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ABSTRACT

This paper discusses the efficient numerical treatment of optimal control problems gov-

erned by elliptic PDE's and systems of elliptic PDE's, where the control is finite dimensional.

Distributed control as well as boundary control cases are discussed. The main characteristic

of the new methods is that they are designed to solve the full optimization problem directly,

rather than accelerating a descent method by an efficient multigrid solver for the equations

involved. The methods use the adjoint state in order to achieve efficient smoother and a

robust coarsening strategy. The main idea is the treatment of the control variables on ap-

propriate scales, i.e., control variables that correspond to smooth functions are solved for on

coarse grids depending on the smoothness of these functions. Solution of the control prob-

lems is achieved with the cost of solving the constraint equations about two to three times

(by a multigrid solver). Numerical examples demonstrate the effectiveness of the method

proposed in distributed control case, pointwise control and boundary control problems.
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under NASA Contract No. NAS1-18605 while the author was in residence at ICASE, NASA Langley Research
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1 Introduction

Computations in optimal control for distributed parameter systems demand huge com-

putational resources. These are optimization problems with constraints which are par-

tial differential equations. This paper focuses on the computational aspects of optimal

control problems governed by elliptic partial differential equations or elliptic systems,
where the control variables are of finite dimension.

The classical optimal control algorithms use the costate ( a Lagrange multiplier) in

order to define an iteration that converges to the minimum. These are descent type

algorithms which involve the solution of the state and costate equations per iteration of

updating the control variables. The state and costate equations, being discretizations

of partial differential equations are quite expensive to solve. The over all solution of

the optimization problem becomes therefore very expensive.

The need for more efficient methods is obvious. One way of improving the situation

is by using fast solvers , i.e., multigrid methods, for the state and costate equations at

each step of a descent algorithm. This may result in a significant saving in computa-

tional time, but will not affect the number of outer iterations for updating the control
unknowns; it will just make the time required for each iteration smaller.

A much more effective solution process can be obtained by having an algorithm

that is aimed at the full optimization problem directly, rather than accelerating a

linear equation solver. This paper is devoted to this approach. Multigrid algorithms

that were designed to tackle the full problem rather than being a mere fast linear solver

have been developed for a class of problems. The first one to be developed was the

FAS algorithm for nonlinear equations [B1]. l_ecently such an approach was successful

in treating some bifurcation problems IT2] and stability calculation IT2]. In all these

cases maximal efficiency has been obtained as a result of treating the full problem
directly.

The high efficiency in the problems treated here is achieved by working on all

unknowns of the problems (i.e., state, costate and control unknowns) simultaneously
where scales of the different unknowns are taken into account. The main rule is to

treat different control variables on different grids depending on their scale of influence.
This means that a variable that has a non local effect on the solution should be treated

mainly on coarse levels. On the other hand, a variable that has a non-smooth effect

on the solution in some neighborhood, will be relaxed in that neighborhood on fine

levels as well. More generally, local work on fine grids will be done to update a certain

control variable only at the vicinity where it has a non smooth effect on the solution

while work on coarser levels for that variable will be in larger and larger neighborhoods

of that region.

As is done in the classical optimal control algorithms a costate variable is introduced

in our solution process. This allows the construction of good relaxation schemes in

general, and is even more important when coarsening is considered (as explained in

section 4). In the relaxation part of the algorithm we distinguish two main steps. One

is designed to smooth the errors in the state and costate for a given choice of the control

variables. This is done for the state variable using the Gauss-Seidel (GS) relaxations

for scalar elliptic equations of state and Distributed-Gauss-Seidel (DGS) for systems of



ellipticequations[B2].The equationsobtainedforthe costateare very similarto the

stateequationsand arerelaxedusing essentiallythe same relaxationmethod asforthe

stateequations.The other step ofthe relaxationisdesigned forupclatingthe control

variables.This stepof the relaxationis done takinginto account the smoothness of

the change introducedin the stateand costateas a resultofa smallchange in one of

the controlvariables.That is,some work isto be done on coarsegridsonly and some

on finelevelsin specialsubdomains. The update ofthe controlvariablesisdone in the

followingway. A small change isintroducedin them, then itseffecton the stateand

the costateiscomputed approximately.The amplitude of that change in the control

isthen chosen so as to reduce the functionalor to minimize the residualsof certain

equations'

The algorithms constructed that way are aimed at the full problem directly and

need no iterations within iterations as the standard _gorithms require.
Numerical examples show that solutions to the levels of discretization errors are

obtained in ju_ a t_ew work units, where a work unit is the work involved in relaxing

the state equations. The complexity of solving a control problem is about twice that of
solving the corresponding constraint equations, which is essentially optimal. Examples

for distributed control_ boundary control and polntwlse control are given and all show

the same efficiency.

