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ABSTRACT

This paper discusses the efficient numerical treatment of optimal control problems gov-
erned by elliptic PDE’s and systems of elliptic PDE’s, where the control is finite dimensional.
Distributed control as well as boundary control cases are discussed. The main characteristic
of the new methods is that they are designed to solve the full optimization problem directly,
rather than accelerating a descent method by an efficient multigrid solver for the equations
involved. The methods use the adjoint state in order to achieve efficient smoother and a
robust coarsening strategy. The main idea is the treatment of the control variables on ap-
propriate scales, i.e., control variables that correspond to smooth functions are solved for on
coarse grids depending on the smoothness of these functions. Solution of the control prob-
lems is achieved with the cost of solving the constraint equations about two to three times
(by a multigrid solver). Numerical examples demonstrate the effectiveness of the method

proposed in distributed control case, pointwise control and boundary control problems.
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1 Introduction

Computations in optimal control for distributed parameter systems demand huge com-
putational resources. These are optimization problems with constraints which are par-
tial differential equations. This paper focuses on the computational aspects of optimal
control problems governed by elliptic partial differential equations or elliptic systems,
where the control variables are of finite dimension.

The classical optimal control algorithms use the costate ( a Lagrange multiplier) in
order to define an iteration that converges to the minimum. These are descent type
algorithms which involve the solution of the state and costate equations per iteration of
updating the control variables. The state and costate equations, being discretizations
of partial differential equations are quite expensive to solve. The over all solution of
the optimization problem becomes therefore very expensive.

The need for more efficient methods is obvious. One way of improving the situation
is by using fast solvers , i.e., multigrid methods, for the state and costate equations at
each step of a descent algorithm. This may result in a significant saving in computa-
tional time, but will not affect the number of outer iterations for updating the control
unknowns; it will just make the time required for each iteration smaller.

A much more effective solution process can be obtained by having an algorithm
that is aimed at the full optimization problem directly, rather than accelerating a
linear equation solver. This paper is devoted to this approach. Multigrid algorithms
that were designed to tackle the full problem rather than being a mere fast linear solver
have been developed for a class of problems. The first one to be developed was the
FAS algorithm for nonlinear equations [B1]. Recently such an approach was successful
in treating some bifurcation problems [T2] and stability calculation [T2]. In all these
cases maximal efficiency has been obtained as a result of treating the full problem
directly.

The high efficiency in the problems treated here is achieved by working on all
unknowns of the problems (i.e., state, costate and control unknowns) simultaneously
where scales of the different unknowns are taken into account. The main rule is to
treat different control variables on different grids depending on their scale of influence.
This means that a variable that has a non local effect on the solution should be treated
mainly on coarse levels. On the other hand, a variable that has a non-smooth effect
on the solution in some neighborhood, will be relaxed in that neighborhood on fine
levels as well. More generally, local work on fine grids will be done to update a certain
control variable only at the vicinity where it has a non smooth effect on the solution
while work on coarser levels for that variable will be in larger and larger neighborhoods
of that region.

Asis done in the classical optimal control algorithms a costate variable is introduced
in our solution process. This allows the construction of good relaxation schemes in
general, and is even more important when coarsening is considered (as explained in
section 4). In the relaxation part of the algorithm we distinguish two main steps. One
is designed to smooth the errors in the state and costate for a given choice of the control
variables. This is done for the state variable using the Gauss-Seidel (GS) relaxations
for scalar elliptic equations of state and Distributed-Gauss-Seidel (DGS) for systems of



elliptic equations [B2]. The equations obtained for the costate are very similar to the
state equations and are relaxed using essentially the same relaxation method as for the

state equations. The other step of the relaxation is designed for updating the control
variables. This step of the relaxation is done taking into account the smoothness of
the change introduced in the state and costate as a result of a small change in one of
the control variables. That is, some work is to be done on coarse grids only and some
on fine levels in special subdomains. The update of the control variables is done in the
following way. A small change is introduced in them, then its effect on the state and
the costate is computed approximately. The amplitude of that change in the control
is then chosen so as to reduce the functional or to minimize the residuals of certain
equations. , n o

The algorithms constructed that way are aimed at the full problem directly and
need no iterations within iterations as the standard algorithms require.

Numerical examples show that solutions to the levels of discretization errors are
obtained in just a few work units, where a work unit is the work involved in relaxing
the state equations. The complexity of solving a control problem is about twice that of
solving the corresponding constraint equations, which is essentially optimal. Examples
for distributed control, boundary control and pointwise control are given and all show
the same efficiency.

