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INTRODUCTION TO SOFTWARE SAFETY

What is Software Safety?

What is its relationship to other software qualities?




Real-Time Safety-Critical Systems

When computers are used to control complex, time-critical
mechanical devices or physical processes such as:

Air Traffic
Nuclear Fission

Hospital Patient Monitoring
Defense and Aerospace Systems

where a run-time error or failure can result in death, injury, loss of
property, environmental harm.
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Facts about accidents:

e Most accidents originate in system interfaces. Caused by com-
plex, unplanned interactions between components of the system.

e Accidents often involve multiple failures of different components.

e System accidents intimately intertwined with complexity and
coupling.
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Goals in building complex systems:
e attaining mission (functional correctness)

e preventing undesired events while attempting to achieve
the mission (safety, security)

® minimizing cost

Focusing on safety separately from other goals:

e Allows for conflict resolution and decisions about
tradeoffs

e Allows differential handling of erroneous states
e Provides discipline and procedures for looking for errors
o Focuses attention and assigns responsibility

e Allows measuring and ensuring safety separately from
other goals



Implications and Challenges for Software Engineering

Requirements for software safety analysis and verification being
included in contracts and by government licensing agencies.

New standards for safety-critical software.

National and international working groups

Safety involves multiple areas of traditional software research
along with safety engineering.

reliability

security



SYSTEM RELIABILITY: considers problems concerned with
ensuring system will perform a required task or mission for a specified
time in a specified environment.

SYSTEM SAFETY: considers problems of not causing an accident
in the process.

s Usually many system failures which can occur without causing
a mishap

e Sometimes even conflicts between functional and safety
requirements



Relationship between Safety and Security

e Both involve threats
e Both are negative requirements
e Both are system qualities

e Both may require high levels of assurance

Are they the same?

advertent vs. inadvertent actions



BASIC SYSTEM SAFETY PRINCIPLES

e What is System Safety?

o System Safety Analysis Techniques
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SYSTEM SAFETY ENGINEERING

The application of scientific, management, and engineering principles
to ensure adequate safety within the constraints of operational
effectiveness, time, and cost throughout the system life cycle.

HAZARD ANALYSIS
e Identify hazards

e Assess risk

HAZARD CONTROL
e Eliminate hazards
e Minimize hazard occurrence or effects

e Document and track hazards and progress made toward resolu-
tion of associated risk.

n



Preliminary Hazard Analysis (PHA):

o identify safety-critical areas and functions

e identify and evaluate hazards in terms of severity and likelihood

e identify safety design criteria to be used

Results used in:
developing system safety requirements

preparing performance and design specifications
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COMPLETE FA'LUREf—D—Q*—ACCIDENT

(DEATH OR CRIPPLING INJURY)

MAXIMUM TOLERABLE FAILURE p{-——ACCIDENT
(CAR DAMAGED: NO PERSONAL INJURY

-¢—— MINOR ACCIDENT

-(——FLAT TIRE

| t—— WINDSHIELD WIPERS INOPERATIVE
(HEAVY RAIN)

-——TRAFFIC JAM

MAXIMUM ANTICIPATED FAILURE —p»|-¢——ARRIVES AT 9:00

| ———WINDSHIELD WIPERS INOPERATIVE
(LIGHT RAIN)

——TRAFFIC CONGESTION

MINIMUM ANTICIPATED FAILURE—P1< ARRIVES AT 8:45
¢«—— LOST HUBCAP

L €——\WINDSHIELD WIPERS INOPERATIVC
(CLEAR WEATHER)

TOTAL SUCCESS ——>(B<l—ARRIVES AT 8:30

{(NO OIFFICULTIES WHATSOEVER)
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HAZARD <Sever,ry

MIL-STD-882B. System Safety Program
Requirements:

Category I. Catastrophic: may cause
death or system loss.

Category II. Critical: may cause severe
injury, severe occupational illness, or
major system damage.

Category III. Marginal: may cause minor
injury, minor occupational illness, or
minor system damage.

Category IV. Negligible: will not result

© in injury, occupational illness, or sys-
tem damage.

NHB 5300.4 (1.D.1), a NASA document:
Category 1. Loss of life or vehicle (in-
cludes loss or injury to public).
Category 2. Loss of mission (includes
both postlaunch abort and launch de-
lay sufficient to cause mission scrub).
Category 3. All others. :

DOE 5481.1 (nuclear):

Low. Hazards that present minor on-site
and negligible off-site impacts to peo-
ple or the environment.

Moderate. Hazards that present consid-
erable potential on-site impacts to peo-
ple or environment, but at most only
minor off-site impacts.

High. Hazards with potential for major

~ on-site or off-site impacts to people or
the enviromment.
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HAZARD PROBABILITY

Described in terms of occurrences per unit of time, events, popu-
lation, items, or activity.