2 The Problem

Let 1},W,/g and _/be ttilbert spaces. Let A,B and C be operators as follows A : V

W, B :/_ _ W, C : ]} ---*7-/and let/gad C_U. Consider the problem

min_eu, d ]lC$ - d]]_ (2.1)
At, = Bu + f

Here A is assumed to be an elliptic partial differential equation (PDE) or an elliptic

system of PDE's with smooth coefficients (see [ADN] ). B is assumed to be a finite

dimensional operator, that is, there exist functions Cj E W j = 1,..., q such that

q

j=l

We assume that the functions¢1 aresmooth exceptfora finitenumber ofsingularities.

/gisthen identifiedwith _q. The adjointof B, B* :)IV---*_q isgivenby

B'¢ = (<

The following equations hold at the minimum,

Az = Bu + .[

A*p + C*Cx = C*d

B*p --- 0

(2.3)

(2.4)



where B and B* are _ven by (2.2) and (2.3) respectively. Let xo be a solution of

Axe -- f and d = d- Czo. Problem (2.1) can be written in terms of x = _ - ¢o and
"_ as

minu_u_a IICx - dll_ (2.S)
Az = Bu

So without loss of generality we can assume that f = 0.

2.1 Descent Methods

Iterative methods for solving the control problem are described. A triple (¢, u,p) will

be called compatible if it satisfies the equations

Ax - Bu = 0

A*p + C*Cx = C*d (2.6)

Given an approximate solution (x, u) of (2.5), an improved one is obtained as follows.

Denote by E(x, u) the functional ]ICx - dill. For a compatible triple (¢, u,p)

E(z,u)=- < Cz,Cz >n -2 < u,B*P >u + < d,d >n (2.w)

We look for a change 7fz in u and corresponding changes in x,p that result in a new

compatible triple, and for which the value of E is smaller. Let (x + 75, u + 7fi,p + 7P)
be a new compatible triple. Then

E(z + + S(x,
-27 < C_,Cx >n -7 2 < C_,C% >n

-27 < B*p,_ >u -27 < B*_,u >u -272 < B*_,_z >_

Choosing _ = B'p, and _,_5 satisfying A_ - B_ = 0 and A*_ + C*C_ = 0 we get

(2.8)

-27(< C_,Cx >n + < B*p,B*p >u + < B*_,u >u)

-72(2 < B*_,B*p >u + < C_,C_. >n)

Among all possible 7, the choice

(2.9)

1 < Cb:,Cx >_ + < B*p,B*p >u + < B*_,u >u

7 = 2 IlC$llan + 2 < B*_,B'p >u
(2.1o)

minimizes the functional in the direction chosen. This can be a basis for an algorithm

for solving the optimal control problem.

A Descent Algorithm
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Set u0 = 0,po -- 0, 7 --i, n= I.

While 7 > e Do

Begin

i. Solve for Cn the equation At. - B_n = 0

2. Solve for P. the equation A*pn + O*(Czn - d) -- 0

3. set = B'p.'solve = 0, + C'C = 0.

(approximately) for _,_ respectively.

4. Set u.+i = u. + 7fi, Zn+l = _. + "_X, Pn+l -- P. + "[P, n = n + 1

with 7 given by (2.10).

End

Approximate Descent Algorithm

Set uo = O,po = 0, 7 =I,_=I.

While 7 > e Do

Begin

I. Starting with ¢n = zn-I relax Acn = Bu., yielding

n
a solution satisfying ATn - Bu_ = rz

2. Starting with pn = P.-I relax A*p. + C'Cz. = C'd,

yielding a solution satisfying A'p. + C*(Cz.- d) - r_

3. Set _ = B*p.. Solve A_-B_=O, A*@+C*C_=O

(approximately) for _,;5 respectively.

4. Set un+x=u.+7_, z.+l =z.+7_, Pn+I=P.+7/_, n=n+l

with 7 given by (2.10).

End

is a small enough number, depending on the accuracy required for the solution.

Note that if ]lr_"[l---*0 and Ilr_'ll_ 0 then the above a/gorithm converges to the

minimum of (2.5).

The expensive steps in this algorithm are the ones for obtaining _ and/_ by ap-

proximately inverting A and A*, which are elliptic operators (or systems). Moreover,

the solution of the elliptic equations governing the state and costate needs to be done

many times.

Remark Considering the form of the necessary conditions one may be tempted

to choose 7 based on minimizing the L2 residuals of the third equations of (2.4). This

leads to

< B'p, B_@ >

7 = < B*#,B*_ > (2.11)
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which may not be a good choiceas < B'p, B*i5> may vanish,causingthe iterationto

get stuck away from the minimum.

3 Naive Multigrid Approaches

The approximate-descentalgorithmpresentedin the previoussectionsuggestsan im-

mediate accelerationprocedure, namely, using some fastsolverin steps 1,2,and 3.

