maximum throughput -

and minimum computing time. When only limited resources are ....

available or resources fail, performance degrades gracefully and

2



predictably. The user is able to specify off-line tradeoffs

between decreasing throughput or increasing computing time, and

the operating system is able to implement these changes on-line

in real time as the number of resources decreases. The ATAMM

model also provides a platform for investigating the effect on

performance of different algorithm decompositions and

implementation strategies in a hardware independent context.

In Section II, the ATAMM model is defined and illustrated by

example. Time performance of algorithms executed according to

the ATAMM rules is considered in Section III. Strategies are

described for generating operating conditions for predictable

performance based on the number of available computing resources.

In Section IV, the ADM implementation of AMOS is presented.

Finally, in Section V, enhancements planned for the GVSC

implementation of AMOS are described. The AMOS functional

features described in Section IV, as modified to include the

enhancements described in Section v, are to be implemented in the

GVSC breadboard system.

The use of brand names in this document is for completeness

and does not imply NASA endorsement.

3



II. THE ATAMMMODEL

The ATAMM model consists of a set of Petri net marked graphs

which incorporates general specifications of communication and i

processing associated with the implementation of a decomposed,

large-grained algorithm in a data flow architecture. In this

section, the execution of a computational problem is represented

by the ATAMM model. Some familiarity with Petri nets and marked

graphs is assumed [I]. A more detailed description of the ATAMM

model and its characteristics are found in [2, 3].

An algorithm marked graph (AMG) is a marked graph which

represents a specific algorithm decomposition. Transitions and

places are represented as nodes (vertices) and directed edges,

respectively. Vertices of the algorithm marked graph are in a

one-to-one correspondence with each occurrence of an algorithm

operation. The transition times represent the computational

times of the respective algorithm operations. The algorithm

marked graph contains an edge (i, j) directed from vertex i to

vertex j if the output of vertex i is an input for vertex j.

Edge (i, j) is marked with a token if an output from vertex i is

available as an input to vertex j. Source transitions and sink

transitions for input and output signals are represented as

squares.

To illustrate the construction of an algorithm marked graph,

consider the problem of computing the output of a discrete

4



linear, time invariant system given a sequence of inputs to the

system. Let the system be described by the state equation

x(k) = Ax(k-1) + Bu(k)

and the output equation

y(k) = Cx(k),

where x is a p-vector, u is an m-vector, and y is a r-vector.

The algorithm operations are defined as matrix multiplication and

vector addition, and the natural algorithm decomposition

resulting from the state equation description is selected. The

algorithm marked graph for this decomposed algorithm is shown in

Figure 1. The initial marking indicates that initial condition

data are available.

The algorithm marked graph is a useful tool for representing

decomposed algorithms and for displaying data flow within an

algorithm. However, the algorithm marked graph does not display

procedures that a computing structure must manifest in order to

perform the computing task. In addition, the issues of control,

time performance and resource management are not apparent in this

graph. These important aspects of concurrent processing are

included in the ATAMM model through the definition of two

additional graphs. These additional graphs are defined in the

following.

The node marked graph (NMG) is a Petri net representation of

the performance of an algorithm operation by a functional unit.

5
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Three primary activities, reading of input data from global

memory, processing of input data to compute output data, and

writing of output data to global memory, are represented as

transitions (vertices) in the NMG. Data and control flow paths

are represented as places (edges), and the presence of signals is

notated by tokens marking appropriate edges. The conditions for

firing the process and write transitions of the NMG are as

defined for a general Petri net, while the read transition has

one additional condition for firing. In addition to having a

token present on each incoming signal edge, a functional unit

must be available in a queue of available functional units for

assignment to the algorithm operation before the read node can

fire. Once assigned, the functional unit is used to implement

the read, process, and write operations before being returned to

a queue of available functional units. The initial marking for

an NMG consists of a single token in the Process Ready place.

The NMG model is shown in Figure 2.

A computational marked graph (CMG) is constructed from the

AMG and the NMG by the following rules:

i) Source and sink nodes in the algorithm marked graph are

represented by source and sink nodes in the CMG.

2) Nodes corresponding to algorithm operations in the

algorithm marked graph are represented by NMGs in the

CMG.

7
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3) Edges in the algorithm marked graph are represented by

edge pairs, one forward directed for data flow and one

backward directed for control flow, in the CMG.

A forward directed edge goes from a predecessor write

transition to a successor read or sink transition. Forward edges

are also shown as part of the NMG in Figure 2 where they are

labeled OF and IF edges of the predecessor and successor

transitions, respectively. A backward directed edge goes from a

successor read transition to a predecessor read or source

transition. Backward edges are also shown as part of the NMG

where they are labeled OE and IE edges of predecessor and

successor transitions, respectively. The initial marking for the

edge pair consists of a single token in the forward directed

place if data are available, or a single token in the backward

directed place if data are not available. In order to illustrate

the construction of a computational marked graph, the CMG

corresponding to the algorithm marked graph of Figure I is shown

in Figure 3.