Derive from modelling or from historical safety data from similar
sys@ems.

15



Subsystem Hazard Analysis (SSHA):

o Identify hazards associated with design of subsystems including:
component failure modes
critical erroneous human inputs

hazards resulting from functional relationships between
components of the subsystem

e Determine how operating or failure modes of components affects
safety of the system.

e Identify necessary actions to determine how to eliminate or
reduce risk of identified entions /222,AS.

‘o Evaluate design with respect to safety requirements of subsystem
specification.

b



System Hazard Analysis (SHA):

Identify hasards created by interfaces between subsystems or by

®
system operating as a whole including human errors.

e Examines all subsystem interfaces for

(a) compliance with safety criteria in system requirements
specification.
(b) possible combinations of independent, dependent, and

simultaneous hazardous events or failures, including
failures of controls and safety devices, that could

cause hazards. |

(c) degradation of safety of system from normal operation of
system and subsystems. -

17



Operating and Support Hazard Analysis (OSHA):
e identify hazards and risk reduction procedures during all phases

of system use and maintenance.

e especially examines hazards created by man/machine interface.

13



ANALYSIS TECHNIQUES

Design reviews and walkthroughs

Checklists

Fault Tree Analysis (FTA)

Event Tree Analysis (or Incident Sequence Analysis)
Hazard and Operability Studies (HAZOP)

Random Number Simulation Analysis (RNSA)

Failure Modes and Effects Analysis (FMEA)

19
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SYSTEM SAFETY DESIGN PROCEDURES

GOAL: Eliminate identified hazards or, if not possible, reduce associ-
ated risk to an acceptable level.

Order of precedence for applying safety design techniques:
\

(1) Intrinsicaily safe design
(2) Prevent or minimize occurrence of hazards.

e.g. monitoring
automatic control (automatic pressure relief valves,
speed governors, limit-level sensing controls)
lockouts
lockins
interlocks

(3) Control hazard if it occurs using automatic safety devices.

detection of hazards
fail-safe designs
damage control
containment
isolation of hazards

(4) Provide warning devices, procedures, and training to help person-
nel react to hazard.

L1
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EME A exa/n/o/e..
1 2 3 4 5
Failure % Failures Effects
Component Probability Failure Mode by Mode Critical Non-Critical
-3
A 1x10 Open 90 X
Short 5 X
(5x10°9)
Other 5 X 5
(5x1077)
8 1x10-3 Open 90 X
Short 5 X
(5x10°2)
Other 5 X 5
(Sx10°)
 J
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QUTPUT Q

INPUT A INPUT B

Figure IV-2. The OR-Gate

It is important to understand that causality never passes through an OR-gate. That
is, for an OR-gate, the input faults are never the causes of the output fault. Inputs to
an OR-gate are identical to the output but are more specifically defined as to cause.

Figure IV-3 helps to clarify this point.

VALVE IS
FAILED
CLOSED
VALVE IS VALVE IS
CLOSED DUE CLOSED DUE VALVE IS
Y0 HARDWARE TO HUMAN (;16032)1’?::
FAILURE ERROR

Figure 1V-3. Specific Exumplé of the OR-Gate
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ouTPUT Q

INPUT A INPUT B

Figure IV-5. The AND-Gate

In contrast to the OR-gate the AND-gate does specify a causal relationship
between the inputs and the output, i.e., the input faults collectively represent the
cause of the output fault. The AND-gate implies nothing whatsoever about the

(  ‘ecedents of the input faults. An example of an AND-gate is shown in Figure [V-6.
A failure of both diesel generators and of the battery will result in a failure of all
onsite DC power.

ALL ONSITE
DC POWER IS
FAILED
DIESEL DIESEL
GENERATOR 1 GENERATOR 2 lﬂs“::'fl‘:‘é
IS FAILED IS FAILED

Figure I1V-6. Specific Example of an AND-Gate
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Quantitative modelling using fault trees:
e Attach probabilities to nodes of tree.

o Use boolean algebra to calculate minimal cut sets.

minimal cut set: All unique combinations of events
that can cause the top-level event.

A6



A Sample Software Safety Program

Software Development Management Responsibilities
Software Hazard Analysis

Establishing Software Safety Reduirements
Software Safety Requirements Review

Software Safety Design Concepts

Software Design and Recovery Analysis

Software Safety Design Review

Code Verification and Validation

Assessment of Risk

17



Software Safety: involves ensuring that the software will execute

within a system context without resulting in unacceptable risk.

Risk is defined in terms of hazards

-~ states of the system that when
combined with certain environmental conditions could lead to a
mishap.