Sincethe form of the operatorA* isvery similarto thatof A the same fastsolvercan

be used in allthe steps.The operator A isassumed to be ellipticand thereforecalls

formultigridmethods.

Assume that we are given I/k,YYk,Uk and 7_k Hilbertspacesapproximation the

originalY,W,/g and 7-/.Let Ak,Bk and Ck be operatorsas followsAk :Vt _ Wk,

Bk :/gk-_ Wk, Ck :_.'k--*_k. Assume alsothatinterpolationand restrictionoperators

k k given; R_ :R=,R$,R_ are ])k+l -_ ])k, R_ : Wk+ 1 -_, _)k, Rku : Z'_k+l --4" Z_k,

P_ : _)k--_Vk+1, P_ : _Yk -_ )4)k+i,p k :Uk --*Llk+l. The superscriptk in these

expressions represent a level of discretization where k : 1 correspond to the coarsest
level.

Denote by MG(Ak, b, x, y, _'1, u2) a multlgrld V(ul, u2)-cycle for solving Akx = b on

level k, starting with initial approximation x ending with y. Assume that a solution of

the minimization problem is needed for level k = m. A possible fast algorithm for it,

starting with initial approximation (x m, um,p "_) is denoted by

(x"', u", pm) _ MinMa(Am, Bin, Cm, _m, Urn, p,_, d m)

and given by

(3.12)

Set u'_ -- O,P_ - O, 7 --1,n=l.

While 3, > e Do

Begin
FfL _ FI_

1. Porform a cycle MG(A,-,,,B,.,u n ,z n ,xn+l,ul,u2 )

pe=fo a cycle
WW _ -lr_ ~Er_

3. Porfoz_ a cyclo MG(A,_,BmB,_p ,x,_ ,xn+x,uz,u_ )

4 Porform a cycle MG(A*, t',* t-, _,_, _ -._• --vmvrn n+l,Pn ,Pn+I,V1,V2)

s. Set p +l
n = n + 1 and 7 given by (2.10).

End

An obvious improvement of this algorithm is to start with a good initial approxi-

mation for the optimization problem on level m. This can be achieved easily by solving

the problem first on level m- 1. Applying this idea recursively one arrives at the

following algorithm.



Set u_ = 0,x_=0,p_=0,k=l.

While k < m Do

Begin

I. Perform a cycle

(,k, M i MC(A ,Bk,Ok, u d

2. If k--m stop

3o Z k+l ]"[ka_k _k+l = Hpkpk,uk+l = pkuk,k "= k + 1

End

k k
where Hx,H p are operators analogous to P_ and P_, respectively, but of possibly a

higher order (as is usual in multigrid algorithms for elliptic problems).

Our aim is to develop an algorithm in which the total computational cost of solving

the control problem will be only few times (2-3) more than that of solving for the state

variable • given that u is known. This is done in the next sections where a multigrid

approach which is aimed at the full problem directly is constructed.

4 "One Shot" MultigridiViethods

In this section we describe a multigrid method that is aimed at the full optimization

problem, rather than serving as a fast solver in a step of a basic optimization algorithm,

as was done in the previous section.

The construction of this method has been achieved basically by following the next

five steps.

1. Distinction between smooth versus non-smooth components in all types of vari-
ables involved

2. Construction of a basic non-expensive relaxation for the full problem.

3. Classification of rate of convergence of the basic relaxation for the different vari-

ables in the problem, with regard to their smoothness.

4. Based on 3, determination of the role of coarse grids in accelerating the fine grid

convergence.- _::- -- -....

5. Constructionofa coarsegridproblem thatapproximate the Fullfinegridresidual

problem.

Steps 1,2 and 3 are discussed in detaiI_ in section 4.2, the rest in section 4.1. The

resulting algorithm involves a sequence-0f _discrete optimization problems, starting

from a very coarse discretization ending with a fine grid one on which a solution of the

problem is required. The optimization problem on each level is served to accelerate the

convergence of the next finer level problem. The iterative proces_s for solving the finest

grid problem involves a relaxation proces-s on-each level whose effect is to damp out the

non-smooth partof the error, i.e., the part o_the error which cannot be represented

on the next coarse grid in the sequence. This together with a proper transferring of

6
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information (residuals and current fine grid solution) from fine to coarse levels and

back to fine levels results in a very high efficiency. A full description of the method

includes a relaxation scheme and a coarsening strategy.