The complete ATAMM model consists of the algorithm marked

graph, the node marked graph, and the computational marked graph.

A pictorial display of the components of the ATAMM model are

shown in Figure 4.

Graph execution based on the ATAMM rules has several useful

and important properties [4]. Execution is live, reachable,
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safe, deadlock-free, and consistent |3]. Liveness indicates that

all transitions in the CMG are firable from the initial marking,

whereas teachability ensures that the CMG will generate an output

for each input. Safeness guarantees that output of an algorithm

operation will not be overwritten before it is picked up by a

successor algorithm operation or sink. This property is a result

of including backward control places in the CMG and is necessary
i

£

for safe periodic operation. The necessary and sufficient

condition for avoidance of deadlock in the graph play is to

ensure that once assigned, a functional unit always is able to
=

complete execution of an algorithm operation. A computation can

not enter deadlock because no read transition is executed unless

the output edges of the corresponding NMG are empty and a _

functional unit is available. The consistency property implies
=

that computations are repeated periodically when input are

applied periodically.

IIi. PERFORMANCE ANALYSIS AND DESIGN

In this section, the time performance of algorithms

implemented in data flow architectures according to the ATAMM

rules is investigated. First, performance measures for computing

speed and throughput are defined. It is shown that the ATAMM

model is useful for analytically calculating bounds for these

measures. Then, graph play is described and used to determine

_2



resource requirements necessary to achieve a specified time

performance. Finally, the ATAMM performance plane is defined.

This diagram displays possible operating strategies with resource

requirements shown as a parameter.

operator is able to specify

performance.

Using this display, a system

quantitatively system time

III.l. Performance Measures

Two measures of time performance, TBIO and TBO, are defined

in this section. The performance measure TBIO (time between

input and output) is the elapsed computing time between an

algorithm input and the Corresponding algorithm output.

Therefore, TBIO is an indicator of computing speed. It is shown

in [5] that the algorithm imposed lower bound for TBIO, denoted

TBIOLB, is given by the sum of transition times for nodes

contained in the longest directed path from the input source to

the output sink in the AMG.

The performance measure TBO (time between outputs) is the

elapsed computing time between successive algorithm outputs when

the AMG is operating periodically at steady-state. Therefore,

the inverse of TBO is an indicator of output per unit time or

throughput. It is shown in [5,6] that the algorithm imposed

lower bound for TBO is given by the largest time per token of all

directed circuits in the CMG. A second bound on TBO is imposed

13



by the availability of resources. It is shown in [3] that the

resource imposed lower bound for TBO is TCE/R where TCE (total

computing time) is the sum of transition times for all nodes in

the AMG and R is the number of available functional units. The

lower bound for TBO, denoted TBOL,, is the greater of the

algorithm bound and the resource bound.

To illustrate the calculation of these performance bounds,

consider as an example the AMG shown in Figure 5 and the =

corresponding CMG shown in Figure 6. The AMG contains four

directed paths from the input source to the output sink. These

paths, identified by included transitions, are (1, 2, 6, 7), (1,

3, 6, 7), (1, 4, 6, 7) and (1, 5, 6, 7). The sum of transition

times of nodes in each path is 7 so that TBIOL, = 7. The largest

time per token of any directed circuit in the CMG is 2. There

are several directed circuits which yield this result; one such

directed circuit is the circuit containing the read, process and

write transitions of node 6 and the read transition of node 7.

Therefore, TBO_ = 2.

III.2. Graph Play and Resource Requirements

Two diagrams which display graph play and are useful for

determining the number of resources needed to achieve specified

performance measures are defined next. The SGP (single graph

play) diagram is a diagram which displays the execution of each

14
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node of the AMG as a function of time. The diagram is

constructed for a single input data packet under the assumption

that unlimited resources are available to play the graph. Node

activity is denoted by a solid line and the symbols (<, >) are

used to indicate the beginning and end of execution, when

several nodes are active at the same time, lines indicating node

activity are stacked vertically so that computing concurrency is

apparent. The SGP diagram for the AMG of Figure 5 is shown in

Figure 7.

The resource requirements to execute a single data packet

are obtained by counting the number of active nodes during each

time interval in the SGP diagram. The peak resource requirement

is denoted by R.i. and represents the minimum number of resources

necessary to achieve operation at TBIO = TBIOL,. For the AMG in

Figure 5, R.i. = 4 is the minimum number of resources necessary to

execute the graph with TBIO = TBIO_ = 7.