Risk = f ( Pr |hazard occurs], Pr [hazard leads to mishap},
Severity of worst potential mishap)

Safety critical software: software whij

ch can directly or indirectly
cause or allow a hazardous system state

to exist.

a3



GENERAL COMMENTS

Safety must be specified and designed into software from the
beginning.

Effective safety programs require changes throughout entire
software life cycle.

Enhancing reliability is not enough.

Tha success of any software safety effort hinges on the ability of
software, system, and safety engineers to cooperate and work
together.

29



Basic approach adapted from system safety engineering

1) Identify potential software-related hazards

Chazard : A condihon o sinse of e system w. i
the potanhal Ar leading Jo an accedent)

2) Control hazards

e Analysis
Start from hazard and work backward

to see if and how could occur.
e Design

Passive Control

Active Control

'Bo



Philosophy and Goals

Building a bridge between software engineering and system
engineering.

o Use modeling and analysis for understanding and predic-
tion

o A systems approach — well-defined interfaces with
hardware engineers, systems engineers, and quality
assurance groups.

o Focus on failures with the most serious consequences

o Layers of protection

31



Layers of Protection

Software safety verification
and analysis

Design to protect against hazards

Human or hardware protection
external to computer

32




o Integrate into usual software development process
Activities span the life cycle.

Catch errors early — verification distributed
throughout development.

Information derived from early activities (modeling
and analysis) is used to drive the design and coding.
e Combine formal and informal approaches

Static analysis using formal proofs and structured
walkthroughs

Dynamic analysis to provide confidence in the models
and assumptions used in the static analysis.

33



software-related
hazards

!

software-safety
constraints

design constraints

code constraints

34

software
requirements

high-level design

low-level design

code




CAVEATS

No magic potions

Nothing 7is absolutely safe

No techniques are perfect

Risk elimination vs. risk displacement

Nothing is safe under all conditions

35



MANAGEMENT

Management commitment to safety 13 the most crucial requirement
for achieving it.

o degree of safety achieved is directly dependent upon emphasis
given to it. .

e goals of safety can be accomplished only with the support of
management.

Need to:

e set policy and define goals for software safety
o delegate responsibility

e grant authority

e fix accountability

o clearly delineate lines of authority, cooperation, and administra-
tion

36



General responsibilities of software safety management and personnel:

Participation in early planning of the safety program

Continual close interaction with system safety group during the
life of the program

Participation in all aspects of the software development activities
to ensure that software hazards are eliminated or controlled to an
acceptable level.

37



software-rélated 7
hazards

software

software-safety
_constraints requirements

high-level design

design constraints

low-level design

code constraints

code

Software Hazard Analysis
e Model the software/system interface
o Analysis to identify software-related hazards

o Integrate with system safety analysis and system
engineering models and analysis.

32



SOFTWARE HAZARD ANALYSIS

1) If operates “correctly,” will any hazardous states result?
p

2) If there are failures, will hazards result?

Single failures?

Multiple failures?

39



Fault Tree Analysis

A graphic model of the various parallel and sequential combina-
tions of faults (or system states) that will result in the occurrence
of a predefined undesired event.

Events can involve hardware failures, human mistakes, software
design faults, computer hardware failures, etc.

Start with list of system hazards (PHA). Assume hazard has
occurred, and work backward to determine set of possible causes.
Preconditions described with either AND or OR relationships.

4o



adainistered

vtong treatment

vital signs
erroneocusly
reported as
exceeding
limics

—

vital signs exceed
critical limits bye
ot corrected in time

)

J

frequency of
messuremeat
too low

R

L

coaputer fails
to read with
required time
limits

L X Y.

Figure |,

human error

vrong)

(doctor sets

sensor computer ' nurse does
failure fails co not respond
raise alarm to alarm
[ { {

AND . .
mechanical aurse fails
failure to ioput

1 vitals manually
: or inputs
e incorrectly

System Fault Tree

4\

Top Levels of Patient Monitoring




PETRI NET MODELS

Have developed analysis procedures to:

o identify hazards and safety-critical single and multiple
failure sequences

e determine software safety requirements including timing
requirements

e analyze the design for safety and fault tolerance

e guide in the use of failure detection and recovery pro-
cedures

La



Down
Railroad
Crossing

Gate

Figure 2. A Petri Net Graph with the Next State Shown
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Figure 3. Reachability Graph for Figure 1
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critical state: path to high-risk and possibly low-risk states as
well as path to only low-risk states.

Algorithm:
Start with high-risk states. Generate those one step back and see
if can go forward from them (Look forward one).

