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PREFACE

Many space applications require an in-depth understanding of the current collec-
tion properties of a body immersed in a plasma. Examples of such applications include
electrostatie probes, charge neutralization on space vehicles, operation of plasma
particle detectors, charged-particle beam injections from a spacecraft, high-voltage
power systems in space, and the electrodynamic effeets on large conducting bodies or
long conducting tethers in space. Early investigations of current collection processes
were motivated by the use of electric probes for plasma diagnostics. These investiga~-
tions led to the development of probe theories with simple geometries and idealized
plasma models. In recent years there is renewed interest in this field due, primarily, to
the ability to conduct active experiments in space and the need for charge neutralization
on space vehicles. For example, the problem of charge neutralization was the topic of a
previous workshop convened by N. A. Saflekos and J. L. Burch at the Southwest Research
Institute in August 1985. However, the overall problem of current collection by a body in
space remains an open issue.

The first Tethered Satellite System mission (TSS-1) is concerned with the electro-
dynamic behavior of a long conducting tether in space. This objective will require a
thorough knowledge of the physical processes affecting current collection by a highly
biased conducting body in a low Earth orbit, including the processes producing a general
disturbance of the plasma around the body and, specifically, the plasma sheath structure
at relatively high voltages. Supporting theoretical predictions of the behavior of these
processes are crucial in planning experiments for the mission and the subsequent post-
flight data analysis. However, it is generally recognized that the theoretical treatment
of current collection in a plasma is a formidable task. Complications in theoretical
treatments arise due to the magnetic field, the relative motion between the collector
and the plasma, and the shape and size of the collector and its surface properties. At
high voltages, additional effects must be addressed that include the ionization of neutral
particles in the sheath and the secondary emission of particles from the collecting sur-
face. The dynamic features of the sheath and modification of current collection due to
waves and instabilities are further complicating factors. It is because of these compli-
cating factors that the problem of current collection in a plasma remains an open issue
and in view of the fundamental importance of the current collection processes to the
TSS-1 mission, it was felt that an assessment of the present state of knowledge on the
subject should be made. This led to the First Workshop on Current Collection from Space
Plasmas held on April 24-25, 1989, at the Tom Bevil Center on the campus of the Uni-
versity of Alabama in Huntsville.

The intent of the workshop was to assemble experts on various topies related to
the problem of current collection for deliberations that would elucidate the present
understanding of the overall current collection problem. Open discussions would be
initiated through invited talks, posters sessions, and a panel discussion. A complete list
of the participants and the papers presented in the workshop is given in these pro-
ceedings. A brief summary of the papers is given below.

E. C. Whipple reviewed the theories on current collection without a magnetic
field. J. G. Laframboise and L. J. Sonmor reviewed the theories which include magnetic
field effects. The effect of plasma drift motion on current collection was illustrated by
N. Singh and B, Vashi. W.-W. Lei presented the effects on current collection due to a
plasma with an anisotropic velocity distribution. E. P. Szuszezewicz dealt with models
of current collection in relation to experimental realities that must be considered in
performing plasma measurements.
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R. L. Stenzel and J. M. Urrutia presented a summary of laboratory experiments on
the dynamic aspects of current collection in a tethered electrode configuration, including
the issue of closure for the current.

The topic of plasma contactors and its related aspect of plasma discharge was
addressed in several papers. P. Wilbur reviewed laboratory experiments on plasma con-
tactors based on hollow-cathode devices. The theoretical aspects of plasma contactors
were discussed in papers by M. Gerver et al. and I. Katz and V. A. Davis. An abstract by
D. Cooke on double layers in contactor plasmas is also included.

One of the issues of considerable interest is the effect of neutral atoms and
molecules on current collection at high voltages. J. A. Antoniades and coauthors dis-
cussed results from laboratory experiments on this topic. W. J. Raitt and coauthors
presented results from the SPEAR-1 sounding rocket experiment and compared the
measured currents with the predictions from theories. An abstraet by P. J. Palmadesso
on some of the theoretical aspects of the experiments is also included. These papers are
also of relevance to the topic of plasma contactors.

In space applications involving large manned vehicles, the offgassing of con-
taminant atoms and molecules, at times, plays a significant role in modifying both the
ambient plasma and neutral gas environments. This topic was discussed by J. M.
Grebowsky and A. Schaefer. The dynamics of neutral gas clouds in plasmas was discussed
by C. K. Goertz and G. Lu.

The topic of charged particle beam injections, with and without the presence of a
neutral gas, and the associated phenomena of charging and return currents was discussed
in papers by R. C. Olsen, R. M. Winglee, and K. S. Hwang and N. Singh. Gilchrist et al.
presented a synopsis of results from the CHARGE-2 rocket experiments, in which the
effects of a nitrogen gas release on the current collection was studied.

Computer modeling of current collection in various laboratory and space flight
scenarios was presented by M. J. Mandell and coauthors. G. A. Jongeward and coauthors
presented a computer software design tool for space power systems which includes many
of the physical processes discussed above.

The workshop was sponsored by the NASA/Marshall Space Flight Center and the
University of Alabama in Huntsville, whose financial support is gratefully acknowledged.
Special thanks are due to A. Poularikas for his enthusiastic support in organizing the
workshop. We are also grateful to the session chairpersons (L.R.O. Storey, N. H. Stone,
and C. Purvis) and to K. S. Hwang and B. Vashi for their assistance during the course of
planning and conducting the workshop.
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CURRENT COLLECTION FROM AN UNMAGNETIZED PLASMA :
A TUTORIAL

Elden C. Whipple

Center for Astrophysics and Space Science
University of California at San Diego
La Jolla, CA 92093

Abstract. The current collected by a body in an unmagnetized plasma depends
in general on: (1) the properties of the plasma; (2) the properties of the body;
and (3) the properties of any neutral species that are present. The important
plasma properties are the velocity distributions of the plasma particles at a location
remote from the body (at “infinity”), and the Debye length which determines the
importance of plasma space charge effects. The important body properties are its
surface characteristics, namely the conductivity and secondary yield coefficients.
The neutral species affect the current through collisions which impede the flow
of current and possibly through ionization of the neutrals which can enhance the
current. The technique for calculating the current collected by a body in a plasma
will reviewed with special attention given to the distinction between orbit limited
and space charge limited regimes, the asymptotic variation of the potential with
distance from a body, and the concept of a sheath.

Orbit Limited Currents

Consider a body in a plasma where the Debye length is much larger than the
body dimensions so that the potential can be taken to be a Coulomb potential. To
simplify the discussion we will consider the body to be a sphere and will first look at
how the sphere attracts particles from a monoenergetic beam. Figure 1 shows how
the trajectories are bent by the attractive potential distribution. In a spherically
symmetric potential distribution there are two constants of the motion, the total
energy E and the angular momentum J. As the angular momentum is varied, there
is a critical trajectory which just barely grazes the sphere. The impact parameter of
this trajectory, ro, defines the radius of an “effective cross-section” for collection of
particles. Any particles with angular momentum (or impact parameter) less than
that for the critical trajectory will be collected. Therefore the cross-section for
collection and the current to the sphere can be obtained from the expressions for
the total energy and angular momentum, as shown in Figure 1.

Note that in the derivation of the expression for the current that no explicit use
was made of the inverse square dependence of the potential. Therefore a linear cur-



rent voltage relation holds for any monotonic attractive potential distribution about
a sphere provided that trajectories exist at all energies which come from infinity and
are tangent to the surface of the sphere. This linear relation between current and
an attractive voltage holds for any particle velocity distribution since any particle
velocity distribution can be decomposed into superimposed beams. The condition
that trajectories exist at all energies which come from infinity and graze the sur-
face of the attracting body is the defining condition for “orbit limited” currents.
Laframboise and Parker (1973) have shown that prolate and oblate spheroids also
exhibit orbit limited behavior in the Laplace limit as long as the major-to-minor
axis ratios are less than 1.653 and 2.537 respectively.

Orbit limited behavior also holds for any monotonic repelling potential about
a convex object since every grazing orbit connects to infinity. However, the current
to a repelling object is not linear since the particles in the plasma with energies less
than the potential energy of the body will not reach it. For a Maxwellian plasma,
the atiracted and repelled currents are

I =1,(1—e¢p/kT),for e¢ <O (1)

I = Lexp(—e¢/kT),for e¢ > 0 (2)
where 1, is the random current to the body when it is at zero potential.

Sheath Limited Currents

When the Debye length in the plasma is on the order of or less than the body
dimension, then there may not be any trajectories at a given energy which come
from the plasma and are tangent to the surface of the body. This is illustrated in
Figure 2 where there is a critical trajectory, defined as the non-impacting trajectory
which approaches closest to the body for particles with a given energy. Trajectories
with less angular momentum will all impact the body at angles of incidence which
are not grazing angles. In such a case the critical trajectory defines an “absorption
radius” (or absorption boundary) but this can not be easily used to obtain the
current since each energy will in general define a different absorption radius. When
this kind of behavior occurs the currents are said to be “sheath-limited”.

The problem of obtaining sheath-limited currents is difficult since it involves
finding the potential distribution from Poisson’s equation which is self-consistent

T~



with the space charge. Bernstein and Rabinowitz (1959) first showed how to do
this and Laframboise (1966) has applied their method to a Maxwellian plasma to
obtain currents to spheres and cylinders for various values of plasma parameters.
The method makes use of the “effective potential for radial motion”, U(r), defined
as follows:

E = gmol + gmod + edlr) = mel + =0t eg(r ©)
= 5my; 2m, e —2mv, Py— ed(r
J = mry, (4)
then
2
=/ = - U 5
v =\ =E-U(r)] (5)
where
J2

U(r) = ed(r) +

(6)

2mr?

and where the radial and angular components of velocity are v, and v, . The second
term in (6) is the repelling “centrifugal potential” which can give rise to potential
barriers as shown in Figure 3. When the attractive electrostatic potential is weaker
than (1/r? ) then a maximum in the effective potential does not exist outside the
probe surface. However, when the electrostatic potential is stronger than the inverse
square potential, then potential barriers can exist for angular momenta greater than
zero. Particle trajectories can be pictured in Figure 3 as horizontal lines of constant
total energy which are reflected when they are incident on the effective potential
curve for a particular angular momentum J. Barriers in the effective potential will
repel particles with positive energies and thus reduce the current. Consequently
sheath limited currents are always smaller than the orbit limited currents at a given
potential. Orbit limited behavior can be seen to exist whenever the electrostatic
potential falls off more weakly than an inverse square potential at every radius.

Figures 4 and 5 illustrate how the various types of trajectories which can occur
for a given potential variation can be translated into a picture in the velocity space
defined by the energy E and square of the angular momentum (J* ). Moments of
the particle velocity distribution such as the particle density and current involve
integrals over the distribution function, and the boundaries in the (E, J?) plane
between the different types of trajectories must be used in the limits of these inte-
grals. For example, in Figure 4 trajectories of type 1 are populated by incoming
plasma particles, and possibly by outgoing secondary particles from the probe sur-
face. Those of type 2 are plasma particles which do not reach the probe. Type 4
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consists of particles trapped in closed orbits about the probe, and type 3 consists
of secondary particles which are emitted from and return to the probe. In Figure
5 for the sheath limited case, trapped particles do not exist, and type 3 trajecto-
ries are for particles which are repelled by a potential barrier and return to the
plasma. This type of analysis has been used to calculate the current, space charge,
and potential distribution about probes where both plasma particles and secondary
particles contributed (Chang and Bienkowski, 1970; Schroder 1973; Tunaley and
Jones, 1973; Whipple 1976; Parker, 1976).

Figure 6 shows currents obtained for inverse power law potential variations
(Parker and Whipple, 1967). These potentials are not self-consistent but they
illustrate nicely how the current decreases as the power n increases. Note how
there is only one, linear curve for n < = 2. Figure 7 from Laframboise (1966) shows
gelf-consistent currents to a sphere for various values of the probe radius to Debye
length ratio. '

When the particle velocity distribution is not isotropic, it may still be a reason-
able approximation to use a spherically symmetric potential in order to calculate the
current. Godard (1975) has used the potential distributions obtained by Lafram-
boise (1966) for a stationary body to calculate the currents for a drifting Maxwellian
plasma. These results, shown for a sphere in Figure 8, are appropriate for a posi-
tive ion currents to an attractive spherical satellite moving through the ionospheric
plasma. Note especially that the current can in some cases initially decrease as the
speed ratio of the body increases from zero. This effect is significant in calculating
the “gyrophase drift” of a charged dust grain in a magnetic field (Northrop et al.,
1989).

The Concept of a Sheath Edge

Intuitively, a sheath is the region close to a charged body where most of the
potential drop occurs and where there is significant space charge. The concept of
a “sheath edge” is useful because it defines a surface where the potential is close
to the plasma potential and where the current can be estimated and equated (or
related to) the total current to the body. The concept of a sheath is most useful
when the body potential is high and when the Debye length is small compared to
the body size. The sheath edge is usually defined as the place where the potential
is (kT/2e) so that outside this surface a quasi-neutral solution can be used for the
potential. Swift and Schwar (1970) have reviewed work based on the concept of a
finite thickness sheath.

The most important application of the sheath concept to current collection is



the Langmuir-Blodgett (1923, 1924) derivation of the familjar (3/2) power law for
the collected current:

I=C(V)3? (7)

Angular momentum effects are neglected in this derivation. It is assumed that
the particles are all emitted from one electrode with either zero or very small radial
velocities, and that the particles follow the electric field lines to the collector. With
these assumptions it is possible to relate the charge density to the current by means
of the continuity equation. When the inner electrode is taken to be the collector,
then the outer electrode position can be interpreted as the edge of the sheath for
applications where a single collector is placed in a plasma.

The three-halves power law in equation (7) may seem to contradict the earljer
statement that the maximum current drawn by a body is the orbit-limited current
which is linear with voltage. However, the derivation of the current in (7) is for a
given ratio of emitter and collector radii. This ratio is contained in the constant C
in (7). When the sheath edge around a body in a plasma is taken to be the emitter,
the current increases as the potential on the body is increased because the sheath
grows larger. The way in which the sheath radjus can be estimated for various
regimes in space has been discussed in some detail by Parker (1980).

Asymptotic Potential Variation

In the distant plasma far from a spherical body the electrostatic potential varies
asymptotically as

V =cC/r? (8)

where V is the potential, r the radial distance, and C a constant.

This behavior is obtained from the so-called “plasma solution”, where the
asymptotic forms of the ion and electron densities are obtained in terms of the
local potential and distance, and then quasi-neutrality of the plasma is invoked.
Both the ion and electron densities involve terms depending on the potential such
as the Boltzmann factor, and solid angle factors depending on the distance, (1-
r;/r?), where r, is the radius of the body. In the limit as r becomes large, the
potential enters the density terms linearly and this gives the first-order asymptotic
variation of the potential as (1/r? ).
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In a numerical scheme for obtaining the potential distribution from Poisson’s
equation where a floating condition is necessary as a boundary condition at a finite
distance, then this inverse square potential is the appropriate one to use. Lafram-
boise (1966) has discussed the application of this condition and has given examples
of calculations showing how the accuracy of the solutions depends on the distance
of the boundary. Parker and Sullivan (1974) have also used this condition.

The value of C in (8) depends on the assumed plasma conditions. Various
authors have obtained different expressions (Bernstein and Rabinowitz, 1958; Lam,
1965; Chang and Biekowski, 1970).

Present Issues Involving Current Collection

Finally, we list some of the issues involving current collection which are receiving
attention at the present time. These issues have arisen in context of active space
experiments where large potentials may occur or where large structures may be
used:

1. What determines the current for large attractive potentials? Large
potentials have been envisaged for high-power solar arrays. They also
can occur when energetic charged particle beams are emitted.

2. Large potentials on spacecraft may involve dipole configurations with
overlapping sheaths. What are the collected currents in such con-
figurations? Katz et al. (1989) have recently calculated the current
through a dipolar sheath and found good agreement with data.

3. The presence of neutral gas (from the neutral atmosphere, vehicle
venting or outgassing, etc.) provides opportunities for ionization and
therefore large currents. How can this effect be calculated?

4. Application to tether configurations: in large extended geometries,
the spacecraft and tether form a circuit element with the current
loop being completed through the plasma. How does the current flow
in the plasma to complete the circuit?

Acknowledgments. This work was supported by NASA grant NGL 05-005-007.
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ABSTRACT

We present a survey of a very incomplete subject. Our presentation is intended in part as
an introduction to topics to be covered in greater detail by others later in this Workshop. The
best-developed and simplest theories for current collection are steady-state collisionless theories,
and these must be understood before departures from them can be analyzed usefully, so we begin
with a review of them. We include some recent numerical results by one of us (L.J.S.) which
indicate that steady-state collisionless Laplace-limit currents remain substantially below the Parker-
Murphy (1967) canonical upper bound out to very large electrode potentials, and approach it
as a limit only very slowly if at all. Attempts to correct this theory for space-charge effects
lead to potential disturbances which extend to infinite distance along the electrode’s magnetic
shadow, unless collisional effects are also taken into account. However, even a small amount of
relative plasma drift motion, such as that involved in a typical rocket experiment, can change
this conclusion fundamentally. It is widely believed that time-averaged current collection may be
increased by effects of plasma turbulence, and we review the available evidence for and against
this contention. Steady-state collisionless particle dynamics predicts the existence of a toroidal
region of trapped orbits which surrounds the electrode. Light emissions from this region have
been photographed, indicating that collisional ionization may also occur there, and this, and /or
scattering by collisions or possibly turbulent fluctuations in this region, may also increase current
collection by the electrode. We also discuss effects on particle motions near the electrode, associated
with “breakdown of magnetic insulation” in the region of large electric fields near it.

1. INTRODUCTION

Even without magnetic-field effects, the problem of predicting current collection by objects
(“probes”) in plasmas is one of the most formidable in plasma physics. Reasonably complete
solutions of it exist only for very simple geometries, in the limits of large and small mean-free-
paths, and in the absence of flow effects. For objects in space plasmas, this situation has been
summarized by E.C. Whipple in the preceding paper.

When magnetic-field effects are introduced, the problem becomes notoriously intractable. As
one would expect, available treatments of it generally involve extreme simplifications. For space
applications, the collisionless approximation seems not extreme but instead inevitable. However,
we shall see that even in cases of large mean-free-paths, magnetic fields can cause collisional effects
to become important.

In spite of this, collisionless theories form the most important category of available theories,
and also must be understood before departures from them can be usefully analyzed. Accordingly, a
review of collisionless, steady-state theories (Section 2) forms the next part of this presentation. It
seems inevitable also to make a further division of such theories, into ones for the zero-space-charge,
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or large-Debye-length, limit (one would expect these to be the simplest), and those for finite Debye
length. However, even this division is complicated by magnetic-field effects. It turns out that a
strictly collisionless theory cannot be exact in cases of finite Debye length, because the disturbance
of electric potential produced by the object then extends infinitely far along the magnetic-field
direction. However, this conclusion is modified radically by even a small amount of relative plasma
drift motion. This situation is discussed in more detail in Sections 3 and 7. Our review includes the
work of Sanmartin (1970), who has himself given an extensive review of older theories. A review
of probe use in fusion plasmas has been given by Stangeby (1989).

It has often been asked whether any steady-state theory can give a correct prediction, in view
of the tendency of fluctuations, or “plasma turbulence”, to carry charge across magnetic field lines
in magnetic-confinement fusion experiments. Measured return currents in electron-beam-emission
experiments in space have frequently been in excess of predicted values from steady-state theory,
and such observations have often been cited in support of this view. An alternative explanation,
involving energization of ambient electrons by an interaction with the beam, is supported by results
of the CHARGE-2 (Myers et al, 1989) and SPEAR I (Katz et al, 1989) rocket experiments. We

discuss this question in Section 4.

Collisional ionization may cause important increases in current collection beyond those pre-
dicted by steady-state collisionless theory. The presence of a magnetic field greatly increases phase-
space volumes available to particles on “trapped” orbits near the probe, and the long lifetimes of
trapped particles in these regions greatly increase opportunities for collisional ionization to occur.
The observation of “toroidal glow” regions around spherical probes in low-pressure laboratory mag-
netoplasmas (W.J. Raitt and A. Konradi, private communication, 1987; Antoniades and Greaves,
paper appearing later in these Proceedings) lends support to this idea. Ionization may produce
“explosive” growth of the probe’s sheath (Lai et al, 1985; Cooke and Katz, 1988). Independently
of collisional ionization, the existence of trapped orbits also increases the opportunity for cur-
rent collection to be increased by particle scattering, both collisional and turbulent. We discuss
collisional-ionization and collisional-scattering effects in more detail in Section 3.

Enhanced current collection by a probe at large attractive potentials requires increased trans-
port of particles across magnetic-field lines, and this phenomenon is often called “breakdown of
magnetic insulation”. A brief discussion of some aspects of this phenomenon appears in Section 6.

If the probe is a large object compared with the ambient Debye length, and is moving rapidly
compared with the ion thermal speed as in the proposed Tethered Satellite Experiment, a variety
of complicated phenomena can occur near it. This situation has been studied by Thompson (1985).
A discussion of it appears in Section 7. Unexpectedly, this discussion leads to an inference that
even the small relative drift velocities characteristic of rocket experiments can modify radically
the processes governing collection of electrons, and can “revalidate” collisionless theories of such
collection. A separate issue is the enhancement of current collection by the use of a “plasma
contactor” (4 papers, by Hastings, Wilbur and Williams, Katz and Davis, and Cooke, respectively,
which appear later in these Proceedings).

Some concluding remarks appear in Section 8.

Much of our discussion in this paper is directed toward current collection at large positive
electrode voltages. Interest in predicting such collection has recently increased because of applica-
tions to the design of high-voltage power systems for use in space and also because of large induced
voltages expected in the Shuttle Electrodynamic Tether experiment.



2. COLLISIONLESS STEADY-STATE THEORIES

In this Section, we consider a spherical probe in a collisionless plasma containing a uniform
magnetic field B. We give brief summaries of the treatments of Parker and Murphy (1967) and Ru-
binstein and Laframboise (1982, 1983) and of new results by one of us (L.J.S.). We also summarize
results of an analogous treatment which has been done for an infinite cylindrical probe inclined
at an arbitrary angle to B, by Laframboise and Rubinstein (1976) and Rubinstein and Lafram-
boise (1978). For the spherical-probe case, we choose cylindrical coordinates (7,0, z) centred on the
probe, with the 2z axis aligned with B. In the presence of B, our situation no longer has spherical
symmetry, and this makes our task much more difficult. However, it still has rotational symmetry
about the direction of B, and therefore the electric potential ¢ will be independent of 8. In this
situation, there are two constants of collisionless particle motion, the total energy E, given by:

E = %m (7"2 +726% + é2) + qo(r, 2) (1)

and the canonical angular momentum component J about the z axis, given by
25, L n2 2({p. 1
J =mr8 + EqBr = mr 0+§w (2)

where m and q are particle mass and charge, and w = ¢B/m is the particle’s gyrofrequency. We also
define the absolute gyrofrequency w, = |w| = eB/m, where e is the magnitude of unit electronic

charge.

We eliminate § from these two equations, and obtain:

2
E= %m (1*2 + 22) + qé(r,2) + % [% - &)Q—TJ (3)

The first term on the right of (3) is the kinetic energy of particle motion in the (r,z) plane. The
remaining two terms are then the “effective potential”

m| J wr]?

U(T‘,Z) = q¢(7‘,2) + 3 [E - 7] (4)

for particle motion in the same plane. Since the kinetic energy must be nonnegative, it follows that
a particle having a particular E and J will be confined to those regions of the (r, z) plane for which
E > U(r,z), i.e., inside the particle’s “magnetic bottle”. Some examples of the general appearance
of magnetic bottles are shown in Fig. 1.

Some properties of magnetic bottles follow readily from inspection of Eq. (3); see also Section
IV of Rubinstein and Laframboise (1982). These are as follows:

(1) Magnetic bottles have rotational symmetry about the z axis, i.e. their boundaries are
independent of 4.

(2) A particle orbit (having a given E and J) can touch the boundary of its magnetic bottle
only if 7 and 2 are both zero at the same point on the orbit. Since this is very unlikely, particle
orbits generally do not do so.



(3) We define a radius r, by the relation:

1
J = :?-mwrg (5)
(if w > 0). In Eq. (4), the last term in U(r,z) will then vanish at r = 7,, and is positive for r # r,,
increasing without limit as 7 — 0 (unless J = 0) or as r — co. Therefore, particles for which J # 0

are prevented from reaching the z axis.

(4) For w > 0, particle orbits for which J < 0 encircle the z axis once per gyration; orbits for
which J > 0 do not.

(5) A nonencircling orbit having energy E and canonical angular momentum J will have the
same projection in the (7,z) plane, and also the same magnetic bottle, as those of an encircling
orbit having the corresponding values F +wJ = E + %mwzr?, and —J. In a strong magnetic field,
an encircling orbit will have a much larger energy and also a much larger gyroradius than the
corresponding nonencircling orbit, and encircling orbits will then make vanishing contributions to

number densities and fluxes.

We now present a derivation of the Parker and Murphy ( 1967) canonical upper-bound current.
Besides the assumption of collisionless, steady-state conditions, their work contained two additional
ones. They assumed that any particle whose magnetic bottle intersects the probe is itself collected,
and they ignored the effect of a particle’s thermal motion at infinity on the question of whether
such an intersection exists for that particle. The first assumption results in their current expression
being an upper bound on the corresponding exact value. The second assumption amounts to taking
the limit E — 0 in Eq. (3). We shall see that this approximation does not lead to an upper bound,
so actual currents can exceed the Parker and Murphy (1967) values. When this approximation is
made, particles having the largest J for which collection occurs then have a magnetic bottle similar
in appearance to that shown as (a) in Fig. 1, but with one important difference: the condition
E — 0 means that at large |2|, the inner and outer surfaces of the bottle collapse onto the common
radius r,. To find the value of r,, we make the further substitutions 7 = 0, § = 0, 7 = Tps and
¢ = ¢, in Eq. (3), where ¢,, is the probe’s potential relative to space, r, is its radius, and g¢, <0
for an attractive probe potential for the particle species considered. We then substitute for J using

Eq. (5). We obtain:
2 5
(2) -+ (2)
p p

The positive sign corresponds to tangency of the bottle’s inner surface with the probe, as shown in
Fig. 1la.

