Generic Interpreters
and
Microprocessor Verification

Phillip J. Windley

Department of Computer Science
University of Idaho

August, 1990

This work was sponsored under Boeing Contract NAS1-18586, Task Assignment No. 3, with NASA-Langley Research Center.
Outline

• Introduction
• Generic interpreters
• Microprocessor Verification
• Future Work
Microprocessor Verification

- VIPER, the first commercially available, "verified" microprocessor, has never been formally verified.

- The proof was not completed even though 2 years were spent on the verification.
Microprocessor Verification
(continued)

• Our research is aimed at making the verification of large microprocessors tractable.

• Our objective is to provide a framework in which a masters-level student can verify VIPER in 6 person–months.
Determining Correctness

In VIPER (and most other microprocessors), the correctness theorem was shown by proving that the electronic block model implies the macro-level specification.
The Problem
(continued)

- Microprocessor verification is done through case analysis on the instructions in the macro level.

- The goal is to show that when the conditions for an instruction's selection are right, the electronic block model implies that it operates correctly.

- A lemma that the EBM correctly implements each instruction can be used to prove the top-level correctness result.
The Problem

Unfortunately, the one-step method doesn't scale well because

- The number of cases gets large.

- The description of the electronic block model is very large.
Hierarchical Decomposition

- A microprocessor specification can be decomposed hierarchically.

- The abstract levels are represented explicitly.
Interpreters

An abstract model of the different layers in the hierarchy provides a methodological approach to microprocessor verification.

- The model drives the specification.

- The model drives the verification.
Interpreters
(top level)

State

Select

\(j_1 \) \(j_2 \) \(j_3 \) \(j_n \)
Specifying an Interpreter
(overview)

We specify an interpreter by:

- Choosing a n–tuple to represent the state, S.

- Defining a set of functions denoting individual interpreter instructions, J.

- Defining a next state function, N.

- Defining a predicate denoting the behavior of the interpreter, I.
We verify an interpreter, \(\mathbf{I} \) with respect to its implementation \(\mathbf{M} \) by showing

\[
\mathbf{M} \Rightarrow \mathbf{I}.
\]

To do this, we will show that every instruction in \(\mathbf{J} \) can be correctly implemented by \(\mathbf{M} \):

\[
\forall j \in \mathbf{J}.
\quad \mathbf{M} \Rightarrow (\forall t: \text{time}.
\quad C(t) \Rightarrow s(t + n) = j(s(t)))
\]

where \(C \) represents the conditions for instruction \(j \)'s selection.
We have designed and are verifying a microcomputer with interrupts, supervisory modes and support for asynchronous memory.

- The datapath is loosely based on the AMD 2903 bit-sliced datapath.

- The instruction format is very simple.

- The control unit is microprogrammed.
AVM-1's Instruction Set
(subset)

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Mnemonic</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000</td>
<td>JMP</td>
<td>jump on 16 conditions</td>
</tr>
<tr>
<td>000001</td>
<td>CALL</td>
<td>call subroutine</td>
</tr>
<tr>
<td>000010</td>
<td>INT</td>
<td>user interrupt</td>
</tr>
<tr>
<td>000110</td>
<td>LD</td>
<td>load</td>
</tr>
<tr>
<td>000111</td>
<td>ST</td>
<td>store</td>
</tr>
<tr>
<td>010000</td>
<td>ADD</td>
<td>add (3-operands)</td>
</tr>
<tr>
<td>011011</td>
<td>SUBI</td>
<td>subtract immediate (2-operands)</td>
</tr>
<tr>
<td>011111</td>
<td>NOOP</td>
<td>no operation</td>
</tr>
</tbody>
</table>

- The architecture is load-store.
- The instruction set is RISC-like.
- There is a large register file.
Figure 5.2: The AVM-1 Datapath
The Phase–Level Specification

The n–tuple representing the state:

$$S_{\text{phase}} = (\text{mir, mpc, reg, alatch, blatch, mar, mbr, clk, mem, urom, ireq, iack})$$
The Phase-Level Specification

A typical function specifying an instruction's behavior from J_{phase}:

\[
\text{def phase_two rep (mir, mpc, reg, alatch, blatch,}
\text{ mbr, mar, clk, mem, urom,}
\text{ ireq, iack) =}
\]

\[
(mir, mpc, reg,
\text{ EL (bt5_val (SrcA mir)) reg,}
\text{ EL (bt5_val (SrcB mir)) reg,}
\text{ mbr, mar, (T,F), mem, urom, ireq, Iack mir})
\]
The Electronic Block Model

The electronic block model is not specified as an interpreter.