Work back to first potential critical state (state with two succes-
sors) and eliminate bad path.

e What if state not really reachable?
e What if not really a critical state?

e How do we know what states to start with. i.e. what about miscel-
laneous conditions?

hs



Modify design to disallow traversal of undesired path
e change design - e.g. add interlocks, lockouts, ete.

e add timing constraints

4o



Figure 4d
Reachability Graph for Figure 4c
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Time Petri Nets

Add two times to each transition:
minimum required enabling time

maximum time before transition must fire

Adding time makes analysis more difficult, but since
interested in worst case behavior: ‘

1) Derive non-time reachability graph

2) Then use this to determine timing requirenients

L3
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Adding Failures to the Analysis
Types of control failures:
a required event that does not occur
an undesired event
an incorrect sequence of required events
two incompatible events occurring simultaneously
timing failures in event sequences
exceeding maximum time constraints between events
failing to ensure minimum time constraints between events

durational failures

4q
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Figure 5a. Desired Event t Does Not Occur

Figure'sb. Undesired Event t Occurs

50



Important safety properties of a design:
Recoverable

Fault Tolerant

Fail Safe

51



faulty state: every path to it from the initial state contains a failure
transition.

Recoverable: after the occurrence of a failure, the control of the pro-
cess is not lost, and in an acceptable amount of time, it will return to
normal execution.

1) the number of faulty states is finite

2) therédare no terminal faulty states

3) there are no directed loops containing only faulty states

4) the sum of the max times on all paths from the failure transition

to a correct state is less than a predefined acceptable amount of
time.

52



correct behavtor path: a path in the failure reachability graph fromn
the initial st_ce to a final state which contains no failure transitions.

Fault Tolerant Process:
1) a correct behavior path is a subsequence of every path from the

initial state to any terminal state.

2) the sum of the maximum times on all paths is less than a pre-
defined acceptable amount of time.

Fail-Safe: all paths from a failure F contain only low-risk states.

53
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Figure 8a. A Petri Net Graph with Failures
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computer

Figure 9. A Petri Net Graph with Failure Transition and Recovery
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Included in Mil-Std-882B (System Safety) and AF Hand-
book on Software Safety

Used experimentally on some real projects

Never meant to be practical — changing to a better
model.

56



External Interaction Model

Goal is to interface between system engineering and software
engineering.

EIM includes the software behavior and assumptions about
the behavior of the environment within which the software
will operate.

Uses:

e To verify system correctness (software requirements
satisfy system requirements) including satisfying con-
straints.

e To minimize effects of system requirements and design
changes on software through appropriate design.

e To determine and specify appropriate responses by
software to violations of environmental assumptions
(robustness).

Cannot just ‘‘scale-up” techniques for specifying interface
between software components.

57



Can use model to determine whether the components
(including the software) of the larger system working
together exhibit certain properties.

Partial responsibility for ensuring some properties
may be assigned to software.

Their existence may be affected by behavior of
software.
Static analysis of properties vs. dynamic control during exe-
cution
In both cases, must prepare system under develop-
ment, systematically from the outset, to satisfy them.

Safety is an emergent or non-hierarchical property.

Appears only when system components considered as
a whole not in individual components.

Accidents most often occur in the interfaces of sys-
tems — a consequence of undesired and unhandled
interactions between components.

59



Statecharts:

e extension of finite-state machines to include:

hierarchy

modularity
orthogonality
generalized transitions

e Provides graphical language with rigorous semantics.

o But doesn’t have:

communication other than broadcast

straightforward notation for assigning
attributes to inputs and outputs

probabilities -

analysis techniques defined on it.

59



Use Statecharts to describe state information of all com-
ponents and add:

1) Input and output exchange declarations

input exchange chart:

value(Y) € ValuRange(Y)

time(Y) € TimeRange(Y)

timetype(Y) € {continual, periodic, S-R}
source(Y) € C

capacity

exceptions

output exchange chart:

value(X) € ValuRange(X)

time(X) € TimeRange(X)

timetype(X) € {continual, periodic, S-R}
destination(X) € C

load

4o



2) Rules and mappings for these exchanges

Make explicit the assumptions and allowed interactions
according to given, implied, and derived constraints.

Static checking for inconsistencies between matched
exchanges

Source for dynamic checking of inconsistencies between
real state of environment and computer model of it.

As external state changes, inputs provide current
status and feedback information to update inter-

nal

model.

ol



Two types of safety analysis defined on EIM model:

e Safety analysis assuming no failures — provide confidence
that if system performs as specified, will not reach a
hazardous state.

backwards reachability analysis based on
critical states

o Analysis with failure — fault tree analysis generated
directly from model’s state representation.

Determine erroneous software states that can
lead to system hazards.

62



TESTBED:

TCAS II: Traffic Alert and Collision Avoidance System

e Family of airborne devices functioning independently

of the ground-based ATC system.

e Provides traffic advisories to assist pilot in avoiding

intruder aircraft.

e Provides resolution advisories (recommended escape

maneuvers) in a vertical direction to avoid conflicting
traffic. |

e Communicates with intruder aircraft TCAS systems,
transponders on intruder aircraft, pilot, and ground-

based radar beacon system.

o Used by airline aircraft and larger commuter and

business aircraft.

e We will provide a system requirements specification
and a safety analysis of the specification.