We now note that with Parker and Murphy’s approximations, the collected current is equal to
the product of the random thermal particle flux with the combined area 2172 of the two disks of
radius 7,, located at z = +oo, through which all collected particles of charge ¢ must pass.

In terms of the random current Ip = 47rrgqn°°(kT/21rm)k, and using Eq. (6), we now obtain:

b
I 1 1 8lag,l
—I—=§+§(mw21;'2 (7)
R P
where k is Boltzmann’s constant, and T and n_ are the temperature and ambient number density
of the attracted particles. Apart from notation, this is the same as Eq. (13) of Parker and Murphy

(1967).
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If effects of thermal motion are included, then Eq. (7) is no longer an upper bound on the
(collisionless, steady-state) probe current, although we shall see that it remains a good approximate
upper bound for large potentials and large magnetic fields. Calculation of the canonical upper bound
including thermal-motion effects is much more cumbersome. It has been done by Rubinstein and
Laframboise (1982). Here we give only their result, which is in analytic form, as follows:

t=14) + iy (8)

where i, and i, are the (normalized) currents due to nonencircling and encircling particles, respec-
tively, given by:

w= L () erre (o) emn(s) + S04 ©

YAz : Ve
p=F (142X ) 4 p (142X 2} 4 L
g g

Fi(u) =

i ( 20?4 2u 4 ;2—) exp (—02u)
Fy(u) = £ [20 +-(3- 21/;,,)] er fe [(02u +9,) %} ezp (4,) (10)

+%{[§+20(1+u)] (a2u+1/)p)7-3—21/)p

2 (3u + é) } exp (—azu)
0 =5VFh

where =7, /@ = rplwl(Qm/nkT)'lI is the ratio of probe radius to mean attracted-particle gyrora-
dius, and ¥, = —q¢,/kT > 0 is dimensionless probe potential. Rubinstein and Laframboise (1982)
also obtained a corresponding analytic result for repelling probe potentials 1, < 0, given by their
Egs. (30), (36), and (37), and plotted in their Fig. 10. In contrast with tﬁe usual exponential
variation of collected current at these potentials, their result shows a “rounding of the knee” of
the probe’s current-voltage characteristic at small negative gbp In the limit of large attractive
potentials ¢, >> 1, Eqs. (8) — (10) reduce to:

=l V¥ 1 (11)
2 o 202

The first two terms of this are the same as the Parker and Murphy (1967) result. The last term is
a contribution from encircling orbits, which vanishes in the limit of strong magnetic fields: 8 — oo.
A comparison of the Parker-Murphy (1967) canonical upper bound with results of Rubinstein and
Laframboise (1982) for attracted-species currents is shown in Fig. 2. The increasing curves in
Fig. 2 show least upper-bound currents. The portions of these curves to the right of the “kinks”
(discontinuities of slope) are the canonical upper bounds given by Eqs. (8) — (10). The portions
to the left of the kinks are “helical” upper bounds also calculated by them, and based on an
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assumption that particle orbits are helices near the probe. The decreasing curves are adiabatic-
limit (effectively lower-bound) currents also calculated by them, also assuming helical orbits near
the probe, but assuming a “one-dimensional” rather than “three-dimensional” velocity-space cutoff.
For a probe at space potential, ¢, = 0, the upper-bound and adiabatic-limit currents coincide, and
are the same as those given in Fig. 17 of Whipple (1965). For any given value of §, we see
that the upper-bound and lower-bound curves separate rapidly as %, increases. This is clearly an
unsatisfactory situation, but it appears to represent the best that can be done without resorting to
the expense of numerical orbit integration. We present results of such a calculation below.

As mentioned above, the adiabatic-limit currents decrease as ¥, increases. This “negative-
resistance” behavior results from the fact that in the adiabatic limit, the kinetic-energy gain of
incoming particles goes entirely into increased speed parallel to B. This increases the pitch of
their orbits. Some orbits whose pitch becomes greater than roughly the probe diameter can now
bypass the probe, and current collection will be decreased. When ¢, is small, we also expect the
actual currents to approach the adiabatic-limit currents, since the adiabatic-limit condition is that
changes in the probe sheath electric field are small over an average particle gyroradius. We further
expect that as 1, becomes more positive, adiabatic-limit conditions will break down, and collected
currents will then rise toward the upper-bound values.

We therefore expect the current-voltage characteristics to be “N-shaped”. Such behavior was
predicted qualitatively by Laframboise and Rubinstein (1976) and Rubinstein and Laframboise
(1982), and more recently seen in data from spherical electrostatic probes on the University of Iowa
Plasma Diagnostics Package flown on several Shuttle flights (G.B. Murphy, private communication,
1983). We present later in this Section a quantitative prediction of such characteristics.

Figure 3 shows the same comparison of the Parker and Murphy (1967) and Rubinstein and
Laframboise (1982) upper-bound currents over a larger range of attractive probe potentials. It
is evident from this Figure, and also from Eq. (11), that these bounds do not coalesce at large
potentials, but only for large magnetic fields.

Corresponding upper and lower bounds on current have been calculated for an infinite-
cylindrical probe inclined at an arbitrary angle to B by Laframboise and Rubinstein (1976) and
Rubinstein and Laframboise (1978), and for spheroids and finite cylinders, including disks, whose
axis of symmetry is aligned with B, by Rubinstein and Laframboise (1983). In all cases, their
helical upper-bound and adiabatic-limit currents depend on all aspects of probe shape, whereas
their canonical upper-bound currents depend only on the probe cross-section perpendicular to B.
We reproduce here only their result for the canonical upper-bound current to an infinite cylindri-
cal probe. For the cylindrical case only, we redefine I and Ip to be the current and the random
current 27r1'pqnoo(kT/27rm)%, respectively, both per unit probe length. For the attracted particles
(¥p > 0), their result [Rubinstein and Laframboise, 1978, Eqs. (10) and (11)] is:

.2, 1
i= ;sm& + W—W—?E [(3 - 21/)p) vz erfc(,/z/)p ’ e:cp(wp) +64/%p } (12)
where 8 is the angle between the probe axis and the direction of B. For large t,:

%
4 Jw_p:%siné’%—( 8!q¢>p| ) (13)

. 2 g4
i — —sin _ T —i
T x3/2 8 7r2mw21"12,

A corresponding result for repelling probe potentials ¢, < 0 is given by their Eq. (13). The most
remarkable feature of our Eq. (13) is that it gives the same one-half-power dependence of probe
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current on probe potential as in the spherical case [Eqs. (7) and (11)], in spite of the difference
in probe shape. As in the spherical case, the canonical upper bound may not be the least upper
bound, especially at small 8 and tp; see Figs. 2 and 3 of Rubinstein and Laframboise (1978).
Equations (12) and (13) should be useful for estimation of currents collected by tether wires in
space.

All of this leaves unanswered so far the question of how nearly the actual current collection
approaches these upper-bound values. For cylindrical probes, experimental data presented in Fig.
4 of Szuszczewicz and Takacs (1979) provide a partial answer to this question. They found that
adiabatic conditions are easily violated in the cylindrical configuration. For spherical probes in the
limit of large Debye length (Laplace-potential limit), we present results from an exact numerical
calculation of probe currents by one of us (L.J. Sonmor, Ph.D. thesis, in preparation). This calcu-
lation is “exact” in the sense that in the limit of zero discretization and roundoff errors, it would
produce results corresponding exactly to the physical assumptions made.

In the Laplace-potential limit, an important computational advantage can be gained by scaling
the collisionless charged-particle orbits. These obey the equation of motion mf = g(E+ 1 x B).
We introduce the scaled position vector § = r/(|rngi)prp/qB2|)]/3 and time 7 = (¢B/m)t. This
equation then reduces to:
2~ L ’ ~
%::&—ﬂ%nL?xiz (14)
T (72 + 32) T

which contains no free parameters. The calculation method then involves integration of (14) for
various scaled initial positions ¥ and velocities dt/dr on a plane Z = constant located sufficiently far
from the origin of ceordinates. This yields a data base of distances of closest approach to the origin.
The appropriate integration over this data base then yields the current-voltage characteristics (¢ vs
¥y, for various ). Separate data bases must be created for attractive and repulsive probe potentials.
To obtain values of i having a relative accuracy of 1% or better required the integration of about two
million such orbits, and this consumed about 25 hours of CPU time on the University of Toronto
CRAY X-MP computer.

Results from this calculation are shown in Figures 4-7. Figures 4(a) - (d) show representative
particle orbits, together with their corresponding magnetic-bottle boundaries. The orbits shown all
have positive total energies (E > 0) so they all originate at z = +00. As we mentioned following
Eq. (4), such orbits generally do not touch their bottle boundaries, but they evidently come very
close to them near points of reversal of z velocity, because |#| and || can be simultaneously very
small near such points. Our earlier discussion implies that actual currents will equal canonical-
upper-bound values [Eqs. (8) - (10)] if every orbit reaches the point closest to the origin on its
bottle boundary, but that in general, orbits do not do so. Comparison of Figures 4(b) - (d) shows
that the nearness of an orbit’s approach to this point can be very sensitive to its initial phase.
Figures 4(a) - (d) also show significant violation of the adiabatic-limit approximation, including, in
(b) - (d), reversals of z-velocity.

Figures 5 and 6 show attracted-particle current-voltage characteristics for smaller and larger
ranges of attractive probe potential, respectively, and for two different values of 3. Also shown
are the Rubinstein and Laframboise (1982) canonical upper bound [Eqs. (8) - (10)], and, in Figs.
5(a) and (b), their helical upper bound and adiabatic limit. Features visible in Figs. 5(a) and (b)
include, as predicted above, a negative-resistance region in the attracted-particle current-voltage
characteristic. When 8 = 3, this region extends over a larger range of probe potentials than when

8 =1



In this region, the slope of the exact characteristic appears to be less negative than that of the
adiabatic-limit curve everywhere, even at small potentials. One can identify three possible reasons
for this. One of these is that the mechanism causing this bahavior, namely that some orbits miss
the probe because they are “stretched”, i.e., their pitch is increased near it, does not operate
as effectively for the real orbits as for the helical ones assumed in the adiabatic-limit calculation.
Another is that nonadiabatic effects also cause some particle gyroradii to increase (Fig. 4), allowing
more particles to be collected. A third possible reason is radial drift motions caused by electric-field
inhomogeneities (Fig. 4a). A current-collection theory based on such drift motions was developed
by Parker and Murphy (1967, Fig. 2 and Table 1).

Figures 5 and 6 appear to leave unresolved the important question of whether the exact currents
approach the canonical upper-bound values at large attractive potentials or remain substantially
below them. This question is examined directly in Fig. 7, but the outcome is still not clear. What
is clear from Fig. 7 is that even if the actual currents approach the canonical upper-bound currents
at large potentials, the approach is so slow as to be irrelevant to most practical purposes. It is
noteworthy that at the largest probe potential shown in Fig. 7, i.e. %, = 500, the Parker-Murphy
(1967) canonical-bound values are much closer to the Rubinstein-Laframboise (1982) values than
the exact currents are, so the latter currents also remain substantially below the corresponding
Parker-Murphy values. Some evidence of the level of numerical errors in these “exact” results also
appears in Figs. 6(a) and 6(b).

An important limitation of the exact results shown in Figs. 4-7 is that they apply only in
the Large-Debye-length limit. As the Debye length is decreased, space-charge effects influence
more and more strongly the potential disturbance around the probe. As a result, this potential
becomes progressively more “short-range”, with increased electric fields in the sheath region near
the probe, and decreased fields in the presheath region farther away (see below, however). M.J.
Mandell (private communication, 1989) has suggested that in this situation, the current collection
may increase above the values shown in Figs. 5-7 toward the canonical-upper-bound values, because
adiabatic-limit conditions now are more strongly violated near the probe, and this permits incoming
particles to acquire larger gyroradii, so that more of them are collected. This is in contrast with
the nonmagnetic situation, in which attracted-species current collection decreases with decreasing
Debye length; see, for example, the preceding paper by E.C. Whipple.

Figure 7 contains a feature which may illuminate this question. This Figure shows a “crossover”
of the current-voltage curves for various values of § as the probe voltage ¥, increases, with the
currents for the largest B values becoming the closest ones to the upper-bound currents at the
largest ¥, values shown. If one considers the magnetic bottles which correspond to the attracted-
particle energies making the most important current contributions at large 1, then among these
bottles, those which correspond to the largest 3 values will have the least relative widening (Figs.
1 and 4) near z = 0. Figure 7 therefore implies a tendency for bottles with the least widening to be
the “most filled” by the orbits confined inside them. If this tendency carries through to situations
in which space-charge effects are important, it will tend to counteract the mechanism described in
the preceding paragraph, and the attracted-species current may then decrease rather than increase
with decreasing Debye length as in the nonmagnetic case. Another mechanism which may act in
the same direction is the tendency of magnetic bottles to form “bulges” or even disjoint “bubbles”
as a result of space-charge effects on the probe sheath potential distribution (Section 5).
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3. COMBINED EFFECTS OF SPACE-CHARGE AND COLLISIONS

In some presheath locations, a decrease in Debye length will produce an increased rather
than decreased electric field. To see why, we consider the depletion of particles at large distances
from a spherical probe, caused by the probe’s current collection. If B = 0, this depletion occurs
equally in all directions for both ions and electrons, and therefore results in a spherically-symmetric
distribution of net space charge and therefore of potential. If B # 0, it occurs predominantly along
and adjacent to the probe’s “magnetic shadow”. In other words, we expect that at large |2|, both
the ion and electron density disturbances (in the collisionless limit) will become functions only of the
cylindrical radius r. In contrast with the nonmagnetic case, however, these disturbances will have
different dependences on r for the ions and electrons, because the much smaller average gyroradius
of the electrons will cause the electron depletion to be confined much more closely to the magnetic
shadow itself, whereas the ion depletion will be more widespread (Fig. 8). If the Debye length is
finite, the resulting charge imbalances will produce a potential disturbance which will also depend
only on r at large |z|. Unless the probe potential is very negative, this disturbance will be positive
in sign (Sanmartin, 1970). In the absence of collisions (and assuming steady-state conditions), no
mechanism exists to cause the charge-density disturbances to decay with increasing |2|, and the
resulting potential disturbance must therefore also extend to infinity in both directions along the
probe’s magnetic shadow. This further implies that if the charged-particle mean-free-paths are
finite, no matter how large they are, collisions will ultimately repopulate the depleted regions as
|2| — 0o. Some of these collisionally-redirected particles will travel toward the probe. In doing so,
they will produce effects on both the space-charge density near it and on current collection by it.
Some of the same particles will have negative values of the total energy E defined in Eq. (1); if
the potential disturbance is positive in sign, this can happen only for electrons. These particles
cannot escape from the probe’s potential disturbance unless it extends to infinity or they undergo
another collision; otherwise the z component of their velocity, if initially directed away from the
probe, must eventually reverse. The electron current reaching the probe will therefore include a
contribution due to electrons which have negative total energies. In contrast with the situation
for B = 0, this contribution will persist rather than vanish in the limit of large mean-free-paths;
increasing the mean-free-path will result merely in a corresponding increase of the scale of distances
over which collisions provide this contribution.

We therefore conclude that a collisionless, finite-Debye-length theory cannot be formulated for
a probe in a magnetoplasma, unless some approximation is made (discussions with H.A. Cohen,
unpublished). On the other hand, effects of this may be negligible in at least some real situa-
tions. For example, the calculations reported by Katz et al (1989), which were done in support of
the SPEAR T electrostatic probe measurements using the NASCAP/LEO and POLAR simulation
programs, gave good agreement (within about 4% in the case of the more-accurate POLAR calcu-
lations) with these measurements (see their Fig. 10), and these were collisionless calculations. The
NASCAP/LEO calculations used analytic approximations for space-charge densities in the sheaths
around the SPEAR T probes and rocket body, whereas POLAR calculated these densities by track-
ing particle orbits inward from sheath edges. It is noteworthy also that all the theory which we have
discussed so far has been for a nondrifting ambient plasma. In Section 7, we discuss a description
by Thompson (1985) of the disturbed region around a high-voltage orbiting object. Thompson’s
description implies that a drift transverse to B, even at much less than orbital speed, may change
fundamentally the structure of this disturbed region, and a completely collisionless calculation of
collected current then may still be applicable. We discuss this question in more detail in Section
7. Here we confine our discussion to nondrifting situations.
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The most thorough available treatment of the combined effects of collisions and space-charge on
probe current is that of Sanmartin (1970), who performed an asymptotic analysis on this problem,
using ion and electron collision models based on cumulative small-angle scattering by multiple
Coulomb encounters. In his treatment, electron collection by the probe is limited by the fluxes
of electrons which are supplied by collisions to the above-mentioned two regions (one for z > 0
and one for z < 0) of positive potentials in the probe’s magnetic shadow. To be collected, these
electrons must also cross a potential barrier which exists between each of these regions and the
probe when the probe potential is close enough to space potential. This barrier exists because at
such probe potentials, each region is more positive than at either the probe or infinity, i.e., there
is an “overshoot” in the potential distribution as a function of |z| in each region (Fig. 9). The
most important effect of this situation on the probe current near space potential is to decrease the
electron collection, thereby “rounding the knee” of the probe’s current-voltage characteristics as
computed by Sanmartin. His results for the electron-current characteristics are reproduced in Fig.
10. Sanmartin’s treatment assumes that the ion-to-electron temperature ratio is close to unity,
the electron average gyroradius @ and the Debye length Ap are both << 7y, and rpf both the
mean free path for multiple small-angle Coulomb collisions and the ion average gyroradius. In his
analysis, the magnetic shadow region on each side of the probe is divided into: an outer layer which
extends to infinity, is quasineutral and collision-dominated, and in which the potential rises to a
maximum value as one approaches the probe; an intermediate layer, also quasineutral, across which
the potential is uniform and whose thickness is of the order of the local electron mean free path;
and an inner layer which is collisionless and in which the potential decreases steeply to its value on
the probe. Sanmartin’s approximations include a point-to-point matching of the particle fluxes as
a function of r across the intermediate layer. For electrons, this is done by equating his Eqs. (44)
and (65) for these fluxes. The result is to exclude the possibility of an attraction-region increase
in current collection due to effects of particle orbital motions, so his attraction-region currents
saturate at 1 = % as P, — 00, in contradiction with the results discussed in Section 2. His theory
in its present form therefore is useful primarily for probe potentials close to space potential when
Tp >> Ap and the magnetic field is large enough that B =rp/a>>1 (See, however, the last
paragraph of Section 4). For a probe at space potential, ¥, = 0, the currents predicted by him
(Fig. 10) are much lower than the collisionless currents given by Fig. 17 of Whipple (1965) for
the case r, << Ap. At present, there is no theory available for probes in magnetoplasmas which
includes effects of particle orbital motions together with collisional and space-charge effects, and
we have seen (Section 2) that at larger probe potentials, orbital-motion effects become increasingly

important.
4. EFFECTS OF PLASMA TURBULENCE

A persistent and widespread suspicion has been that when probe potential is sufficiently posi-
tive, spontaneous fluctuations or “plasma turbulence”, driven by the large electron-density gradients
which then exist near the edges of the probe’s magnetic shadow, will transport charged particles
transversely to B and produce probe currents much larger than those predicted by the steady-state
theories described in Sections 2 and 3. The existence of probe-induced spontaneous fluctuations, for
probes having a sufficiently large positive bias, is well-established by laboratory observations (Bal-
main, 1972; Urrutia and Stenzel, 1986; Stenzel, 1988). Spontaneous density fluctuations of up to a
few percent amplitude have also been observed in the disturbed region around the Shuttle Orbiter
(Murphy et al, 1986). What is less clear is whether such fluctuations can increase substantially the
time-averaged currents collected by probes.
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For a long time, only one theoretical treatment, due to Linson (1969), has been available which
includes predictions of plasma turbulence effects on current collection by a probe. An alternative
formulation by P.J. Palmadesso appears later in these Proceedings.

Linson’s (1969) treatment is semi-empirical because it depends on a parameter whose value
is inferred from experimental data rather than predicted. Linson suggests that the unneutralized
electron population in the sheath region around a probe having a large positive bias may be subject
to a gyroresonant instability whose onset depends on a sufficiently large value of the parameter:

Q = wi/w (15)

where w, = (neez/meco)% is the electron plasma frequency, w, = eB/m, is the electron gyrofre-
quency, m, and n, are electron mass and number density, and ¢, is the permittivity of space. Linson
cites evidence that the onset of this instability occurs when @ is close to or somewhat smaller than
1; ionospheric values of () are generally greater than 1. Linson then assumes that the resulting
turbulent diffusion produces a region of uniform electron density around the probe (Fig. 11), that
this region is greatly extended in the z direction, and that electric fields parallel to z are small
compared to those perpendicular to z. Assuming also that ions are completely excluded from this
region then permits him to write a cylindrically-symmetric Poisson equation:

1d ( d¢) _ €M (16)
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for potentials within it. He solves this equation subject to the boundary conditions:

¢ = ¢, whenr =1, (17)
d):O,%?:Owhenr:Ts (18)

Equation (16) is of only second order, so with three boundary conditions given in Eqgs. (17) and
(18), this system of equations is overdetermined. Solving it therefore also provides a value for the
sheath radius r;. We obtain:

2 2
1 * 3 3
$p = 5Q¢ (_,,) In (‘,,) —1 +1 (19)

where ¢* = %mewgrg/e. This result is Linson’s Eq. (13). It provides an implicit relation for r, as a
function of the probe potential ¢,,. Linson then proposes, as an upper bound on probe current, the
random current incident on both ends of a flux tube of radius r,. In terms of the random current
I'p defined just prior to Eq. (6), Linson’s upper-bound current is now given by:

i=I/Ig = -;- @ /1-1,)2 (20)

Figure 12, which is a reproduction of Linson’s Figure 3, shows a comparison of the currents given
by Linson’s treatment for Q = % and 1 with those given by the result of Parker and Murphy
(1967) [our Eq. (7)] and by the nonmagnetic, spherically-symmetric, space-charge-limited theory
of Langmuir and Blodgett (1924). This Figure suggests that turbulent transport produces a major

increase in the probe’s electron collection, perhaps to values close to the nonmagnetic ones.
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Experimental evidence for this contention has been ambiguous until recently. This is in spite
of the launching, since 1969, of no fewer than 25 separate rocket and satellite experiments which
included measurements of the potential acquired by surfaces of the vehicle when an electron beam
was emitted from it. Reviews of these experiments have been given by Winckler (1980), Linson
(1982), Szuszczewicz (1985), and Maehlum (1988). During the same period, space experiments
have also been performed which involved either the emission of ion beams, with measurements of
the resulting vehicle surface potentials, or the application of a differential bias which caused one
part of the vehicle to acquire a large negative potential relative to space, with the resulting ion
collection current measured. In such cases, magnetic-field effects on ion collection are relatively
small because of the relatively large average gyroradii of ions. Of greater importance in these cases
are effects of relative ion drift motion. Exact collisionless theory for ion collection in the presence
of ion drift is relatively incomplete. A review of available approximate theories for this situation
has been given by Godard and Laframboise (1983). Substantial disagreement exists between these
theories and experimental results (Makita and Kuriki 1977, 1978) but the approximations in the
theories are severe enough that this does not constitute evidence that the collisionless, steady-state
model is invalid for ion collection. In contrast with this, the electron current-voltage observations
generally imply currents exceeding the Parker and Murphy (1967) values. The amount of excess
current appears to increase with ambient electron density. Popadopoulos and Szuszczewicz (1986)
have proposed that a collective interaction between the beam and the ambient plasma may energize
some of the ambient electrons, and these then provide a greatly increased return current to the
vehicle because of their much larger velocities.

This hypothesis is supported by the results of the recent CHARGE-2 (Myers et al, 1989)
and SPEAR I (Katz et al, 1989) rocket experiments. In the CHARGE-2 experiment, the payload
was separated into two sections joined by an insulated conducting tether. One of the sections
carried a 1 keV electron gun. The sections were separated by up to 426m across the geomagnetic
field. Return current collection was observed for positive potentials up to 1 kV on both sections.
In all measurements, return currents to the section carrying the gun exceeded Parker-Murphy
(1967) values, while those to the other section agreed well with these values. In the SPEAR 1
experiment, no beam was emitted. SPEAR I carried two spherical electrostatic probes of radius
10¢m, separated from each other by 1m and from the rocket body by 3m. Positive voltages up
to 45.3kV were applied to one of the two spheres. In the results presented by Katz et al (1989),
the other sphere was grounded to the rocket body. Also grounded to the rocket body was a
stem which supported both probes and was separated from them by resistive bushings of length
1m. Katz et al (1989) calculated that when a 46kV bias was applied to one sphere, the rocket
body and the other sphere floated at —8.3kV, and the biased sphere then floated at 37.7kV. The
measured current-voltage curve gives a current of 52 mA at this voltage. This is about twice
the Parker-Murphy (1967) value [Eq. (7)] for these conditions, but the calculations of Katz et al
(1989) indicate that this discrepancy results from the breaking of canonical angular momentum
conservation [Eq. (2)] by the strong asymmetry of the sheath around the probe; this asymmetry
in turn is produced by the presence of the oppositely-biased large rocket body and other probe (1.
Katz, private communication, 1989). The results of this experiment therefore can be interpreted
as providing further support for the validity of the canonical upper bound on current collection
[In these experiments, the correction term % /o? in Eq. (11) was negligible, so the canonical upper
bound was essentially equal to the Parker and Murphy (1967) upper bound given by Eq. (M-
This in turn indicates an absence of significant turbulent-transport effects on such currents in the
absence of beam-induced disturbances, contrary to the hypothesis advanced at the beginning of

this Section.