The TGP (total graph play) diagram is a diagram which

displays the execution of each graph node when the graph is

operating periodically in steady-state with period TBO. As with

SGP, the diagram is constructed under the assumption that

unlimited resources are available to play the graph, and a

different diagram results for each value of TBO. The TGP diagram

is drawn using information from SGP. SGP is divided into

segments of width TBO, and these segments are overlaid to form

17
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TGP. Each segment from SGP represents a new input data packet.

Data packets are numbered sequentially so that the packet

numbered i+1 is the data packet which is input to the graph TBO

time units after the packet numbered i. To illustrate the

construction of this diagram, TGP for the AMG of Figure 5 is

shown in Figure 8.

The resource requirements to execute multiple data packets

injected with period TBO are obtained by counting the number of

active nodes during each time interval in the TGP diagram. The

peak resource requirement necessary to execute the graph

periodically with period greater than or equal to TBO is denoted

by R_x. R_ x is determined by finding the largest resource

requirement in all TGP diagrams drawn for injection intervals

greater than or equal to TBO. For example, the TGP diagram drawn

for TBO = TBO_ = 2 shown in Figure 8 indicates that a minimum of

7 resources is required. If this same TGP diagram is drawn for

all values of TBO > 2, it can be shown that the required number

of resources does not exceed 7. Therefore, R_x to achieve TBO =

2 for the AMG shown in Figure 5 is equal to 7.

III.3. ATAMM Performance Plane

For a given algorithm decomposition, the parameters TBIO,

TB0 and R define an operating point for ATAMM. The display of

all operating points on a graph of TBO versus TBI0 with R

19
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indicated as a parameter is called the ATAMM performance plane.

The ATAMM performance plane, illustrated in Figure 9, is

extremely useful for selecting system operating strategies. The

use of this diagram is described in this section.

The best system performance is achieved by operating at

point B where TBIO = TBIO_ and TBO = TBO_. The resource

requirement associated with this operating point is the value of

P_ax computed from the TGP diagram drawn for TBIO_ and TBO_.

Operation at point B is obtained by the use of injection control

as shown in Figure 10. Injection control is a control procedure

which limits the maximum rate at which new input data packets can

be injected. When presented with continuously available input

data packets, the natural behavior of a data flow architecture

results in operation where data packets are accepted as rapidly

as available resources and the input transition permit. This

leads to operation at a

TBO_ but TBIO > TBIO_.

steady-state operating point where TBO =

This occurs because the pipeline from

input to output becomes congested with extra data packets which

must wait for free resources to be processed. Injection control

eliminates data packet congestion and thus preserves operation at

TBIO=.

When there are not sufficient resources to operate at point

B, the operating point must be shifted to a new location having a

smaller resource requirement. Using injection control

21
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procedures, it is possible to shift the operating point

vertically along line B-V. This strategy preserves TBIO while

degrading throughput performance.

real-time control and signal

Such a strategy is useful for

processing applications where

maintaining high computing speed is very important. Operating

points on line B-V for lower resource requirements are calculated

from the TGP diagram by increasing TBO until the number of active

nodes in any time interval decreases by one from the previous

operating point. These operating points are implemented by

adjusting the minimum input injection control interval. As an

example, consider the AMG shown in Figure 5. Operation at TBIO =

7 and TBO = 2 requires 7 resources. By increasing TBO to 3, the

number of required resources decreases to 5. This can be

observed by increasing the value of TBO in the TGP diagram of

Figure 8 until the number of concurrently active nodes decreases.

Increasing TBO to 5 further reduces the resource requirement to 4

resources. These operating points are

performance plane shown in Figure II.

It is also possible to shift

displayed in the ATAMM

the operating point

horizontally along the line B-H to reduce resource requirements.

This strategy preserves TBO while degrading computing speed

performance. Such a strategy is useful for number crunching

applications where maintaining throughput is important.

Operating points on line B-H for lower resource requirements are

24
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obtained by adding control edges to the original AMG. A control

edge is an AMG place which imposes a precedence relation among

two transitions, but does not imply data dependency. When such

an edge is added to an AMG so that the longest directed path from

the input source to the output sink is increased, the resulting

new graph has an increased TBIO value but still describes the

same algorithm.

The addition of a control edge can create new directed

circuits having increased time per token values so that TBO is

also increased. This potential problem is avoided by adding

dummy nodes to the AMG. A dummy node is an AMG transition which

implements an identity operation and requires zero computation

time. The dummy node serves as a buffer to provide additional

storage for the output data of a graph node. Implementation of a

dummy node is a memory operation and thus does not require a

resource. Using the dummy node, it is possible to increase the

token count on circuits formed by adding control edges, thus

preserving the value of TBO in the original graph. Control edges

and dummy nodes also can be used to improve performance bounds

and to balance resource requirements. Operating point design

using control edges and dummy nodes is explained in more detail

in [3].