,3



ESTABLISHING SOFTWARE SAFETY REQUIREMENTS

Goal: Rewriting software hazards identified by the SHA as software
requirements

Need to consider:
e what system skall not do

» means for eliminating and controlling damage i case of an
accid=nt

e ways in which software can fail safely and to what extent failure
is tolerable.

44



SOFTWARE SAFETY REQUIREMENTS REVIEW

Goal: identify critical requirements, missing requirements, require-
ments that may conflict with safety.

Participants: software engineers
system engineers
application engineers
safety engineers

Results used to: improve software requirements specification
update Software Hazards List
update detailed safety design criteria
test and evaluation criteria

Techniques: Ad hoc techniques
Real Time Logic

A



software-related
hazards

software-safety
constraints

software
requirements

high-level design

design constraints

low-level design

code constraints

code

Requirements Analysis:

o Analyze software requirements for robustness, lack of
ambiguity, consistency with system requirements

o Verify consistency with safety constraints.

o Identify conflicts and tradeoffs.

44



What is Correctness?

A system is a set of component working together to achieve
some common objective or function.

Three components of system requirements:

1) Basic function or objective

2) Constraints on operating conditions

Define range of conditions within which system may
operate while achieving its objective.

Limit the set of acceptable designs.

Arise from several sources:

quality considerations
physical limitations on equipment
process characteristics
safety considerations
3) Prioritized quality goals to:

Judge which alternative design is best

Resolve tradeoffs between conflicting requirements.

61



Two aspects of specification correctness:

¢ Implementation correctness

Constructed component satisfies its requirements
specification.

Specification must distinguish behavior of desired
software from any other, undesired program that

might be designed.

Requires specification to be sufficiently unambiguous.

e System correctness

Component behavior, if implementation satisfies its
requirements, together with specified behavior of the
other components will satisfy the system require-
ments. ' o

A



Approaches to finding errors in requirements specifications:
e Prototyping

e Executable specifications

e Scenarios

e . Informal reviews

¢ Formal modeling and analysis

Build model of software behavior and its interface
with other components and analyze to ensure
behavior and properties of model match desired
behavior and properties.

49
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The RSM is denoted as a seven-tuple (£, @, g0, Pr, Po,é,v) where:

e X is the set of input/output variables, T and O,

o () is the set of states of the control component C.

e ¢o € @ is the initial state of C'; the software is in this state before startup.

e Pris the set predicates on the values and timing of the inputs (Z). They t
state change in the RSM.

Po is the set of predicates on the outputs (O)

e { is the state transition function @ x Pr to Q.

( is the trigger-to-output relationship Q x Pr to Po.

7



Disturbanses

1

—
od1 actual setting Nuclear Actual temperature
Rod2 actual setting +{ Reaction 1

Control Automatic
Rods Sensor
Rod1l I
Rod2 wa P
Measured temperature

Figure 2: Block diagram of the temperature coatrol system.

1T ALow||Out(Rodl, down)

11 AHighl|Out( Rod1, down)

 TimeOut(Rodl)||-
Figure 3: A fragment of an RSM

Low = v(I)<C°K
High = o(I)>C°K
TimeOut(z) = t>t(z1)+30
Out(0,z) = OTA(v(0)=12)



Normal Operation.
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The Startup Sequence.
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(C/‘/'/T/Z/'l- - ,rrf/f_t/'/f'./?(i(s)
o Input/output Variables £

o States &, $o

Startup and Shutdown
Modes

o Trigger Predicates 7

Tautology Requirements

Essential Value Assumptions

Essential Timing Assumptions
Properly bounded ranges
Capacity and load
Mimimum arrival rates, etc.

ORIGINAL p
A
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Criterion 6.1

Every state must have a behavior (transition) defined for
every possible input. Formally,

VI, q3q,p: (é(q,p) =) A (p € Pr,)

where [ € £, ¢, 1 € Q and Pr, is defined as in section 4.

Criterion 6.2

The logical OR (V) of the input predicates on the transitions
out of any state must form a tautology:

'=\/Pi

where the p;s are the input predicates leading out of the state
of interest. '

Criterion 6.3

Every state must have a behavior (transition) defined in case
there is no input for a given period of time, i.e., a timeout.