However, Palmadesso (paper appearing later in these Proceedings) has pointed out that one
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expects turbulent-transport effects to become important only when the region of large electric
fields near the probe extends radially beyond the region in which the probe is readily accessible
to particles on the basis of steady-state fields only. For the radii of these two regions, he uses the
nonmagnetic spherical sheath solution of Langmuir and Blodgett (1924) and the Parker-Murphy
(1967) radius r,, given by Eq. (6) with a positive sign, respectively. He points out that the
Langmuir-Blodgett radius is initially smaller but grows more rapidly as probe potential increases,
so one should expect significant turbulent transport effects only for large enough values of probe
potential. This appears to indicate that turbulent transport may yet prove to be important at
large enough positive voltages, so the indications to the contrary provided by the CHARGE-2 and
SPEAR I experiments may not be conclusive.

This apparent absence of turbulent-transport effects in space situations runs counter to
widespread expectations, as we noted at the beginning of this Section. An example of such expec-
tations is a discussion by Stangeby (1989, Sec. IIIA) of particle transport across magnetic fields in
magnetic-confinement fusion experiments. Stangeby summarizes the evidence for the well-known
conclusion that such transport generally agrees with' the empirically-obtained Bohm value (Bohm
et al, 1949), and is much larger than the “classical” value which forms the basis of the Sanmartin
(1970) theory discussed in Sec. 3. However, probe use in fusion plasmas generally involves very
different conditions than in space (P.C. Stangeby, private communication, 1990). Because of in-
terpretive difficulties, probes in fusion plasmas are generally operated at voltages below floating
potential (Stangeby and McCracken, 1990, Figures 2.4 and 2.5). Ton and electron densities are then
nearly equal to each other almost to the probe surface, whereas in the CHARGE-2 and SPEAR
I situations, the probes were surrounded by large electron sheaths. This difference presumably
affects the turbulent-transport mechanisms involved, but these are understood very poorly, so firm
conclusions cannot be drawn.

5. PARTICLE TRAPPING AND THE “TOROIDAL GLOW” REGION

We have seen that imposition of a magnetic field changes fundamentally the characteristic mo-
tions of charged particles in the disturbed region around a probe (Sections 2 and 3). An important
consequence of this is a qualitative increase in the possibilities for trapping of attracted particles
in this region. This in turn creates the possibility of significant increases in probe current because
of collisional or turbulent scattering into and out of this region, or collisional ionization of neutrals
in it. We examine each of these aspects of this situation separately.

We illustrate in Fig. 13 the region of space in which particle trapping occurs in the presence
of a magnetic field. For the attracted-particle species lg¢p < 0], this Figure shows the general
appearance of “open” magnetic bottles which extend to z = +oo and correspond to E > 0, and
“closed” ones which correspond to E < 0, all drawn for a particular value of J which is chosen such
that the bottle for E = 0 marginally fails to intersect the probe. Since ¢ =0 at infinity, £ > 0 for
all particles coming from the ambient plasma. Therefore, in the absence of collisions, the “trapped-
orbit” (E < 0) region of one-particle phase space, corresponding to closed magnetic bottles such
as those shown in Fig. 13, must remain unpopulated. However, if a particle is scattered into this
region, by either a collision or (possibly) a turbulent scattering event, it will remain there until
another such event scatters it out again. If the collision frequency is very small, such a particle is
likely to remain there for a very long time. Therefore, even in the limit of small collision frequency, a
steady-state particle population will build up in the trapped-orbit region. This population will not
be larger than the equilibrium value given by the usual Boltzmann factor, but this bound permits
very large attracted-species populations if potentials near the probe are very large. This population
will always remain less than the equilibrium value, because particles can also be scattered out of
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it into “collection” orbits which intersect the probe. Assuming that the probe is nonemissive, this
sets up a net unbalanced flux of particles into it, using the trapped orbits as an intermediary stage
(Fig. 14), and therefore detailed balancing cannot occur, and an equilibrium population of these
orbits cannot be attained. This unbalanced flux also constitutes an additional current to the probe.
So far, the problem of calculating this current is completely unsolved.

In the absence of a magnetic field, approaches to this problem have been made by Wasserstrom
et al (1965), Chou et al (1966), Bienkowski and Chang (1968), Self and Shih (1968), Talbot and
Chou (1969), Thornton (1971), Shih and Levi (1971), Parker (1973), Friedland and Kagan (1979),
and others, using various approximations. A review of most of this work has been given by Chung
et al (1975, Section 2.5).

Our depiction in Fig. 14 of the intermediary role of trapped orbits is schematic, and applies
whether or not a magnetic field is present, even though the orbits when B # 0 will generally be more
complicated than those shown. However, one feature of the trapping phenomenon is fundamentally
different when B # 0. In either the nonmagnetic or magnetic case, the term qé(r,z) in Eq. (4)
will have a local minimum as a function of z at z = 0 for each 7, so trapping will occur, i.e. the
effective potential U(r,2) in Eq. (4) will have a local minimum, if the last term in Eq. (4) has a
minimum outside the probe as a function of r for at least some values of J. Inspection of this term
shows that in the nonmagnetic case (w = 0), this term has minima only if |gé(r, )| decreases more
slowly as a function of r than an inverse-square potential ¢ = const. 7~2 over at least some range
of r values (Mott-Smith and Langmuir, 1926; Bernstein and Rabinowitz, 1959; Laframboise, 1966;
Laframboise and Parker, 1973). Accumulation of a trapped-particle population adds space charge
of a sign opposite to that on the probe surface, and this causes the sheath potential to steepen,
tending to destroy the conditions necessary for trapped orbits to exist, and thereby limiting their
population (Laframboise, 1966, Section VIII). However, in the magnetic case, the last term in Eq.
(4) always has minima as a function of 7. A steepening of the potential therefore can modify the
resulting minima of the effective potential U(r, z), but cannot destroy them. We therefore expect
trapped-orbit effects to be much more important when significant magnetic fields are present.

We have so far not mentioned what may be the most important consequence of trapped-
orbit population. Particles scattered into the trapped-orbit region will be accelerated by large
electric fields in this region if the probe potential is large. In the more central regions of the
closed magnetic bottle accessible to each particle, it will then have enough kinetic energy to cause
collisional ionization of neutrals. If the attracted particles are electrons, this will occur for probe
potentials above a few hundred volts. Some of the new charged particles thus produced will be on
collection orbits (Fig. 14), and this can produce a substantial increase in probe current. Another
consequence of energetic collisions in the trapped-orbit region is light emission. Such emission was
first observed as a “toroidal glow” region, in a laboratory experiment by W.J. Raitt and A. Konradi
(private communication, 1987). The toroidal-glow phenomenon has since been studied in detail by
Antoniades and Greaves (paper appearing later in these Proceedings), who have also observed the
above-mentioned increase in probe current. They have observed these phenomena in a test chamber
which was large enough to permit a well-developed trapped-orbit region to exist around the probe,
but they did not see them in tests done in a smaller chamber. So far, these phenomena have not
been observed in space. Antoniades and Greaves discuss in detail the conditions under which one
can expect them to occur. One feature of the toroidal-glow region, which may be expected on the
basis of Fig. 13, is that it should have “pointed ends” in the +z directions, and this feature is
evident in photographs of it presented in their paper.

When the magnetic field is sufficiently weak, their results show that the toroidal-glow region
disappears and either no discharge or a spherically-symmetric discharge occurs. If the ambient
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neutral density is large enough, the establishment of a spherically-symmetric discharge, around a
probe at a large positive voltage, involves a process of “explosive sheath ionization”, which has
been studied by Lai et al (1985) and Cooke and Katz (1988). In this process, electrons created
by ionization of neutrals in the sheath migrate quickly to the probe, while similarly-created ions
accelerate slowly away from it. This results in a net positive contribution to the space charge in
the probe sheath. This contribution enlarges the sheath and thereby enlarges the region in which
the electrons have been accelerated through a sufficient change of potential to ionize neutrals. This
results in more net positive space charge and a consequent runaway sheath expansion.

Magnetic-bottle shapes similar to those shown in Figs. 1, 4, and 13 do not exhaust all possi-
bilities. The dependence of |¢(r,z)| on 7 for z = 0 in a steady-state situation invariably involves a
steep decrease toward space potential in the sheath region, followed by a much less rapid decrease
in the presheath region beyond the sheath edge. For some values of J, the effective potential U(r, z)
for the attracted particle species in Eq. 4 may then have, instead of a single minimum as a function
of r for 2 = 0, two minima separated by a maximum. Depending on the value of E, this can cause
the corresponding magnetic bottles to have “bulges” or even disjoint “bubble” regions (Fig. 15).
In the latter case, particles travelling along collisionless orbits from infinity will be unable to enter
these “bubble” regions even though permitted by their values of £ and J to exist there. In the
case of “bulges”, such particles are likely to be partly prevented from entering the bottle regions
closest to the probe; a similar effect was discussed in connection with bottle “widening” at the end
of Section 2. To some extent, all of these effects will limit access to the probe of attracted-species
particles which initially (¢.e. far from the probe) move along orbits located outside the probe’s
magnetic shadow. This may possibly invalidate the conjecture, mentioned at the end of Section 2,
that space-charge effects on the potential ¢(r, 2) may cause the current collection to increase above
the Laplace-limit values calculated by Sonmor (see Section 2), toward the canonical-upper-bound
values. However, the SPEAR I and CHARGE-2 current-collection values discussed in Sections 3
and 4 appear to show good agreement with the canonical-upper-bound values, so at present there is
no clear experimental evidence for a collected-current decrease caused by the formation of “bulges”
and the breakup of magnetic bottles into disjoint “bubble” regions. As noted in Section 2, the
numerical results of Sonmor support the idea that this may occur. However, a definitive answer to
this question will require a more specific investigation of it than any done so far.

6. BREAKDOWN OF MAGNETIC INSULATION

“Magnetic insulation” is the tendency of a magnetic field to inhibit the transport of charged
particles across magnetic flux surfaces. In Sections 2-5, we have considered various ways in which
magnetic insulation can break down and current collection by a probe can increase as probe voltage
becomes more attractive for the particle species considered (most specifically, the electrons). We
have examined effects of violation of adiabatic invariance (Section 2), collisions (Sections 3 and
5), self-excited fluctuations (Sections 4 and 5) and particle trapping combined with collisions,
fluctuations, or collisional ionization (Section 5). Here we take a different view of the collisionless
particle motions treated in Section 2 (discussions with D.L. Cooke, unpublished). We consider
specifically the motions of particles in the trapped-orbit or “toroidal glow” region discussed in
Section 5. For particles which have a small enough z-component of velocity, one may expect these
motions to be well-approximated by a circumferential E x B drift with superposed gyromotion in
the plane z = 0, together with small oscillations about this plane. However, we now show that this
is not necessarily the case.

To show this, we note that the usual analysis for particle motion in uniform crossed E
and B fields (see, for instance, Tanenbaum, 1967, Section 1.4) yields an E x B drift velocity
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vy =(EXx B)/B2. The magnitude of v, is E/B. This can easily exceed the speed of light. This
happens when E > Be. For B = 0.3 Gauss = 3 X 10757, corresponding to the low-latitude iono-
sphere, and ¢ = 3 X 108m/sec, this inequality becomes E > 9000V /m. The SPEAR I probes had
radius r, = 10cm. Tgnoring space-charge effects gives a surface electric field E, on these probes
given by E, = —(d¢/dr), = @p/rp. The above-mentioned inequality is then fulfilled when the
probe potential ¢, > 900V Since space-charge effects can be expected to increase electric fields
near a probe, this inequality would have been fulfilled at even lower probe voltages in the SPEAR
I experiment. Since drift velocities greater than the speed of light are impossible, something is
clearly wrong with this analysis.

What is wrong is that the usual derivation of v, is non-relativistic. For planar geometry, the
correct approach to the derivation of v4 involves use of a Lorentz transformation (Longmire, 1963,
p. 30; Jackson, 1975, pp. 582-584), which can eliminate the component of E perpendicular to B,
yielding the usual E x B drift result, only if E < Be. If E > Be, a Lorentz transformation to a
frame moving at velocity E x B/E? (rather than E X B/B?) now eliminates the component of B
perpendicular to E. In this frame, particles now accelerate indefinitely parallel to E, s0 no magnetic-
insulation effect is predicted. The situations treated here do not involve probe potentials large
enough to produce strong relativistic effects, but what is instead implied is that orbit curvatures
due to the magnetic field become so slight that electron motions become dominated by electric-
field inhomogeneities associated with the rotational symmetry of the probe’s potential distribution.
Therefore, the non-relativistic magnetic-bottle analysis of Section 2 still applies, and still predicts
that radially-inward motion toward a probe will eventually be limited, except for particles having a
zero value of the canonical angular momentum component J defined in Eq. (2). Palmadesso (paper
appearing later in these Proceedings) has numerically calculated particle orbits in model spherical-
probe sheath potentials in magnetic fields, and these orbits display both of the phenomena just
described, namely the breakdown of E x B drift in strong electric fields, and the limitation of the
resulting radially-inward motion because of conservation of J. The same phenomena are visible also
in results from the NASCAP/LEO simulation of SPEAR T flight conditions, presented by Katz et
al (1989). We have reproduced their Figures 8(a) and (b) herein as Figures 16(a) and (b). Figure
16(a) shows their calculated bipolar-sheath potential contours for a 46kV bias on one spherical
probe and a —6kV assumed floating potential for the SPEAR I rocket body. Figure 16(b) shows
the trajectory of an electron in the potential of Figure 16(a). A sudden transition from E x B drift
motion to accelerated motion is clearly visible, as also is orbital motion caused by nonzero angular

momentum, closer to the probe.

7. PHENOMENA AROUND LARGE ORBITING OBJECTS AT HIGH VOLTAGES

Our discussion so far has been directed primarily toward rocket experiments involving large
positive electrode voltages. In such experiments, effects of spacecraft motion (relative plasma
drift) on sheath structure and current collection are generally thought to be unimportant. A very
different situation arises in the planned Electrodynamic Tether experiment, which is part of the
Shuttle-borne Tethered Satellite System (T.S.S.). In this experiment, it is planned to deploy an
insulated conductive tether of up to 20km length, extended vertically upward from the Orbiter’s
cargo bay. At the end of the tether is to be located a conductive spherical subsatellite. One
expected consequence of this arrangement is the generation of large-scale systems of low-frequency
plasma waves in the jonosphere (Banks et al, 1981; Raitt et al, 1983; Grossi, 1984; Rasmussen et al,
1985; Urrutia and Stenzel, 1989; Stenzel and Urrutia, 1989). Another experimental objective, more
closely related to our present discussion, is to investigate whether induced currents in the tether
due to its motion across the geomagnetic field can provide a useful source of electric power in space.
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This depends on achieving as large as possible an electron current collection by the subsatellite,
either passively or with the aid of a low-energy plasma source known as a “plasma contactor”. Here
we consider only passive current collection; the performance of plasma contactors is analysed in
four papers, by Hastings, Wilbur and Williams, Katz and Davis, and Cooke, respectively, which
appear later in these Proceedings. In the Orbiter’s reference frame, the ambient plasma contains an
upwardly-directed v x B electric field of about 0.24V/m, where v is the Orbiter’s orbital velocity.
The Orbiter is to carry an electron emitter (Banks et al, 1981; Raitt et al, 1983) which is intended
to keep its potential close to that of its surroundings. The subsatellite will then acquire a potential
up to about 5kV positive with respect to its surroundings.

The planned diameter of the subsatellite is 1.4m (Raitt et al, 1983). Much larger subsatellites
(conductive balloons) have also been considered (Williamson and Banks, 1976; Banks et al, 1981).
In either event, the subsatellite’s radius will be large compared with both the average gyroradius
and the Debye length of ambient electrons. The situation around the subsatellite therefore appears
likely to be similar to that analyzed by Sanmartin (1970; our Section 3), except that the ions
and electrons will now have a drift speed U = 8km/sec relative to the subsatellite. Since the
mean thermal speeds 7; and T, of ambient ions and electrons are roughly 1km/sec and 300km/sec,
respectively, drift effects would appear likely to be important for ions but negligible for electrons.
However, in the case of electrons, this conclusion turns out to be untrue. The following discussion
is based in large part on a treatment by Thompson (1985), and also on unpublished work by W.B.
Thompson.

In the nondrifting situation analyzed by Sanmartin (1970; our Section 3), electron depletion
by the probe created a positive potential disturbance which extended in both directions along the
probe’s magnetic shadow without attenuation until distances of the order of an electron mean free
path were reached. However, in low-Earth-orbit conditions, electrons drift at speed U toward the
upstream surface of this positive-potential region. They then enter this region, migrate along it to
the subsatellite, and are collected. The flux associated with this drift, integrated over this surface
out to a distance of order L = D% /U in both directions from the subsatellite, where D = 2r, is
the subsatellite’s diameter, then supplies the subsatellite’s electron collection current. The speed
and direction of this drift will be modified near this surface by electric fields associated with the
potential change across it. The upstream surface of the positive-potential region (on each side
of the subsatellite) now is no longer parallel to B but is “swept back” relative to B by a small
angle 8 ~ tan~}(U/v,) (Fig. 17). This implies that the region of positive potentials now tapers to
zero width in a distance of order L along each of the directions parallel and antiparallel to B. This
distance will be large compared to D, but generally much smaller than the electron mean-free-path,
so in this situation, a self-consistent collisionless treatment can be formulated. Positive ions striking
the upstream side of this region reflect forward from it (Fig. 17), creating conditions conducive
to two-stream instability just forward of it. Whether such instability has any substantial effect on
electron collection has not been determined. The same repulsion of ions from the positive-potential
region also creates an extensive ion-depleted wake region on its downstream side, and this wake
region can be expected to contain negative potentials (Fig. 17). In Thompson’s description, the
total length of this wake region parallel to B, i.e. transverse to the relative plasma drift, will be of
order 2L.

From our viewpoint, the most important question regarding the treatments of Sanmartin
(1970) and Thompson (1985) is whether they lead to different predictions for electron collection
by the subsatellite. Sanmartin’s theory includes collisions, and therefore leads to the populating of
orbits which have negative total energies with respect to space potential and therefore cannot be
populated by particles moving collisionlessly from infinity. In fact, the electron population reaching
the probe in Sanmartin’s treatment is a Maxwellian, with a reduced density factor [his Eq. (65)]
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which at the probe depends on position perpendicular to B (our r coordinate in Section 2 and
elsewhere). Therefore, in Sanmartin’s description, most of the electron current reaching the probe
is carried by negative-total-energy electrons.

The collisionless description given by Thompson (1985), and summarized above, is very differ-
ent. In this description, the definition of space potential is more complicated because in a reference
frame fixed on the subsatellite, there exists an ambient v x B electric field of about 0.24V/m.
However, this does not substantially affect what we can conclude about the velocity distribution of
electrons reaching the subsatellite. This remains as follows: all electron orbits not connecting back
to infinity are unpopulated. This includes all negative-total-energy orbits, and also those positive-
total-energy orbits which are caused to return to the subsatellite by electric or magnetic fields. The
positive-total-energy orbits which connect back to infinity have populations which are a function
of their ambient velocities. This function is just the drifting Maxwellian velocity distribution of
the ambient plasma. However, the drift velocity of these electrons is, as we have seen, very small
compared to their mean thermal velocity, and even though this “small” amount of drift is crucial
to the construction of a self-consistent collisionless treatment, it nonetheless has a negligible effect
on the population of those orbits which connect back to infinity. This population can therefore be
regarded as isotropic, i.c. dependent only on the total energy of each electron impacting the sub-
satellite, and this energy is conserved along the electron’s orbit, again assuming that the electron
has not passed through a region of significant time-dependent fluctuations (Section 4). If this is
the case, we then have complete knowledge of the velocity distribution of impacting electrons if we
know the “cutoff boundaries” in velocity space which separate the orbits which connect back to the
ambient plasma from those which do not (Laframboise and Parker, 1973). This last question in turn
is easy to resolve if electron acceleration into the positive-potential region is adiabatic (gyroradius
<< scale of changes in the electric field E), because the cutoff boundary is then “one-dimensional”,
i.e., if the z direction is again parallel to B, electron orbits arriving at the subsatellite surface are
populated only for v, values such that %mevz —e¢p > 0, where ¢, is the subsatellite’s potential
relative to space (Laframboise and Parker, 1973; Laframboise and Rubinstein, 1976; Rubinstein
and Laframboise, 1982; see also Section 2). All of this now implies that with these approximations,
the velocity distribution of impacting electrons is just an “accelerated half-Maxwellian”, and the
electron current collected by the subsatellite is just the random current collected by the projection
of its area onto a plane perpendicular to B. The dimensionless current i defined in Eq. (7) is then

just equal to %

However, this estimate may be much too small, because it excludes any correction for nona-
diabatic effects on electron motions near the subsatellite; these were discussed in Section 2. It
may seem surprising that such effects should be significant, because the average ambient-electron
gyroradius @ is much smaller than the subsatellite radius Tp- For Tp = 0.7m,B = 0.3G = 3x 10~4T,
and kT, = 0.1V, the ratio 8 = r, /@ defined following Eq. (10) is equal to 22.2. In spite of this,
for a subsatellite potential ¢, = dkeV, The Parker-Murphy (1967) upper-bound value for ¢, given
by either Eq. (7) or the first two terms of Eq. (11), is 11.86; the correction given by the third
term of Eq. (11) is insignificant. For this value of 8 and for the value ¥, = 5 X 10* implied by the
parameter values just given, the numerical results of Sonmor given in Fig. 7 appear to indicate that
the actual current will be very close to this upper-bound value. One cannot infer a firm conclusion
on this point because the Sonmor results are for a Laplace potential distribution (infinite Debye
length), rather than for the actual sheath potential distribution around the subsatellite, and no
clear information exists on whether actual currents will be larger or smaller than the corresponding
Laplace-limit currents (Sections 2 and 5). Nonetheless, the wide disparity between the values of ~12~
and 11.86, given just above for i, suggests that nonadiabatic effects on electron motions near the
subsatellite are very strong, and therefore the actual velocity-space cutoff boundary for electrons ar-
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riving at the subsatellite is very different from that given by the “one-dimensional” cutoff-boundary
relation noted above. However, this conclusion in turn could be affected strongly by the breakup
of magnetic bottles into disjoint regions, which we noted in Section 5 and in Fig. 15, so it still
requires detailed numerical verification.

For increasingly large subsatellite diameters D, the half-length L of the positive-potential
region increases in proportion. It is instructive to ask at what value of D does L become large
enough that a transition will occur from the collisionless description of Thompson (1985) to the
collisional one of Sanmartin (1970). To calculate the electron mean-free-path, we use the classical
Spitzer (1962, Chapter 5) results for the electron collision frequency in a fully-ionized gas. To use
these results, we consider an electron “test particle” whose velocity v, is given by mvg = 3kT,, i.e.
which has kinetic energy equal to the average value for electrons at temperature T,.

We include contributions to its cumulative angular scattering from both ambient electrons and
ambient ions. For ambient-electron density n, = 10%/em® and temperature T, = 0.1V, Eq. (5.22)
of Spitzer (1956) gives an electron mean-free-path A, = 725m for cumulative angular scattering.
We have just seen that the most important distinction between the collisionless and collisional
descriptions is likely to be the energy distribution of electrons in the positive-potential regions.
Another important mean-free-path therefore is that for energy exchange among electrons, also
defined by Spitzer (1956, Eq. 5.25). Bearing in mind that electron-electron encounters change the
electron energy distribution much more rapidly than do electron-ion encounters, a recalculation of
Table 5.3 of Spitzer (1956) to include ion effects indicates that the energy-exchange mean-free-path
is only moderately larger than A, for most electrons.

A good approximate criterion for collisionless current collection by the subsatellite therefore is
that L << A,. With the above-mentioned relation L = D7,/U and the values U = 8km/sec and
B, = 300km/sec, this criterion reduces to D << 19m. This result implies that collisional effects
can become significant for balloon subsatellite diameters which are within the realm of possibility.

In rocket experiments, U is generally much smaller, and this criterion then becomes much more
severe. For U = lkm/sec, we obtain D << 2.4m. The SPEAR I probes (Sections 3, 4, and 6),
whose diameters were 20cm, are comfortably within this limit, so we infer that even the relatively
small amount of spacecraft motion present in the SPEAR I experiment was enough to ensure that
current collection by these probes was essentially a collisionless process. The collecting portion of
the CHARGE-2 daughter payload (Myers et al, 1989) was somewhat larger, with a largest dimension
of 82 cm, but was still within the above-mentioned approximate limit. As mentioned in Sections 3
and 4, current collection in both experiments appeared to be described well by collisionless, steady-
state theory. A surprising prediction of the discussion in this Section is the extreme sensitivity of
this conclusion to very small values of ambient-electron drift motion. The effects of this drift motion
appear to remove the apparent contradiction between the conclusion of most of our discussion in
Section 3 (which applied in the strict absence of drift) and the apparent success of collisionless,
steady-state theory in both of these experiments. To put this interpretation on a firmer basis will
require the development of a theory which is capable of making quantitative predictions of collected
current in the transitional regime between the collisionless situation described by Thompson (1985)
and the collisionally-influenced one of Sanmartin (1970).
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8. CONCLUSIONS

Our discussion in Sections 2-7 has revealed subtle and surprising aspects of the problem of
predicting current collection by probes in the space magnetoplasma. Many of these aspects involve
unresolved issues. They include the following:

(1) The attraction-region current-voltage characteristic of a probe in a magnetoplasma can
contain a “negative-resistance region” near space potential (Section 2).

(2) Numerical calculations of collisionless, steady-state, Laplace-limit currents indicate that
these remain substantially below the canonical-upper-bound current values even at large attractive
potentials. Implications for current collection in more realistic potentials are not clear (Sections 2

and 5).

(3) In a nondrifting plasma, no current-collection theory is possible which includes space-charge
effects but not interparticle collisions, no matter how large the ambient charged-particle mean-free-
paths are (Section 3). However, even a very small amount of relative plasma drift, such as that
involved in a typical rocket experiment, can change this conclusion fundamentally (Section 7).

