Generic Interpreters and Microprocessor Verification

Phillip J. Windley

Department of Computer Science
University of Idaho

August, 1990

This work was sponsored under Boeing Contract NAS1-18586, Task Assignment No. 3, with NASA-Langley Research Center.
Outline

- Introduction
- Generic interpreters
- Microprocessor Verification
- Future Work
Microprocessor Verification

- VIPER, the first commercially available, "verified" microprocessor, has never been formally verified.

- The proof was not completed even though 2 years were spent on the verification.
Microprocessor Verification
(continued)

- Our research is aimed at making the verification of large microprocessors tractable.

- Our objective is to provide a framework in which a masters–level student can verify VIPER in 6 person–months.
Determining Correctness

In VIPER (and most other microprocessors), the correctness theorem was shown by proving that the electronic block model implies the macro-level specification.
The Problem
(continued)

- Microprocessor verification is done through case analysis on the instructions in the macro level.

- The goal is to show that when the conditions for an instruction's selection are right, the electronic block model implies that it operates correctly.

- A lemma that the EBM correctly implements each instruction can be used to prove the top-level correctness result.
Unfortunately, the one-step method doesn't scale well because

- The number of cases gets large.
- The description of the electronic block model is very large.
Hierarchical Decomposition

- A microprocessor specification can be decomposed hierarchically.

- The abstract levels are represented explicitly.
Interpreters

An abstract model of the different layers in the hierarchy provides a methodological approach to microprocessor verification.

- The model drives the specification.
- The model drives the verification.
Interpreters
(top level)
Specifying an Interpreter
(overview)

We specify an interpreter by:

- Choosing a n-tuple to represent the state, S.

- Defining a set of functions denoting individual interpreter instructions, J.

- Defining a next state function, N.

- Defining a predicate denoting the behavior of the interpreter, I.
Verifying an Interpreter
(overview)

We verify an interpreter, \(I \) with respect to its implementation \(M \) by showing

\[M \Rightarrow I. \]

To do this, we will show that every instruction in \(J \) can be correctly implemented by \(M \):

\[\forall j \in J. \quad M \Rightarrow (\forall t: \text{time.} \quad C(t) \Rightarrow s(t + n) = j(s(t)) \] where \(C \) represents the conditions for instruction \(j \)'s selection.
We have designed and are verifying a microcomputer with interrupts, supervisory modes and support for asynchronous memory.

- The datapath is loosely based on the AMD 2903 bit-sliced datapath.

- The instruction format is very simple.

- The control unit is microprogrammed.
AVM-1's Instruction Set
(subset)

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Mnemonic</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000</td>
<td>JMP</td>
<td>jump on 16 conditions</td>
</tr>
<tr>
<td>000001</td>
<td>CALL</td>
<td>call subroutine</td>
</tr>
<tr>
<td>000010</td>
<td>INT</td>
<td>user interrupt</td>
</tr>
<tr>
<td>000110</td>
<td>LD</td>
<td>load</td>
</tr>
<tr>
<td>000111</td>
<td>ST</td>
<td>store</td>
</tr>
<tr>
<td>010000</td>
<td>ADD</td>
<td>add (3-operands)</td>
</tr>
<tr>
<td>011011</td>
<td>SUBI</td>
<td>subtract immediate (2-operands)</td>
</tr>
<tr>
<td>011111</td>
<td>NOOP</td>
<td>no operation</td>
</tr>
</tbody>
</table>

- The architecture is load-store.

- The instruction set is RISC-like.

- There is a large register file.
Figure 5.2: The AVM-1 Datapath
The Phase–Level Specification

The \(n \)-tuple representing the state:

\[
S_{\text{phase}} = (\text{mir}, \text{mpc}, \text{reg}, \\
\text{alatch}, \text{blatch}, \text{mar}, \text{mbr}, \\
\text{clk}, \text{mem}, \text{urom}, \text{ireq}, \text{iack})
\]
The Phase-Level Specification

A typical function specifying an instruction's behavior from J_{phase}:

$$\hskip 20pt \downarrow_{\text{def}} \quad \text{phase}_\text{two rep} (\text{mir}, \text{mpc}, \text{reg}, \text{alatch}, \text{blatch}, \text{mbr}, \text{mar}, \text{clk}, \text{mem}, \text{urom}, \text{ireq}, \text{iack}) =$$

$$\hskip 20pt (\text{mir}, \text{mpc}, \text{reg},$$
$$\hskip 10pt \text{EL (bt5_val (SrcA mir)) reg},$$
$$\hskip 10pt \text{EL (bt5_val (SrcB mir)) reg},$$
$$\hskip 10pt \text{mbr}, \text{mar}, (T,F), \text{mem}, \text{urom}, \text{ireq}, \text{iack mir})$$
The Electronic Block Model

The electronic block model is not specified as an interpreter.