4.1 Coarsening

A coarsening scheme requires the definition of coarse grid spaces analogous to Y, W, bt,

which we denote by the same letters with a superscript c. Also inter grid transfer

Px, Pp, Pu and R=, P,_, R_ and coarse grid operators Ac, Bc, Cc are required. Having all

this we can define the coarse grid minimization problem. An attempt to use

minuoe_d [ICt(z f + Pxz c) - df[I 2

Acz c - Bcu _ = R=(g/= - ASz! + BSuf )
(4.1)

as an approximation for the error on the fine grid fails. The reason for this is that

this coarse grid minimization problem does not preserve the fine grid minimum once

it was reached. This follows immediately from the necessary conditions of the coarse

grid problem (4.1), namely,

Ao=° - ° = R=(gl - AS + BJ)
* ¢+ C;Co = R,C (dJ -cs t)

B*f = O.

(4.2)

The coarse grid minimization problem formulated above is a problem for the correc-

tion in the fine grid approximation. Therefore, upon reaching the fine grid minimum

the coarse grid correction x _, u _ should be zero. This however is not the case since the

right hand side of the second equation is non-zero in general at the minimum of the

fine grid problem.
In order to define a correct coarse grid problem we rewrite the fine grid minimization

problem as

mint_1eu[,_ < Cfxl,z ! > -2 < zl,9lp > -2 < ul,9_ >

A/x! _ B/u/ = gl
(4.3)

where 9_/ = g, gp/= C*d and g_/= 0 on the fine grid. Note that the problem is defined

f ! g_ are given.once g=, gu,

1. Correction Scheme. The coarse grid problem for the correction is of the same

form, that is,

• z ,gl; >-2<u,g=>man=eu_d < C_z _,z ¢ > -2 < ¢ c _
A_z _ - B_u _ = g_

(4.4)



where

g_--_(g -A_/- Cco=*)
g. = _.(g_- s;/).

The necessary conditions for this coarse grid problem are

(4.5)

AcxC _ Bcu c = gC

A*p c + C* Cca:c = g_,
B.p, = g_,

(4.6)

which are the Correction Scheme (CS) (see [B2]) equations for the fine grid necessary

conditions. In particular they have the property of introducing no change to the fine
grid problem once the minimum has been reached.

Once an approximation to the coarse grid problem is found it is used to correct the
fine grid approximation by

L

xl ,-- x! + P=x c

u! _ u! + P_,uc (4.7)
pl ._ pl + pppC

Note that this coarse grid problem depends on the costate p obtained after the fine

grid relaxation process. Without using it the coarsening becomes very difficult as was
explained before.

2. FU[I"_ppr0x|mat|on Scheme.: -The coarse grid problem for quantities that

approximate the full fine grid solution rather than the correction for it have similar
form. The minimization problem is

where

minuo_u:d < Ccxc, x c > -2 < xC,gp > -2 < uC, g_ >

AcxC _ Bcu c = gO=
(4.8)

g_ = R=(g_ - Af= _ +B!uI) + A_xx! _ BcTL, uf

g_, = Rl,(g L - g*lpl - C*Ccxl) + A*P_p! + C*Cck_.x! (4.9)

g_= R,,(g_- B'/) + B*_p!.
: -

The operators Rx, Rp_/_ are fine to coarse grid transfers possibly different from R=, Pip, Ru
(see [B2]). The necessary conditions for this coarse grid problem are

AcZ _ : B_u _ _ g_

A*_pe + C*_Cca:c -g_
Bop - g_

(4.10)
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which are the FAS equations for the fine grid necessary conditions. In particular they

have the property of introducing no change to the fine grid problem once the minimum

has been reached.

Once an approximation to the coarse grid problem is found it is used to correct the

fine grid approximation by

pf _ pl + pp(pC_ _pf )

(4.11)

4.2 Relaxation

The general equations for state and costate variables on any of the grids involved in

the process have the form_

Az- Bu = f_ (4.12)
A*p + C*Cz = fp

These two equations are being relaxed on all levels using one of the standard relax-

ation methods for elliptic problems. That is, Gauss-Seidel or damped Jacobi in case A

is a discretization of a scalar PDE, and Collective Gauss-Seidel (CGS) or Distributed

Gauss-Seidel (DGS) when systems of elliptic PDE's are involved. So the problem of

relaxation for z and p is quite standard. An important property of such relaxation
schemes is that for a wide class of discretization methods ( h-elliptic discretizations)

they have fast convergence for h-non-smooth errors (defined later) (see [B2]). This

implies that the errors in the z and p equations will have smooth residuals after just a
few relaxation sweeps. This does not mean that the errors for the optimization prob-

lem are smooth. The relaxation of equations (4.12) serves as a process that brings the

solution closer to the constraint surface defined by the first equation there.

As far as updating the control variables the situation is more complicated. Note

that a small change in any of the control unknowns uj implies a change in z and p

everywhere in the domain. Good efficiency for the full algorithm is to be obtained if the

changes in z and p that result from changes in u, can be calculated with a computational

cost which is not much greater than that of relaxing the equations (4.12) once.