(4) Plasma turbulence appears to have an important influence on current collection by probes
in fusion plasmas but not in space plasmas. Such turbulence is not understood well enough to

explain why (Section 4).

(5) Space-charge effects, which tend to steepen the sheath potential profile near a probe,
decrease attracted-particle collection in nonmagnetic situations, but may possibly increase it in
magnetic ones (Section 2). However, formation of “bulges” and breakup of magnetic bottles into
disjoint “bubble” regions by such space-charge effects may reverse this effect. Presently available
experimental results and theory do not provide sufficient evidence to indicate whether an increase

or a decrease actually occurs (Section 5).

(6) The existence of trapped-orbit regions around a probe provides pathways for additional
current collection due to collisional ionization, collisional scattering, and possibly turbulent scat-
tering. The first of these is undoubtedly important; no predictions are available for the other two

(Section 5).

(7) Circumferential “E x B drifting” motion can break down in the strong electric fields that
exist near a probe, and be replaced by radially-accelerated motion. This motion in turn can be
limited by angular-momentum effects closer to the probe (Section 6).
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Figure 3. Comparison of the Rubinstein- Laframboise [1982; solid curves; given by our Eqgs.
(8) - (10)] and Parker-Murphy [1967; dashed curves; given by our Eq. (7)] canonical-upper-bound
values for dimensionless attracted-particle current i as a function of dimensionless probe potential
¥y, for various values of the dimensionless magnetic-field strength 3. The curve for 8 = 0 is the
Mott-Smith and Langmuir (1926) orbit-limited-current result.
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Figure 4(a). Results of L.J. Sonmor (I*h.D). thesis, in preparation), for the trajectory in scaled
coordinates [ = r{|mé, r,,/ql)’])'/a,i = z(|m¢,,r,,/ql]2|)'/3] ol a charged particle in an attractive
Coulomb electric ficld and uniform magnetic field, given by numerical solution of Eq. (14). Also
shown are the boundaries of allowed motion (“magnetic bottle boundaries”) for the same particle,
implied by conservation of encrgy and canonical angnlar momentum. The # axis (parallel to the
magnetic ficld) has been compressed for purposes of display. The portions of the trajectory which
are oulside Lhe plol houndary are monotonic progressions in % from and to infinity. The initial
conditions are: 3 = —20, difdr = V0.07, scaled radius 7, of guiding centre = V.6, scaled
gyroradins = 2.2, and phase angle = 0.
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Figure A(b). Same as Fig, 4(a), except that the initial conditions are: Z = -20, di/dr =
V015, 7, = V1.3, scaled gyroradius = +/0.02, and phase angle = 0.

39



SR

o f;" ) ‘n‘“ -
,“\'vé.\u‘n?, '
T "‘\‘% i
T Il it

: "HH

40



SONMOR EXACT

| N
[Ty K ¥ L ABIBATIC === === -====-===- ;
0 " | 1 i [ 1 1 i )| I i 1 1 i ] 1 1 1 i J 1 i i I ]
0 1 2 3 4 5

¥

Figure 5(a). Dimensionless atlracted-particle
for a ratio A of probe radius Lo average ambient a
are the adiabatic-limit currents and the smaller
bound currents, calculated by Rubinstein and La

current  versus dimmensionless probe potential ¢,
tracled-particle gyroradins of 1. Also displayed
of the helical upper-bound and canonical upper-
framboise (1982).
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Figure 5(1). Same as Fig, 5(a), except that g = 3.
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Figure 6(a). Dimensionless allracted-particle current i versus dimensionless probe potential
¥, for a ratio 3 of probe radius Lo average ambient attracted-particle gyroradius of 1, plotted for
a farger range of probe polentials than in Fig. 5(a). Also displayed is the canonical upper-bound
current due to Rubinstein and Laframboise (1982). The minimum in the exact current al ¥, = 0.2,
whicl was evident in Fig. 5(a), is ouly barely visible here. Here and in Pig. 6(b), numerical errors
in the “exact™ results at larger ¢, are noticeable on Lthe scale of these graphs, and we have therefore
marked actual computed values for larger 1{:,, by open circles, and a curve-fit to them by a solid

fine.
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Figure 6(b). Dimensionless attracted-particle current @ versus dimensionless probe potential
i, for a ratio g of probe radius to average ambicnt attracted-particle gyroradius of 3, plotted for
a larger range of probe potentials than in Iig. 5(b). Also displayed is the canonical upper-bound
current due o Rubinstein and Laframboise (1982). The minimum in the exact current at ¥, = 0.9,
which was evident in Tig. 5(b), is only barely visible here.
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Figure 7. Computed results of L.J. Sonmor (Ph.D. thesis, in preparation), showing transition
from adiabatic-limit current toward canonical upper-bound current as probe potential Y, becomes
more allractive, for various ratios  of probe radius to average ambient atiracted-particle gyro-

radius. ITg; 4 and I, o are the adiabatic-limit current and the canonical upper-bound current

’

respectively, both due to Rubinstein and Laframboise (1982). The canonical upper-bound current
is also given by Lqs. (8)-(10). fu this Figure, the curves have been smoothed to reduce oscillations

caused by numerical errors in individual results.

PROBE’S
“MAGNETIC
SHADOW”

Figure 8. General appearance of representative collisionless ion and clectron orbits far from
the probe but not beyond the positive-potential disturbance (Sanmartin, 1970) which extends along
the probe’s magnetic shadow. Diagram is schematic only since this disturbance can extend very

far in the z and -2z directions,
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Figure 9. General appearance of polentials as a function of z for r = 0 under conditions
analyzed by Sanmartin (1070) aud described in Section 3.
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Figure 1. Reproduced from Fig. 2 of Linson (1969), showing the construction of kis constant-
densily cylindrical space-charge shiclding model. r, is the critical radius defined by his Eq. 8 (our
Fq. 6).
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Figure 12. Reproduced from Fig. 3 of Linson (1970), with some notation changed, showing a
comparison of current-versus-probe-voltage predictions from three models discussed by him. Their
asymptotic behaviour for large probe voltage 4, is shown. In this Figure, I, cquals onc-half the
random current [y defined in our Section 2. The dot-dash curve represents the Langmuir-Blodgeut
(1924) spherical space-charge-limited current value. For conslant poteutial, this current scales
approximately as 10-4/7' The normalized voltage ¢* defined following our Eq. (19) is the same
as Lhe quantity ¢, defined in Linson’s Eq. (8), and has been taken to be 178 volts, which is
equivalent to Br, = 0.45Gm. A change in the constant @ displaces the solid curve horizontally by
the appropriate lactor.
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Pigure 13. General appearance of open magnetic bottles corresponding to £ > 0 and closed
ones corresponding to £ < 0, all for the same value of the canonical angular momentnin component
J about the z axis, defined in Eq. (2). Note the “pointedness” of bottles corresponding Lo slightly

negative values of E.
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Figure 4. Dustration of how trapped orbits provide an additional current pathway to a probe.
Whether trapped orbits exist depends on clectric and magnelic fields present; if B is negligible, B
mst vary with r less steeply than 73 for trapped orbits to exist (Section 5). The orbit classification
shown is that duc to Parker (1973, 1975); see preceding paper by B.C. Whipple in these Proceedings.
In a magnetic field, the shapes of these orbits can be much more complicated than those shown.
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Figure 15. Development of “bulges” and disjoint “bubble” regions in magnetic “bottles”, as
described in Section 5.

47



‘(9 wondeg) 51000 WnudmIow -re[ndue
Aq woriow suyy jo Bupiuil yuonbasqns pue ‘uonow ,pareisjpade, 0} vonow Innjup g X q, Woyj
UONISIRIY HAPPNS 01} OSTE HjON "Apoq 1930 a1y punore ieafs Fupdeiie-uot a1y jo aduasaad gy
£q posuanyut Aredienresp s ped ag3 ey Moy (e)9) Bip ut umoys uoynqinsip renuotod ofy wy
uo1ae e Jo 1yed aiy Fuimons ((GRET) 7 72 71y 10 R “Hig woyj poupordoy (4)91 panB1y
*AYO- e punoa@ ymasooeds o1 pue AY0F 01
poselq aonds ono 1M ased a3 1oj wesSord vonenuis QI'I/JVISVN A1) A pnepnapn s1eoiiod
rennaoed [ HVAJLS Fuimons (6861) o 19 mey jo vg Sty woly paonposday (v)o1 Mndiy

\ \ D

001

0l

t

—I

oL~

001 -

0001 -
SI0AST INOIUOY

abejjop

ﬁ Apoq
———" 184001
00001
v3
| I Hv3dS 0001

48



-t

Inflowing
electrons

Reflecting
lons

A~

-—— h N

Low density region

A5v
L‘/_\ Potential

Reflected

ion motion ’ I

Collector

Figure 17. Reproduced from Figure 2 of Thompson (1985), showing the structure of the
disturbed region around a large sphere in a drifting magnetoplasma.
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CURRENT COLLECTION IN A FLOWING MAGNETOPLASMA

Nagendra Singh and B.I. Vashi
Department of Electrical and Computer Engineering and
Center for Space Plasma and Aeronomic Research

University of Alabama, Huntsville, AL 35803

ABSTRACT: Effects of plasma drift on the current collection by a long conducting
cylinder in a magnetized plasma is studied by means of a 2 1/2 dimensional PIC code. It is
found that for the drift velocity (Mo) perpendicular to the magnetic field B , the electron
current collected by a positive cylinder is considerably enhanced depending on the drift
velocity. The distributions of plasma and the potential structure around the cylinder for
several relative orientations between V and B are presented along with the comparisons of
current with and without the magnetic field. Simulations with the magnetic field in the
simulation plane show that the potential structures around the cylinder are
two—dimensional double layers with dimension (L;) perpendicular to B much smaller than
the dimension (L") parallel to B. In fact, LL is found to be approximately determined by
the current limiting radius given by the Parker—Murphy model. However, it is found that
the collected currents in the simulations are generally higher than those given by this

model.

1. INTRODUCTION
The knowledge of current collection by conducting bodies in space plasma is
relevant to numerous applications such as the operation of plasma probes, charge

neutralization on space vehicles, working of the solar cell arrays and the operation of an
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electrodynamic tether. Most theories dealing with this topic are limited to simple
geometries and idealized plasma models. For reviews of the theoretical studies, the reader
is referred to Whipple and Laframboise and Sonmor in this volume. These reviews show
that there is a general lack of theoretical studies on current collection in a magnetized
plasma when there is a relative drift between the magnetized plasma and the current
collector. The purpose of this paper is to contribute to this area by means of computer
simulations using a PIC code.

Our computer model is two dimensional; the axis of the cylinder is perpendicular to
the plane of simulation. The magnetic field is oriented along the axis of the cylinder or in
the simulation plane in different simulations, which bring out the effects of relative
orientation between the magnetic field and the plasma drift on the sheath structure and the
current collection properties. For the axial magnetic field, a simple—minded picture with
radial electric fields indicates that the E x B drift will cause a magnetic insulation stopping
any collection of electrons by the positive cylinder. Simulations show that this picture is
not valid when there is a relative flow between the plasma and the cylinder; the potential
structure is considerably modified so that the flowing electrons are focused onto the
cylinder, making possible the collection of a relatively large electron current.

When the magnetic field is in the simulation plane, the potential structure is
extended along the magnetic field and its transverse dimension is quite limited and it is
found to be given by the current limiting radius calculated by Parker and Murphy [1] in a
non—flowing plasma. We find that when the flow is perpendicular to the magnetic field,
the electrons intercepted by the extended field—aligned potential structure are partially
collected by the cylinder and the current is found to be considerably enhanced over the
current predicted by the Parker—Murphy model [1]. However, for the flow parallel to the
magnetic field, the current is seen to be limited in a fashion described by the above model.
Since in the low earth orbit, the orbital velocity vector is at large oblique angles with

respect to the geomagnetic field, a current enhancement is expected.
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2. SIMULATION TECHNIQUE

The plasma flow past the cylinder is simulated as shown in Figure 1. The hatched
area is the end view of the long conducting cylinder of radius r,. In the rest frame of the
cylinder, plasma flows along the positive x direction with the velocity Vo' The flow is
facilitated by imposing a dc convection electric field E so that V0 = _EO x B/Bz. The
simulated plasma region is limited tor <R . (Figure 1). At the initial time t = 0, the
simulation region is a vacuum and the plasma flow for t > 0 is maintained by injecting
charged particles at the rim of the simulation box (=R a.x) over the angular region 7/2
¢ 0 < 37/2 (Figure 1). The average injection velocity of the charged particles is V . At
each time step a predetermined number (Ni nj) of electron—ion pairs are injected to
simulate a desired plasma flux. The plasma particles used in the simulations are like rods

parallel to the axis of the cylinder [2]. The injected particles are chosen from Maxwellian

—» X 6=0

0=3n/2

Figure 1. Geometry of the simulation. The conducting cylinder is shown by the
hatched region. R max gives the radius of the simulation system. Plasma
flows across the cylinder with a velocity V o The magnetic field is parallel to

the axis of the cylinder.
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distributions with electron temperature Te = To and ion temperature Ti =0. The Y

coordinates of the particles are chosen according to a uniform probability distribution. The

1/2
X coordinates are first calculated by X = (Réu - Y2) and then further randomized by

replacing X by X + VAt where V is the particle velocity randomly chosen from a
Maxwellian distribution and At is the time step. Our injection technique is quite similar
to that described by Aldrich [6].

The magnitude of charge (qa), per unit length of such computer particles, is
obtained by balancing the plasma flux into the simulation region at the injection boundary
and the simulated flux due to the injection of the charge particles at each time step of
duration At, giving
C/m (1)

lq,| =2R eN V, At/N

max inj
where N0 is the ambient plasma density and e is the magnitude of the electron charge.
The injection of equal numbers of electrons and ions insures that no net charge is injected

into the system.

The temporal and spatial evolutions of the plasma and fields are calculated by the
self—consistent solutions of the equations of motions [2] of all the charged particles and the
Poisson equation for the electric potential ¢. It is important to note that in our
simulations, the electric field has two contributions as indicated by the following equation

E=E +E (2)
where E, is the convection field and E, is determined by the space charges and the bias
potential on the cylinder. Since Eo is uniform in space, V - Eo = 0 and the divergence of
(2) gives

V-E=V-E; =p/e, (3)
where p is the electric charge density. Under the electrostatic approximation, El = -V¢

and (3) gives the Poisson equation

V2o =—p/e, (4)
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The boundary conditions on the electric potential ¢ are ¢(r = To) 9) = b and ¢ (r =
Rma.x’ §) = 0, where ¢0 is the bias potential of the cylinder. The particles striking the
cylinder and those leaving the system are assumed to be lost. However, the simulation
system is maintained quasi—neutral at the 'global’ scale. For this purpose, we compare the
total numbers of electrons and ions in the entire system at each time step. The deficit
charged particles, which are taken from a Maxwellian plasma reservoir are randomly
distributed over the entire simulation system according to a uniform probability
distribution.
The collected current (I) is calculated by counting the electrons and ions striking
the cylinder during each time step,
I=3_q, 6Na/At (5)
where 6N a is their number, and q,,is given by (1). We note that although q, depends on

the numerical factors Rmax’ N._.and At; the current I is found to be independent of them,

inj
if Rmax and Ninj are sufficiently large and At is sufficiently small. This was verified by

carrying out simulations by varying these parameters.

3. NORMALIZATIONS AND DEFINITIONS
We discussed earlier that the charge on a computer particle is given by (1). If
q a/ e = 7, the analogy between the real and computer particles requires that the masses m,
effective temperatures T and density N satisfy the relations
Mg, = Mg Teg = 1T and Noy =Ny /1 (6)
where the subscripts r and c refer to the real and computer particles, respectively. It is
worth mentioning that the electron and ion Debye lengths and plasma frequencies are
invariant under the scaling law described by (6) [4].
The results presented in this paper are based on simulations with the following

ionospheric plasma parameters: ambient plasma density N0 = 1011m-3, electron
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temperature Te = 0.2 eV, plasma debye length A do = 1 cm, electron plasma frequency Yo
~ 1.8 x 107 rad/s, and the magnetic field B 0 = 0.3 G. With the above ambient plasma
parameters, the electron thermal current J =N o th eN—QTr ~ 1.2 mA/m2, where v, e =
(kT /m )12 = 192 km/s.

In order to simplify the equations and to generalize the applicability of their
solutions to different situations with varying plasma and current—collector parameters, we
use the following normalizations: potential ¢ = ¢/ ¢n, ¢n = kBTe/e; time t = twpo;
velocity V = V/V,, and distance r = /A4y

In view of the above normalizations the Poisson equation (4) can be written as

Pp 18% 1 %% ,\(210( ) -
> +-—+35—=——(qn. . —qn 7
I TR, e e

where qn; . and qn ec are the charge per unit volume associated with the computer ions and
electrons, respectively. It is assumed that both types of particles have the same magnitude
of charge, i.e., q, = q; = q, as given by (1). These charge densities (qni c and qn ) are
determined by calculating the number of computer particles at each grid point by the area
sharing method [2] and dividing it by the effective volume of a cell. This volume is given
by rjA 0ArAz, where rj is the radia? distance of a grid point, Ar and A4 are the radial and
angular grid spacings, respectively and Az is the length along the axial direction. With

these definitions and equation (1), the normalized Poisson equation takes the form

2~ - -
Po 1081 0% _ ox oAb .-
a—;§+§£+?£z_—2nmaxvom(mic Ang)/FATAON, (8)

where Ani c and Ane ¢ are the number of computer ions and electrons shared on a grid point
(jAr, iAf). The above equation is solved by employing FFT in 6 and triadiagonal method
inr.

The numerical results presented below are based on the following numerical
parameters: R\, = 14004 ~ 14 m, 1 =100, %01 m, At =02, Ar =1, Af = 10°

and the normalized flow velocity V o=V o/vt o 18 varied. The simulations are carried out

with HY plasma for which mi/me = 1836. We note that in our simulation electron
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. - : . .
cyclotron period 7, % 18 Yo while the ion cyclotron period 7 = (mi /m e) Teer Thus, for
the time scales in the simulations, electrons are magnetized, while ions behave as

unmagnetized charged particles.

4. NUMERICAL RESULTS
In the following discussion we first present results for B = 0, which are later used
for the purpose of comparisons with the results for non—zero magnetic fields with different

orientations.

4.1  Simulations with B =0

We recall that the simulation begins with no initial plasma in the system. The
simulation plasma builds up in the system in response to the injection of particles as
described above in Section 2. In the simulation described in this subsection <?>0= 100 and
VO = 0.3. Figures 2 and 3 show the evolution of the plasma; in Figure 2 the contours of
constant density of ions are shown at some selected times. The minimum density contour
isn = 0.1 and the density interval between the contour's is An = 0.3. The electron density
shows nearly the same evolution as the ions. After about t = 550, a quasi—steady state is
reached in the plasma distribution.

The distribution of the computer particles in the r— plane are shown in Figure 3,
each dot in the panels of this figure represents a particle. The left—hand panels show
electrons while the right—hand ones show ions. Note the formation of a distinct wake
behind the cylinder (also see Figure 2). Another noteworthy feature of Figures 2 and 3 is
that a bow structure forms in the ram direction; in this structure the density is generally
enhanced. We also see from Figure 3 that ions are not able to reach the cylinder because
the kinetic energy of the ions (1/2 m, V§ = 82.6 kT 0) associated with the plasma drift is
smaller than the potefltial energy e¢o = 100 kT o where ¢0 is the bias voltage on the
cylinder. Outside the wake region, the plasma density n = 1, indicating a uniform plasma
flow in the ram direction away from the bow structure.
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Figure 2. Evolution of the plasma inside the simulation region. Contours of constant
densities are shown with a contour spacing of Aﬁi ~ 0.3. Note that the
plasma distribution attains a quasi—steady state after about t = 600.

&o = 100.
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Figure 3. Evolution of plasma is shown by showing the distribution of (a) electrons and
(b) ions in the r—@ plane. Each dot in this figure represents a computer

particle. ao =100, B =0, \'fo =0.3.
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The evolution of the potential distribution around the cylinder is shown in Figure 4,
which gives the equipotential surfaces at some selected times. The contour levels are Ag =
5 apart. This figure shows that after about t = 500, the sheath structure reaches a
quasi—steady state. In the wake region the potential is generally negative.

In response to the evolution of the plasma and potential around the cylinder, the
collected current evolves as shown in Figure 5. The current reaches a quasi—steady state
after about t = 500, in agreement with the evolutions of the density and the plasma
potential. After this time, the plasma and the potential are still undergoing some changes,

especially in the wake region, but they seem to have negligible effect on the current

collection. The time—average current for B = 0 in the quasi—steady state (t > 500) is

about I ~ 18 mA.

L 1\//1
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-100 — \ \ .
i 1 ) i {
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X
Figure 4. Evolution of the equipotential surfaces around the cylinder. Note that after

about t = 600, the equipotential surfaces attain a quasi—steady state. The
equipotential contours are A¢ = 5 apart. 550 = 100, B = 0, \70 =0.3
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Figure 5. Temporal evolution of the current collected by the cylinder. The thick line
curve shows the time average current when fast oscillations are averaged out.

Note that the current attains a quasi—steady state when about t > 600.

3,=100,B=0,V_ =03

The simulations with B = 0 were carried out for several bias potentials. Figure 6
shows the V-I characteristics of the cylinder. It is found that I « ¢(1)/ 2, which is in
agreement with the orbit—limited current collected by a cylinder (e.g. see Chen [5]).
However, the proportionality constant is found to be given by

I~1.8 (e¢0/kTe)1/2 mA/m ,
which is found to be by a factor of two larger than that for V o = 0. It is expected that in
the limit Vo = 0, the simulations must yield the current as predicted by the orbit—limited
current. However, the simulation runs with very small drift velocities take too long to
complete and so far we have not carried out such simulations.
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Figure 6. I-V characteristic of the cylinder. Note that the horizontal axis is ¢c1>/ 2

The current variation shows the linear relation I a ¢(1)/ 2. \70 =03,B=0.

42  Simulation with B =B, = 0.3 G and ¢_ = 100

We do not show the temporal evolution of the plasma and potential here, instead we
Just present here the quasi—steady state distribution of the plasma and potential around
the cylinder. The top two panels of Figure 7 show the contours of constant ion and
electron densities. The corresponding distributions of the particles in the r—@ plane are
shown by the two middle panels. The bottom single panel shows the distribution of
potential; equipotential surfaces at intervals of A¢ = 5 are shown. It is worth pointing out
that the plasma and potential distributions for BZ = 0.3 Gauss is quite different from those
for B = 0. In the former case (Bz = 0.3 Gauss), the equipotentials show a multicell
convection pattern [6]. The fan—shaped structure extending below the cylinder is the
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Quasi—steady state feature of the plasma (a) Ion density distribution, (b)
electron density distribution. The contour levels in (a) and (b) are An = 0.3
apart. (c) spatial distribution of ions, (d) spatial distribution of electrons,
(e) distribution of potential; equipotential surfaces are A¢ = 5 apart.
$,=100,B=0,V =03
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consequence of the stagnation of the plasma flow below the cylinder due to the opposition
to the flow by the E x B drift in the initial radial electric field [6]. The fan—shaped
equipotentials cause electrons to circulate around the cylinder due to the E x B drift. The
electron flow coming from the left is caught in this convection cell and focused on to the
cylinder as shown by the crowded equipotentials immediately on the top of the cylinder.

This circulation of the flowing electrons facilitates their collection by the cylinder.

The temporal evolution of the current collected by the cylinder with the axial field
B, is shown in Figure 8. The current is seen to reach a quasi—steady state at about
t ~ 700, after which its average value I ~ 14 mA/m, which is only slightly lower than 18
mA/m for B = 0. The simulation with the axial magnetic field shows that the magnetic
insulation due to E x B drift in the initial radial electric field is destroyed due to the

considerable modification of the potential distribution caused by the plasma flow [6).

2.2 T 1 T T I
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E 5 N Cms
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Figure 8. Temporal evolution of the current for B, = 0.3 G, fﬁo = 100 and \70 =0.3.
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4.3  Simulation with B=B y= 0.3 Gauss, and ao = 50

Note that in this case the magnetic field is in the plane of the simulation. This
allows us to study the B field—aligned potential structures. The quasi—steady state
distributions of the plasma and potentials are shown in Figure 9. The top two panels show
the contours of the ion and electron densities. The corresponding distributions of ions and
clectrons in the r—@ plane are shown in the middle panels. The wake structure is clearly
seen from these panels. In the ram‘direction the plasma is generally uniform with the
normalized density n = 1. The bottom panels show the equipotential surfaces from
simulation with ‘750 = 50 (left) and ¢ o= 25 (right). These bottom panels show that the
potential distributions are extended along the magnetic field. When é 0= 50, the potential
structure is seen to extend all the way to the boundary of the simulation plasma. In order
to examine the effect of the boundary the simulation was repeated by lowering ¢ o 10 25
and increasing the size of the system from R max = 140 to 185. The result is shown in the
bottom right—hand panel. It is seen that potential structure is now nearly fully
accommodated in the simulation region.

It is interesting to examine the size (LL) of the potential structure transverse to the
magnetic field. Figure 10 shows the radial distribution of the potentials for ¢ o = 50 and 25
in the ram direction (§ = 180°). It is seen that the potential structure becomes narrower
with increasing ¢,. The radial distances at which ¢ = 0 for the above bias voltages are
given by

lezsxd,a():zs (9a)
Ll:31/\d,$o=50 (9b)

Parker and Murphy [1] have considered the collection of electrons by a positive
sphere. Using conservation of energy and angular momentum, they have shown that in the
case of non—flowing plasma, the electrons which are possibly collected by the sphere, are

confined in a cylinder of radius r | as shown in Figure 11, where r_ is given by
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Figure 9. Quasi—steady state distributions of (a) electron density, (b) ion density, (c)
electrons, (d) ions, (e) potential for 550 = 50, \70 =03,B= By = 0.3 Gauss,
and (f) potential distribution for ‘7’0 = 25, \70 =0.3,B= By = 0.3 Gauss in
a simulation with larger system size.
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2p
ro=[1+—§Q]1/2a
zJ2pe¢a, Pog > > 2 (10)

where p, é is the electron Larmor radius with the electron energy e¢o. It is interesting to
note that the value of L estimated above for ‘}o = 25 and 50 are quite accurately given by

(10), with a as the radius of the cylinder.