- EBM is a *structural* specification.

- The specification
 - is in terms of smaller blocks.
 - uses existential quantification to hide internal lines.
Objects

There are several abstract classes of objects that we will use to define and verify an abstract interpreter.

:*state An object representing system state.
:*key The identifying tokens for instructions.
:*time A stream of natural numbers.

We will prime class names to indicate that the objects are from the implementing level.
Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>inst_list</td>
<td>((\text{key} \times (\text{state} \rightarrow *\text{state}))\text{list})</td>
</tr>
<tr>
<td>key</td>
<td>(*\text{key} \rightarrow \text{num})</td>
</tr>
<tr>
<td>select</td>
<td>(*\text{state} \rightarrow *\text{key})</td>
</tr>
<tr>
<td>cycles</td>
<td>(*\text{key} \rightarrow \text{num})</td>
</tr>
<tr>
<td>substate</td>
<td>(*\text{state}' \rightarrow *\text{state})</td>
</tr>
<tr>
<td>Impl</td>
<td>((\text{time} \rightarrow *\text{state}') \rightarrow \text{bool})</td>
</tr>
<tr>
<td>clock</td>
<td>(*\text{state}' \rightarrow *\text{key}')</td>
</tr>
<tr>
<td>begin</td>
<td>(*\text{key}')</td>
</tr>
</tbody>
</table>
Interpreter Theory
(obligations)

The instruction correctness lemma is important in the generic interpreter verification.

Here is the generic version of that lemma for a single instruction:

\[
\begin{align*}
\vdash_{\text{def}} \text{INST_CORRECT } s' \ inst = \\
(\text{Impl } s') \Rightarrow \\
\forall t': \text{time'}. \\
\text{let } s = (\lambda t. \text{substate}(s' t')) \text{ in} \\
\text{let } c = (\text{cycles}(\text{select}(s t'))) \text{ in} \\
(\text{select}(s t') = (\text{FST} \ inst)) \land \\
(\text{clock}(s' t') = \text{begin}) \Rightarrow \\
((\text{SND} \ inst) (s t') = (s(t' + c))) \land \\
(\text{clock}(s'(t' + c)) = \text{begin})
\end{align*}
\]
Interpreter Theory

(o Obligations)

Using the predicate \(\text{INST_CORRECT} \), we can define the theory obligations:

1. The *instruction correctness lemma*:

 \[
 \text{EVERY (INST_CORRECT s')} \text{ inst_list}
 \]

2. Every key selects an instruction:

 \[
 \forall k : \text{*key}. \ (\text{key } k) < \ (\text{LENGTH inst_list})
 \]

3. The instruction list is ordered correctly:

 \[
 \forall k : \text{*key}. \ k = (\text{FST (EL (key } k) \text{ inst_list))}
 \]
Generic Interpreters
Instantiation

- Generic Interpreter + Macro Level Definitions → Macro Level Interpreter
- Generic Interpreter + Micro Level Definitions → Micro Level Interpreter
- Generic Interpreter + Phase Level Definitions → Phase Level Interpreter

Electronic Block Model
Interpretation Theory
(temporal abstraction)

We need to show a relationship between the state stream at the implementation level and the state stream at the top level.

\[
\begin{align*}
 t_1 & \quad t_2 & \quad t_3 & \quad t_4 & \quad t_5 \\
 t'_1 & \quad t'_2 & \quad t'_3 & \quad t'_4 & \quad t'_5 & \quad t'_6 & \quad t'_7 & \quad t'_8 & \quad t'_9 & \quad t'_{10}
\end{align*}
\]

The function \(f \) is a temporal abstraction function for streams.
An interpreter's behavior is specified as a predicate over a state stream.

\[\vdash_{def} \text{INTERP } s = \]
\[\forall t : \text{time.} \]
\[\text{let } n = (\text{key}(\text{select}(s \ t))) \text{ in} \]
\[s(t + 1) = (\text{SND} \ (\text{EL} \ n \ \text{inst_list}))(s \ t) \]
Interpreter Theory
(correctness result)

Our goal is to verify an interpreter, I with respect to its implementation M by showing

$$M \Rightarrow I.$$

Here is the abstract result:

$$\vdash \text{Impl } s' \land (\text{clock}(s' 0) = \text{begin}) \Rightarrow \text{INTERP } (s \circ f)$$

where

$$s = (\lambda t : \text{time}. \text{substate}(s' t)) \quad \text{and}$$

$$f = (\text{time}_\text{abs} (\text{cycles} \circ \text{select}) s)$$
Instantiating a Theory