2 The Problem

Let V,W,U and K be Hilbert spaces. Let A, B and C be operators as follows 4 : V —
W,B:U—->W,C:V — H and let Upq C U. Consider the problem

minyey,, |CZ — d|)?
Az = Bu+ f (2.1)

Here A is assumed to be an elliptic partial differential equation (PDE) or an elliptic
system of PDE’s with smooth coefficients (see [ADN] ). B is assumed to be a finite
dimensional operator, that is, there exist functions 9; € W j =1,..., ¢ such that

By = XQ: u g (2.2)

=1
We assume that the functions ¢; are smooth except for a finite number of singularities.
U is then identified with IR?. The adjoint of B, B* : W — IR is given by

B‘¢=(< 1/’1,(15 >w"":<¢qs¢>w)T (23)

The following equations hold at the minimum,

Az = Bu+ f
A*p+ C*Cz = C*d (2.4)
B*'p=0



where B and B* are given by (2.2) and (2.3) respectively. Let zo be a solution of
Azo = f and d = d — Czo. Problem (2.1 ) can be written in terms of z = 2 — 2o and
u as

minueu,, |Cz - d|i7

Az = Bu (2.5)

So without loss of generality we can assume that f = 0.

2.1 Descent Methods

Tterative methods for solving the control problem are described. A triple (z,u,p) will
be called compatible if it satisfies the equations

Az — Bu=0

A'p+C*Ca = C*d (2.6)
Given an approximate solution (z,u) of (2.5), an improved one is obtained as follows.
Denote by E(z,u) the functional ||Cz — d||,. For a compatible triple (z,u,p)

E(z,u)= - < Cz,Cz >, -2<u,B*p>, + <d,d >, (2.7)

We look for a change 4% in u and corresponding changes in z, p that result in a new
compatible triple, and for which the value of E is smaller. Let (z +7&,u+v8,p+ 7D)
be a new compatible triple. Then

E(z +7%,u+ v) = E(z,u)+
-2v < C%,Cz >, —7* < C%,0% >, (2.8)
2y < B*p,i >, -2y < B*p,u >, —29° < B*p, 0 >,

Choosing & = B*p, and #, p satisfying A% — B = 0 and A*p+ C*CE = 0 we get
E(z + v&,u + 7@) = E(z,u)

—-2¢(< C%,Cz >, + < B*p,B*p >, + < B*p,u >u) (2.9)
—4%(2 < B*$,B*p >, + < C%,C% >,))

Among all possible v, the choice

1< C%,Cz >, + < B*p,B*p >, + < B*p,u>,

T=73 [CZIE +2 < B*5,B"p >,

(2.10)

minimizes the functional in the direction chosen. This can be a basis for an algorithm
for solving the optimal control problem.

A Descent Algorithm



Set wo = 0,p0 = 0, v =1, n=1.
While v > € Do
Begin
1. Solve for z, the equation Az, - Bu, = 0
2. Solve for p, the equatlon A*pa + C*(Czpn—d) =
3. Set @ = B* p,. Solve Az — Bu =0, A‘jH—C"C'm-O
(approximately) for #,p respectively. '
4. Set Upy1 =Un +7U, Tntl =Zn +7i, Pnt1 =Pn+9P, n=n+41
with v given by (2.10).
End

Approximate Descent Algorithm

Set g = 0,p0 = 0, v =1,n=1.
While v > ¢ Do

Begin
1. Starting with z, = Tn_; relax Az, = Bu,, yielding
a solution satlsfylng Az, — Bu, = r?

2. Starting with Pn = Pn-1 Telax A"pﬂ +C*Cz, =C"d,
yielding a solution satisfying A*p, + C*(Cz, —d) = rj
3. Set @+ = B*p,. Solve At - B4 =0, A*p+C*CZ=0
(approximately) for &,p respectively.
4. Set uUpy1 = un + 7%, zn;I-I =Tn+7YE, Pry1=Pn+7P, n=n+1
with v given by (2.10).
End

€is a sma.ll enough number, depending on the accuracy required for the solution.
Note that if ||[r?]| — 0 and ||r"|| — 0 then the above algorithm converges to the
minimum of (2.5). ,

The expensive steps in th1s algorithm are the ones for obta.lmng Z and p by ap-
proximately inverting A and A*, which are elliptic operators (or systems) Moreover,
the solution of the elliptic equations governing the state and costate needs to be done
many times.

Remark Considering the form of the necessary conditions one may be tempted
to choose 7 based on minimizing the L, residuals of the third equations of (2.4). This

BB

= 2.11
< B#ﬁ,Btf"> ( )



which may not be a good choice as < B*p, B*p > may vanish, causing the iteration to
get stuck away from the minimum.

3 Naive Multigrid Approaches

The approximate-descent algorithm presented in the previous section suggests an im-
mediate acceleration procedure, namely, using some fast solver in steps 1,2, and 3.
Since the form of the operator A* is very similar to that of A the same fast solver can
be used in all the steps. The operator A is assumed to be elliptic and therefore calls
for multigrid methods.