- EBM is a *structural* specification.

- The specification
 - is in terms of smaller blocks.
 - uses existential quantification to hide internal lines.
Objects

There are several abstract classes of objects that we will use to define and verify an abstract interpreter.

: *state An object representing system state.

: *key The identifying tokens for instructions.

: time A stream of natural numbers.

We will prime class names to indicate that the objects are from the implementing level.
Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>inst_list</td>
<td>((\ast\text{key} \times (\ast\text{state} \rightarrow \ast\text{state}))\text{list})</td>
</tr>
<tr>
<td>key</td>
<td>(\ast\text{key} \rightarrow \text{num})</td>
</tr>
<tr>
<td>select</td>
<td>(\ast\text{state} \rightarrow \ast\text{key})</td>
</tr>
<tr>
<td>cycles</td>
<td>(\ast\text{key} \rightarrow \text{num})</td>
</tr>
<tr>
<td>substate</td>
<td>(\ast\text{state}' \rightarrow \ast\text{state})</td>
</tr>
<tr>
<td>Impl</td>
<td>((\text{time} \rightarrow \ast\text{state}') \rightarrow \text{bool})</td>
</tr>
<tr>
<td>clock</td>
<td>(\ast\text{state}' \rightarrow \ast\text{key}')</td>
</tr>
<tr>
<td>begin</td>
<td>(\ast\text{key}')</td>
</tr>
</tbody>
</table>
Interpreter Theory
(obligations)

The instruction correctness lemma is important in the generic interpreter verification.

Here is the generic version of that lemma for a single instruction:

\[\vdash \text{INST_CORRECT } s' \ inst = \]
\[(\text{Impl } s') \Rightarrow \]
\[\forall t' : \text{time'}. \]
\[\text{let } s = (\lambda t. \text{substate}(s' t')) \text{ in} \]
\[\text{let } c = (\text{cycles}(\text{select}(s t'))) \text{ in} \]
\[(\text{select}(s t') = (\text{FST } inst)) \land \]
\[(\text{clock}(s' t') = \text{begin}) \Rightarrow \]
\[((\text{SND } inst) (s t') = (s(t' + c))) \land \]
\[(\text{clock}(s'(t' + c)) = \text{begin}) \]
Interpreter Theory
(obligations)

Using the predicate INST_CORRECT, we can define the theory obligations:

1. The instruction correctness lemma:

 EVERY (INST_CORRECT \ s') inst_list

2. Every key selects an instruction:

 \(\forall k : \ast key. (\text{key } k) < (\text{LENGTH inst_list}) \)

3. The instruction list is ordered correctly:

 \(\forall k : \ast key. k = (\text{FST (EL (key } k) \text{ inst_list)}) \)
Generic Interpreters

Instantiation

- Generic Interpreter + Macro Level Definitions → Macro Level Interpreter
- Generic Interpreter + Micro Level Definitions → Micro Level Interpreter
- Generic Interpreter + Phase Level Definitions → Phase Level Interpreter

Electronic Block Model
We need to show a relationship between the state stream at the implementation level and the state stream at the top level.

The function f is a temporal abstraction function for streams.
An interpreter's behavior is specified as a predicate over a state stream.

$$
\vdash_{\text{def}} \text{INTERP } s = \\
\forall t : \text{time.} \\
\text{let } n = (\text{key}(\text{select}(s\ t))) \text{ in} \\
\text{s}(t + 1) = (\text{SND} (\text{EL } n \ \text{inst_list}))(s\ t)
$$
Interpreter Theory
(correctness result)

Our goal is to verify an interpreter, I with respect to its implementation M by showing

$$M \Rightarrow I.$$

Here is the abstract result:

$$\vdash \text{Impl } s' \land (\text{clock}(s' 0) = \text{begin}) \Rightarrow \text{INTERP } (s \circ f)$$

where

$$s = (\lambda t : \text{time.} \, \text{substate}(s' t)) \quad \text{and}$$

$$f = (\text{time_abs } (\text{cycles} \circ \text{select}) s)$$
Instantiating a Theory

Instantiating the abstract interpreter theory requires:

- Defining the abstract constants.
- Proving the theory obligations.
- Running a tool in the formal theorem prover.
Definitions

We wish to instantiate the abstract interpreter theory for the phase-level. The electronic block model will be the implementing level.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Instantiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>inst_list</td>
<td>a list of instructions</td>
</tr>
<tr>
<td>key</td>
<td>bt2_val</td>
</tr>
<tr>
<td>select</td>
<td>GetPhaseClock</td>
</tr>
<tr>
<td>cycles</td>
<td>PhaseLevelCycles</td>
</tr>
<tr>
<td>substate</td>
<td>PhaseSubstate</td>
</tr>
<tr>
<td>Impl</td>
<td>EBM</td>
</tr>
<tr>
<td>clock</td>
<td>GetEBMClock</td>
</tr>
<tr>
<td>begin</td>
<td>EBM_Start</td>
</tr>
</tbody>
</table>
An Example

After proving the theory obligations, we can perform the instantiation.

```haskell
let theorem_list =
    instantiate_abstract_theorems
    'gen_I'
    [Phase_I_EVERY_LEMMA;
     Phase_I_LENGTH_LEMMA;
     Phase_I_KEY_LEMMA]
    [
    "([(F,F),phase_one;
     (F,T),phase_two
     (T,F),phase_three
     (T,T),phase_four],
     bt2_val, GetPhaseClock,
     PhaseLevelCycles, PhaseSubstate,
     EBM, GetEBMClock, EBM_Start)"
    "(λ t:time. (mir t, mpc t, reg_list t,
                   alatch t, blatch t,
                   mbr_reg t, mar_reg t,
                   clk t, mem t, urom))"
    ]
    'PHASE';;
```
The Electronic Block Model

\[
\vdash \text{EBM rep } (\lambda t. (\text{mir } t, \text{mpc } t, \text{reg } t, \text{alatch } t, \text{blatch } t, \\
\text{mbr } t, \text{mar } t, \text{clk } t, \text{mem } t, \text{urom}, \\
\text{ireq } t, \text{iack } t)) = \\
\exists \text{opc } \text{ie}_s \text{sm}_s \text{iack}_s \\
\text{amux}_s \text{alu}_s \text{sh}_s \text{mbr}_s \text{mar}_s \text{rd}_s \text{wr}_s \text{wr}_s \\
\text{cselect bselect aselect} \\
\text{neg}_f \text{zero}_f \text{float} : \text{time} \rightarrow \text{bool}).
\]

\[
\text{DATAPATH rep } \text{amux}_s \text{alu}_s \text{sh}_s \text{mbr}_s \text{mar}_s \text{rd}_s \text{wr}_s \text{wr}_s \\
\text{cselect bselect aselect neg}_f \text{zero}_f \text{float} \text{float} \text{ireq iack}_s \text{iack opc ie}_s \text{sm}_s \\
\text{clk mem reg alatch blatch mar}_s \text{reg} \\
\text{mbr}_s \text{reg reset}_e \text{ireq}_e \\
\]

\[
\text{CONTROL_UNIT rep mpc mir clk amux}_s \text{alu}_s \text{sh}_s \text{mbr}_s \text{mar}_s \text{rd}_s \text{wr}_s \text{cselect bselect aselect neg}_f \\
\text{zero}_f \text{ireq iack}_s \text{iack opc ie}_s \text{sm}_s \text{urom} \\
\text{reset}_e \text{ireq}_e
\]

Fully expanded, the electronic block model specification fills about six pages.
Future Work

• New architectural features.

• Composing verified blocks.

• Verifying operating systems.

• Gate-level verification.

• Byte-code interpreter verification.

• Other classes of computer systems.
After some minor manipulation, the final result becomes:

\[\Gamma \vdash \text{EBM} \]

\[(\lambda t. \quad (\text{mir } t, \text{mpc } t, \text{reg_list } t, \text{alatch } t, \text{blatch } t, \text{mbr_reg } t, \text{mar_reg } t, \text{clk } t, \text{mem } t, \text{urom})) \Rightarrow \]

\text{Phase_I}

\[(\lambda t. \quad (\text{mir } t, \text{mpc } t, \text{reg_list } t, \text{alatch } t, \text{blatch } t, \text{mbr_reg } t, \text{mar_reg } t, \text{clk } t, \text{mem } t, \text{urom})) \]
Conclusions

The generic proof

- Cleared away all the irrelevant detail.

- Formalized the notion of interpreter proofs which has been used in several microprocessor verifications.

- Provided a structure for future microprocessor verifications.