To illustrate shifting the operating point horizontally,

consider again the AMG shown in Figure 5. Adding a control edge

26



directed from node 3 to node 4 creates a new directed path from

input source to output sink which contains nodes (i, 3, 4, 6, 7).

Therefore, TBIO_ for the new graph is equal to 8. HOwever, the

control edge also creates a new directed circuit containing the

read, process and write transitions of nodes I and 3, and the

read transition of node 4. This directed circuit has a time per

token value of 3 so that TBO_ is increased to 3. The time per

token value of this circuit is reduced by adding a dummy node to

the edge directed from node 1 to node 4. The new AMG and

corresponding CMG are shown in Figures 12 and 13. A second

control edge and dummy node are also added in this figure for the

purpose of reducing the peak resource requirement. The SGP

diagram and the TGP diagram for TBO = 2 are shown in Figure 14.

The new operating point having TBIO = 8, TBO = 2, and R = 5 is

shown on the performance plane diagram in Figure 11. Also shown

are additional operating points on the constant TBIO = 8 line

which are implemented by injection control as described

previously.

The performance plane diagram provides information essential

for the selection and control of the

algorithms executing under ATAMM rules.

time performance of

Operating points are

selected by identifying R points in the performance plane, one

point corresponding to each resource number. The point associated

with a specific value of R identifies the value of TBIO and TBO

27
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implemented when the system is functioning with R resources. If

the number of resources changes, then a new operating point is

identified. Operation at the new point is realized by modifying

the graph with control edges and dummy nodes, and adjusting the

input injection interval. The calculation of performance bounds

and the construction of the SGP, TGP and performance plane

diagrams have been automated in a software package called the

ATAMM Design Tool. The software is constructed to operate on IBM

PC/AT compatible computers in a Microsoft windows environment.

IV. AMOS IMPLEMENTATION IN THE ADM

In this section, the adaptation of the ATAMM model to the

ADM system is described. The architecture of the ADM system is

discussed first. Next, the major components of the ATAMM

Multicomputer Operating System (AMOS) are identified and AMOS

operation is explained using a state diagram description. Then,

system capabilities of the ADM system running under AMOS are

described. Included is a description of the strategy used to

implement triple modular redundancy (TMR).

IV.1. ADM Description

A VHSIC ATAMM data flow architecture, called the Advanced

Development Module (ADM), is under development and will be

completed prior to the start of the GVSC implementation. The ADM

31



architecture is being constructed by Westinghouse Electric

Corporation and is shown in Figure 15. This system consists of

four identical VHSIC 1750A processors which communicate over a

dual PI-bus. Also connected to the PI-bus is a 1553B

communication module which serves as a gateway for input and

output data flow from an IBM PC/AT. Communications over the PI-

bus are accomplished by broadcasting and use of direct memory

access. All processors also communicate over an IEEE-488 bus to

a Microvax computer which is used to download application

programs and files for debugging activities. The 1553B module is

connected to the IBM PC/AT by a single line communication link.

Data are transferred between the 1553B module and the IBM PC/AT

by synchronous communications. In addition to input and output,

this link is used for fault injection, fault recovery,

modification of the algorithm graph in real-time, and passing

information back to IBM PC/AT for testing purposes. The 1553B

acts as a source and sink for the algorithm graph and thus is

capable of controlling the input injection rate to the 1750A

processors and collecting output from the PI-bus.

IV.2. AMOS Description

The ATAMM Multicomputer Operating System (AMOS) is the

operating system of the ADM hardware and its operation is based

upon ATAMM rules. It consists of three logical components, the
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graph manager, the global memory, and a set of functional units

or resources. The graph manager updates and monitors the status

of the computational marked graph, when a read transition of

this graph is enabled, the graph manager assigns a functional

unit from the queue of available functional units to perform the

corresponding algorithm operation. Each of the 1750A processors

is a functional unit of the operating system. At the completion

of the computation, a message is sent from the functional unit to

the graph manager to update the computational marked graph.

Therefore, the graph manager requires a communication path to

each functional unit. The global memory stores data

corresponding to input and output signals for each algorithm

operation of the algorithm marked graph. Thus, this unit also

requires a communication path to each functional unit. The

functional unit is the logical component which executes all three

node marked graph (NMG) transitions of each algorithm operation.

It is assumed that each functional unit has the code required to

perform the assigned algorithm operation. The functional unit

communicates with the graph manager to update the status of the

CMG, and with the global memory to read and write data. The

communications between graph manager, global memory, and

functional units are asynchronous and are carried out by direct

memory access transfer over the PI-bus. In order to ensure that

all functional units have an identical copy of the graph data
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structure, a functional unit grabs the PI-bus before changing the

graph data structure. The updated graph data structure is

transmitted to all functional units by a broadcast, and only then

the functional unit releases the PI-bus for other communication.