Criterion 6.4

The RSM must to be deterministic. Let p; represent the
input predicate on the ith transition out of a state. Then

deterministic behavior is guaranteed by:

Vivi(i # 7) = =(pi A p;)
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e Output Predicates po

Environmental capacity considerations
Data Age
Latency

o Trigger-to-Output Relationship Y
Graceful Degradation
Hysteresis

Responsiveness and Spontaneity (Feedback)
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e Transitions {
Basic Reachability
Recurrent Behavior
Reversibility
Reachability of Safe States
Path Robustness

Constraint Analysis
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e T e iwm . A T

Criterion 9.3 Reversibility of an operation z (performed in a state q:) by
an operation y (performed in a state ¢ € Q,) requires a path
between ¢, and a state belonging to Q,. Formally,

3935 : (8(qzy8) = q) A (8(s:)).
where ¢ € Q,.

PO RoBuUSTANESS

Criterion 9.5 Soft and hard-failure modes should be eliminated for all
~ hazard-reducing outputs. Formally, let Q, and Q, be the
sets of states where actions z and y are performed. The loss
of the ability to receive I is a soft-failure mode for the paths
from action z to action y iff

3qVa1,3((8(g,8) = 1) = (~¢(8:) V I'1)]

where ¢ € Q; and ¢, € Q,.
The loss of the ability to receive I is a hard-failure mode iff

VgVa:, s[(8(q, ) = q1) = (~¢(s;) V I'1)]

where ¢ € Q; and ¢; € Q,.
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Future Goals:

e Extend criteria on RSM

e Define analysis procedures for the criteria

e Demonstrate by applying to TCAS

Transactions on Software Engineering, March 1991.
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SAFE SOFTWARE DESIGN PRINCIPLES

o Preventing Hazards

e Detecting and Recovering from Hazards

e Example

8]



SOFTWARE SAFETY DESIGN CONCEPTS

Aralysis and verification alone not enough because:
e technijues are error-prone
e cost may be prohibitive

e elimination of all hazards may require too severe a performance
penalty

Two general principles:
(1) design should provide leverage for certification effcrt

(2) avoidewwsssf adding complexity

Two categories:

e Prevention of hazards through software design

(tends to.involve reduction of functionality or design freedom)

e Detection and treatment at run-time

(difficult and unreliable)
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PREVENTING HAZARDS THROUGH SOFTWARE DESIGN
General goals: make software intrinsically safe so that software faults
and failures cannot lead to system hazards.

General approach: reduce amount of software that affects safety and

change as many potentially critical faults into non-critical faults as
possible.

o Design to limit actions of software

modularization

data access limitations

separate critical from non-critical functions
firewalls

hierarchical design

e Authority limitation to protect critical functions and data
e Minimize hazardous states or time in them

e Use software interlocks to ensure sequencing or prevent hazardous
outputs

e Protect against hardware failures
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DETECTION AND TREATMENT AT RUN-TIME

Detection:

assertions
acceptance tests
external monitors
watchdog timers
voting

3

e Mechavuisms not as much of a problem as formulating the clecks
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Recovery:

Safety recovery routines needed when:
unsafe state detected externally

determined that software cannot provide required output
within a prescribed time limit '

continuation of regular routine would lead to a hazard if
no intervention

Backward adequate if can be guaranteed that software faults -will
be detected and successful recovery completed before fault affuct
external state.

Forward recovery usually also needed

robust data structures

dynamic alteration of flow of control
reconfiguration

ignoring single cycle errors

reduced function or fail-safe modes

Design for a safe-side
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_ Fail-Safe Design

Design system to have a safe-side: state that is always reachable
from any other state and that is always safe.

e Often has performance penalties.

e Besides shutting down, may need to take some action to avoid
harm.

o Safety system itself may cause harm.

o May be intermediate safe states with limited functionality, espe-
cially in systems where shutdown itself would be hazardous.

- e Reconfiguration or -dynamic alteration of control is a form of par-
tial shutdown. '
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2 level structure:

TOP LEVEL

less important governing functions
supervisory, coordination, management functions

separate processor
loss cannot endanger turbine nor cause it to shutdown

BASE LEVEL

secure software core that can detect significant
failures of hardware

self checks of:
sensibility of incoming signals

whether processor functioning correctly

failure of self-check leads to reversion to safe
state through fail-safe hardware.

§7
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No interrupts except for fatal store fault (nonmaskable)
— timing and sequencing defined
— more rigorous and exhaustive testing
Uses polling
all messages unidirectional
— no recovery or contention protocols required
— higher level of predictability
State table defines:
scheduling of tasks

self-check criteria appropriate under particular conditions
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SOFTWARE DESIGN AND RECOVERY ANALYSIS

Two goals:

(1) Identify safety-critical items.

(2) Identify self-test, fault-tolerance, and fail-safe facilities needed for
safety-critical items.
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Safety-Critical Items:
e software processes, data items, or states whose inadvertent
occurrence, failure to occur when required, occurrence out of

sequence, occurrence in combination with other functions, or
erroneous value can be involved in development of a hazard.

e Includes erroneous program states and data items that could
cause a hazard even if function or algorithm is correct.

o Identify through backward flow analysis on top-level design to
locate critical paths and data.