Assume that we are given Vi, Wi,U, and H; Hilbert spaces approximation the
original V, W,U and H. Let A, By and Ci be operators as follows Ag : Vi — W,
By : U — Wi, Cx : Vi — Hj. Assume also that interpolation and restriction operators
Pk, P%, P, Rk, R, RY are given; RS : Viy1 — Vi RE : Wigr = Wi, RE : Uspr — U,
P;‘ 1 Vi = Vi, P;’,‘ : W = Wiy, P,’f : Uy — Ury1. The superscript k in these
expressions represent a level of discretization where k =1 correspond to the coarsest
level.

Denote by MG(Ag,b,z,y,v1,v2) a multigrid V(vy,v;)-cycle for solving Az = bon
level k, starting with initial approximation z ending with y. Assume that a solution of
the minimization problem is needed for level k = m. A possible fast algorithm for it,
starting with initial approximation (z™,u™,p™) is denoted by

(z™,u™,p™) « MinMG(Am, Bm,Cm,z™, v™,p™,d") (3.12)

and given by

Set v* = 0,F* = 0, v =1l,n=1.
While vy > ¢ Do
Begin
Perform a cycle MG(Am,Bmul, e, Thyq, V1, V2)
. Perform a cycle MG(AL,,Chd™ — ChCzl, ol Prv1s V1, v2)
. Perform a cycle MG(Am,BmBhp™, &7, Enh1,V1,V2)
. Perform a cycle MG(A%L,—CuCmE™ 1, P, Prg1:V1,V2)
Set ull; = ul + YUy, Tnyr = Zn HYEL, PRy1 = PR TP
n=n+1 and ¥ given by (2.10).
End

O W W N

An obvious improvement of this algorithm is to start with a good initial approxi-
mation for the optimization problem on level m. This can be achieved easily by solving
the problem first on level n — 1. Applying this idea recursively one arrives at the
following algorithm.



Set ué = O,mé = O,pé =0,k=1.
While £ < m Do
Begin
1. Perform a cycle
(:z:’c k ") — M'mMG’(Ak,Bk,Ck,z uk, p*, dF)
2. If k=m stop o
3. ohtl = TTkak, phtl = Ihpk Wb+ = PRuk k= k +1.
End

where ITE, II" are operators analogous to Pk and P'c respectively, but of possibly a
higher order (as is usual in multigrid algorithms for elhptlc problems). -

Our aim is to develop an algorithm in which the total computational cost of solving
the control problem will be only few times (2-3) more than that of solving for the state
variable z given that u is known. This is done in the next sections where a multigrid
approach which is aimed at the full problem dlrectly is constructed.

4 “One Shot” Multlgrld Methods

In this section we describe 2 multigrid method that is mmed at the full optimization
problem, rather than serving as a fast solver in a step of a basic optimization algorithm,
as was done in the previous section.

The construction of this method has been achieved basically by following the next
five steps. '

1. Distinction between smooth versus non-smooth components in all types of vari-
ables involved

2. Construction of a basic non-expensive relaxation for the full problem.

3. Classification of rate of convergence of the basic relaxation for the dxﬁ'erent vari-
ables in the problem, with regard to their smoothness.

4. Based on 3, determxnatlon of the role of coarse grids in acceleratmg the fine grid
convergence.- L ST ERES AT : :

5. Construction of a coarse gnd problem that apprommate the Full fine grid residual
problem

Steps 1,2 and 3 are dJscussed in deta.xl in section 4. 2 ‘the rest in section 4.1. The
resulting algorithm involves a sequence of discrete optimization problems, starting
from a very coarse discretization ending with a fine grid one on which a solution of the
problem is required. The optimization problem on each level is served to accelerate the
convergence of the next finer level problem. 'The iterative process for solving the finest
grid problem involves a relaxanon process on_ ‘each level whose effect is to damp out the

non-smooth part of | the e error, i.e., the part of the error which cannot be represented
on the next coarse grid in the sequence This together with a proper transferring of
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information (residuals and current fine grid solution) from fine to coarse levels and
back to fine levels results in a very high efficiency. A full description of the method
includes a relaxation scheme and a coarsening strategy.

4.1 Coarsening

A coarsening scheme requires the definition of coarse grid spaces analogous to V, W, UH
which we denote by the same letters with a superscript c¢. Also inter grid transfer
P.,P,, P, and R, Rp, Ry and coarse grid operators Ac, B, C. are required. Having all
this we can define the coarse grid minimization problem. An attempt to use

min“ceu:d ”Cf(mf + szc) - dfllz (4 1)
A.z® — Bou® = Ro(gf — Agzf + Byuf) )

as an approximation for the error on the fine grid fails. The reason for this is that
this coarse grid minimization problem does not preserve the fine grid minimum once
it was reached. This follows immediately from the necessary conditions of the coarse
grid problem (4.1), namely,

A.z¢ — Bou® = Ro(gf — Afa:f + B_fuf)
Atpf + C:Cz¢ = RPC}‘(df - Cyzf) (4.2)
Blp° =0.