The smoothness assumption on the coefficients of the operator A implies that non-

smooth errors correspond to non-smooth residuals and vice versa. Non-smooth errors

are also fast to converge, for h-elliptic discretizations, as mentioned before (this is not

the case for quasi-elliptic discretization schemes). This results in the following basic

rule for updating the control variables.

• Make changes in the control variables that result in non-smooth residuals

Note that a change in any of the control variables may result in smooth changes

on one grid but non-smooth changes on a coarser grid. This suggest that the different

control variables will be relaxed on possibly different grids depending on their scale of

9



influencein the solution. To quantify more precisely these ideas we need the following

definitions.

Definition: A function eh(_) will be called h-non-smooth at _ E f_h iff

Ch( )l > , lCh( )I o < so _< < 1, o = 0(1), (4.13)

where #h is a local averaging operator.

Definition: A function eh(_) will be called uniformly h-non-smooth in fl iff it is h-
non-smooth in every point _ E l'_h

Thus if ¢7 is uniformly h-non-smooth its effect on the solution z and p can be
calculated accurately with just a few relaxation sweeps. Typically 2-3 relaxation sweeps

are enough to reduce the errors by an order of magnitude. This will be the key to our

method of updating the control variables uj. Let

-j = _ C : ¢j is h-non-smooth at _ (4.14)

If h correspond to the coarsest level and ._h_j ¢ ¢ then we define -i=h= _h. Define

Dh(_) = diag(d_l(_),...,d_q(_))

1 if ¢_ is h-non-smooth at ( (4.15)d_k(() = 0 otherwise

The qxq matrix D h will be used in defining the relaxation for the. control variables.

In case the functions ej are uniformly h-non-smooth the update of the control
variables becomes much simpler. The perturbation in u that is done in minimizing

the functional is by 7Dh(Bh)*p h, followed by a few relaxation sweeps of the state and

costate equation in a vicinity of [.jEh, yieldinga good enough approximation to _h

and _h. The _tual perturbation is then.............chosenso as to minimize the-functional or the

other choice as explained in section 2_ Note that the multiplication by D h causes the
perturbation in the right hand sideto be h--non-smooth on the given level. That is,

each control variable is being updated on the appropriate grid.

For ej with a singularity a slightly different approach is taken. Here the effect on the
solution is smooth away from the vicinity..... of non-smoothness of ej. This follows form

basic theories of e_'ptic partial differential equations !ADN]. Thus, if the observation
operator C is supported far enough from the singularities of ej, even coarse grids can

compute accurately the effect on Cz, which is the important quantity in updating

the uj. However, when the singularities are close to the support of C this is not the
case and some refinement has to be done locally in order to account for the local non-

smo0thness--!npraetice , a few points around.................the singularity need to be relaxed, further

points are relaxed on coarser grids. T hefines._t grid which needs to be inv01ved in the

process with a given singularity is determined from the accuracy achieved in C_ which
can be es-timate-d using the quantities ........

[[Ch_ h - Ch_2h[I (4.16)

and the knowledge about the accuracy of the discretization involved. The later, if not

known, can be computed from -

llCha:h - 6'hz_h[] (4.17)
ICh 2h _ Ch 4hll

10



In any case, the work performed in the calculation of 5:h,iOh should not involve more

than one multigrid cycle, done as an FMG cycle used with local refinements. The exact

formulation of the algorithm for updating the control variables in the most general case

will be presented elsewhere. We denote the process of updating the control variables

in the direction _ by

(:r,p, u) ,-- MinRel(z,p, u, _) (4.18)

Having defined the relaxation and the coarsening process the full algorithm can
now be described.

4.3 Unistep Algorithms

Let "l)k,_k,Hk and _k be Hilbert spaces approximating ]), W,H and _, respectively.

Let Ak, Bk and Ck be operators as follows Ak : _k _ _Yk, Bt_ : L/k _ W/c, Ck : _)k

_/k, approximating the operators A,B,C, respectively. Assume also that interpolation

and restriction operators P_, k k k -k -k -kp_,p_,R_,Rp,Ru, Rx,Rp,R,,k k are given as R k-: ];k+l

._ :u_,+_--,u_,,P:: vj, _ vk+_,P_ : w_ _ w_,+_,P_ :u_,_ u_+_.Alsoassumethe
the qxq matrices Dk (defined in section 4.2) are given.

On all levels minimization problems as follows are given,

k k k
min. h_l,_ < Ck_k,z k > -2 < z ,gi; > -2 < uk,g;i >

Ak_ k = Bku k + g_
(4.19)

Observe that this is equivalent to having the following systems of equations on all
levels

Ak:e k = Bku k + g_

A_p k + C_Ck:_ k = g_
Blpk= g_.