The graph manager and global memory are distributed among

all the functional units. However, only the graph manager

residing in the functional unit on top of the queue of available

functional units is active at a given time. This distribution of

activities has the advantage of increasing the number of

functional units in the system and at the same time improving the

potential for achieving a higher degree of fault tolerance to

processor failure. Also, a distributed global memory eliminates

the need for shared memory among functional units. The major

components of AMOS are shown pictorally in Figure 16.

The operation of AMOS is represented by the state diagram

shown in Figure 17. Initially, all functional units awake in the

state labeled Idle. A functional unit remains in this state

until its identifier appears at the top of the resource queue.

when this occurs, the functional unit undergoes a state

transition to the Examine Graph state. In this state, the

functional unit actively monitors the status of the CMG until a

read transition for an algorithm operation becomes enabled. When

an enabled read node is identified, the functional unit assigns

itself to perform the algorithm operation, grabs the PI-bus, and
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undergoes another state transition to the Execute state. During

this state transition, the functional unit identifier is removed

from the top of the resource queue and a bus communication "F"

announcing that an algorithm operation has been initiated is

broadcast on the bus. Then, the functional unit releases the PI-

bus. The functional unit remains in the Execute state until the

algorithm operation is complete. At the completion of the

algorithm operation, the functional unit grabs the PI-bus and

initiates a second bus communication "D" which includes a

broadcast of the algorithm operation output data to all other

functional unit global memories. At this time the functional

unit again changes state to the Self Test state and releases the

PI-bus. The Self Test state corresponds to a diagnostic check of

the functional unit. After a successful self test, the

functional unit returns to the initial Idle state. This state

transition is accompanied by a grabbing of the PI-bus, a third

bus broadcast communication "R" announcing that the functional

unit identifier should be returned to the bottom of the resource

queue, and a release of the PI-bus. while in any state, the CMG

and resource queue in the global memory of a functional unit can

be updated by F, D, or R commands from other functional units.
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IV.3. System Capabilities

The capabilities of the ADM now are described briefly. The

ADM is capable of implementing one algorithm graph at a time.

The graph has a single input source and a single output sink.

Graph play is assumed to be periodic, and the time between inputs

is controlled by the 1553B module. Algorithms can be implemented

either in simplex, duplex or TMR form. The operating system can

correct a computational error in a functional unit by the Triple

Modular Redundancy (TMR) method in which every algorithm

operation is performed by three functional units and the result

is selected by voting. AMOS can recover from a single fault in

which a functional unit detects an error in the self-test state.

It is also possible to modify graph structure and input injection

period in real-time based upon knowledge of the number of

functional units. These features of fault tolerance and operating

point modification can be tested by injecting faults or changing

the number of functional units in real-time.

It is possible to implement TMR in a number of different

ways. However, in view of the graph theoretic basis for the

ATAMM model, the TMR strategy is considered in a purely graph

context. The approach used is to triplicate each node and each

edge of the AMG. The elements of each triplicated graph

component are identified by a color extension, red (R), blue (B)

and green (G). The triplication of an AMG node pair and the
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associated edges is shown in Figure 18. Each of the colored

nodes receives each input label triplicated and coded as R, B and

G. After all data are acquired, a vote is conducted and the

majority accepted data are used as the node process input. The

three colored nodes of a triplicated AMG node are enabled

simultaneously. Given the availability of three functional units

to fire these enabled nodes, the triplicated processing occurs in

parallel and produces triplicated output data. The requirement

that all elements of a triplicated node fire simultaneously

preserves the node process timing in accordance with the simplex

model.

k £

V. AMOS ENHANCEMENT FOR THE GVSC

The focus of present research is to extend the capabilities

of the ATAMM Multicomputer Operating System, and thus expand the

class of problems to which the ATAMM rules can be applied.

enhanced AMOS is to be implemented in the

Spaceborne Computer (GVSC), a spaceborne

Generic

four

The

VHSIC

processor

breadboard which is also based on the VHSIC 1750A instruction set

architecture. The GVSC architecture and associated consoles are

shown in Figure 19. Because of the similarity of this hardware

to the ADM system, the structure and features of the present

version of AMOS, as presented in Section IV, will be retained.