) (POT 25 solid,POT 50 dashed)

e

Phi ( ¢/KT

-0.4 ! | 1 | | 1 '
0 40 80 120

Radial Distance ( DeBye Length )

Figure 10 Radial distributions of potential for ¢0 = 50 and 25 in the ram direction
(6=180"). B= By = 0.3 Gauss. V=03
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Figure 11 Geometry of the Parker~Murphy model for the current limitation. Electrons
contained inside the cylindrical volume of radius V0 are possibly collected by

the electrode at a positive potential.

According to the Parker—Murphy model the current collected by the spherical
electrode in a non—drifting plasma is simply the electron flux intercepted by the cylinder of
radius r (Figure 11):

Lpys = 2172 J (11)

PM 0°r
where J ; is the electron thermal current given by J = NO theNTr. In the present
situation, J r is associated with the thermal motion along the y direction parallel to By.

We find that for the flow in a direction transverse to the extended potential
structure, the current is considerably enhanced. If the current was collected primarily
through the two ends of the potential structures (Figures 9e and 9f), the total electron
current collected by the cylinder is given by

Ippp=2x2r,J. A/m (12)
which is only about 1.2 mA/m for &0 = 25. Our simulation shows a considerably larger

collection of electron current. Figure 12 shows the evolution of the current collected by the
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cylinder when ¢0 = 25; in the quasi—steady state the current is about 7.5 mA/m, which is
found to be close to the current collected without the ambient magnetic field with the same
drift velocity V| = 0.3 (Figure 6). The excess current (~ 6.3 mA/m) is interpreted in
terms of the interception of the electron flow by the extended potential structure along the

magunetic field.
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Figure 12 Temporal evolution of the current for B = By = 0.3 Gauss, \70 = 0.3,

-~

3, =25

44  Simulation with B = a,xB o
In order to examine the effects of relative orientation of the drift velocity with
respect to the ambient magnetic field Bo in the simulation plane, we carried out another

simulation with V | B o The potential structure for this case in the quasi—steady state is
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shown in Figure 13. It is seen that now the potential structure is extended along x, the
direction of the B field. Its transverse dimension Ll is again found to be limited according
to (10), which gives the current limiting Parker—Murphy radius as a function of the bias
voltage ¢o' The temporal evolution of the collected current for B = fxx B o is shown in
Figure 14a. For the purpose of comparison, the current with By is plotted in Figure 14b
for the same value of &0 = 50. Note the different vertical scales in Figures 14a and 14b. It
is seen that for the flow along B, the current is significantly reduced compared to the case
with flow transverse to B. As noted earlier, in the later case the interception of the flow by
the elongated potential structure enhances the current.

It is instructive to quantitatively compare the current from the Parker—Murphy

model with that from the simulation with Bx. We already saw that the former current is

200

0 (T ) -
\ — %

— 100 S i
‘.\\% )

-200 { | |
—-200 —-100 0 100 200

Figure 13  Quasi—steady state potential distribution for B — B, = 0.3 Gauss, V 0 =03,
550 = 50.
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given by (12). However, a few observations must be made while using this expression in
the present case. The flow along the magnetic field makes the potential structure
asymmetric with respect to x = 0 because of the formation of the wake behind the cylinder,
making the first factor of 2 in (12) inaccurate. The use of this factor will give an
overestimate. Furthermore, J_ in (12) must be replaced by a modified current density due
to the plasma flow; for the flow velocity Vo = 0.3 Vte’ this modified current density
Jo = 144 7. With these considerations, (12) gives Ipyr < 2.2 mA/m. Figure 14 shows
that the time average current is about 3.5 mA/m, which is at least 60% larger than the
current predicted from the Parker—Murphy model. The enhancement in the current
suggests the transport of electrons across the magnetic field line. The exact mechanism for
the cross—field electron transport has not been identified from the simulations. However,

cross—field diffusion due to the fluctuations in the field need to be examined [7].

5. CONCLUSIONS AND DISCUSSION
The main conclusions of this paper are as follows:
(i) When the relative plasma flow is transverse to the magnetic field, the current
collected by a positive electrode can be considerably enhanced depending on the
relative drift velocity.
(ii) For the flow along the magnetic field, the current is limited as predicted by the
Parker—Murphy model [1].
(iii) Simulations with B in the simulation plane show that the magnetic
field—aligned potential structure is like a double layer with dimensions transverse to
the magnetic field determined by the limiting radius given by the Parker—Murphy
model [1], but it is extended along the field line.
(iv) Simulation with the axial magnetic field shows that the potential structure
represents a multi—cell convection pattern. The fan—shaped cell is seen to focus the

electron flow on to the cylinder thus destroying the magnetic insulation effect.

70



E (a)
= -1 il |
s
- -2 ' | |
=
=
r -3
= 1
—
O —4 ;
= '1
=]
=
8 _5 T I
2 REMRE
—
S -6

0 200 600 1000

TIME (0 )
pe

—~ 0
E
~ (b)
<
E -5
=
=
 —10 |
=
jan)
o
a
= =15
=
O
=3
—
-
S -20

0 400 800 1200

TIME (0 1)
pe

Figure 14 Temporal evolution of the current for (a) B = B, = 0.3 Gauss, \70 = 0.3,

¢, =50. (b) B= By = 0.3 Gauss, V = 0.3, ¢, = 50.

71



(v) In the low earth orbit, the orbital motion is nearly perpendicular to the
magnetic field, and the relative flow velocity V=~ 8 km/s, which can considerably
enhance the current collection.

* In a real situation with an arbitrary orientation between Bo and Mo’ the potential

structure will be the combinations of the structures shown in this paper.

Recently Myers et al. [8] have demonstrated that the measured currents in a rocket
experiment agree well with the predictions from the Parker—Murphy model [1]. Raitt et. al
[this volume] have carried out a similar comparison. Since in the rocket experiments the
relative drift velocities are only a few hundred meters per second, the current enhancement
due to the relative drift is not expected to be significant.

In our present simulations plasma flows while the electrode is standing. In space
the electrode cuts across the magnetic field lines. This raises some question about the
dynamical effects. We note that in the simulations starting with an initial vacuum state,
the quasi—equilibrium is reached quite quickly in a time of about 500w;(1) ~ 30 us. In real
situations of space the quasi—equilibrium condition are expected to reach in a considerably
shorter time. On the other hand, the contact time of a current collector with a magnetic
flux tube depends on its sheath size. If we use the sheath size as given by (10) for large
electrode voltages, the contact time 7, can be estimated by

T, = 2@ [V,

Using typical parameters (¢, = 100 V,a=1m, B =103 G and V =8 km/s) it is
found that 7, > 250 ps. Comparing this time with the sheath establishment time of the
order of a few tens of microseconds, it is inferred that the quasi—equilibrium conditions for
the potential structure and the current collection as found from the simulations are likely

to be maintained for a current collecting electrode in the low earth orbit.
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Current Collection in an Anisotropic Plasma
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Abstract. A general method is given to derive the current-potential relations in
anisotropic plasmas. Orbit limit current is assumed. The collector is a conductive
sphere or an infinite cylinder. Any distribution which is an arbitrary function of the
velocity vector can be considered as a superposition of many mono-energetic beams
whose current- potential relations are known. The results for two typical pitch an-
gle distributions are derived and discussed in detail. The general properties of the
current potential relations are very similar to that of a Maxwellian plasma except
for an effective temperature which varies with the angle between the magnetic field
and the charging surface. The conclusions are meaningful to generalized geometries.

The Introduction

The current collection from incoming particle is a fundamental problem in charg-
ing theory. In this paper the current collection in anisotropic plasmas is studied.
The analytic expressions for current potential relations which have been used so far
are derived from Maxwellian distribution.

Here the basic current potential relation for Maxwellian plasma are repeated
briefly. These well known results will be compared to that of anisotropic plasma
frequently in rest part of this paper. The orbit limited current to a spherical con-
ductor or cylindrical conductor for repelled particles is ( Mott-Smith and Langmuir
1926; Prokopenko and Laframboise 1977,1980;):

I=1Te?" (1)
For attractive particle, the charging current is:
I=1,(1+8) (2)

for a spherical conductor and the following:
_ 1 foe) 2
I=Io(2/v/m) /B + jv/me / \/Ee—‘ dt) (3)

for a cylinder.

Charging currents to satellites in anisotropic plasmas have not been discussed
systematically. The real distributions of the plasmas at synchronous orbit may be
very different from Maxwellian. For example, the pitch angle distributions in the
earth magnetic field are very common. In this paper,the current collection in
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anisotropic plasmas is studied to see how it would be deviate from that in isotropic
plasma.

In order to discuss the variety of distributions, all other conditions are assumed
as simple as possible:
1) The effect of space charge is neglected. Orbit limited current is assumed.
2) The distribution function can be an arbitrary function of the velocity vector but
it does not depend on the spacial location. The currents from two distributions are
derived in this paper:

a.
m .3 P —imi—i—mﬁ
J(0) = N(g—)3/Tj Tue "0 200 (4)

Ty and T, mean the directions related to the magnetic field.
b. A source cone or a loss cone in a Maxwellian distribution function.
3) The probe is a conducting sphere or an infinite cylinder.
4) VXB force is neglected. The role played by the magnetic field is only to indicate
the direction of the anisotropy.
5) Plasma is collisionless.
The above assumptions are reasonable for satellites at the synchronous orbit.

A distribution function of plasma and its current to a charged conductor can
be separated and superposed. the plasma are separated into many monoenergetic
beams whose charging currents are known. The currents to a sphere conductor
I, from such a beam are( Mott-Smith and Langmuir 1926 ):

I,=I,(1 +e¢/E) == R*(1 + ed/E) (5)
for attracted particle,the following:

I, =1,(1 — e¢/E) = m R*(1 — ed/E) (6)
for repelled particle with E > e¢ . When E <e¢,l, =0
Here
=

The ”e”is the magnitude of a electron charge.

e¢ is the potential energy at the surface.

k is the Boltzmann’s constant.

T is the temperature of the plasma

I, is the current to a uncharged probe. I and I, are define as total current for the
sphere and refer to the current per unit length for the cylinder.
Iy = area X \/%

m is the mass of a ion.

E is the kinetic energy of a particle at infinity.

The i is the current density of the beam.

R is the radius of the sphere.
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The equation (4) and (5) simply comes from the energy conservation and the
angular momentum conservation.

The basic assumption is that particles which carry maximum angular momen-
tum and still reach the sphere are the grazing particle. This may not be true for
attracted particles if the space charge effect is included (Laframboise 1965 Fig 4d).
Therefore the condition for equation (4) and (5) is that current be orbit limited.

Similar relations hold for the cylinder:

I=1In1+ed/E=2Ri\/1+ed/E (1)

for attracted particle and the following:

I=1I:/1-e$/E=2Ri\/1—ed/E (8)

for repelled particles with E >e¢ when E <ed, I,=0

The assumption and derivation of (7) and (8) is the same as equation (5) and (6).
Caution should be observed: If the beam is not perpendicular to the axis of the
cylinder, the i in (7) and (8) is not the current density of the beam but is the
component perpendicular to the axis at infinity. Also the E is not the total kinetic
energy of the particle but the kinetic energy in the direction perpendicular to the
axis. Integrating of these beam with weight of distribution function leads to the
total charging current of incoming plasma. The integral is carried out in the plasma
frame. The superposition method will be illustrated in more detail in next section.

The Result of the Current-potential Relations

It is more convenient to use dimensionless quantities:
I, : the current to an uncharged conductor
I/Io: Dimensionless charging current
B :Nondimensional potential [ = e¢/kT, or e¢p/kT
k :the Boltzmann’s constant.
T : the temperature of the plasma

The current to a attracting sphere from a two temperature plasma.

The ”i” in equation (4) is the current density of the beam at infinity. It is
equal to the density times the velocity. Now the density should be replaced by the
number of particles in a infinitesimal volume in velocity space f(v)d*(v) . f(7) is
the distribution function (4)

The current to the charged sphere is:

I=f//f(17)V(1+e¢/E)d3(17)S 9)
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Here S = 7 R?

d*(v) = V2d¢ sinb do dV
The angle @ and ¢ indicate the directions of particles at infinite. 0 is the polar
angle of the velocity. ¢ is the azimuthal angle of the velocity. All quantities are
defined in the plasma frame. The distribution function f(7) , the velocity V, and
the kinetic energy E are the values at infinity(i.e. in the plasma frame). The integral
is carried out in the plasma frame. ’ '

k)%/T,,%TL /ow v /2" qu/: sinf d

I = Ner R*(—
27

e¢ 3 mV’(';‘" 0+4::020)
x(1+ ——%mvz)v e T
Define 9 A 9
_ TEURY
B—-—r—n—z—NCR( )/T"T_L (10)
stn%d  cos?d
9 = 11
0= + (11)
1
E=-mV?
2
I=B [ ~dE f " sind dOE (e FKO) 4 eg ¢ F K(O)) (12)
0 0

Define I, as the current to an uncharged sphere.

kT, 1 _CD

Iy=2nR*N —
2rm ( 2 | 1-C|

Here C = %-
D= 2tg'1\/C’ -1 T > T"

D= zn@ﬁ T, > Ty

Define the effective Temperature as:

T:T(————‘I—C|+-1—) (14)
=Y e 2
The current to a charged sphere becomes

I=1Iy(1+ep/kTy) (15)

The dimensionless current are plotted in Fig. 1 as the function of the dimen-
sionless potential for different values of T, /T; which is the indication of the
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anisotropy. The lower curves correspond to lower 7T . The curves are simply
straight lines. The different slopes of the curves is calculated by equation (14). The
form of current-potential relation is similar to the one of the Maxwellian plasma
equation (2). The the relation between the current and the potential is linear.
From equation(5), the current potential relation is linear for a beam to a sphere.
Therefore the superposition of the beams is also linear. This is clear according to
equation(13). The change of the charging current is :

Al=1-1I,= e / f(V)%d%

The current to a uncharged probe is:

B J 5f(V)d*T
Al[T=ct fV)V &v
If we write P
€

The change of the current is proportional to the potential. The quantity T} is
independent of the potential and has the unit of energy. So we have the definition
of T,:

7 - 1 )V &5,
I s f(V)Vdo

If the distribution function is Maxwellian. T; identifies with the temperature. In
an anisotropic plasma, Ty is related to the energy in the direction perpendicular
to the surface. It is a combination of T, and Tj . Its values lie between T,
and T and is more close to T, since T, corresponds to two dimensions
while T only corresponds to one dimension.

The current to a repelling sphere of two temperature plasma

Starting from equation (12). I changed the lower limit of the integral and the
sign before e¢

I=B / " dEE (e F KO _ ¢ e EK)5ing df
ed

Here B is defined by equation (10) K (f) is defines by equation (11) The charging

current is:
kT, T, .. 1 e c¢CX? T
2 1 1,1
= R ——(==)2 dX KT 16
I'=om V27rm(T") }/_1 (I—GkTJ_Xz)ze * (16)
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Here G = k"';f — ﬁ"-, Define 3 =ed/kT,

C -G X?

% 1 e
I/l,=e? —F f dX 17
e =S e

I, is the current to an uncharged sphere defined by equation (12)

In Fig.2 the dimensionless current I/l is plotted as the function of dimen-
sionless potential e¢/kT, Each figure correspond to a different ratio of T /Tj
The shapes of the curves are very similar to the exponential form of Maxwellian.
The logarithm scale is used for dimensionless current to show this similarity.

The current collected by a sphere from a plasma with a loss cone

For repelled particles,
imy?
I = Ner R¥(5%7)} [ Vs e [2Tdg 5% sinf df

2x kT -
0, is the angle of loss cone

I= Iome_%cos%
Here I,,, is the current to a uncharged sphere in a Maxwellian plasma.

kT,
2rm

Ipm = I = 47 R?
The Current to an uncharged sphere I is
Iy = I,mcosfy
I/l =e & (18)
For attracted Particles

I
I=Ner R*(35%5)} [ dV, e 7 (14 1253 V7)

2r 1—00
/ dé sind df
4} [

0

I=1In(1+ ﬂ)cosl90

kT
Io = Iomcosﬂo
e
I/l = — 9
[To=1+ eT (19)

The I -— ¢ relation is exactly the same as Maxwellian plasma. This con-
clusion can be generalized to any pitch angle distribution if the angle dependence
is separated from energy dependence. i.e. f(7) = f(9, ¢) x f(E) This result
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supports the condition that the angle preference of a distribution function does not
change the I —¢ relation for a spherical conductor if the energy dependence of
the distribution is the same as the Maxwellian distribution.

The current to a cylinder in a two temperature plasma.

Define the coordinates as shown in Fig. 3. The axis of the cylinder is defined
as the Z direction. X axis is in the plane of B field and axis of the cylinder. The
magnetic field is parallel to the plane with azimuthal zero. The polar angle of B
field is f,. The azimuthal angle of the velocity is ¢. The polar angle of the velocity
is#. || and L1 in TheV, is the velocity component in the direction of axis of
the cylinder. V, is the velocity perpendicular to the axis.

I =2NeR(;2)} /T TL 52 dV, dV, 37 do fﬁ,/1i 2V
mj% s

in ;'7%;‘0 use 27‘3 for repelled particles, use O for attracted particles.

_2NeR\f /T“ TJ_\J m,a - atn’& /¢0\/e¢:{: E.e” v E, (20)

Here IO is the zero order ﬁrst kind of Bessel function E, = imV}?

coa 90(—— o

b—EsmG(%——Tl) (1+T_J_§— u.ml)

cos2dy + sin3fg
kTy kT,

I0 = 2NeR\/z/kTu§Tl\J o /w Vue VO [o(HU) dU - (21)
m m( 0

For H > 0. Here, U = E,/T, E, is the kinetic energy perpendicular to the
surface of the cylinder.

sin200(1 - C)

H=1 - ; 22
* (C — 1) cos?fy + sin?f (22)
_ L
Ty
8, is the angle between the B field and the axis of the cylinder
[% Ve EPB x et [0(Hu) dU
/10 = -5 (23)

[ Vue(+H) Jo(Hu) dU
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Here

_ P
ﬂ_kn
T,
C=:%
Ty

in /U £ 3 use + for attracted particles. use - for repelled particles

See Fig.4 and Fig.5 In each figure the curves which change slower with potential
correspond to higher 7T . The angle effect is indicated by the H factor in equa-
tion(22). When the B field is parallel to the the axis of the cylinder, H=0 and the
I0(Hu) in equation (23) approaches 1. The I — ¢ relation is reduced to the
form of Maxwellian plasma. In this situation the velocity parallel to the axis will
not be changed by electric field and does not contribute to the charging current at
all. Therefore 7} does not appear in equation (23). While 6, decreases from
90° to 0, the motion parallel to B contributes less and less to the charging. Ty
becomes less important.

Current in a Maxwellian plasma within a small source cone

Tottrae/ 10 = U €V K,(U) ' (24)

Lepa/Io=U eV K (U) (25)

Here U = € ¢/2T sin®@y K; is the Third kind Bessel function of order one. If 6, is
small current-potential relation behaves like a Maxwellian distribution with a lower
temperature. If plasma come from a direction which is almost perpendicular to the
surface, The curves behave like a Maxwellian plasma with a higher temperature.

See Fig.6 and Fig.7 I/l is plotted as the function of e¢/kT . A curves
of Maxwellian distribution is plotted in each figure to be compared with source
cone. The U factor in equation (25) and (26) shows that 2T sin?6, is the effective
temperature. T,fs. is less than T when 6, < 45°. T,fs.. is greater than T
when 6y > 45°. The temperature of a Maxwellian plasma can be understood as
the average of these T,ss..; over all direction.

I only calculated the I — ¢ relation for a flow from a small solid angle,but
the behavior of a wider source cone can be estimated from the result of the small
solid angle. If the maximum angle between the axis and a beam within the wide
solid angle is 60° and the minimum angleis 30° . The I —¢ curve of such
a source cone should lie between the two curves corresponding to #° = 30° and
6° = 60° .

The Discussion
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Arbitrary Distribution

There are other distributions such as a double Maxwellian and a monoener-
getic beam plus a Maxwellian distribution function, for which charging currents are
very easy to be obtained by using superposition. In general the method in this
paper applies to any homogeneous distribution function. The only problem left is a
mathematical one which refers to integrals of equation (5)-(8) in three dimensional
space of canonical momenta. Sometime integrals have to be carried out numerically.

The similarity to the Maxwellian plasma

The general properties of the current-potential curves of pitch angle distribu-
tions are very similar to that of the Maxwellian plasma The current potential re-
lations of attractive particle for a sphere is exactly linear as shown in Fig.1 . For
repelled particles the relation are almost exponential for both sphere and cylinder
as shown in Fig.2,5 and 7.

The importance of the effective temperature

While the energy of Maxwellian plasma is indicated by the the temperature, the
energy of a pitch angle distribution in the charging problem refers to an effective
energy in the direction perpendicular to the charged surface.

The value of the effective temperature

For a pitch angle distribution defined by equation (1), The value of effective
temperature is an average of T, and 7). If the surface has no angle preference
(a conducting sphere) Tepfece is defined by equation (9). T, contributes more to
the average since T, indicates the kinetic energy in two dimensions while T
is only related to the motion in one dimension. When the surface is parallel to the
B field, T.ss.¢ Will deviates from the value of equation (9) and move closer to the
T,. When the surface is perpendicular to the B field, T.fjece Will approach Ty

For the charging of a cylinder from a source cone of a Maxwellian plasma the
T.freet equals the temperature of the Maxwellian distribution times an angle fac-
tor. The factor is less than 1 when the source cone makes a small angle with the
surface. When the source cone is perpendicular to the surface, the T,ss... Will be
greater than T. T,ss.¢ can not exceed 2T.

Current to a uncharged surface element

The current to a uncharged surface has not been studied in section 2. All for-
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mula and Figures are shown in terms of dimensionless currents I /I, . There is
not much physics involved in the calculation of I, . 1t is just the random flux
along the normal direction of the surface. Obviously the current varies with the
angle between the surface and the preferred direction of the anisotropic distribution
disregarding the geometry of the whole satellite. The change of the electron current
and ion current due to I, will affect the equilibrium potential.

The equilibrium potential varies with the orientation of the surface.

The equilibrium potential varies with the angle between the magnetic field and
the charging surface. The surface which is parallel to a source cone feel that the
plasma has less energy; therefore, it would be charged to a lower equilibrium poten-
tial than the surface perpendicular to the source cone. The equilibrium potential
depends on the effective temperature. The Ty of a source cone has a upper limit
which is about 2T.

The Conclusion

In case of (4) and source cone, the properties of current-potential relation of a
conductor in a anisotropic plasma are qualitatively similar to that in Maxwellian
since the energy distribution is similar. The difference caused by anisotropy is that
a surface tangential to the preferring direction of anisotropy starts charging with
a less charging current and reaches a lower equilibrium potential than a surface
perpendicular to the preferred direction.
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Abstract

Theories which describe currents collected by conducting and non-conducting bod-
ies immersed in plasmas have many of their concepts based upon the fundamentals of
sheath-potential distributions and charged-particle behavior in superimposed electric
and magnetic fields. Those current-collecting bodies (or electrodes) may be Langmuir
probes, electric field detectors, aperture plates on ion mass spectrometers and retarding
potential analyzers, or spacecraft and their rigid and tethered appendages. Often the
models are incomplete in representing the conditions under which the current-voltage
characteristics of the electrode and its system are to be measured. In such cases,
the experimenter must carefully take into account magnetic field effects and particle
anisotropies, perturbations caused by the current collection process itself and contami-
nation on electrode surfaces, the complexities of non-Maxwellian plasma distributions,
and the temporal variability of the local plasma density, temperature, composition and
fields. This set of variables is by no means all-inclusive, but it represents a collection
of circumstances guaranteed to accompany experiments involving energetic particle
beams, plasma discharges, chemical releases, wave injection and various events of con-
trolled and uncontrolled spacecraft charging. This paper attempts to synopsize these
diagnostic challenges and frame them within a perspective that focuses on the physics
under investigation and the requirements on the parameters to be measured. Examples
will include laboratory and spaceborne applications, with specific interest in dynamic
and unstable plasma environments.

1. Introduction

Electrical currents and associated current-collection characteristics are fundamen-
tal manifestations of charged-particle density and energy distibution functions, their
collisionality in a host medium and their interactions with electric and magnetic fields.
In naturally-occurring space plasmas we have current systems everywhere, from the
Sun’s photospheric and chromospheric domains, to the Earth’s geoplasma region where
the magnetosphere and the ionosphere are interactively coupled through the Birkland
current system. In man-made systems focused on the interests of plasma physics in
general, and space plasmas in particular, we have currents in electrode-type discharges
(e.g., hollow-cathode discharges), currents to Langmuir probes, and other charged-
particle detectors, and currents to a spacecraft body and tethered satellite configura-
tions.

The current collected by any body immersed in a plasma (e.g., a satellite, an
antenna, or a Langmuir probe) is controlled by the size and geometry of the body,
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surface materials and levels of surface contamination, body aspect and velocity relative
to the plasma and ambient fields, and of course the potential of the body itself.!=3 On
the other hand, the details of the plasma response function are controlled by the electric
and magnetic fields and the electron and ion densities, the ion composition, the energy
distribution functions and collision frequencies. Our best understood plasma-electrode
systems are the simplest ones. Such systems generally involve:

a) “Perfect” body geometries (i.e., cylinders, spheres and “infinite” planes), with
contamination-free perfectly-conducting surfaces that have a unity accommodation
coefficient for every impinging charged particle;

b) Zero velocity of the body relative to the plasma, no magnetic fields, and potentials
< 25kT, /e or < 50 volts, whichever is less; and

c) A neutral, quiescent, collisionless, non-drifting, fully-Maxwellian plasma with a
single ion constituent.