The coarse grid minimization problem formulated above is a problem for the correc-
tion in the fine grid approximation. Therefore, upon reaching the fine grid minimum
the coarse grid correction z°, u° should be zero. This however is not the case since the
right hand side of the second equation is non-zero in general at the minimum of the
fine grid problem.

In order to define a correct coarse grid problem we rewrite the fine grid minimization
problem as

minu!eufd < Cf:z:f,a:f >-2< .'z:f,ggr >-2< uf,g,f >
Afzf - Bf'u,f =gf

(4.3)

where gf = g, g,’: = C*d and g{ = 0 on the fine grid. Note that the problem is defined
once gf,gf, g are given.

1. Correction Scheme. The coarse grid problem for the correction is of the same
form, that is,

minuceu:d < Cezt,z> —-2< 25495 > -2< u, g5 >

4.4
Azt — B.u® = g5 (44)



where

g; = Rm(!]{ — Af:z:c + Bfuf)
55 = Bolo] ~ 439/ - C2C.of) (45)
g% = Ru(gi — B}p?).

The necessary conditions for this coarse grid problem are

Acz® — Bou® = g
Alp®+ C¢Ccz® = g (4.6)
Bp® = g5

which are the Correction Scheme (CS) (see [B2]) equations for the fine grid necessary
conditions. In particular they have the property of introducing no change to the fine
grid problem once the minimum has been reached.

Once an approximation to the coarse grid problem is found it is used to correct the
fine grid approximation by

zf — zf + P.z°
ul — uf + Puc (4.7)
P —p + Py

Note that this coarse grid problem Vdepe'ndsr on the costate p obtained after the fine
grid relaxation process. Without using it the coarsening becomes very difficult as was
explained before. - ' '

|

2. 7FuTIAPp;5i'oxxmatlon Schem j‘hfagoarse grid problgmfor éﬁéptit;'es that
approximate the full fine grid solution rather than the correction for it have similar -
form. The minimization problem is

minuceu:d <C.z%z°> -2 < mc’g; > -2 < g8 >

Az — Bou® = g¢ (4.8)

where

gs = Ra:(gf - Afa:é -{-Bf'u,f) + A‘Uti;zf - BCI—ZU'(_L";
95 = By(9] — Ajp’ — C2Ceal) + AL Ryp! + C2C.Roa! (4.9)
9% = Ru(gl — Bjp’) + B Ryp?.
The operatorsﬁ; ﬁbifﬁféfé fine to coarse grid transfers possibly different from R, R,, R,

(see [B2]). The necessary conditions for this coarse grid problem are '

Azt~ Bt =gt .
Alp®+ CiCa® = ¢S (4.10)
B:p* = g5

8
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which are the FAS equations for the fine grid necessary conditions. In particular they
have the property of introducing no change to the fine grid problem once the minimum
has been reached.

Once an approximation to the coarse grid problem is found it is used to correct the
fine grid approximation by

zf — af + Py(2° - Ryaf)
uf — uf + P,(uf ~ Ryuf) (4.11)
pf — pf + P - Rpp?)

4.2 Relaxation

The general equations for state and costate variables on any of the grids involved in
the process have the form,

Az — Bu = f;

Avpt C*Ca = 4, (4.12)

These two equations are being relaxed on all levels using one of the standard relax-
ation methods for elliptic problems. That is, Gauss-Seidel or damped Jacobi in case A
is a discretization of a scalar PDE, and Collective Gauss-Seidel (CGS) or Distributed
Gauss-Seidel (DGS) when systems of elliptic PDE’s are involved. So the problem of
relaxation for z and p is quite standard. An important property of such relaxation
schemes is that for a wide class of discretization methods ( h-elliptic discretizations)
they have fast convergence for h-non-smooth errors (defined later) (see [B2]). This
implies that the errors in the z and p equations will have smooth residuals after just a
few relaxation sweeps. This does not mean that the errors for the optimization prob-
lem are smooth. The relaxation of equations (4.12) serves as a process that brings the
solution closer to the constraint surface defined by the first equation there.

As far as updating the control variables the situation is more complicated. Note
that a small change in any of the control unknowns u; implies a change in z and p
everywhere in the domain. Good efficiency for the full algorithm is to be obtained if the
changes in z and p that result from changes in u, can be calculated with a computational
cost which is not much greater than that of relaxing the equations (4.12) once.