Instantiating the abstract interpreter theory requires:

- Defining the abstract constants.
- Proving the theory obligations.
- Running a tool in the formal theorem prover.
Definitions

We wish to instantiate the abstract interpreter theory for the phase-level. The electronic block model will be the implementing level.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Instantiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>inst_list</td>
<td>a list of instructions</td>
</tr>
<tr>
<td>key</td>
<td>bt2_val</td>
</tr>
<tr>
<td>select</td>
<td>GetPhaseClock</td>
</tr>
<tr>
<td>cycles</td>
<td>PhaseLevelCycles</td>
</tr>
<tr>
<td>substate</td>
<td>PhaseSubstate</td>
</tr>
<tr>
<td>Impl</td>
<td>EBM</td>
</tr>
<tr>
<td>clock</td>
<td>GetEBMClock</td>
</tr>
<tr>
<td>begin</td>
<td>EBM_Start</td>
</tr>
</tbody>
</table>
An Example

After proving the theory obligations, we can perform the instantiation.

let theorem_list =
 instantiate_abstract_theorems
 'gen_I'
 [Phase_I_EVERY_LEMMA;
 Phase_I_LENGTH_LEMMA;
 Phase_I_KEY_LEMMA]
 [
 "([F,F], phase_one;
 (F,T), phase_two
 (T,F), phase_three
 (T,T), phase_four],
 bt2_val, GetPhaseClock,
 PhaseLevelCycles, PhaseSubstate,
 EBM, GetEBMClock, EBM_Start)"
 "(\t: time. (mir t, mpc t, reg_list t,
 alatch t, blatch t,
 mbr_reg t, mar_reg t,
 clk t, mem t, urom))"
]
'PHASE';;
The Electronic Block Model

\[\text{EBM rep} \ (\lambda \ t. \ (\text{mir} \ t, \ \text{mpc} \ t, \ \text{reg} \ t, \ \text{alatch} \ t, \ \text{blatch} \ t, \ mbr \ t, \ \text{mar} \ t, \ \text{clk} \ t, \ \text{mem} \ t, \ \text{urom}, \ \text{ireq} \ t, \ \text{iack} \ t)) = \]

\[\exists \ \text{opc ie_s sm_s iack_s} \]
\[\text{amux_s alu_s sh_s mbr_s mar_s rd_s wr_s} \]
\[\text{cselect bselect aselect} \]
\[\text{neg_f zero_f} \ \text{(float:time->bool).} \]

\[\text{DATAPATH rep amux_s alu_s sh_s mbr_s mar_s rd_s wr_s} \]
\[\text{cselect bselect aselect} \]
\[\text{neg_f zero_f} \ \text{float ireq iack_s iack opc ie_s sm_s} \]
\[\text{clk mem reg alatch blatch mar_reg} \]
\[\text{mbr_reg reset_e ireq_e} \wedge \]

\[\text{CONTROL_UNIT rep mpc mir clk amux_s alu_s sh_s mbr_s} \]
\[\text{mar_s rd_s wr_s cselect bselect aselect neg_f} \]
\[\text{zero_f ireq iack_s opc ie_s sm_s urom} \]
\[\text{reset_e ireq_e} \]

Fully expanded, the electronic block model specification fills about six pages.
Future Work

- New architectural features.
- Composing verified blocks.
- Verifying operating systems.
- Gate-level verification.
- Byte-code interpreter verification.
- Other classes of computer systems.
An Example
(continued)

After some minor manipulation, the final result becomes:

\[\Gamma \vdash \text{EBM} \]

\[(\lambda t.\ (\text{mir} \ t, \text{mpc} \ t, \text{reg_list} \ t, \text{alatch} \ t, \text{blatch} \ t, \text{mbr_reg} \ t, \text{mar_reg} \ t, \text{clk} \ t, \text{mem} \ t, \text{urom})) \Rightarrow \]

\[\text{Phase_I} \]

\[(\lambda t.\ (\text{mir} \ t, \text{mpc} \ t, \text{reg_list} \ t, \text{alatch} \ t, \text{blatch} \ t, \text{mbr_reg} \ t, \text{mar_reg} \ t, \text{clk} \ t, \text{mem} \ t, \text{urom})) \]
Conclusions

The generic proof

- Cleared away all the irrelevant detail.

- Formalized the notion of interpreter proofs which has been used in several microprocessor verifications.

- Provided a structure for future microprocessor verifications.