Tanual procedures

Software Fault Tree Analysis
Uses Hierarchy

e Used for:
feedback to software and system design
e.g. minimizing critical items
isolating critical items

designing fault tolerance facilities

plannihg load shedding and reconfiguration

90



Recovery Analysis

Evaluate software and hardware failures for potential effect on
safety-critical items.

identify self-test, fault-tolerance, and fail-safe facilities needed for
critical items. |

Results:

Identification of assumptions about failures and undesired events

Fault-tolerance and fail-safe guidelines for rest of software
development

Evaluation of safety design requirements

Description of planned safety aspects of the design including

prevention, detection, and treatment of hazards.

Evaluation of planned safety aspects of design including fault
detection and recovery facilities planned for each critical item.
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SOFTWARE SAFETY DESIGN REVIEW

As part of regular design review:
(1) verify that safety requirements implemented in detailed design

(2) verify that software safety design criteria and fault tolerance
guidelines implemented in design

(3) produce a final safety test recommendations report.
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VERIFICATION OF SAFETY

o What is it?

o Software Fault Tree Analysis
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CODE VERIFICATION AND VALIDATION

If rest of program followed, need for most costly procedures will
be minimized.

Walkthroughs and formal verification (e.g. Software Fault Tree
Analysis) needed only on modules determined to be so critical
that testing or other assurance procedures alone will not suffice to
ensure acceptable risk. :

Need to verify that detailed feature related to safety-critical items
and fault-tolerance facilities have been correctly implemented.

Need to verify that assumptions and models upon which analyses
have been based are correct.
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Software Fault Tree Analysis

A symbolic logic diagram which shows cause and effect
relationship (AND or OR) between an undesired event
and one or more contributory causes.

A Systems Tool

Related to formal axiomatic program verification BUT:
specification derived from system requirements

include consideration of hardware failures,
environmental conditions, human errors

proof by contradiction
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(1) A:= F(Y); (2) B:= X -5.0; (3) if A > B then Subl; end if;

Figure 8: Sample Assignment Statements

Subl called

d
cauted A58

(1) caused
F(Y) > X - 5.0

Figﬁ 9: Fault Tree for Assignment Statements

C-
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1

procedure call
caused the event

-

parameter values procedure failing
caused the event caused the event

Figure 10: Fault Tree for a Procedure Call

event caused by
if-then-else

@

then part else part
caused event caused event

cond.r true then-part cond. false | eise-pm
prior to IF |- |caused event prior to IF lt:zu.xsed event

Fxgure 11: Fault Tree for an If-Then-Else Statement

54
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event caused by
while statement

statement
not executed

statement
executed N times

E,nﬂ

event prior
to while

cond. false
before while

cond. true
before while

Nth iteration
causes event

Figure 12: Fault Tree for a While Statement

event caused by
case statement

[+

when clause 1
caused event

E.ﬂ

when clause n
caused event

(

~|and

else part ]
caused evexﬂ
and

-

cond. 1
true

clause 1
caused it

cond. n
true

clause n

caused it

else
[caused it

no cond.
true

Figure 13: Fault Tree for a Case Statement
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Software fault tree has two possible patterns:

(1) A contradiction is found.

(2) Fault tree runs through code and out to controlled system or its
environment. o '
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FIREWHEEL Example

Used SFTA to analyze the flight and telemetry program for a U.C.
Berkeley spacecraft.

Mission: to sample electric fields in the earth’s magnetotail.

e Critical Failure Event: ripping wire booms off spacecraft.

e Cost: needed to examine 12% of code (out of approximately 300
lines of Pascal code), took two man days

e Results: A critical scenario detected that was undiscovered dur-
ing a thorough test and evaluation by an independent group.
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“*Figure 9b. Boom Length Too Low (continued)

163




Trawe Arglys?s Tould

vode LeDsl: Motor Failure oot Fault: Reel Soine Toe Fast Sesnion Nene: Fireuhee!
Node Fault: Boam Motor Fatle Fauly Tree Name: wheel firee Auther: Peter Narvey
uit Store Losd Tres Add Node nelp Delete Hode Refresn

# =
Mouse Buttow: @ SelectMove nade g 4cs cnila/parent ta curreat ncde £ Select an option
AR _ _ 1 L'
rin ¥ i1 1 p¢
Jrrime em. I8 o wneal pic

The fault tree has Deen sived.