The smoothness assumption on the coefficients of the operator A implies that non-
smooth errors correspond to non-smooth residuals and vice versa. Non-smooth errors
are also fast to converge, for h-elliptic discretizations, as mentioned before (this is not
the case for quasi-elliptic discretization schemes). This results in the following basic
rule for updating the control variables. ' '

o Make changes in the control variables that result in non-smooth residuals

Note that a change in any of the control variables may result in smooth changes
on one grid but non-smooth changes on a coarser grid. This suggest that the different
control variables will be relaxed on possibly different grids depending on their scale of



influence in the solution. To quantify more precisely these ideas we need the following

definitions.
Definition: A function ¥n(§) will be called h-non-smooth at £ € Qb iff

(untn)(€) — ¥n(€)l 2 al$a(é)]l 0 <ao<a<1,a0=0(1), (4.13)

where up, is a local averaging operator.
Definition: A function ¥,(¢) will be called umformly h-non-smooth in Q iff it is h-
non-smooth in every point £ € QP

Thus if 'lﬁ;‘ is uniformly h-non-smooth its effect on the solution z and p can be
calculated accurately with just a few relaxation sweeps. Typically 2-3 relaxation sweeps
are enough to reduce the errors by an order of magnitude. This will be the key to our
method of updating the control variables u;. Let

E’-‘ = {E e nh: ¢’-‘ is h-non-smooth at f} (4.14)
If h correspond to the coarsest level and = =h ; # ¢ then we define = = k. Define

Dh(f) = dla‘g d’fl(f)t e 9d:q(£))
b () = 1 if ¢} is h-non-smooth at ¢ (4.15)
kk =

0 otherwise
The qxq matrix D* will be used in defining the ‘relaxation for the control variables.
In case the functions %; are uniformly h-non-smooth the update of the control
variables becomes much simpler. The perturbation in » that is done in minimizing
the functional is by 7Dh(Bh)‘p”‘, followed by a few relaxation sweeps of the state and
costate equation in a vicinity of U._. yielding a good enough approximation to zh

and gt The a.ctual perturbation is then chosen so as to minimize the functional or the
other cho1ce as expla.med in section 2 I‘{ote tl}gt jhe multlphca,tlon by D" causes the
perturbation in the right hand side to be h-non-smooth on the given level. That i,
each control variable is being updated on the appropriate grid.

For ¢; with a singularity a slightly different approach is taken. Here the effect on the
solution is smooth away from the vicinity of non- smoothness of ;. This follows form

bas1c theones of elliptic partial differential equations [ADN]. Thus, 1f the observation

operator C is supported far enough from the smgulantles of 1/),, even coarse grids can

compute accurately the effect on Cz, which is the important quantity in updating
the u;. However, when the singularities are close to the support of C this is not the
case and some reﬁnement has to be done locally in order to account for the local non-

smoothness In practice, a few points around the sxngula.nty need to be relaxed, further

pomts are. relé.xed on coarser gndsr The ﬁnest gnd Wthh needs to be involved in the

process ‘with a given singularity is determlned from the accuracy achieved in C'% which

can be . est1mated using the quantities _
llche" — cha?h| (4.16)
and the knowledge about the accuracy of the dlscretlzatxon involved. The later, if not
known can be computed from - e s
HC":Y:"— Chizh”' -

“C"i:z" — Ch5,4hu (4.17)
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In any case, the work performed in the calculation of &",#* should not involve more
than one multigrid cycle, done as an FMG cycle used with local refinements. The exact
formulation of the algorithm for updating the control variables in the most general case
will be presented elsewhere. We denote the process of updating the control variables
in the direction % by

(z,p,u) « MinRel(z,p,u,%) (4.18)

Having defined the relaxation and the coarsening process the full algorithm can
now be described.

4.3 Unistep Algorithms

Let Vi, Wk, Ui and Hy be Hilbert spaces approximating V, W,U and H, respectively.
Let Ag, By and C}, be operators as follows A : Vi — Wy, B* : Uy — Wy, Ci 1 Vi —
Hy, approximating the operators A,B,C , Tespectively. Assume also that interpolation
and restriction operators P¥, P¥, P¥, RE, R, Rk, RE, Rk, RE are given as Rf @ Vi1 —
Vi, RE : Wit — Wi, RE : Upyr — Uk, B 2 Vo = Wi, RY : Wiy — Wi,
RX :Up 1 — Us, P*: Vi = Vi, P: : Wi — Wip1, PE: Up — Ugq1. Also assume the
the qxq matrices Dy (defined in section 4.2) are given.
On all levels minimization problems as follows are given,

minu"eu"d < C’kzk,mk >-2< m",g’; >-2< u",gﬁ >

4.19
Arzk = Bruk + g} (419)

Observe that this is equivalent to having the following systems of equations on all
levels

AgzF = Bruk + gk
17" + CiChz* = g} (4.20)
Bip* = gi.

Let (z*, p*, u*) be an approximate solution of (4.19). We define next an algorithm
for improving it, denoted by

(2%, 5", v*) — MG(z¥,p*,u*, gk, g5, 98) (4.21)
If £ =1 Then
1. relax the first two equation in (4.20) until convergence.
2. iterate until convergence:

2a. perform the cycle
(z*,p*,u*) « MinRel(zk,p",uk,Dk(gﬁ—B,:p"))

11



Else

End

2b. relax the first two equations in (4.20).