However, most scientific interests focus on practical systems that at times bear
little resemblance to the ideal simple system. A preponderance of investigations involve
“imperfect” moving bodies (e.g., a satellite with a multitude of appendages and an
admixture of conducting and non-conducting surface materials), high potentials (except
for probes and particle detectors), and local sources of surface contamination (e.g.,
uncontrolled outgassing, or efluents from attitude control jets or an open cycle chemical
power system). Plasmas of greatest interest (and concern) are those that are non-
Maxwellian, bi-Maxwellian, drifting or otherwise have anomalous energy distributions;
and the properties are time-dependent and turbulent with a multi-ion constituency and
collisionality characteristics in the transition regime. It is also inevitable that magnetic
field effects can not be ignored and the current flow configuration is anistropic.

These real systems represent a challenge to the theoretical community and to the
experimentalist who must develop a diagnostic procedure that can contend with the
multiplicity of dynamic plasma properties and apply the procedure in a manner free
from unknown parasitic effects. In sections to follow, an attempt is made to identify ex-
perimental problem areas, point to existing and/or possible solutions, and illustrate the
findings with specific applications to unique geoplasma domains to spaceborne systems
and to laboratory-based simulation experiments. Initial emphasis will be on several as-
pects of basic probe diagnostics, with subsequent treatments addressing measurement
demands in naturally-occurring geoplasmas, beam-plasma and vehicle-plasma inter-
actions and in spaceborne environments affected by hollow-cathode discharges. The
fundamental issues will then be carried over into discussions of larger-scale systems.

2. Fundamental Considerations and Sources of Error

2.1 Area effects

One of the oldest, most fundamental, and often overlooked considerations in probe
diagnostics is the importance of reference electrode area relative to that of the diagnostic
probe.* The Langmuir probe, like a tethered satellite, should be the smaller electrode
of a two-electrode configuration with the ratio of the two areas approaching a value
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which, for all practical purposes, should be considered infinite. When the two electrodes
are in electrical contact with a plasma, a current will pass between them which is a
function of an applied voltage difference. When the current is plotted as a function
of the applied voltage difference, the resulting curve is referred to as the probe’s I-V
characteristic. Fig. 1 shows a schematic representation of a Langmuir probe circuit as
well as a typical characteristic. (In a laboratory situation the reference electrode can,
in fact, be the metal container of the plasma volume; while in spaceborne applications
the reference electrode is the rocket payload or satellite skin.) The potential of the
reference electrode is normally defined as zero, and it is of paramount importance to
the measurement technique that this potential remain constant (with respect to the
plasma potential) for all values of current. When the area of the reference electrode is
sufficiently small its potential will shift, resulting in a net distortion of the probe’s I-V
characteristic.

From the simple considerations to be introduced here (and adapted from Ref. 4),
the uncontrolled potential shift of the reference electrode is a function of the area ratio
a = A,/A, and the circuit current ¢, where A, and A, are the reference and probe
areas, respectively. The total current collected by the probe system must equal zero,
that is, z" = —i?, where :” and ? are net currents collected from the plasma by the
reference electrode and the probe, respectively. This constraint yields the identity given
by

i =il = =i 4l 1)

where the subscripts i and e designate the ion and electron components of the net
current. A useful view of area influences can be achieved by assuming that both elec-
trodes are operating at potentials which are less than or equal to the plasma potential
and that there are just two charged species—positive ions and negative electrons (the
electrodes are therefore ion attracting). Eq. (1) can be written in the form shown in
Eq. (2):
o < EPXP = (me /M) 1By, 7, XP)
(me/M)V2Li(Br, 7, X") — €XPX™

In Eq. (2), x? and x" are, respectively, the probe and reference-electrode potentials ¢,
and ¢, measured with respect to the plasma potential ¢o and normalized to kT, /e [see
Eq. (3)], while 3, and f, are the corresponding radii divided by the electron Debye
length Ap [see Eq. (4)]. (Only spherical and cylindrical geometries will be considered
explicitly):

(2)

x? = e(dp — ¢0)/kTe, x" = e(¢r — ¢0)/ kT, (3)
ﬂp = Rp/’\Da ﬂr = Rr/AD' ! (4)

r is the ratio of ion-to-electron temperature T;/T., m. is the electron mass, M is
the charge-normalized ion mass M = m; /Z?%, where m; and Z are the ion mass and
multiplicity of ionization, and I; is the dimensionless ion current [defined by Eq. (5)]
which, in the collisionless limit, is available in numerical form in the calculations of
Laframboise:®

ji = nee(kT./2r M) /2 L. (5)
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In Egs. (2), (3) and (5) the quantities as yet undefined are the undisturbed electron
density n., the magnitude of the charge of an electron e, the Boltzmann constant k,
and the experimentally-observed ion-current density collected by an electrode Ji-

There is substantial utility in several computational results associated with Egs.
(1)-(5). The first involves the effect of area ratio on the change in reference electrode
potential as a Langmuir probe is swept from its own floating potential to the plasma
potential (i.e., over the entire retarding field region where the electron temperature is
determined). A sample result, taken from Szuszczewicz?, is presented in Fig. 2, where
the potential x7, of a cylindrical reference electrode is shown as a function of « for the
case By = 10. The running parameter is the charge-normalized ion mass expressed in
amu and the results for 7=0 and 1 are presented. x7 is the value of the dimensionless
potential which the reference electrode must assume in order to satisfy the identity
i? = —i" when the probe is at the plasma potential. The total shift in x" which results
when the probe is operated over the entire transition region is given by Eq. (6) for any
given set of values (8,, 7, M, and a): -

AX" = Xxq — X} (6)

The quantities necessary for calculating Ax" are readily obtained from F ig. 2, where
X7 can be taken as the value of x7 at a = 10%. As an illustration, consider the case
(Br,7,M,a) = (10, 0, 16, 100). In this situation Ax" = x7, — X7 =70+47=-23.
This corresponds to a voltage shift of -20 V and 0.2 V for . = 10° and 10°°K,
respectively. Such a shift would be unknown to a probe experimenter, and the result
would be an I-V characteristic that yielded a value of T, approximately 60% higher
than that actually present in the plasma.

Results like those in Fig. 2 at a = 10* can be used to generate curves which
present the dimensionless floating potential xs as a function of M for r = 0 and 1,
and § < 3,= 10,= 100. (Here x; is not superscripted nor is 4 subscripted, since the
results apply to any electrode.) The results of this approach, presented in Fig. 3, show
that —x increases with increasing 3 for a given (r, M). This reflects the reduction in
the relative sheath size for increasing values of 8 and consequently a reduction in the
dimensionless ion current to the electrode.

Reflection on results like those shown in Figs. 2 and 3 provides some additional
insight. It is first noted that errors in 7, measurements due to inappropriate values of
area ratios can be kept to zero with a value of @ = 10*. Depending on the circumstances
however, that can be relaxed to values of a < 103, and approach even lower limits near
10? for H* plasmas (see Ref. 4 for details).

The results of Fig. 2 can also be used to baseline considerations for two-electrode
systems (including, for example, a tethered satellite), where large bias-voltages are
applied. If the objective is to have the entire bias voltage applied to the smaller of the
two electrodes (i.e., there is no shift in the reference electrode potential), the area ratio
o must be at least 1000, and higher values are likely, depending on the plasma regime
and the magnitude of the applied potential.
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Figure 1. Schematic representation of a Langmuir-probe (or tethered satellite) circuit
and a corresponding current-voltage characteristic.

Figure 2. Dimensionless potential x7, of a cylindrical reference electrode as a function
of a(= A./4,) for (= R./Ap). M is the charge-normalized ion mass (in amu),
r = T;/T., and the Langmuir probe is assumed to be operating at the plasma potential.

1 10 100

Figure 3. Dimensionless floating potential xs of a cylindrical body immersed in a
collisionless Maxwellian plasma plotted as a function of the charge-normalized ion mass
M (in amu) for ratios of ion-to-electron temperature equal to 0 and 1. 73 is the ratio
of body radius to Debye length.
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Important implications for double probe measurements of electric fields can also be
extracted from Fig. 3. Such measurements are in effect high impedance determinations
of the difference between the floating potentials of two probes. The assumption is that
the floating potential tracks the plasma potential. That is indeed the case, but the
tracking involves the local (i.e., local to each sensor) values of 8,7 and M. In dynamic
and irregular plasma environments, with scale sizes less than the separation distance
between the double-probe sensor tips, differences between floating potentials can be
mistaken as an electric field when in reality the difference can be simply a manifestation
of differences in local densities, ion masses and energy distribution functions. Under
such circumstances results of double probe measurements should be the subject of
substantial scrutiny.

2.2 Contamination Effects

The detrimental effects of surface contamination on active electrodes in plasmas
have been known for years.®~8 Experimental studies have shown that the standard
continuous-sweep approach to Langmuir probe measurements can be seriously com-
promised by temporal variations in the probe’s effective work function. When these
variations occur during the measurement interval, the current-voltage (I-V) charac-
teristic is distorted, resulting in erroneous determinations of charged-particle densities
and energy distribution functions. These effects are reviewed here, following closely
the published work of Szuszczewicz and Holmes.?

Variations in the probe’s surface condition can manifest themselves by hysteresis
in the I-V characteristic when the probe is driven with a symmetric sawtooth voltage®
(and even time function). If the I-V characteristic is not identically reproduced in the
positively and negatively sloped portions of the applied sawtooth voltage [upward and
downward going arrows in Fig. 4(b), respectively], the familiar hysteresis curve results.
This behavior is attributed to the layering of foreign material on the surface of the
probe resulting in a variation of the work function.

A model” for the surface layering phenomenon is illustrated in Fig. 4(a), which
schematically depicts a contaminated probe in a plasma. The mechanisms for the de-
velopment of the surface layer of contamination are not always easily identified but
contributions may come from the deposition of sputtered material from other solids in
the system or from the sorption of gases and vapors in the plasma itself. For example,
a perfectly cleaned and outgassed probe when immersed in an un-ionized gas imme-
diately begins to absorb and occlude the ambient neutral species.!® If these species
are nonconductive, an insulating layer will develop. This layer is phenomenologically
represented by capacitance C; and leakage resistance R, in Fig. 4(a). When a plasma
is part of the environment and a voltage V' is applied to the probe, charged particles
will flow to the probe’s contaminated surface, charge up the associated capacitance C.,
and simultaneously alter the absorbate surface layer by bombardment.!! These con-
ditions and their associated dependence upon the applied probe voltage bring about
the hysteresis in the current-voltage characteristic. [It is possible to sweep the probe
voltage so slowly that the (I, V) data points come to identical equilibrium values in the
up- and downlegs of the sweep.® In this case the measurements are still in error but
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the investigator does not have the advantage of telltale hysteresis.]

When surface contamination is a problem, conventional Langmuir probes have
indicated “hotter” electron distributions than actually present in the ambient medium
and hotter distributions than those measured by a “clean” probe. As indicated in the
discussion of Fig. 4(a), contamination can also result in an unknown offset voltage V.
across the layer, contributing to uncertainties in determining the actual voltage imposed
on a plasma by fixed-potential electrodes and errors in double-probe measurements of dc
electric fields. These problem areas impose genuine constraints upon experimenters and
make it necessary to eliminate the contaminating species from the system or circumvent
the distortions in measurement by some modification in the experimental technique.
The latter approach is not always feasible, making it incumbent upon the experimenter
to modify his technique so that it is not susceptible to distortion by contamination.

There are two conventional approaches which attempt to eliminate or circum-
vent the problem of surface contamination on Langmuir probes. One involves periodic
cleaning of the probe surface by ion bombardment or heating of the probe. The second
approach reduces the period of the sweep voltage to a value shorter than the time
constant 7. = RC., where R = R,R./(R, + R.),C. is the effective contamination
capacitance, and R, is a simple Ohmic approximation to the sheath impedance [Fig.
4(a)].

The use of a short period for the sweep voltage finds its basic limitation in values
of the effective time constant 7, = RC,. Attempts to sweep the probe voltage much
shorter than 7. have met with some success, but the fundamental limitation in 7. can
impose unworkably high sweep rates on the probe voltage. High sweep rates can often
be handled in laboratory experiments, but difficulties can arise in rocket or satellite
applications where data rate constraints are imposed by telemetry. At high sweep
speeds and low telemetry rates, resolution of the I-V characteristic is lowered and the
accuracy of measurement reduced.

The periodic probe cleaning procedure is of limited use because new contamination
layers can develop immediately after the ion bombardment or heating period is ended.
In the presence of high sorption rates another cleanup is sometimes necessary within
seconds of the preceding cleanup termination. Consider, for example, a neutral gas
environment with a 28-amu mean molecular weight at 10™* Torr and a temperature of
300°K. (These parameters are typical of the jonospheric E-region at 120 km altitude.)
With unity sticking probability for a clean surface and a monolayer defined by approx-
imately 5 x 10'® molecules/m?, the first monolayer of contamination develops in 0.13
msec. The next monolayer forms on a timescale of tens of seconds with an equilibrium
surface condition resulting after some minutes.!® This illustration clearly shows that
an atomically clean surface can be a very short-lived condition.

To eliminate the aforementioned problems and to improve the reliability and
versatility of Langmuir probe measurements, a pulsed plasma probe (acronym, P?)
technique!? has been developed. The approach employs a pulsed-voltage procedure
designed to maintain a single-probe surface condition throughout the collection period
of the I-V characteristic; that is, it allows the existence of a contamination layer but
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keeps the layer and its associated potential drop at a constant level. Fig. 5(a) shows a
continuous symmetric-sawtooth sweep voltage, representing the conventional approach
to Langmuir probe operation. Fig. 5(b) shows the approach of the P3 techniques
which employs a discontinuous modulated sweep of pulses following a sawtooth enve-
lope. Between pulses, the sweep returns to a fixed baseline voltage Vp. A sequence of
pulses generates distinct I-V data points for the probe’s current-voltage characteristic.
(Generally a single I-V characteristic is generated by 150 contiguous pulses.) During
the interpulse period when the probe is at a fixed baseline voltage Vp, the current Ip
collected by the probe can be monitored and used to measure variations in the probe-
plasma system, and unfold density fluctuations from the I-V characteristics occurring
on a short time frame in comparison to the sweep period.

The pulse sequencing procedure allows the probe to rest at its baseline potential
Vg for a period of time rp, which is much longer than the pulse width 7,,. The
probe current is always sampled during a subinterval within a sweep pulse, with the
subinterval position and sampling duration adjusted so that the plasma is allowed to
achieve a steady-state condition and all circuit transients are avoided. With 7o, much
less than both 75 and the time constant of the surface layer 7., the pulse procedure
will maintain the probe’s surface condition at a constant level.

In the P? technique the sweep time 7, can be as long as an individual experimenter
wishes since the I-V characteristic is generated by point data collected within short
pulsed-voltage periods 7,,. The elimination of surface effects by the P? technique
requires Ton < T, Whereas in the high sweep-frequency approach it is necessary that
T, & Te. Since Ton is always much less than 7,, the P? approach greatly extends the
range over which the time constant effects of 7. can be neglected. 7o, can be as short as
the time required for the plasma to establish itself at a steady-state condition, whereas
T, can never be that short.

This technique has proven invaluable in contaminating and highly-variable plasma
environments, the most dramatic manifestation of which occurred in the pulsed-plasma-
probe measurements of a reentry plasma!?® and laboratory studies of beam-plasma
interactions.!415 Contamination problems can also be severe in diffusion-pumped vac-
uum systems and in spacecraft environments with effluents from attitude control jets,
uncontrolled outgassing, or chemical exhaust systems. It is interesting to note that
vectored nozzle expulsion of effluents can still result in substantial backflow and the
deposition of contaminants on sensitive surfaces. This is illustrated in Fig. 6, which
presents the results of a numerical simulation of an open-loop chemical exhaust system
mounted on the end of a long, segmented cylindrical payload.'® The effluent was taken
to be 80% water and 20% hydrogen expelled in the +X direction at a rate of 53kg/sec
through a supersonic (M = 4) 7° nozzle. With the effluent stagnation pressure and
temperature at 1000°K and 2 atm, respectively, the resulting steady-state isodensity
contours of water in mks units show a 102!/m?® contour some 30 m in front of the
nozzle and contours as high as 10'% in the backflow engulfing the spacecraft. This is a
very high level, guaranteed to cause problems for sensitive surfaces and active plasma
detectors.
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2.3 Magnetic field effects

In the previous sections we have dealt with parasitic effects with potentially disas-
trous influences on the outcome of an experiment and on the interpretation of results.
If one assumes that these effects and other sources of experimental error have been
eliminated, the accuracy in one’s understanding of the currents collected on a space-
craft surface and the accuracy of the diagnostic technique (probes, RPA’s, electrostatic
analyzers, etc.) is limited by the theoretical description of the I —V — B characteristics
under the prevailing plasma conditions. Most difficulty is encountered when current
collection is in any one of the various transition regions, where we use the term “tran-
sition region” to describe any domain between the mathematically convenient limits
of collision-free and collision-dominated, thin sheath and thick sheath, and strong field
and weak field. These regions are particularly difficult to describe because one must
account for detailed charge-particle trajectories that have no convenient closed mathe-
matical form as they traverse the region between the undistrubed plasma volume and
the collecting surface. In this section we look at the transition region of magnetic field
effects and the associated response of cylindrical Langmuir probe electron-saturation
currents. (Under certain constraints, the discussions apply to any cylindrically-shaped
current-collecting body.)

Probe response in magnetoplasmas can be grouped into three broad categories
defined by the relative magnitudes of the probe radius R,, the sheath thickness (R, —

R,), and the Larmor radii for electrons (R ) and ions (R}, ). We define these categories
as:

R,, (R, — R,) < RY' (weak field), (7a)
R,, (R, — R,) > RY* (strong field), (7b)

and '
R,, (R, — R,) ~ R}" (transition field), (7¢)

Each of these categories has its own morphological sub-division established by the
independent ratios R}'/R, and R}'/(R, — Rp). The first ratio, R}'/R,, involves
geometrical effects which result in magnetic field shadowing!” and the associated per-
turbation of a fully Maxwellian plasma distribution at the sheath edge. A number
of authors®18=2! have used this ratio to describe magnetic field effects on cylindrical
probes and have shown reduced saturation currents when the ratio was small. Miller?°
and Laframboise and Rubinstein,?! however, infer that magnetic field effects may occur
even when R} > R, if R} < (R,— Rp). It is the latter inequality which is of primary
concern in the present discussion.

With the use of sheath-size descriptions developed in Szuszczewicz and Takacs??
guidelines can be determined for the enequalities (7a) - (7c) by examining the ratio
¢ /(Rs — R,). This ratio can be written as

R, wy /wg
R,— R, (2.50 — 1.54exp[—0.32R,/Ap|)(ewp/kT)1/?’

(8)
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where
wp = (47 Ne? m,)'/? (9)

is the electron plasma frequency, and
wi =eB/m.c (10)

is the electron gyro frequency.

The criteria established in (7), particularly as they apply to the effect of RS /(R, —
R,) on electron-saturation currents, can now be expressed as

> 1 weak magnetosheath), (11a)
/2 h 11b
7 < 1 strong magnetosheath), (11b)
F(ep,/kT,) A
~ 1 transition magnetosheath), (11¢)
where
F = 2.50 — 1.54exp(—0.32R,/Ap). (12)

These inequalities show that a weak-, transition-, or strong-field classification de-
pends not only on the magnitude of the field but also on plasma parameters of density
and temperature, as well as the probe size and applied potential ¢,. Thus, a 0.25 G
field could have a similar effect on an ionospheric plasma sheath (typically N*** = 10°
cm ™ and T, = 2000°K at F-region altitudes) as a 30 kG field in a confined hot, dense
plasma [N, = 5(10%)em—3, T, = 1.16(107)°K (=1 keV)]. Examining these conditions
in terms of (11), we find

wp [wg
=4 13
Flewy/FTL)IT2 (13
in the ionospheric case, and
wp/we
= 0.95 14
Flewp/FTM? (4

for the hot, dense plasma. These results assume ey, /kT, = 10 as a nominal operational
value for the collection of electron-saturation currents by a cylindrical probe of radius
R, = 3.8(107?) cm. Since Egs. (13) and (14) are of comparable magnitude, their results
show that dramatically different probe-plasma systems can have similar classifications
with regard to magnetosheath effects.

This semi-quantitative approach is helpful but far from complete since the anisotro-
pic nature of charged-particle motion makes it necessary to consider the field direction
B relative to the probe and sheath axes L. The most complete work done to date in
this area is that of Laframboise and Rubinstein?! who have conducted a theoretical
analysis of a cylindrical probe in a collisionless plasma, with the probe operating under
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thick-sheath conditions at an arbitrary angle 8[= cos'l(I-: . B/ LB)] with respect to a
uniform magnetic field. For a probe at plasma potential, their analysis is exact; but in
regions of electron saturation currents their theory provides only an upper bound and an
adiabatic limit. These limits are approached, respectively, at larger and smaller values
of R} /L,, where L, is defined by Laframboise and Rubinstein as the gradient scale
length of sheath potential ¢/ | V¢ |. The adiabatic limit corresponds to R} /L, — 0
and can be represented approximately by Rj/(R, - R,) — 0.

The influences on current-collection due to the direction of the B-field relative
to the probe and sheath axes L is illustrated with rocket-borne probe data. The
data was collected with a payload spinning at 4 rps and the cylindrical probe radi-
ally extended on a boom from the payload skin. The spinning payload moved probe
axis from 0° to 90° with respect to the magnetic field twice during each spin period.
The probe technique was that of the P3 described in the previous section, and the
baseline voltage level was set in the electron saturation region of the I-V character-
istic (i.e., Ig = I?*'). Two major parameters varied throughout flight. The first
was plasma density, making possible correlations with the contributing influences of
sheath sizes; and second was the orientation of the probe axis relative to the ambi-
ent B-field. An overview of the combined effects of sheath size and magnetic field is

presented in Fig. 7, where Ip(= I3*') is plotted at values of Ig at § = 0°( igo )
and 6 = 90°(+£0°). Using the Ip(# = 90°) profile as the more accurate measure of
relative density?® and establishing the conversion N,(cm)™ = 1.25(10')Ig(A), Fig.
7 demonstrates the importance of plasma density (through its control of sheath size)
in determining the effect of magnetic fields on electron-current collection by cylindri-
cal Langmuir probes. (The N.,/Ig proportionality was determined near apogee by
conventional analysis® of the electron-saturation portion of the current-voltage char-
acteristic, ie., d(17*')?/dp, — N.. The simultaneous measurement of N, and I,
made possible with the P? technique, yielded the constant. (Sources of error identified
with possible plasma depletion,?? surface contamination,® reference electrode area,* and
convective effects? were inconsequential.) In the ionospheric E-region trough (125-170
km), where the plasma density was lowest [~ 6.0(10%)cm 2], the percent modulation,
M =100 x [Ip(90°) — Ip(0°)]/Ip(90°) = 75%, was much greater than in the F region
(Z > 170 km) where the modulation is only 10%-15%. The difference is attributed
to sheath size variation since over the altitude range in this investigation the Earth’s
magnetic field and associated Larmor radii are approximately constant. [Ry values are
constant only if temperature are constant, a situation which is not generally true over
this altitude range where we can expect up to a factor of two difference. But, we can
neglect the temperature effect (2x) compared to the density effect (100x).]

The results in Fig. 7 identify a problem area for plasma experimenters who utilize
fixed-bias cylindrical probe measurements of electron-saturation currents to determine
changes in electron density. Even when the probe is held at a fixed angle with respect
to the magnetic field, the spatial or temporal profile of plasma density can be distorted
by changing sheath sizes that accompany varying plasma densities. Distorted data
can result in misleading interpretations of active physical principles. In Fig. 7, the
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Ig(# = 0°) curve could lead to erroneous conclusions concerning nighttime E-region
depletion mechanisms (130-170 km) or applicability of the electron density gradient at
the bottom-side of the F-layer (170-240 km) to the Rayleigh-Taylor instability and the
triggering of ionospheric plasma irregularities.

Three cases have been selected from the ionospheric probe data in Fig. 7 to detail
the behavior of Ip(#) as a function of plasma density. The results have been nor-
malized to Ip(90°) and plotted in Fig. 8 as curves A, B, and C. We note that the
modulation increases with decreasing N., a parametric dependence not shown in cur-
rent theories involving thick sheath conditions (Rp/Ap < 1). Specifically, we find that
(w;’;/wg)/F(eLpp/kTe)l/z[= R%/(R, — Rp)] equals 2.5, 0.47, and 0.3 for A, B, and C,
respectively. In terms of the inequalities in (11), these cases qualify as transiton mag-
netosheath. We observe that the RS /(R, — R,) = 2.5 case has the smallest modulation
since it approaches the condition of weak magnetosheath. The data show that the mod-
ulation would not be zero as a result of R,/R§ — 0 alone. The modulation can be zero
only if Rp/R$ and (R, — R,)/Rj, both go to zero, a combined condition represented
by R%/(R, — R,) > 1 [Eq. 1la] in the thick-sheath limit. The data demonstrate
the important coupling of B, N¢,Te, Ry, and ¢, in determining the degree to which
magnetic fields perturb electron-current collection. One cannot give sole consideration
to Rp/Ap or R,/R§, but rather their important interrelationships as described in Eq.
(11).

The consequences of these results are substantial in the following context:

1) Magnetic field effects on electron current collection characteristics can be dramatic.
If strong magnetosheath conditions prevail, the use of a B = 0 model for I-V
characteristics could lead to errors in N, determination as big a factor as 10;

2) There is no B # 0 model available to date which describes probe current collection
characteristics in the transition-magnetosheath domain. This is the domain often
encountered in space plasma diagnostics.