In addition, several new features will be added. In this
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section, the proposed enhancements to AMOS are described. First,

the ATAMM model is generalized to permit multiple concurrent

instantiations of selected graph nodes. This enhancement to the

ATAMM model is desirable because, in many algorithm

decompositions, it provides an opportunity to improve throughput

performance and resource utilization. Second, the simultaneous

play of multiple algorithm graphs, each having a distinct source

node and sink node, is considered. Three strategies for

implementing multiple graphs are proposed. Then, a method for

distributing the source and sink nodes in the functional units is

presented. This enhancement is desirable to reduce the workload

and complexity of the 1553B communication module. Finally,

improvements to the fault tolerance capabilities of AMOS are

described. Proposed are new methodologies for recovering from

the failure of a functional unit during the complete AMOS

operating envelope.

V.1. Multiple Concurrent Instantiations of Node Operations

The present version of the ATAMM model requires that all

computing associated with a node operation must be completed

before the node can be initiated another time. However, in

decomposed algorithms where throughput is not limited by

recursion circuits in the AMG, it is possible to improve

throughput by allowing multiple concurrent instantiations of node
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operations. Therefore, it is proposed that the ATAMM model be

enhanced to include multiple concurrent instantiations of AMG

nodes. A strategy for this generalization of ATAMM and an

illustrative example are presented in this section.

The generalization of ATAMM to include multiple concurrent

instantiations of AMG nodes is accomplished by modification of

the NMG. Multiple tokens, n tokens on the OE labeled edge and m

tokens on the PR labeled edge, are placed as initial tokens in

the NMG as shown in Figure 20. The m tokens on edge PR indicate

that as many as m functional units can be assigned concurrently

to perform the node operation. The n tokens on edge OE provide

up to n memory locations in which output data from the node

operation can be deposited. Since the model requires a vacant

output data container as a prerequisite to node firing, the

number n is chosen to be at least as large as the number m.

It can be shown that the modified ATAMM model, like the

present model, is live, reachable and consistent. However, the

enhanced NMG and CMG are no longer safe (1-bounded), but are n-

bounded. For this reason, additional graph management is

required to ensure that the model is deadlock free and that

tokens belonging to different data packets are not mixed in

order. To guarantee these essential properties, all graph tokens

will be tagged to indicate an input data packet identity. The

firing rule for each read node will be modified so that a read
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node is enabled only when each incoming edge contains a token

having the tag identifier for the next appropriate node

instantiation. In this way, proper data sequencing is assured.

The graph is made deadlock free by allowing concurrent processes

for the same node operation to complete in any order. Procedures

for managing the tagging of graph tokens are being developed and

should not add significantly to the overhead of the operating

system.

An example is presented to demonstrate the significance of

this enhancement to the ATAMM model. Consider the AMG shown in

Figure 21. If each AMG node operation must complete before being

initiated a second time, then TBO for this graph is limited to 5

by the node labeled 2. However, if three concurrent

instantiations of node 2 are allowed, then a TBO of 2 can be

achieved. This throughput limitation results from the presence

of the AMG recursion circuit consisting of nodes 4 and 5. In

general, nodes which occur in recursion circuits can not be

multiply instantiated because each node calculation depends on

output data from the previous node in the recursion circuit.

Therefore, in the enhanced ATAMM model, recursion circuits are

the only theoretical limiting factor for throughput performance.

The SGP diagram and the TGP diagram for TBO = 2 are shown in

Figure 22. The number of concurrent instantiations required of

node 2 to achieve a TBO value of 2 is determined by counting the
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number of times node 2 appears in the TGP diagram with different

data packet numbers. The number of output data containers

required at the output of each graph node also is calculated from

this diagram by monitoring the predecessor-successor relations

among the node operations. In this example, because nodes 2 and

4 are processing data packet 4 while node 3 is processing data

packet I, three data containers are required on the edge

connecting nodes 2 and 3 and the edge connecting nodes 4 and 3.

This information is used to place the correct number of initial

tokens in the enhanced CMG, as shown in Figure 23.

A comparison of throughput performance and resource

ultiization for the present ATAMM model and the enhanced ATAMM

model is shown in Figure 24. In many problems, significantly

better throughput performance and resource utilization are

possible with the enhanced ATAMM model. As is the case with the

initial ATAMM model, the design procedure to obtain predictable

performance, including both TBO and TBIO, can be automated in a

software design tool. Such a design tool is being developed by

NASA Langley Research Center and Old Dominion University for the

GVSC system.

V.2. Multiple Graph Strategies

In order to expand the class of problems which can be

addressed in the ATAMM context, it is desirable to enhance the
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ATAMM model so that multiple graphs can be implemented. The

purpose of this section is to propose several strategies for

implementing the simultaneous play of multiple graphs under ATAMM

rules. Three separate strategies for implementing multiple

graphs are presented. These strategies are referred to as the

parallel execution strategy, the time multiplexing strategy, and

the priority interrupt strategy. The different strategies are

selected to address different classes of problems which commonly

arise in real-time applications. Equally important, the proposed

strategies are selected to insure that graph-theoretic based

analytical procedures for predicting time performance can be

formulated, just as is done now for single graphs.