Fireuhse! Spine Too Fast

 o— 1
Gas On b At Maximum Rate SoomecHalt Full Length

SFW Commands Motars Off

Spinning at Max Rste

Motor Failure

DED

SFW Commands Yalve Cpen

)

i
GAS-ON not called l GAS-ON 18 called

1

ORIGINAL PAGE i5
OF POOR QUALITY

loy _



Software Fault Tree Analysis useful to:

identify software faults potentially leading to accidents
OR “‘verify” (increase confidence) they do not exist

provide information for testing

provide guidance for content and placement of run-time
assertions (fault detection)

provide information on fail-safe requirements
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ASSESSMENT OF RISK

Certification of system partly based on system safety report including
e Dexacription of procedures used to ensur& software safety
e Results of software analyses

¢ Quantification of risk.
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Physical devices vs. software

o They “fail” differently: failure vs. design errors

e No historical reliability and safety assessments on stan-
dard designs for software.

¢ Repair involves redesign rather than replacement by
equivalent part.

107



Software Reliability Models

e Estimation of reliability model parameters made from
measurements of time between failures during testing.

o Most of controversy rests on assumptions models make
about software. Some typical ones:

— Software faults, and thus the failures they may cause,
are independent of each other.

— Inputs for software are selected randomly from an
input space.

— Test-input space is representative of the operational
input space.

— Software under test constitutes a functional unit to
which no new software modules are added during test-

ing.
— Each software failure is observed.
— Faults are corrected without introducing new ones.
— All e'rrors are of equal severity.
— Each fault contributes equally to the failure rate.

— No major revisions or changes in staffing or aspects of
development or maintenance environment.
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Even if believe models, cannot exercise enough during
testing to provide very low failure probabilities with high
confidence.

Doug Miller:

To assure failure rate less than 107 failures/hour,
must test for more than 10° hours and experience no
failures (110,000 years of testing).

To be 99% confident that failure probability less than
107 requires 4.6 X 10° test cases without failure
(525,000 years of testing if unit of time hours and
assume reasonable amount of time to execute a test
case).
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CONCLUSIONS

Standard reliability and fault tolerance techniques will not solve
the safety problem for the present.

A new attitude required:

Looking at what you do not want software to do along with
what you want it to do.

Assuming things will go wrong.

New procedures and changes to entire software development pro-
cess will be necessary.

Specialv software safety analysis techniques are needed.

Design techniques, especially eliminating complexity, will
help. ‘

| /10



FIREWHEEL Example

Used SFTA to analyze the flight and telemetry program for a U.C.
Berkeley spacecraft.

e Mission: to sample electric fields in the earth’s magnetotail.

e Critical Failure Event: ripping wire booms off spacecraft.

e Cost: needed to examine 12% of code (out of approximately 300
lines of Pascal code), took two man days

e Results: A critical scenario detected that was undiscovered dur-
ing a thorough test and evaluation by an independent group.
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Software Fault Tree Analysis useful to:

identify software faults potentially leading to accidents
OR “‘verify” (increase confidence) they do not exist

provide information for testing

provide guidance for content and placement of run-time
assertions (fault detection)

provide information on fail-safe requirements
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ASSESSMENT OF RISK

Certification of system partly based on system safety report including
e Deacription of procedures used to ensur& software safety
e Results of software analyses

¢ Quantification of risk.
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Physical devices vs. software

e They “fail” differently: failure vs. design errors

e No historical reliability and safety assessments on stan-
dard designs for software.

¢ Repair involves redesign rather than replacement by
equivalent part.
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Software Reliability Models

o Estimation of reliability model parameters made from
measurements of time between failures during testing.

o Most of controversy rests on assumptions models make
about software. Some typical ones:

— Software faults, and thus the failures they may cause,
are independent of each other.

— Inputs for software are selected randomly from an
input space.

— Test-input space is representative of the operational
input space.

— Software under test constitutes a functional unit to
which no new software modules are added during test-

ing.
— Each software failure is observed.

— Faults are corrected without introducing new ones.
— All err;)rs are of equal severity.

— Each fault contributes equally to the failure rate.

— No major revisions or changes in staffing or aspects of
development or maintenance environment.
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Even if believe models, cannot exercise enough during
testing to provide very low failure probabilities with high
confidence.

Doug Miller:

To assure failure rate less than 107 failures/hour,
must test for more than 10° hours and experience no
failures (110,000 years of testing).

To be 99% confident that failure probability less than
107° requires 4.6 X 10° test cases without failure
(525,000 years of testing if unit of time hours and
assume reasonable amount of time to execute a test
case).
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CONCLUSIONS

Standard reliability and fault tolerance techniques will not solve
the safety problem for the present.

A new attitude required:

Looking at what you do not want software to do along with
what you want it to do.

Assuming things will go wrong.

New procedures and changes to entire software development pro-
cess will be necessary.

Special software safety analysis techniques are needed.

Design techniques, especially eliminating complexity, will
help. ‘
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