3) The transition- and strong-magnetosheath conditions are guaranteed to prevail in
analysis of currents flowing to a charged spacecraft emitting a net negative particle
beam. For the charging/discharging process to be properly analyzed, the detailed
controls of a superimposed magnetic field must be taken into account.

3. Measurements in Dynamic Space Plasma Environments

Thus far the treatment of current collection from plasmas has dealt with experi-
mental and theoretical problems in plasma probe diagnostics, with perhaps an unfor-
tunate suggestion that there is substantial difficulty in obtaining accurate information
from the attendent current collection characteristics. While experimental and analyti-
cal care is warranted, there can be a wealth of valuable data in a properly implemented
and analyzed experiment configuration. We attempt in this section to develop this
perspective, and choose to treat an area of plasma and space plasma physics that has
a focus on plasma instabilities, irregularity distributions and multi-ion constituencies.
While instabilities and irregularity distributions tend to be standard fare in dynamic
plasma environments, little diagnostic attention has been given to the impact of cases
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which involve a multi-ion population and the associated effects on the growth of the
instability process and impact on irregularity scale size distributions. We develop this
latter perspective here, using unique features of ion and electron current collection
characteristics by Langmuir-type probes. We will do this by focussing on the S3-4
satellite experiment,?? which was designed to explore the role of multi-ion distributions
in instability processes. The treatment presented here follows that in Ref. 24.

The S3-4 experiment employed a pair of pulsed plasma probes (P?), each of which
was capable of simultaneous measurements of electron density, temperature and density
fluctuation power spectra, regardless of the state of turbulence or the degree of irreg-
ularity in the ionospheric plasma medium. Together, the pair of probes also provided
mean-ion-mass fluctuation measurements to a maximum Nyquist frequency of 200 Hz.

Subject to the selection of one of eight commandable modes of operation, each
of the probes had applied to it some variation of the voltage function illustrated in
Fig. 5. The pulse modulated waveform, following the sawtooth envelope, provided
the fundamental data set for a “conventional” Langmuir current-voltage characteristic
and associated determination of N, and T. (Chen?®) at a nominal 3 Hz rate. Dur-
ing the interpulse period, a fixed-voltage Vp was applied to the probe and associated
current measurements provided a running measure of density fluctuations (assuming
6Ip x 6N,) and a time-dependent data set for power spectral analysis with a Nyquist
frequency of 400 Hz in the high data-rate mode.

The probes were routinely operated with V on one probe set for electron-saturation-
current collection (defined as the E-probe with Ip = I.(sat) = E), while the value of
Vi on the second probe was biased for ion saturation current collection (defined as the
I-probe with Ip = I;(sat) = I). The expressions for the currents collected by the two
cylindrical probes take the forms

~ [T, 2 egsy '/
E = I (sat) = N, or M. Ape {ﬁ (1 + kTe) (15)

(Chen?; for thick sheaths), and

. 1/2
_ [*T; 2 (legh|  Mw?
I= I,(sat) = N, 57'_—1‘4; Ape \'—/_; ( kT, + 2kT, (16)

(Hoegy and Wharton,?® for probe axis perpendicular to the vehicle velocity vector in
the ionospheric plasma rest frame). In the above equations, A, is the probe area,
M,y and Ny are the mass and density of the electron (ion) population, Te(;y is the
associated temperature of an assumed Maxwellian distribution, e is the fundamental
electron charge, k is Boltzmann’s constant, w is the satellite velocity, and ¢f,(') is the
baseline voltage Vg applied to the E(I) probe and referenced to the plasma potential

(42 = Vi — Vo).
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The square of the ratio I.(sat)/I;(sat) can be written as

(K)o (B) B 24 (b

with additional manipulation (assuming | ed; > kT ) resulting in

IL(sat)\? ¢ ) .
<Ii(sat)) ’ §M,-w2 < edy; (18a)
L(sat)\” _ 2l edy 1 .
(Ii(sat)) T Mw?’ 5Miw’ > edy; (18b)
(Ie(sat) 2 Dol (14 M\ Lyn g 18
I,'(Sa.t)) ( 2e¢;’) ) 2 W R C¢p- ( C)

For laboratory and rocket-borne experiments Eq. (18a) would apply, whereas in
the S3-4 satellite investigation, Eq. (18¢c) applies. Eq. (18c) is plotted in Fig. 9 for
two sets of bias potentials, (| ¢2 |,| 8 |) = (2V, 1V) and (1V, 2V). The results in Fig.
9 show that over limited mass ranges (e g., 1-4, 4-8, 16-32 amu), variations in (I./I;)?
can be taken to vary directly with ion mass for constant values of ¢ and ¢p

Bulk processing and plotting of P3/S3 — 4 data included orbit-by-orbit plots of
relative electron density as measured by changes in ion- and electron-saturation cur-
rents near the F-region peak. (This is the region for minimum sheaths in ionospheric
Langmuir probe operations.) A representative sample of this data collected on orbit
2177 is shown in Fig. 10, where the abscissa coordinates are universal time, altitude,
latitude, longitude, magnetic latitude, and L-shell value. The probes magnetic aspect
angle is also plotted in the figure.

The left-hand edge in Fig. 10 corresponds to the satellite’s ascending node (south-
to-north) in the midnight hemisphere near the south magnetic pole. With increasing
time (UT) the satellite passed through the nighttime equator, the main trough, over the
northern auroral oval and into the dayside ionosphere where vehicle solar cell voltage
biased the entire vehicle such that both probes drew approximately equal ion-saturation
currents. (It is worthwhile to note that the shifted payload potential was a direct
consequence of the area ratio issue discussed in Section 2.1.)

The simultaneous measurements of electron- and ion-saturation currents, Ig(E)
and Ip(I), respectively, provide confidence that the observed irregularities involve
plasma variations and not just secondary effects (e.g., aspect sensitivities or variations
in spacecraft potential).

While data sets like that shown in Fig. 10 provided global maps of large scale
ionospheric features, primary investigative objectives were directed at the relationships
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between the large scale features and much smaller scale irregularities (tens of meters
and less) believed to result from multi-stepped plasma processes. To this end, the
fundamental data sets I.(sat) and (I (sat)/I;(sat))? were Fast-Fourier analyzed to de-
termine density and ion-mass fluctuation power spectra Py (k) and Py (k), respectively,
were

§I,\2 | 6N, |2

|7 =| 52 [ - Pvi) (19)
and )

SUL/L) _ M | p . (20)

(I./JI,)? = M,

The anaytical relationship between §N./N, and §M;/M; can be simply established
for a 2-component ion distribution of masses and densities (Mg, Mg) and (N4, Njg),
respectively. This is done by using the definitions

M; = M‘Zﬁ: j: %;’)N 8 (21a)
N, =N, + Ny, (21b)
No = Ng + N,, (21c)
Ng = Nj + Ny, (21d)
6Ne = 6No + 6Ng = N, + Nj; (21e)
and a straightforward manipulation to derive
= S, (222)
where
gy d ) =1 {N;/N;—Nwzs}_ o21)
() ()] | e

It is appropriate to note that the experimental determination of mean-ion-mass
fluctuations § M;(— Pyr), through variations in [I.(sat)/I;(sat)]?, assumes the relative
constancy of all potentials. (This includes the spacecraft potential as well as the poten-
tials which each probe presents to the plasma.) The spacecraft potential can vary as a
direct result of changes in local plasma density, since the floating potential of a body
is dependent upon the ratio of its radius to the local Debye length. For large space ve-
hicles however, floating potential variations caused by even substantial plasma density
variations should be small.? Another possible source of potential variations involves
charging of contamination layers on the vehicle and/or on the probes.® From the S$3-4
data, variations in (I, /I;)? associated with charging on contamination layers appear
to be a slowly varying function of time with no attendant effects on Pps. Therefore,
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it has been concluded that the spectral dependence of Py is indeed representative of
variations in mean-ion-mass 6 M;.

To experimentally demonstrate Pys(k) and the associated relationship, with Py (k)
consider the high-resolution measurements (rev. #2123) of the relative electron density
across the nighttime equator (Fig. 11). The peak electron density is approximately
5x(10°) ecm™2 at Ip = 3x(107%) amp. The large scale depletions are seen to extend to
two orders of magnitude with widths ranging from 50 to 170 km over a 600 km orbital
segment. ’

Py and Py results are presented in Fig. 12 for a one second interval located by
point A in the density profile of Fig. 11. Fitting the results to a power law behavior
shows

PN = Anf—2'9 (233)

and
Py = A, f"15. (23b)

By assuming that the time (frequency) domain spectral analysis in Fig. 12 can be
converted to wavelength through the vehicle velocity (7.53 km s™!), the experiment
shows fy??(x k~2-9) from k ~ 27/1km to k = 27/20m. This is the first such satellite
determination to wavelengths as short as 20m, with the earlier work of McClure and
Hanson?® having defined some of the spectral features of equatorial spread-F down
to 70m. (Conversion to the component of k perpendicular to the geomagnetic field
extends the low wavelength end of Fig. 12 down to k£ = 27/6m, the approximate value
for Ot Larmor radius.)

The spectral index for Py is approximately 15% steeper than previously reported
values?” for conditions of bottomside spread-F, but well within the distribution of S3-4
spectral indices currently being accumulated and analyzed for conditions indentified
with the intermediate wavelength domain (k = 27/1 km to k¥ = 27/20m).

The Py o f~1° observations are the first of their kind and unique to the P3/S3-4
experiment. Currently there are no computational guidelines on the expected behav-
ior, but there is sufficient evidence in laboratory plasma studies to warrant such sys-
tematic considerations of ions and their role in the hierarchy of possible mechanisms
covering the spectrum of observed ionospheric irregularities. The importance of ions is
clear...even from the simple considerations of the Rayleigh-Taylor instability in which a
difference in charged-particle drift velocities produces an electric field across a horizon-
tal perturbation. There drift velocities are mass dependent (V; o M;(§ x B)/B?) and
vary directly as the mass of the ith species. Similar mass discriminatory effects play
an important role in ambipolar diffusion processes across gradients in plasma density.
The process operates more rapidly on lighter ions and can result in “patches” of vary-
ing ion mass, with local variations in conductivity and electric fields, and ultimately
an ion-dependent interaction in the process of energy dissipation in the large-to-small
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scale irregularity distribution. The Py measurement has been designed to test for just
that type of interactive mode. §M;/ M; is a fairly complicated function of M, /Mg, N%/

Ng,Ng/N} and 6N/ N, itself [see Eq. (22)]; and at this point we can only speculate
on the many manifestations that Py and Pps might take for the varied ionospheric
conditions encountered in the S3-4 mission. For example, it has been suggested that
differences in gradient scale lengths for N, and M, g would result in a more rapid
fall off with increasing k for the quantity with an initially larger gradient scale length.
This difference should be a direct observable through the Py and Pu determination.
Furthermore, there is the possibility that the simultaneous measurement of Pp(k) could
help differentiate between a k=2 spectrum due to sharp edges and a k=2 spectrum due
to gradient-drift or drift-dissipative waves.

4. Currents in Future Space Plasma Experiments

4.1 Tethers, Uncontrolled Potentials and Plasma Contactors

Thus far the treatment has focused on the experimental implementation, collec-
tion and analysis of currents to probe systems. We transition now to larger systems
like spacecraft and tethers, and note that while bigger systems appear to grow more
complex, the issues in many ways remain the same...currents, sheaths and fields. We
also note that probes will play important roles in diagnosing the currents and their
controls in the larger systems.

We now address several of the larger systems and look not only into sheath currents,
and currents collected on spacecraft surfaces, but we look into the effects of large poten-
tials and current closure through the ionosphere. This additional aspect is addressed
because many mission concepts advanced in the planning of tethered satellite systems
(TSS), beam experiments and Space Station applications are faced with uncertainties
in current closure in the ionosphere and the threat of uncontrolled potentials.?3~3°
The problem of large and uncontrolled potentials was the subject of a special T'SS-1 re-
port that pointed out that tether-system potentials could reach hundreds to thousands
of volts depending on the nature of operating anomalies and the tether deployment
distance.

A continuing effort has been made to develop techniques with the ability to con-
trol these large potentials and maintain spacecraft (and tethered satellites) at or near
the local plasma potential. Some success has resulted from improvements in vehi-
cle surface conductivities and expanded areas for ionospheric current collection; but
the magnitude of the problem has brought about a focus on the application of high-
current on-board charged-particle sources, often referred to as “plasma contactors” or
“plasma bridges.”?®~33 This was one of the recommendations of the TSS-1 commit-
tee on charging.?* With this result and the call for innovative technologies in space,
plasma contactors are now expected to play an additional role in electrodynamic tether
applications to power and thrust generation on the Space Station. These applications
exploit the stable self-orientation of a long tether (see Fig. 13) along with associated
Faraday (V x B) . L voltages and I x B Lorentz forces, where V, L and T are the

velocity, length and current in the tether, and B is the geomagnetic field. The current-
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carrying capabilities of the tether depend on the emf (induced in the generator mode
or provided by an on-board power supply in the thruster mode), its impedance and the
effectiveness of the ionospheric path to complete the circuit. A 20 km aluminum cable
several mm in diameter would have an impedance ~ 10 — 5092, and in principle could
carry a self-induced short-circuit current of 100A [Hastings and Martinez3®]. However,
maximum ionospheric currents (n™%* ~ 10%¢cm™?) can only provide ~ 10 ma/m?, so
to draw even 10A of ionospheric current would require 1000m? of collecting surface. In
this case, plasma contactors are seen as a solution. Their high density plasma clouds
hold promise for enhanced local plasma conductivities, larger effective collecting areas,
and reduced threat of uncontrolled potentials. In its final report, the TSS-1 charging

committee recommended the inclusion of a hollow-cathode in its mission.34

One type of plasma contactor is the hollow-cathode discharge, illustrated schemat-
ically in Fig. 14A. Fundamentally, it is a thermionic electron emitter in the presence
of a high gas flow, which can produce plasma densities upwards of 10!* ¢cm™2 near
the cathode orifice.?®=38 The expansion characteristics of this plasma (and its associ-
ated “contactor” capabilities) are influenced by specific device-design considerations,
the ambient plasma itself, and the local geomagnetic field. The ideal contactor should
provide large controllable currents of electrons and ions at minimum applied fields in
the cathode-anode region. We note, however, that large controllable currents are best
carried by electrons, provided they can move freely not only parallel but perpendicular
to magnetic fields. The latter condition requires that v, > Q,., where v, is the effective
electron momentum collision frequency and 2. is the electron cyclotron frequency. Un-
der normal operating conditions, particle-particle collisions are insufficient and only an
“anomalous” collision term through wave-particle interactions can provide the neces-
sary random walk process which can transport electrons perpendicular to B (note RS,
the electron gyroradius, is typically ~ 3 cm in ionospheric applications). Indeed, as
a current source between a space platform and the background ionosphere, the HC is
potentially replete with current-driven instabilities and associated wave spectra. Can-
didates include lower-hybrid-drift, ion-acoustic and Buneman instabilities®®3° to name
just a few. But while the bulk current-carrying characteristics of the HCD have been
receiving attention, there has been little-to-no effective experimental work focussed on
the wave- and wave-particle processes intrinsic to HC operations and to the physics of
HC plasma interactions with the local ionospheric plasma and the geomagnetic field.
These interactions are critical to device performance and to the perturbations that
the device is likely to introduce in its near-space and flux-tube-coupled domains. This
“plasma noise” aspect of operations due to unstable plasma modes can have serious
implications for a broad range of “in situ” requirements for plasma-particle and wave
measurements intended for Space Station, TSS and active particle-beam platforms.

Fig. 14A presents a schematic view of the phenomenological domains of hollow-
cathode operation in a space plasma environment. The cathode can be biased in either
polarity with respect to the spacecraft ground and its outer skin (assumed a conduc-
tor in contact with the ambient geoplasma). The skin will itself be of either polarity
relative to the local plasma potential, and ionospheric currents will flow across the
spacecraft-associated sheath. The magnitude and polarity of skin potential relative
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to space will depend on ambient plasma conditions, the spacecraft geometry and con-
figuration, and the operation of on-board experiments (e.g. particle-beam injection).
Another current path to the payload (besides that through the spacecraft sheath) is
along and through the expanding hollow-cathode plasma. The expansion process, rep-
resented phenomenologically by regions A;, Az, B, and D, governs the current carrying
capabilities of the HC. In a tethered configuration analogous to Fig. 13, the ground
plane (spacecraft skin) in Fig. 14A and its current path to the ionosphere through its
sheath are replaced by another hollow-cathode with its own phenomenological regions
designated by Ay, A;, B and D and its current path through the ionosphere. This is
illustrated in Fig. 14B.

The plasma production and expansion process begins with neutral gas flow (typi-
cally Ar or Xe) into the cathode at pressures typically in the range 1-100 torr. Plasma
is created inside the thermionically-electron-emitting cathode and the neutral gas and
plasma experience a choked flow as they pass through the cathode’s exit orifice (diam-
eter ~ 0.030”) into domain A;. In this phenomenological model, A; is defined as the
“Device Dominated Region” because the attendant plasma processes depend on the
cathode characteristics and the anode-to-cathode fields. In zero order, the expansion
of the neutrals in A, is thermal, while that of the charged particles is thermal with
increasing drift velocities imparted by the applied field. The domain is collisional, with
orifice plasma and neutral densities quoted at 10*® and 10! cm ™3, respectively (J. Mc-
Coy, private communication). The field in region A; can impart a relative drift velocity
between the electrons and ions, with the electrons easily satisfying the Dricer field con-
dition for the onset of collective plasma effects and the Buneman instability.30:40~4?
This instability can turn on and off, heating the electron population and destroying all
assumptions of isothermality. This will affect the plasma resistivity and the current
delivery capabilities of the device.

Exiting A, the source plasma can diminish to levels near 10'? cm™? where it begins
its exposure to a new electric field configuration resulting from the potential difference
between the anode and the ambient plasma (beyond the sheath edge in region C).
Region A, is dominated by the source plasma, which by current estimates should have
a high kinetic 8, excluding the ionospheric plasma and the geomagnetic field. A; is a
transition region in which the source plasma diminishes in dominance over the domain
and its kinetic 8 drops to unity. This is expected to occur over one-to-several meters,
depending on prevailing conditions.

The processes in Regions A; and A; may be considered less complex than those in
Region B, where counterstreaming source and ionospheric plasmas and magnetic field
effects must be taken into account. In Region B, the magnetic fields control the net
electron emission or collection characteristics of the contactor, and it is here that the
payload is truly in “contact” with the ionospheric plasma through the HCD. While it is
the physics in this region that holds the key to the capabilities of the device to deliver
or attract large currents with low-to-moderate anode potentials, the properties of the
expanding hollow-cathode plasma in region Az and that of the ambient ionosphere in
C define the zero-order inputs for the interactions which form the basis of current flow.
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The final input control involves the magnitude of the ambient magnetic field and its
orientation relative to the cathode axis and the plasma “surfaces” defining Region B.

Since the introduction of the phenomenological model of HC plasma interaction
domains by Szuszczewicz,3 there has been a number of theoretical?®4¢ and experimen-
tal*>~*® efforts focussed on their existence and controls. Region B, for example, has
been referred to by Davis et al.** and Williams and Wilbur?® as a “double sheath”
or a “double layer,” across which most of the potential between the HC and ambient
plasmas is dropped, and where the HC and background plasma counterstream.

The regimes A-D in the hollow-cathode plasma represent only one subelement in
the current closure path illlustrated in Figs. 14A and B. Other subelements include
the ionospheric path itself, and the return current path through the reference elec-
trode (or tethered satellite) sheath. To understand, measure and model the current
closure system and to establish the I-V-B characteristic is indeed a challenge. There
are some guidelines from laboratory simulation experiments, but while they represent
valuable adjuncts to the development of theoretical models and the planning of space-
flight investigations, care must be taken in their interpretation and their extrapolation
to direct applications on a space platform. This is not to say that there is not a his-
tory of meaningful laboratory simulations of space plasma processes, even when scaling
laws did not rigorously apply. We include in this class the reconnection and tether-
simulation experiments of Stenzel et al.#*~%! and Urretia and Stenzel5?, as well as
the energetic beam-plasma-discharge studies of Bernstein et al.>3~%5 Szuszczewicz et
al.>*=%7 and Kellogg et al.3¥=% In the case of HC simulations there are some special
problems however, and we illustrate that with reference to Table 1 where we compare
the HC and background plasma properties that are likely to be encountered in space
with those that have been encountered in the lab. Several problem areas stand out. If
we look first at the ratio of hollow-cathode plasma density Nyc to that of the back-
ground plasma No to which it must couple, we see a major discrepancy....Nyc /No =
2.8 under laboratory conditions compares unfavorably with projected spaceflight ap-
plications where we expect 48 < Nyc/No < 1.9(10)5. Differences between laboratory
and spaceflight conditions also include relative thermal energy densities (2.2 in the
lab and 7400 in space) and the diamagnetic properties of the plasmas (expressed by
B =8rNyc(kT+K.E.)/B? = 0.15 and 3.7 in the lab and in space, respectively). (The
difference in the f-values stems from the directed velocity of the space vehicle relative
the background plasma, a value near 8 km/sec on a low-earth-orbiting spacecraft and
in the range 0.5-2.0 km/sec on a rocket.)

Other problems involve the laboratory simulation of the background ionospheric
plasma, which should be fully-Maxwellian with T, = 0.2 eV. Instead, we find in the work
of Williams and Wilbur?® a two-component electron distribution (defined by T¢ and
T}) in the background simulator. The temperatures of the cold and hot components
(T? and T}) were at 6.5 and 52 eV, respectively, and their relative densities N*/N¢
were at a 4% level. With plasma interaction processes critically-dependent on relative
energies and densities, and the specifics of the energy distribution functions of the
interacting plasmas, it is clear that the laboratory experiments conducted to date must
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be carefully scrutinized before their results are directly extrapolated to spaceborne
applications. There is no question however that there is merit in the accumulated
results, for Williams and Wilbur?®® and Vannaroni et al.%® have drawn attention to
the non-Maxwellian nature of the hollow-cathode plasma and have helped develop an
appreciation for the expansion process and interacting plasma regimes illustrated in
Figures 14A. They have established a database that needs to be tested and explored
in space. '

The relative merits and limitations of individual laboratory experiments notwith-
standing, we turn now to the power spectral density measurement of electrostatic waves
in the investigation of Szuszczewicz et al.%% Shown in Fig. 15, these measurements were
taken in a 1Im x 2m chamber with the hollow-cathode mounted on one end of the sys-
tem and allowed to expand into vacuum. The experiment was designed to test the
original position of Szuszczewicz,?® that the hollow-cathode plasma was an intrinsi-
cally “noisy” device with significant potential for perturbing spaceborne experiments
designed to study other plasma phenomena. The experiment was effectively a survey
of wave observations with parametric control over hollow-cathode conditions (current,
voltage and gas flow) and superimposed magnetic fields. Wave structures were ubiqui-
tous, ranging from intense lower frequency white noise characteristics like that shown
in Fig. 15A (levels at volts/meter) to mv/meter levels shown in Fig. 15B. (Note that
the high power spectral component at the low frequency end in Fig. 15B is the 120 Hz
multiple of the ac power.) In panels C and D we see varying waveforms and spectral
indices with and without resonances in the 0.01 - 2.0 Mhz region. The overwhelming
conclusion is that hollow-cathode plasmas are replete with wave perturbations driven
by current and streaming instabilities, with important effects on energy distribution
functions and net current carrying capabilities. Certain modes appear innocuous (e.g.
mv/m E-field fluctuations) while others appear to generate large perturbations (e.g.
volts/m).

The results of Williams and Wibur,*> Paterson et al.,*” Vannaroni et al.,*® and
Szuszczewicz et al.,®% while limited in the integrity of their capabilities to simulate HC
operations in space, provide powerful guidelines for future experiments and establish
the clear need for a spaceborne experiment to test and characterize the principles and
operations of the hollow-cathode device and develop a detailed understanding of the
I-V-B characteristics. These I-V-B characteristics represent the complete system of
current closure with all the complications discussed in Sections 1-3. There will be
bi-Maxwellian and non-Maxwellian energy distributions, multi-ion constituencies (e.g.,
Ar*t or Xet from the hollow cathode device, and Ot, NOt, OF from the background
plasma), and a broad spectrum of turbulence as suggested in the results of Figure 15.
There will also be the challenge of properly diagnosing the currents impinging on the
tethered satellite. Should there still be large sheaths and potentials there will surely be
anomolous energy distributions and anisotropies in the charged particle populations.
Some perspectives on these phenomena will be advanced in the next section.

4.2 Beams, Charging and Return Current Measurements

Current closure involving plasmas and man-made systems like probes and satellites
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ultimately involve current flow across a sheath. This is indeed the case in the illustration
of Fig. 14A, and certainly the case in a tethered system in which one end may have
current flow dominated (or controlled) by a hollow-cathode-like device, while the other
end relies primarily on sheath currents. In general, sheath currents can be small,
limited in first order by the thermal currents in the ambient plasma and the size of
the sheath. Currents across sheaths however, can be difficult to diagnose, and may in
fact be dominated by a complicated set of non-linear effects. This possibility is highest
for large potentials and large sheaths, giving rise to the need for a fairly complete
understanding of active phenomena within the sheath and an accurate measurement of
currents transferred from the plasma and collected at the spacecraft surface.

That a space vehicle can charge is an accepted fact, but accumulated experimental
results on charging levels are mixed. In all cases however, the database suggests that
the incorporation of mitigation techniques in spacecraft design is a prudent approach to
safety and mission success. This is particularly true in high altitude and geosynchronous
orbit, and with all particle-beam experiments regardless of ephemerides.