. perform the following v; times

la. relax the first two equation in (4.20)
1b. perform the cycle
(z*,p*, u*) MinRel(zk,pk,uk,Dk(g,’j—B,:p"’))

. Let k=k~1, and

9z = RE (g5 — Arpra®tl 4 By ubtl) 4 4, REghH

G =RE (g+ — AL P + Cfy 1 Croath ) + A REDFH
96 = Ry (9% - Bi,p**') + BuREpHH!

i

- perform 4 times the cycle

(%, 0k uF) — MG(c*, %, o, fE, 1%, %)

. correct fine grid solutions

mk+1 — :z:k'H +Pf(mk _ R’é :I:k+1)
P P LR - 2 g
uFtl o Rl g Pl(uk — RE ukt1)

. perform the following v; times

ba. relax the first two equation in (4.20)
5b. perform the cycle
(=%, p*, uF) MinRel(z*, p*,u*, Dy (g% — Byp*))

In order to obtain full efficiency the algorithm starts at the coarsest level, where
each time a refinement is done followed by a fixed number of MG cycles. This is the
N-FMG algorithm which is defined next.

B W N e

. Solve (4.19) for k=1
k=k+1, z*= Hl;—lmk—l; o* - H:—lpk—l’uk = ph-1yk-1

k _k _k

. Define 9z+9p:9u -
. Perform N time the cycle

(mk’p}c’uk) — MG(zk’pkauk:f;f) :)f!:)

5. If k=M stop, else goto 2. , 7
At the end of this algorithm an approximate solution to the minimization problem

on level ¥ = M is given.

5 - Numerical Examples

Numerical experiments were conducted with scalar elliptic problems governed by the
Laplacian in the unit square with Dirichlet boundary conditions. That is, using the
notation of section 2,
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N={(z,y):0<z,y <1}
V=W={¢€ Ly(N) : #lon = 0}

A=A (5.1)
H=LyI') T={(z,0):0<z<1}
C = 8/0n|r

The control space was IR?, Different cases were considered for (¢; j=1,...,9),
in the definition of B.

Uniform grids were used in the discretization with the standard 5-point formula for
the Laplacian, namely,

Ok = {(i/N,j/N):0< 4,5 < N}
TP = {(i/N,0):0< i< N} (5.2)
(APXPY = (XP .+ XB + XB_ + XE L —4XE)

where Nh = 1, h being the discretization parameter. The observation operator was
discretized using a 3-point formula,

(CPX™)i0o = £(1.5X%, — 2XP + 5X],) (5.3)

and the functions ¢;-‘ were discretized by simple injéction.
With this discretization the discrete solution is expected to have second order ac-
curacy. That is,

| X - X|| < B:h®

lu — ull < Buh? (54)
where ., 0, are constant independent of h (they depend on high order derivatives of
the state variable). It is enough to solve the discrete problem to an accuracy satisfying

IX* - X < [|X* - X

5.b
|88 — | < v — ] (5:5)

Here the tilde quantities represent the current numerical approximations to the solution
of the discretized problem. The quantities || X* — X||,[|u® — u|| are called discretization
€rrors.

In all the examples reported below the algorithm described in section 5 was used
with the following parameters: v; = 2,y = 1. The restriction operators for both the
residuals and the full solutions R’;, R:, RE, R’; were the 9-point full weighting, that is

HERE
6242 (5.6)
121

13



The interpolation operators PX+1, P:"'I were the standard bi-linear interpolation, IIX, H:

the bi-cubic interpolation and Rf = R, = I, the identity operator. The mesh size on
level k was 2-(¥+1) k=1 being the coarsest level. Results for 3-FMG-V(2,1) cycle are

given. In each table results for the L, residuals o, 7p, 7y of the state, costate and the
control equations are given. Their exact definition is given by

Ny
Izl = Z ((9%)is + (Bru*)ij — (Akz®)is)’hi (5.7)
”"'p”k = 2_: ((gﬁ)'.a - (Cka:z:k),,J (Aip )z,J)zhi (5.8)
il = 3 -((e% ) = (Bip*))? (5.9)
=1

where the scaling of h? in these definitions is used so that these norms approximate
the continuous norms and so residuals on different levels can be compared.

1. Distributed Control
In the distributed control case we have worked with the following problem

. Oz 2
min ./r‘(a_n — d)*do (5.10)

Az = Y1, wiys
zlan = 0. (5.11)
¥; = sin(njx;)sin(m;ré;) n;,m; integers,

Table 1 shows the results i); a Qge d1mens1ona1 control case, that is, ¢ = 1 where
m1 =mn; =1,1e a smooth case. This is the simplest of all cases and is given here
mainly for reference Residuals of the state, costate and control equations are given
separately. The error in the control (relative to the true differential error) is given as
well. Observe that a 1-FMG-V cycle gives solutions to the levels of discretization errors
on fine levels, as || — Uezact|| Teaches its minimum in essentially one cycle. The 0(h?)
behavior of the error is clear from the results, reflecting the order of the scheme used.