Parallel Execution Strategy

Let G denote a collection of algorithm graphs Gx, G2, --- ,

G,, each having its own input source and output sink, as shown in

Figure 25. Each graph Gk has a unique computation time TBIO(k)

and is played repetitively in period TBO(k), where it is assumed

that these performance times are of the same order of magnitude.

It also is assumed that the phase relationship between the

various graphs is unpredictable and can not be accurately

controlled. In the parallel execution strategy, all graphs are

played in parallel. Just as in the single graph case, an

operating point is determined for each graph G k. The operating
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point is characterized by the performance times TBIO(k) and

TBO(k), and the minimum number of resources R(k) necessary to

produce this performance. Since there is no knowledge concerning

the phase relationships of the graphs, the total number of

available resources required to insure that all graphs play at

the desired operating point is the sum of the resources needed

for each individual graph. A pictoral display of the parallel

execution strategy is shown in Figure 26.

The parallel execution strategy is useful where it is

necessary to play several graphs simultaneously while achieving a

very high repetition rate for each graph. Such problems often

occur in data processing and data reduction applications. For

efficient use of resources, each graph operating point must be

selected to avoid high peak resource requirements.

When operating with limited resources, the user is able

select which graphs will operate with decreased time performance.

It also is possible to suspend completely the play of graphs

according to a priority ranking. A possible disadvantage of this

strategy is that it can lead to low levels of resource

utilization when one or more graphs have large peak resource

requirements.
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Time Multiplexing Strategy

Again let G be a collection of algorithm marked graphs G,,

G2, ..., G,, each having its own input source and output sink.

It is assumed that each graph has a unique computation time

TBIO(k), but that all graphs share a common repetition time TBO

which is large compared to all computation times. It also is

assumed that the time between inputs to the different graphs is

known and can be controlled. In the time multiplexing strategy,

system resources are time shared between the various graphs. An

operating point is selected for each graph, thus specifying a

resource requirement envelope. The input injection time for each

graph is selected so that the individual graph resource

requirement envelopes fit together like pieces of a puzzle and in

summation at each instant total no more than the available number

of resources. The time multiplex strategy is shown pictorially

in Figure 27.

The time multiplexing strategy is useful when it is necessary

to play several graphs with a common repetition period which is

long relative to the computation time of each graph, and it is

important to achieve short computation times. Such problems

often occur in real-time control applications requiring the use

of multiple sensors and actuators. This strategy naturally

results in high utilization of system resources. As with the

parallel execution strategy, the user is able to specify which
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graphs will degrade in performance as the number of system

resources decreases.

Priority Interrupt Strategy

Let G denote a collection of n graphs playing on an ATAMM

defined architecture according to the parallel execution strategy

or the time multiplexing strategy. Let H denote a second

collection of m graphs, also defined to play according to one of

the two execution strategies, but which is inactive due to the

absence of input data. In the priority interrupt strategy, it is

assumed that input data to graph H occur only occasionally. When

data become available, graph Collection H is allocated highest

priority for access to system resources, and graph collection G

is terminated or allowed to play in a "resource available" status

only. When input data to H are exhausted, system resources again

are allocated to G, and play of graph G resumes. Therefore, this

strategy is useful for addressing emergencies or unexpected

high-priority computational tasks.

Time performance in all three operation strategies will be

controlled as in the present ADM system. The operating system

will be designed to continuously monitor the number of available

system resources. Whenever the number of resources changes, a

new operating point will be obtained from an operating point

table. This table is constructed off-line by the user with the
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support of design and simulation software tools. A new operating

point is achieved by reconfiguring the collection of graphs

(setting control edges and dummy nodes), and by adjusting the

injection rates for each graph. The feedback control process,

shown in Figure 28, is to be integrated into the ATAMM

Multicomputer Operating System (AMOS).

In the present ADM implementation of ATAMM, the single graph

source node and the single graph sink node are realized in the

1553B Communication Module. It is proposed that in the GVSC

implementation of ATAMM, the multiple source nodes and sink nodes

be distributed over the set of functional units. This is done to

limit the number of activities assigned to the 1553B Module, and

to reduce the complexity of this component. In the GVSC, the

1553B module simply will pass data and performance information

between the 1750A units and the PC/AT via the PI-bus. The 1553B

also will time stamp performance information prior to

transmission to the PC/AT. In the next section, a procedure for

implementing the source and sink nodes in the functional units is

described.