(4.20)

Let (:_k,pk,uk) be an approximate solution of (4.19). We define next an algorithm

for improving it, denoted by

(zk,p k, u _) _ MG(zk,p k, u_,g_,g_,g_) (_._1)

If k = 1 Then

I. relax the first two equation in (4.20) until convergence.

2. iterate until convergence:

2a. perform the cycle

(x_,pk,_) _- MinRel(,_,_,u_,Dk(_ - B;p_))

11



2b. relax the first two equations in (4.20).

Else

I. perform the following vl times

In. relax the first two equation in (4.20)

lb. perform the cycle

(xk,p_,u_) _- Mi,_Re@_,_,_:,D_(d - B;_p_))

2. Let k-k-l, and

9_ = R_ (g_+l _ Ak+az k+' + Bk+lu k+a) + A_.,...,.

- --k+v- + C;,+_Ck+_uk+_) + _k-%v

3. perform 7 times the cycle

(zk,pk,uk) ,__ MG(zk,pk,u_, k k,:;, )
4. correct fine grid solutions

+
5. perform the following Vl times

5a. relax the first two equation in (4.20)

5b. perform the cycle

End

In order-to Obtain full efficiency the algorithm starts at the coarsest level, where

each time a refinement is done followed by a fixed number of MG cycles. This is the

N-FMG algorithm which is defined next.

1. Solve (4.19) for k= i

2. k -- k al- 1, F,I¢ -- IIzk-l-k-lw , pk .: l].p'rrk-lpk-1 , u k : p_k-1..u.k-1 .

3. Define k k kgz,g_,gu.

4. Perform B time the cycle

(zk,pk,u _) _ MG(_,k,pk,uk,f_,fkp,f_)

5. If k = M stop, else gore 2.
At the end of this algorithm an approximate solution to the minimization problem

on level k = M is given.

5 Numerical Examples

Numerical experiments were conducted with scalar elliptic problems governed by the

Laplacian in the unit square with Dirichlet boundary conditions. That is, using the

notation of section 2,

12



= {(=,_/):o_<_,y _<i}
v : w = {@e z_(_):¢la.: o}

A=A

: L2(r) r = {(z,o): o < z _< 1}

(7= O/On[r

(5.1)

The controlspace was _q. Differentcaseswere consideredfor(%bj j = 1,...,q),

in the definitionof B.

Uniform gridswere used inthe discretizationwith the standard 5-pointformula for

the Laplacian,namely,

_h = {(ilN, j/N) : 0 <_i,j <__N}

r h = {(i/N,0): 0 < i < #} (5.2)
(AhXh),,j= b(Z,__l,_+ X,"+l,j+ X_j__+ Z_j+_-4Z_,j)

where Nh = 1, h being the discretization parameter. The observation operator was

discretized using a 3-point formula,

(c"x"),,o = _(1.5X_o-_xh + .5x_,_) (5.3)

and the functions ch were discretized by simple injection.
With this discretization the discrete solution is expected to have second order ac-

curacy. That is,

[]X h - X]] _<flxh 2 (5.4)
II_"- _ll <-_uh2

where _x,_, are constant independent of h (they depend on high order derivatives of

the state variable). It is enough to solve the discrete problem to an accuracy satisfying

I1£h - xhll <<IIXh - xII
II_h - _hll <<II_h - _11

(5.5)

Here the tilde quantities represent the current numerical approximations to the solution

of the discretized problem. The quantities [IX h- XI] , lIuh- u][ are called discretization

errors.

In all the examples reported below the algorithm described in section 5 was used

with the following parameters: ul = 2, u2 = 1. The restriction operators for both the

residuals and the full solutions R_, R_, ]_, R_ were the 9-point full weighting, that is

1 2 1]
1 242

16 1 2 1
(5.6)

13



The interpolationoperatorsp_+1 ppk+1were the standardbi-linearinterpolation,II_,II_

the bi-cubicinterpolationand ]_ = Ru = I, the identityoperator.The mesh sizeon

levelk was 2-(k+1),k=l beingthecoarsestlevel.Resultsfor3-FMG-V(2,1) cycleare

given.In each tableresultsforthe L2 residualsrx,rp,ru of the state,costateand the

controlequationsare given.Their exact definitionisgivenby

11==11_= _ k
i,j=l

N_

(AkP )id) hk= ((gf,),.j- (c_ck )_._-

I1",,11_= _((g2)_- (B;P_)_)2

(5.z)

(5.8)

(5.9)
1=1

where the scalingof h_ in these definitionsisused so that thesenorms approximate

the continuousnorms and so residualson differentlevelscan be compared.