Table 2 shows the results of a similar experiment in which the control is three
dimensional (g = 3) with ny = ng =1,m; =mg = 1,n3 = ma = 2. The behavior here
is similar to the previous case. The O(h?) is evident also here.

2. Boundary Control
The boundary control case problem was

,. ,Ef’:a;m: . - 2
min fr (57~ ddo (5.12)

14
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Az =10
zlon = Lizy Wit (5.13)
¥; = sin(njwé1)lsn m; integer,

Tables 3 and 4 shows results for this problem. The first with ¢ = 1,m, =1, the
other with ¢ = 2,n; = 1,m3 = 2. Also in this case the results are basically optimal. a
solution to the levels of discretization errors are obtained in 1-FMG-V(2,1). The O(h?)
convergence toward the differential solution is evident in both cases. Observe that the
initial residuals on finer levels start are smaller by a factor which is close to four. This

is typical to examples with smooth solution and proper FMG interpolation operators
I, I,.

3. Pointwise Control
The pointwise control case problem was

min / (2 _ 4o (5.14)
r 0

u n

Az = E?:l ui i
z|an = 0. (5.15)
Yi=8(6-¢;),6 €

Tables 5,6 and 7 show results for non-smooth control. Results are given for one
two and three delta functions, i.e., ¢ = 1,2,3. The location of the delta function is
given in each table. Here the solution is less smooth than before. Still the results
show essentially the same behavior as in the smooth case. Observe that the initial
residuals on the different levels are of the same order, reflecting the non-smoothness of
the solution. This behavior cannot be improved by using a higher interpolation in the
refinement stage of the FMG algorithm, although local relaxation in the vicinity of the
singularities can improve the results we have not experimented with such ideas here.

In some of the experiments it can be observed that one of the three residuals shown
is increased in some of the cycles. This is reasonable since the three residuals are
coupled and it is only their sum which goes down in each cycle. The results presented
by all tables clearly demonstrate the effectiveness of the method developed here which
aimed at the full optimization problem, therefore leading to one-shot solution of these
problems. 1-FMG-V cycle is basically enough to reach below the levels of discretization
errTors.
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[level [ cycleno. | Jiralls | llrellz | llrullz [ [l% — ezactlla |
1 5 .337e—06 | .121e—05 | .397e—09 .8166
2 1 .591e—02 | .121e+00 | .415e—03 .589¢—-01

2 .104e—03 | .609e—02 | .975e—04 .612e-01
3 .216e—03 | .373e—02 | .485e—04 .568e—01
4 .592e—04 | .996e—03 | .183e—04 .581e-01
5 .250e—04 | .446e—-03 | .737e—05 .576e—-01
3 1 .860e—03 | .522¢—01 | .319¢-04 .174e—-01
2 .648e—03 | .292¢—02 | .209¢—06 .149e¢-01
3 121e—04 | .136e—03 | .755e—07 .147e-01
4 1 .125e—03 | .357e—01 | .434e—05 .329e—-02
2 324e—04 | .132¢e—02 | .371e—06 .305e—-02
3 407e—04 | .683e—04 | .294e—07 .301e—-02

Tablel: g=1,n,=1,m; =1

[ level | eycleno. [ flrzllz | llmpllz | llrullz | llu— uemc‘l,l'{ll
1 5 .246e—06 | .110e—05 | .374e—-08 .253e+00
2 1 .887e—~02 | .207e+00 | .654e—03 174e+00

2 .378e—02 | .592e—-01 | .200e-03 .117e4-00
3 .169e—02 | .258e—01 | .103e—03 .994e—-01
4 .237e—03 | .359e—02 | .271e—-04 .100e+00
5 .905e—04 | .130e—02 | .908¢—-05 .102¢+00
3 1 .246e—02 | .110e+00 | .772e—04 427e—-01
2 418e—03 | 114e—01 | .222e-04 .317e-01
3 113e—03 | .294e-02 | .755e~05 .293e-01
4 1 .380e—03 | .618e—01 | .835e—05 .858e—02
2 .595e—04 | .316e—02 | .110e—05 .630e—02
3 383e—04 | .167e—-03 | .166e—06 .618e—02

Table2: ¢g=3,mi=nz3=1,my=my=1,n;=ma =2
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” level | cycleno. | |lrsfl , | Irellz | llrullz | [ = vezactllz
1 5 .631e—06 | .566e—07 | .000e+00 | .179e+00
2 1 | .466e—01 | .122e+01 | .126e—02 | .212e—01