V.3. Distributed Sources and Sinks

Each of the concurrently processed multiple graphs has a

distinct source node and a distinct sink node. The activities of

a source node are to supply new input data at specified intervals
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of time and to update the graph data structure to indicate the

presence of new input data. The activities of a sink node are to

collect output data for transmission to the PC/AT, and to update

the graph data structure to indicate that a new output can be

generated. In order to simplify the 1553B code and to reduce the

amount of activity required of the communication module, it is

felt that the implementation of sources and sinks should be done

in the 1750A processors. It is proposed that input data for each

graph be broadcast to all the 1750A processors. The functional

unit at the top of the resource queue examines the graph for

firable sources as well as firable nodes. Whenever a functional

unit completes the processing of a node, it also checks for

firable sinks. In this way, the source and sink activities are

distributed over the set of functional units.

This new strategy is implemented by modifying the Examine

Graph and Execute states of the AMOS functional unit state

diagram as shown in Figure 16. The modified Examine and Execute

states are described with the help of flow charts shown in Figure

29. As the functional unit acting as the graph manager enters

the Examine state, it searches for firable sources first. If

there is no firable source, the functional unit searches for the

highest priority firable node. If there is no such node, it

repeats the search for a firable source. If a firable node is

found, the functional unit grabs the PI-bus and enters the
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Execute state. If a firable source is found, the functional unit

grabs the PI-bus, updates its copy of the graph data structure to

indicate firing of the source, and then looks for a firable node.

If a firable node is found, the functional unit enters the

Execute state. Otherwise, an "F" command is issued by

broadcasting the updated graph data structure, the PI-bus is

released, and the functional unit returns to the beginning of the

Examine state. The change in the Execute state to provide sink

activity is to require that the functional unit search for

firable sinks at the completion of each node process. If a sink

can be fired, the sink output also is broadcast as part of the

"D" command. The broadcast also is used to update the graph data

structure to indicate that a new output can be deposited in the

sink.

V.4. Fault Tolerant Strategies

The ADM system is capable of dealing with two types of

faults, a fault which occurs during the processing of a node and

a fault which occurs during the self-test of a resource. The

first is detected and its effects discarded by the use of TMR.

The second is detected in the Diagnostic State of a resource and

the resource purges itself from the system. The present version

of AMOS is to be enhanced so that the system is able to recover

from the death of a functional unit in each of the four AMOS
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states. The purpose of this section is to propose a strategy to

detect and recover from this type of system fault. The death of

a resource occurs when the resource stops executing instructions

in any of the states of AMOS (e.g., due to internal fault

detection or total power failure) and does not generate a PI-bus

broadcast. It is assumed that the resource does not fail while

in possession of the communication bus, since it is not clear

whether the bus will be released or maintained in the grabbed

state after the fault. The overall view of the technique is

divided into the following phases: fault detection, damage

assessment, system recovery and system back to service, as shown

in Figure 30. A brief explanation of each of these phases

follows.

Fault Detection

One of the goals of effective fault detection in this

context is to detect a fault in a time less than or equal to the

TBO at which the system is operating. Due to the nature of

real-time systems, it is important to detect a fault in the

shortest period of time to avoid any significant loss of system

performance. This fault detection can be achieved by monitoring

the graph execution. By using the graph status, it is possible

to detect a fault before the system has stopped completely due to

the consequences of the fault. A strategy is being developed to
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use the graph status for fault detection.

Damage Assessment

Once a fault is detected, system damage must be assessed and

confined. The damage assessment is derived from the fault

detection scheme. The fault detection strategy should be

specific enough to help isolate the resources that possibly may

have failed under the given circumstances. Therefore, the

assessment can be achieved by observation of the status of the _

graph, the available resource queue, and the resources

themselves. The type of fault that is assumed will render a

resource totally unresponsive to any type of inquiry from other

resources; hence, detection of this condition is ultimately

confirmed by direct inquiries and time-outs to the possibly

faulty resources.

System Recovery

After the damage has been confined, the system must be

purged of all unwanted data and graph status information that may

have been generated by the fault (e. g., an invalid queue update

or an unfinished process node). The available resource queue may

have to be restored to a valid state by purging the faulty

resource. The graph may have to be returned to the last valid

state prior to the fault. The system recovery phase is used to
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perform the appropriate rollback of the system to a valid status.

System Return To Service

Having recovered or repaired the system, the next step is to

bring the system back to service. This normally would be done by

firing a node that was left unfinished by a faulty resource.

After the system is returned to a valid state in the system

recovery phase, the system is considered repaired and ready to

continue with normal operation.

All of these detection and recovery phases can be carried

out by a single resource while the remaining healthy resources

are working on the remainder of the graph. The system is not

placed in a state of recovery; instead, a resource is placed in a

recovery state. This means that the system may be capable of

concurrently working on an algorithm graph while it recovers from

a fault in the system. This feature insures that the system

performance is highly fault tolerant and very reliable.
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