I. Distributed Control

In the distributedcontrolcasewe have worked with the followingproblem

• r 0x

_n (s.lo)

A.X = qEi=l ui¢i

zlOf_ = 0. (5.11)

Cj = 8in(njr_l)sin(mjr_) nj,mj integers,

Table 1 shows the results for a one-dimensional control case, that is, q = 1 where

mx= nl = 1, i.e. a smooth case. This is the simplest of all cases and is given here

mainly for reference. Residuals of the state, costate and control equations are given

separately. The error in the contr_o]__(relative to the true differential error) is given as
well• Observe that a 1-FMG-V cycle gives s_olutions to the levels of discretizatlon errors

on fine levels, as I[u - u,x_ctll reaches its minimum in essentially one cycle. The O(h 2)

behavior of the error is clear from the results, reflecting the order of the_scheme used•
Table 2 shows the results of a similar experiment in which the control is three

dimensional (q = 3) with nl = na = 1,ml = m_ = 1, n2 = ms = 2. The behavior here

is similar to the previous case. The O(h 2) is evident also here.

2. Boundary Control

The boundary control case problem was

• bx
Jrf (_n - d)2da (5•12)_n

I

q

14



/Xx=O

x loft q

1hi = sin(nj_Cl)lan nj integer,

(,5.13)

Tables 3 and 4 shows resultsfor thisproblem' The firstwith q = l,nl = I, the

other with q - 2,nl - 1,n2 - 2. Also in thiscasethe resultsare basicallyoptimal, a

solutionto thelevelsofdiscretizationerrorsareobtainedin 1-FMG-V(2,1). The O(h _)

convergencetoward the differentialsolutionisevidentinboth cases.Observe that the

initialresidualson finerlevelsstartare smallerby a factorwhich iscloseto four.This

istypicalto examples with smooth solutionand proper FMG interpolationoperators

H=, Hp.

3. Pointwise Control

The pointwisecontrolcaseproblem was

rainf _
u Jr

(5.14)

/_X q

z[on = O. (5.15)

Tables 5,6 and 7 show resultsfor non-smooth control.Resultsare given for one

two and three deltafunctions,i.e.,q -- 1,2,3. The locationof the deltafunctionis

given in each table. Here the solutionislesssmooth than before. Stillthe results

show essentiallythe same behavior as in the smooth case. Observe that the initial

residualson the differentlevelsare ofthe same order,reflectingthe non-smoothness of

the solution.This behavior cannot be improved by using a higherinterpolationinthe

refinementstageofthe FMG algorithm,although localrelaxationinthe vicinityofthe

singularitiescan improve the resultswe have not experimented with such ideashere.

In some ofthe experimentsitcan be observed thatone ofthe threeresidualsshown

isincreasedin some of the cycles. This isreasonablesincethe three residualsare

coupled and itisonly theirsum which goes down in each cycle.The resultspresented

by alltablesdearly demonstratethe effectivenessofthe method developedhere which

aimed at the fulloptimizationproblem, thereforeleadingto one-shotsolutionof these

problems. I-FMG-V cycleisbasicallyenough to reachbelow thelevelsofdiscretization

errors.

15
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I] level I cycle
1 5
2 1

2
3
4
5

3 1
2
3

4 1
2
3

no. Ilrxll2 IIr,,l12
.337e-06 .121e-05 .397e-09 .8166

.591e-02

.104e-03

.216e-03

.592e-04

.250e-04

.415e-03

.975e-04

.485e-04

.183e-04

.737e-05

.121e+00

.609e-02

.373e-02

.996e-03

.446e-03

.589e-01

.612e-01

.568e-01

.581e-01

.576e-01

.860e-03 .522e-01 .319e-04 .174e-01

.648e-03 .292e-02 .209e-06 .149e-01

.121e-04 .136e-03 .755e-07 .147e-01

.125e-03 .357e-01 .434e-05 .329e-02

.324e-04 .132e-02 .371e-06 .305e-02

.407e-04 .683e-04 .294e-07 .301e-02

Table i: q = 1,nl = 1,ml = 1

level I cycle

1 5

2 1

2

3

4

5

3 1

2

3

4 1

2

3

no. ll xl12 ll pl12 . llr-ll ll '-  ',xoc,ll2
.246e-06 .110e-05 .374e-08 .253e+00

.887e-02

.378e-02

.169e-02

.237e-03

.905e-04

.207e+00

.592e-01

.258e-01

.359e-02

.130e-02

.654e-03

.200e-03

.i03e-03

.271e-04

.908e-05

.174e+00

.117e+00

.994e-01

.100e+00

.102e+00

.246e-02 .llOe+O0 .772e-04 .427e-01

.418e-03 114e-01 .222e-04 .317e-01

.113e-03 .294e-02 .755e-05 .293e-01

.380e-03 .618e-01 .835e-05 .858e-02

.595e-04 .316e-02 .110e-05 .630e-02

.383e-04 .167e-03 .166e-06 .618e-02

Table 2: q = 3,nx = n3 = 1,ml = rn2 = 1,n2 = rn3 = 2
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[] level I cycle