2 .159e—01 | .379e¢+00 | .123e—03 .617e—01
3 .521e—-02 | .126e+00 | .142e—04 477e-01
4 177e—02 | .426e—01 | .161e—05 .524e—01
5 597e—03 | .144e—01 | .183e—06 | .509e—01
3 1 .826e—02 | .480e+00 | .431e—07 | .139¢—01
2 .184e—03 | .146e—01 | .332¢-10 .133e—01
3 .668e—04 | .641e—03 | .200e—10 | .133e—01
4 1 .158¢—02 | .264e+00 | .689¢—06 | .225¢—02
2 .338¢—03 | .199e—01 | .285¢—08 | .279¢—02
3 .273e—03 | .253e—02 | .895e—11 .275e—02
Table3: g=1,n; =1

[ level [ cycleno. | irglla | llrpllz | lrallz ] 1% — tegacel]2 ||
1 5 .631e—06 | .800e—06 | .296e—13 .334e+00
2 1 .354e+00 | .786e401 | .288¢—01 .149¢-01

2 .206e+00 | .388¢+01 | .896e—02 .150e+-00
3 .120e4-00 | .229¢+4-01 | .307e—02 .754e-01
4 .706e—01 | .134e+01 | .106e—02 .117e+00
5 415e—-01 | .792¢+00 | .367¢e—03 .930e—-01
3 1 .523e—01 | .250e+4-01 | .924e-03 .392e—-01
2 .106e—01 | .526e+00 | .446e—04 .298e—01
3 .212e—01 | .104e+00 | .168e—-05 .281e-01
4 1 .120e—01 | .126e+01 | .394e—05 .528e—02
2 .628e—03 | .668e—01 | .958¢e—08 .600e—02
3 .274e—03 | .466e—02 | .313e—10 .594e—-02

Table 4: g =2,n; = 1,n, = 2.
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[ level | cycle no. [ [zl ST lrallz | [l% ~ Yezact]]2 ||
1 5 | .477¢—06 | .853¢—07 | .279¢—08 | .370e.100
2 1 485e+00 | .172e+01 | .363e—02 | .536e—01

2 | .395e~01 | .167e400 | .332¢—03 | .863e—01
3 | .320e—01 | .310e—01 | .132¢—03 | .572e—01
4 | .931e—02 | .131e—01 | .447e—04 | .656e—01
5 364e—02 | .445e—02 | .166e—04 | .624e—01
3 1 | 341e400 | .791e—01 | .115e—03 | .11de—01
2 | .861e—02 | .277e—01 | .118e—04 | .128e—01
3 | .248e-02 | .510e—02 | .258¢=05 | .138e—01
1 1 | .574e+00 | .332¢—01 | .364e—05 | .208e—02
2 | 13201 | .112e—02 | .770e-07 | .272¢—02
3 | .587¢—03 | .200e—03 | .883¢—07 | .275e—02
Table 5: ¢ = 1,4, = (.5,.5)

[ level | cycleno. [ Irellz [ [Irall rullz | 4 — Yegact]l2 ||
1 5 211e—05 | .921e—05 | .347e—06 .864e+00
2 1 .619e+00 | .437¢+01 | .363e-01 .390e+00

2 .236e+00 | .223e+01 | .256e—-01 .181e+00
3 .147e+00 | .144e+01 | .166e—01 .536e—01
4 .927e—01 | .921e+00 | .105e—01 425e—-01
5 .598e—01 | .591e+00 | .677e—02 .909e-01
3 1 .391e+00 | .38%¢+01 | .148e—01 .537e-01
2 .38%¢—-01 | .200e+00 | .160e—02 .373e—-01
3 .138e—01 | .336e—01 | .523e—03 .312e-01
4 1 .660e+00 | .361e+00 | .587e—03 .673e—-02
2 .168e—01 | .187e¢-01 | .405e—04 Slle-02
3 .708e—03 | .120e—02 | .116e—06 .509e-02

Table 6: q= 2, E]_ = (75, .5),52 = (5, 5)
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[level [cycleno. | liralls [ lIrella [ frullz [ 1% ~ vesactl]2 |
1 5 .131e—05 | .953e—05 | .334e—05 | .115e+01
2 1 816e+00 | .447¢+01 | 477e—0L | .531e+00

2 293¢+00 | .245¢+01 | .319e—01 | .273e+00
3 215400 | .177e401 | .243e—02 | .848¢—01
4 .131e+00 | .119e+01 | .162e—01 | .345e—01
5 110e+00 | .883e+00 | .131e—01 | .127¢400
3 1 :396e+00 | .412¢+01 | .155e—01 | .793e—01
2 431e—01 | .214e+00 | .236e—02 | .640e—01
3 244e—01 | 476e—01 | .103e—02 | .531e—01
4 1 .683¢+00 | .373¢+00 | .132e—02 [ .168e—01
2 402e—01 | .341e—01 | .258¢—03 [ .880e—02
3 452e—02 | .533e—02 | .300¢—04 | .788e—02

Table 7: g = 3,6 = (.75,.5),& = (.5,.5)& = (.25, .5)
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