1 5

2 1

2

3

4

5

3 1

2

3

4 1

2

3

no. ]lr jJ'2 Ur.JJ2,
.631e-06 .O00e+O0 .179e+00

.466e-01

.159e-01

.521e-02

.177e-02

.597e-03

llrp]i 
.566e-07

.122eq-01

.379e+00

.126e+00

.426e-01

.144e-01

.480e+00

.146e-01

.641e-03

.264e-kO0

.199e-01

.253e-02

.826e-02

.184e-03

.668e-04

.126e-02

.123e-03

.142e-04

.161e-05

.183e-06

.431e-07

.332e-10

.200e-10

.689e-06

.285e-08

.895e-li

.158e-02

.338e-03

.273e-03

.212e-01

.617e-01

.477e-01

.524e-01

.509e-01

.139e-01

.133e-01

.133e-01

.225e-02

.279e-02

.275e-02

Table 3: q = 1,nl = 1

level [ cycle

1 5

2 1

2

3

4

5

3 1

2

3

4 i

2

3

no. llr fI2 II plJ2 11 .lJ21 ii - .xoc,lf,Ii
.631e-06 .296e-13 .334e+00

.354e+00

.206e÷00

.120e÷O0

.706e-01

.415e-01

.800e-06

.786e+01

.388e÷01

.229e+01

.134e÷01

.792e+00

.250e÷01

.526e+00

.104e÷00

.126e÷01

.668e-01

.466e-02

.523e-01

.I06e-01

.212e-01

.288e-01

.896e-02

.307e-02

.I06e-02

.367e-03

.924e-03

.446e-04

.168e-05

.394e-05

.958e-08

.313e-i0

.120e-01

.628e-03

.274e-03

.149e-01

.150e+00

.754e-01

.l17e+O0

.930e-01

.392e-01

.298e-01

.281e-01

.528e-02

.600e-02

.594e-02

Table 4: q = 2,nl = 1,n2 = 2.
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IIlevel cycle no. 11,'=112 II,'pl12 11,'.112[ I1=- _x=c,ll2II
i 5 .477e-06 .853e-07 .279e-08 .370e+00

2 .172e-{-01

1

2

3

.485e+00

.395e-01

.320e-01

.931e-02

.364e-02

.341e+00

.861e-02

.248e-02

.574e+00

.132e-01

.587e-03

.167e+00

.310e-01

.131e-01

.445e-02

.791e-01

.277e-01

.510e-02

.332e-01

.112e-02

.200e-03

.363e-02

.332e-03

.132e-03

.447e-04

.166e-04

.115e-03

.118e-04

.258e=05

.364e-05

.770e-07

.883e-07

.536e-01

.863e-01

.572e-01

.656e-01

.624e-01

.114e-01

.128e-01

.138e-01

.208e-02

.272e-02

.275e-02

Table 5: q = 1,_1 = (.5,.5)

I] level cycle no. 11,'=112] II,'pll_ IIr..ll_ I1_- _.x.c,ll_
1 '5 .211e-05 .921e-05 .347e-06 .864e+00
2 1

2

3

4

5

.619e-t-00

.236e+00

.147e+00

.927e-01

.598e-01

.391e-l-00

.389e-01

.138e-01

.660e+00

.168e-01

.708e-03

.437e÷01

.223e+01

.144e÷01

.921e+00

.591e÷00

.389e÷01

.200e+00

.336e-01

.361e+00

.187e-01

.120e-02

.363e-01

.256e-01

.166e-01

.105e-01

.677e-02

.148e-01

.160e-02

.523e-03

.587e-03

.405e-04

.116e-06

.390e+00

.181e+00

.536e-01

.425e-01

.909e-01

.537e-01

.373e-01

.312e-01

.673e-02

.511e-02

.509e-02

Table 6: q = 2,_1 = (.75, .5),_2 = (.5,.5)
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II level ] cycle
1 5
2 1

2
3

4

5

3 1

2

3

4 1

2

3

no. It"xll, !!"pIl' I1",,11_ I1"- _'oxoo,ll,
.131e-05 .953e-05 .334e-05 .115e+01

.816e+00

.293e+00

.215e+00

.131e+O0

.llOe+O0

.396e+00

.431e-01

.244e-01

.683e+00

.402e-01

.452e-02

.447e+01

.245e+01

.177e+01

.119e+01

.883e+00

.412e+01

.214e+00

.476e-01

.373e+00

.341e-01

.533e-02

.477e-01

.319e-01

.243e-02

.162e-01

.131e-01

.155e-01

.236e-02

.I03e-02

.132e-02

.258e-03

.309e-04

.531e+00

.273e+00

.848e-01

.345e-01

.127e+00

.793e-01

.640e-01

.531e-01

.168e-01

.880e-02

.788e-02

Table 7: q = 3,{1 = (.75, .5),{2 = (.5,.5){3 = (.25, .5)
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