The fundamental issue in spaceborne applications of energetic-particle beams in-
volves current conservation of the charged-particle component of the beam, i.e. the
space vehicle can eject an energetic particle beam of Ig amperes only if the ambient
plasma can provide an equal quantity of return current. (The closure path is analo-
gous to that shown in Figure 14A, with current from the hollow-cathode replaced by
currents emitted by an energetic charged-particle beam.) If there is no return current,
a simple linear analysis suggests that a meter-size spherical body emitting a net 10
mA electron beam would be expected to charge to 9 kV in 0.1 ms. In order to avoid
charging to high positive potentials (for a net electron current emission) relative to the
ambient plasma, the vehicle must attract an equal quantity of return electron current
from sources that include ambient plasma electrons, beam-produced secondaries, and
possibly suprathermal electrons created by non-linear interactions. If the spacecraft
charges to levels greater than local ionization potentials, additional ion-electron pairs
can be created in the vehicle sheath.

An estimate of the return current available to a body of collecting surface S [m?)
from an ambient thermal plasma of density N, and temperature 7, is given by:

= (22 () s

For collecting areas of order 1 m? and ambient plasma densities less than 10% cm™3,

this return current is less than 10 mA.%* With ionospheric densities potentially as low
as 103 cm™3, this suggests that a prudent spacecraft design needs to emphasize the
importance of total conducting surface area, even for very modest beam currents.

Charging to large vehicle potentials also raises concern with large plasma sheaths
and attendant modification of the spacecraft’s nearby plasma environment. Estimates
for sheath sizes determined previously®? were found to be adequately represented for
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probe-like potentials by

_0.32R,. & \1/2
(Rsh — Ryc) = Ap [2.5 — 1.54exp (—9%)] (%) (25)

where R,; and R,. are the radii of the sheath and spacecraft, respectively, Ap is
the electron Debye length, and @,. is the spacecraft potential relative to the ambient
plasma. For a spacecraft potential of only 130 volts, the sheath size can approach
7 meters in the low density limit of 10*° cm™3; and at 1300 volts (and 10% cm™2) it
approaches 21 meters. The corresponding sheath sizes at 10% are 21 cm and 70 cm,
respectively.

An illustration of the large sheath scenario is presented in Fig. 16. The figure is
intended to represent a cylindrical payload with its axis parallel to the ambient magnetic
field. Assuming that one can define a discrete sheath edge at a radius R,; and at a
potential of —V,; with respect to the payload frame, electrons will be attracted from
the ambient plasma and undergo an E x B driven orbit in passing from the plasma
_ to the satellite surface. In striking the payload surface, there will be a broad range of
incident angles, suggesting that skin-mounted detectors intended to determine sheath
potential from an energy measurement of impinging particles, must be capable of full
pitch angle resolution. It is clear that a detector with acceptance angles only aligned
with the radius vector will give inaccurate measurements of sheath potentials and
current collected by the spacecraft surface.

Time dependency in sheath size and potential growth is also an important factor.
At moderate to low ionospheric densities (10* - 10° ¢cm™2) consider for example a
cylindrical payload (L = 30 m, d = 3 m) oriented with respect to the magnetic field
as illustrated in Fig. 16. If at a time defined as ¢ = 0 an electron emitting beam is
ejected parallel to B, the payload would charge to levels in the 1 - 10 kV range within
150 us. Results of numerical calculations for such a simulation, with a beam-on pulse
of 150yus, are presented in Fig. 17 (adopted from Drobot et al.%?. Other aspects of
the simulation (not detailed here) also show that the entire system would be repleat
with plasma oscillations, placing very severe constraints on “in situ” diagnostics within
the sheath and on skin-mounted particle detectors attempting to resolve the energy of
impinging particles and the total potential across the sheath. Such measurements are
indeed a necessity if one is to achieve an understanding of the charging/discharging
mechanism and beam-plasma current closure in the spacecraft-ionosphere system.

5. Comments and Conclusions

In addressing the realities of current collection in dynamic space plasma environ-
ments, we have treated theoretical and experimental issues. The overall conclusion
points to the fact that there are a substantial number of challenges remaining for some
of the more complex and dynamic systems, not the least of which involves energetic
beam experiments and long tethered satellite systems. In many cases experimental
techniques must be able to diagnose and account for simultaneous variations in elec-
tric fields, plasma densities, energy distribution functions and ion mass. Inevitably,
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most diagnostic systems assume that one or more of those variables is constant. In
laboratory experiments there are times when this problem can be dealt with by virtue
of experiment repeatability. This often is not the case in spaceborne experiments.
At best there is some repeatability, but never comparable to that in a laboratory-
based experiment. Ultimate success will rely on the development of new measurement
techniques and a close synergism in theoretical developments and laboratory-based and
spaceborne experiments.
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Laboratory Experiments on Current Flow Between
Stationary and Moving Electrodes in Magnetoplasmas

R. L. Stenzel and J. M. Urrutia

Department of Physics
University of California
Los Angeles, CA 90024-1547

Laboratory experiments have been performed in order to investigate the
basic physics of current flow between tethered electrodes in magnetoplasmas.
The present extended abstract summarizes the major findings and points to
references for further details. The experiments are performed in an
effectively very large laboratory plasma (2 km L g, 5 km “ B when scaled in
terms of Debye lengths to low Earth orbit conditions) in which not only the
nonlinear current collection is addressed but also the propagation and
spread of currents, the formation of current wings by moving electrodes, the
current closure, and radiation from transmission lines are explored.

The laboratory plasma1 consists of a pulsed dc discharge (1m 1 g, 2.5m ||
go, ng < 102 cm"3, kTg € 5 eV, B, < 100 G, Ar 3 x 107¢ Torr) whose
Maxwellian afterglow provides a quiescent, current-free uniform background
plasma. Electrodes consisting of collectors (° 1 cm diam) and electron
emitters (° 1 cm diam. hot cathode) are inserted into the plasma and a
pulsed voltage is applied between two floating electrodes via insulated
transmission lines. Besides the applied current in the wire the total
current density in the plasma is obtained from space and time resolved
magnetic probe measurements via Maxwell'’s law, V x H=J+ 63/3t - 3tot-
Langmuir probes yield the plasma parameters ng, kT, and ¢p1asma-

Although current collection on a spacecraft appears to be a dc problem
the rapid motion across the magnetic field results in a pulse-like current
flow in the stationary plasma. When such pulses are applied to fixed
electrodes in the laboratory plasma the current front is found to penetrate
as a whistler wave packet along 30.2 Whistlers rather than Alfven waves are
excited since the time variation (pulse width or electrode transit time
across go) are fast compared with the ion cyclotron period. When a sequence
of pulses is applied and the electrodes are moved across go the situation of
a moving tethered electrode system is modeled.3 Superposition of wave packets
from repeated measurements indicates the formation of a "whistler wing," i.e.

an oblique current trail at an angle with respect to go determined by both
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the;wave speed ("go) and the electrode speed (Lgo). The current wings spread
since the radiation sources (electrodes) are finite and the waves can
propagate within a ray cone (6c = 199). Most interesting is the fact that
the current wings do not depend on the collected/emitted particle speeds,
i.e. whistler wings are observed for ion collection, electron collection and
fast electron beam emission. Pulsed beams are current and charge neutralized
by background electrons.® Current closure appears to arise from cross-field
wave currents rather than collisional cross-field particle currents (Pedersen
currents) or equivalent boundary currents (line tying).

Time-varying currents in stationary transmission lines (or dc currents
in moving lines) are observed to induce plasma return currents.” These may
couple to collective modes (whistlers) or diffuse resistively (eddy
currents) depending on the direction (and motion) of the line with respect
to the magnetic field go- For the standard tether configuration (3 LB 1L })
the entire insulated wire can be expected to radiate a sheet-like whistler
wing, not only the conducting end electrodes. Thus, the radiation
resistance of the tether system is considerably larger than that of the
electrodes alone.

Since it is desirable to conduct the largest possible current through
the ambient plasma the question of plasma nonlinearities arises. The
laboratory experiments have demonstrated the existence of a disruptive
instability6 which has also been conjectured theoretically.’ When
electrons are extracted from a flux tube in a magnetoplasma its potential
rises leading to an acceleration of ions out of the flux tube. The
resultant density depression reduces the collected current. At large
current densities, the ion dynamics leads to a fluctuating current (91/1 -
100%) as plasma periodically sloshes back and forth out of the flux tube
near the positive electrode. When sufficient neutral gas is supplied
fjonization takes place near the anode which quenches the ion expulsion,
hence current fluctuation. Such contactors formed by self-ionization of

excess neutrals appear to occur in space as well.
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LABORATORY EXPERIMENTS ON PLASMA CONTACTORS

Paul J. Wilbur and John D. Williams
Department of Mechanical Engineering, Colorado State University
Fort Collins, CO 80523

Abstract. Experimental results describing the operation of hollow
cathode plasma contactors collecting and emitting electrons from and to
an ambient plasma at current levels of order one ampere are presented.
The voltage drops induced between a contactor and an ambient plasma are
shown to be a few tens of volts at such current levels. The development
of a double sheath and the production of substantial numbers of ions by
electrons streaming across it are associated with the electron
collection process. The development of a complex potential structure
including a high potential hill just downstream of the cathode orifice
is shown to characterize a typical contactor emitting electrons.

Introduction

Objects placed in a space plasma collect and emit charged particles
at variable rates and, consequently, they can accumulate net electrical
charge. Because the capacitance of a typical spacecraft surface is
small, this net charge accumulation can cause the potential of such a
surface to change rapidly and dramatically. A space plasma contactor
serves to prevent this problem by providing low impedance electrical
connections 1) between spacecraft surfaces and space plasma thereby
preventing gross spacecraft charging (Purvis and Bartlett, 1980) and 2)
between adjacent spacecraft surfaces that are isolated from each other
thereby preventing differential charging (Olsen, et al., 1981). A
contactor could also serve to establish a firm reference potential
(local space plasma potential) for space-based instruments.

Effective spacecraft charging control is realized when the voltage
differences associated with gross and differential charging are minimal
over the full range of environmental conditions in which the spacecraft
could find itself. A hollow cathode appears to be a device that can be
used to achieve such control in both positive and negative spacecraft
charging environments. The purpose of this paper will be to review the
operating principles of a hollow cathode, to describe laboratory
experiments conducted to demonstrate how hollow cathodes couple to
ambient plasmas and to suggest, based on test results, mechanisms by
which a hollow cathode and possibly other discharge plasma devices
effect spacecraft charging control.

Background

Hollow Cathode Devices

A review of the desirable characteristics of a plasma contactor
(e.g. reliability, simplicity, low expellant and power demands and low
coupling impedance) has suggested that a hollow cathode discharge is
attractive compared to other contactor alternatives (Wilbur, 1986). Key
features of a hollow cathode and the mechanisms by which it produces a
discharge are illustrated in Fig. 1. The cathode itself consists of a
small diameter (of order 1 cm) refractory metal tube that is electron-
beam welded to a refractory metal (typically thoriated tungsten) orifice
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plate. Located within and electrically connected to the tube is a low
work function insert from which electrons are emitted. An anode, biased
positive of the hollow cathode and located immediately downstream of it,
collects a fraction of the electrons being drawn through the cathode
orifice. The remaining fraction can be drawn into plasma plumes that
can contact an ambient plasma and couple adjacent isolated surfaces to
prevent charging events,

The hollow cathode discharge is generally initiated by flowing an
expellant gas such as xenon through the cathode tube and orifice,
applying power to the heater to raise the insert temperature to
thermionic emission levels and applying a bias on the anode that can
range, depending on insert temperature, from a few hundred to several
thousand volts. Once the insert begins to emit electrons the anode
voltage drops into the ten volt range. At this point a dense plasma
develops within the cathode and a discharge is established between this
plasma and the anode through the orifice. A detailed study of a hollow
cathode (Siegfried and Wilbur, 1984) has suggested that the following
physical processes illustrated in Fig. 1 are active:

1. Primary electrons emitted from the insert surface via a field-
enhanced, thermionic emission process are accelerated into the cathode
interior plasma through a sheath at the insert surface,

2. These electrons acquire sufficient energy as they pass through
the sheath so they can ionize neutral atoms present in the hollow
cathode interior through multistep, inelastic collision processes.

3. Both electrons that originate at the insert surface and those
resulting from ionization are generally unable to reach the insert
surface from the plasma because of the adverse potential gradient at
the cathode interior plasma/insert interface. Consequently, they must
leave the cathode interior plasma through the orifice at a rate equal
to their supply rate.

4. Ions created within the cathode, on the other hand, generally
will not go through the orifice because of the adverse potential they
see between the cathode interior plasma and the plasma downstream of
the orifice. They instead bombard cathode interior surfaces heating
them and, in the case of the insert, helping to maintain its
temperature at the level needed to sustain electron emission.

5. As ions reach the wall surfaces they recombine and then re-enter
the cathode interior plasma as neutral atoms. Neutral atoms must
leave the cathode interior through the orifice at their supply rate.

6. As electrons pass through the orifice they are accelerated
through a potential difference that gives them the energy needed to
ionize some of the neutral atoms that are also passing through the
orifice.

7. The ions and electrons downstream of the orifice form the plasma
structure needed to facilitate the plasma contacting process. These
particles are eventually lost by either going to nearby surfaces (e.g.
the anode or cathode) where they can recombine or by being drawn into
the plasma downstream of the cathode from where they can flow to the
ambient plasma or other spacecraft surfaces.

Phenomenological Description of the Contacting Process

The physical phenomena observed in ground-based experiments of
hollow cathode plasma contactors exchanging current with a simulated
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ambient plasma can be described using axial plasma potential profiles.
The generalized plots of Fig. 2 show potential structures measured
around contactors collecting and emitting electrons from and to a
simulated ambient plasma at current levels of the order of 1 A. As
Fig. 2a indicates, a contactor that is positive of an ambient plasma
collects electrons through a double sheath and a quasi-neutral collector
plume. Most of the potential difference associated with this process
develops across the double sheath through which ions and electrons
counterflow to conduct the current. While electrons are the principal
charge carriers in the process, ions play the critical role of reducing
the current-limiting effect of electron space charge.

The small potential dip shown separating the ambient plasma and the
collector double sheath in Fig. 2a is interesting although its effect on
contactor performance may not be significant. Such dips are frequently
observed in plasma contactor tests and they have been observed and
modeled by other researchers under somewhat different conditions
(Langmuir and Compton, 1931). Their results suggest that this dip
occurs (and as a result the electron and ion currents counterflowing
through the double-sheath are enhanced) because the ambient plasma
Maxwellian electron population have a non-zero temperature and they
therefore approach the sheath with non-zero velocities.

When a contactor is biased negative of an ambient space plasma, it
emits electrons and the general potential structure shown in Fig. 2b
develops. The potential hump immediately adjacent to the emitter double
sheath appears to evolve because electrons being drawn from the emitter
induce substantial ionization of the neutral atoms which are also
flowing through the cathode orifice and have a high density close it.
Because electrons ejected from typical ionization events have
substantial kinetic energies they tend to escape the ionization zone
quickly leaving behind an overabundance of relatively massive, low
energy and therefore slow-moving ions (Langmuir, 1929). In the region
downstream of the peak where the potential drops, forces develop that
decelerate the electrons and accelerate the iomns. Further downstream,
the potential flattens and a non-Maxwellian plasma composed of
relatively low density, nearly monoenergetic electrons and jons which
have an unknown energy distribution are observed. The required electron
emission current is conducted through this region via a plasma expansion
(streaming) process to the surrounding ambient plasma. Measurements
have suggested the potential rise across the emitter double sheath may
range as high as several tens of volts depending upon the emitter
operating conditions. The intermediate double sheath shown in Fig. 2a
seems to facilitate accommodation of the streaming and ambient plasmas.
In laboratory tests it is believed it may stabilize at a location that
is influenced by tank wall interactions.

One should note that it is contactor potential (collector potential
in Fig. 2a for electron collection and emitter potential in Fig. 2b for
electron emission) that determines contactor efficiency. The variation
in this potential with electron collection or emission current and the
way in which it can be controlled are, therefore, important.

Experimental Apparatus and Procedures

In order to study the plasma contacting process experimentally, the
apparatus shown schematically in Figs. 3 and 4 has been constructed.
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Physically, this apparatus consists of two hollow cathode devices, one
(shown at the right of each figure and labeled "simulator"), which is
used to generate a simulated ambient plasma, and the other (shown at the
left and labeled "contactor"), which is used to generate a contactor
plasma. To conduct experiments, the contactor is biased relative to the
simulated ambient plasma to induce current flow between these plasmas.
Also shown are the power supplies and instrumentation needed to sustain
and measure the characteristics of the plasmas produced. The simulator
and contactor hollow cathodes are separated by 2.7 m and are located
within a 1.2 m dia. by 5.3 m long vacuum chamber. They both utilize
cathodes with 6.4 mm dia. orifice plates and electron emission inserts
that were fabricated by rolling 0.013 mm thick tantalum foils to form
mulgi-layer hollow cylinders which were then treated with Chemical R-
500 .

The orifice in the simulator cathode is 0.38 mm in diameter and its
anode is a solid 3.0 cm dia., 0.25 mm thick tantalum plate oriented
parallel to the orifice plate and separated from it by a distance that
can be varied from 1 to 5 mm. The orifice In the contactor cathode is,
on the other hand, 0.76 mm in dia. Its anode is a flat stainless steel
plate with a 1 cm dia. tantalum insert having a 5 mm dia. orifice in it
(Fig. 1). The anode plate and insert are located ~2 mm downstream of
the cathode orifice and the anode and cathode centerlines are colinear.
The anode outside diameter was varied during the tests, but the data
presented here were all obtained using a 12 cm diameter anode unless
noted otherwise,.

Typical tests were conducted by heating the contactor and simulator
cathodes to temperatures where significant thermionic electron emission
could occur (~1300 K), establishing high expellant (xenon) flowrates
through them, and biasing their anodes positive using the discharge
supplies to Initiate cathode-to-anode discharges at each device. Next,
the desired contactor and simulator flowrates (m_ and m_) and discharge
current levels (J and J_..) were established; tfie cont3ctor was biased
relative to the simulator using the bias power supply shown in Fig. 3;
and voltage, current and probing instrument data were collected. The
voltages and currents measured during typical tests are designated by
the symbols shown within the circles in Fig. 3; they include the
contactor and simulator discharge currents and voltages (Jc ; Jan, VCD
and V_ ), the bias voltage between the contactor and simulagor %95) and
the contactor and simulator electron emission currents (J and JSE)'

The two switches shown at the contactor and simulatof in Fig. 4 are
positioned at either the "EE" or "EC" position depending on whether the
contactor is biased negative of the simulator and therefore Emitting
Electrons (EE) or biased positive and therefore Collecting Electrons
(EC). Williams (1988) has shown it is necessary to position these
switches properly for each operating mode to assure that intentional
limitations imposed on the discharge current levels (J D and JS ) do not
result in unintentional limitations being imposed on tge contacgor or
simulator electron emission currents.

*
Chemical R-500 is a double carbonate (BaCO,, SrC0,) low work-function
mixture that has been made by J.T. Baker Co. but i3 no longer produced.
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The tank bias switch shown in Fig. 3 was installed so the wvacuum
tank could be allowed to float relative to the contactor/simulator
system or be connected to the gsimulator. Tests conducted to investigate
the effects of changes in the position of this switch on plasma and
performance data have suggested that it has no significant effect on a
contactor collecting electrons. On the other hand, when the contactor
is emitting electrons and the switch is connected to the simulator, most
of the electron current is drawn to the tank. When the switch is open
and the tank is floating, most of this electron emission current must
flow to the simulator. Electron currents emitted with the switch open
were, therefore, found to induce higher bias voltages and current
flow/plasma density patterns that tended to be concentrated along the
tank centerline rather than being distributed uniformly in the tank.
This occurred because all of the emitted electrons were being forced
into collection at the simulator and this distorted the current flow
patterns away from the spherical symmetry that would be expected in
space. In order to conduct tests that were considered to be more
representative of those expected in space, tests described herein were
generally conducted with the tank bias switch connected to the
simulator. Any data collected with this switch open will be identified
specifically.

The plasma environment produced between the contactor and the
simulator was probed using the various instruments shown in Fig. 4.
These instruments, the function they serve and the physical volume in
which they can be used are:

Emissive Probe - This sensor and the associated circuitry system,
which are similar to those used by Aston and Wilbur (1981), yield
plasma potential data directly. The sensor can be swept axially
downstream from the contactor to the simulator and/or radially along
an arc that extends from the tank/contactor centerline out to a radius
of ~30 cm. Probe output voltage (i.e. plasma potential) and position
are recorded simultaneously on an X-Y recorder to assure well-
correlated values of the data.

Langmuir Probe - The sensor used on this probe is a 3.2 mm dia
stainless steel sphere that can be moved conveniently into any
position occupied by the emissive probe. Probe current/voltage
characteristic curves recorded at these positions are analyzed using a
two-electron-group model (Beattie, 1975) that is assumed to describe
plasmas such as these. This analysis yields the demsity and
temperature of a Maxwellian electron group and the density and energy
of a primary (or mono-energetic) electron group. This analysis is
aided by inputing plasma potential data determined using the emissive
probe at each location where Langmuir probe data are collected. The
circuitry together with additional detail about the numerical
procedures used to obtain plasma information have been described by
Laupa (1986).

Shultz-Phelps Ionization Gauge - This commercially available
pressure gauge was modified by removing the glass enclosure around the
sensor so perturbations to static pressure measurements that could
have been induced by gas flows through the contactor, would be
minimized and so its spatial resolution would be improved. The probe
was used to measure ambient pressure distributions over the same
region swept by the emissive and Langmuir probes. Neutral atom
density distributions were computed from these data by applying the
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perfect gas state equation and assuming the ambient gas was in
equilibrium with the vacuum tank walls at a temperature of 300 K.
Because gauge readouts from this device are inaccurate when a plasma
is present, the measurements were made only when the cathodes were at
operating temperatures and flowrates and the plasma discharges were
extinguished.

Retarding Potential Analyzer - The sensor on this instrument was
designed so it could be swept through an 18 cm radius arc that passed
through the tank centerline and was centered at the contactor cathode
orifice. In the course of moving through this arc its aperture
remained sighted on the cathode orifice. It was biased so it repelled
both electrons and low energy ions and therefore sensed the azimuthal
current density profile of high energy ions flowing across the sheath.

Test Results

When a typical hollow cathode plasma contactor is biased relative
to an ambient plasma and the voltage difference between it and the
ambient plasma in contact with it (defined as the collector or emitter
potential in Fig. 2) is measured as a function of the electron current
being emitted, data like those shown in Fig. 5 are obtained. These
particular data were obtained at a contactor discharge current (J..) of
0.3 A and an expellant flowrate (ﬁ ) of 4.1 standard cubic centimeTers
per second (sccm) of xenon. Under these conditigns the ambient neutral
gas pressure (P ) in the vacuum tank was 5 x 10"~ Torr and the contactor
discharge voltage (V..) varied over the range from 12 to 20 V as the
electron emission cufrent (J E) was varied from +1000 mA to -1000 mA.
The contactor potential plotged on the horizontal axis in this figure is
the difference between the contactor anode or cathode potential (V,) and
the ambient plasma potential (V_ ) sensed by an emissive probe located
~1 m downstream of the contactor. The data of Fig. 5 show the contactor
potential remains near -25 V when substantial electron currents are
being emitted (second quadrant) and that it rises to about 50 V for
substantial electron collection currents (i.e. for negative emission
currents in the fourth quadrant).

The curve in the fourth quadrant of Fig. 5 shows that the magnitude
of the electron collection current increases rather suddenly at a
potential difference of ~40 V where the "transition to ignited mode"
operation is identified. This transition is generally observed as
contactor bias potential is being increased. 1Its occurrence is
accompanied by the appearance of a bright luminous glow that typically
extends several centimeters from the contactor and is frequently
somewhat spherical in shape. It is believed that this luminosity is
caused by the de-excitation of xenon atoms that have been excited by
electrons being drawn (streaming) from the ambient plasma toward the
contactor and that ionization is also induced by these electrons.

Electron Collection

When plasma potentials are measured throughout the region
immediately downstream of a contactor collecting electrons, data like
those shown in Fig. 6 are obtained. This figure includes both a raised
potential map, which shows the structure of the plasma field around the
contactor qualitatively and an equipotential contour map from which
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quantitative information about the potentials can be obtained. These
two plots show the plasma field consists of two relatively uniform
potential plasma regions separated by a region of large potential
gradient. Since neither magnetic field nor collisionally induced
impedances are expected in the region where the potential changes
rapidly, this must be a sheath region (Langmuir, 1929), i.e. one in
which charged-particle acceleration is occurring.

On the basis of the typical data of Fig. 6 one can propose the
model of electron collection suggested by Fig. 7. This model shows a
relatively higher density plume of quasi-neutral plasma in the region
immediately adjacent to the contactor which is separated from a lower
density quasi-neutral ambient plasma by a double-sheath (or double-
layer). As the centerline plasma potential profile in this figure
suggests electrons from the ambient plasma are drawn toward the
contactor plume and ions from this plume are drawn toward the ambient
plasma. On the other hand, ions from the ambient plasma and electrons
from the contactor plume are both reflected at the sheath. The ion and
electron currents that can be drawn through the double-sheath region are
limited by the space-charge effects suggested by the net accumulations
of positive and negative charge shown, respectively, upstream and
downstream of the sheath midpoint in the bottom sketch of Fig. 7.

When plasma properties are measured along the vacuum tank/contactor
centerline through a typical double-sheath, data like those shown in
Fig. 8 are obtained. These results suggest plasma conditions do vary in
a way that is consistent with the model of Fig. 7 (note that the zero
voltage for the plots of Figs. 6 and 7 is the ambient plasma potential,
while that for Fig. 8a is the simulator cathode potential). Figures 8b
and ¢ indicate the plume and ambient plasmas are both composed of
primary (mono-energetic) and Maxwellian electron groups. They show the
Maxwellian temperature and density and the7pri@§ry energy and dengity_3
all remain constant at about 6 eV, 4 x 10" cm ; 40 eV and 3 x 10° cm
respectively, in the ambient plasma region for this case where ~370 mA
of electrons are being collected.

It is noted that the energy of the primary electrons in the ambient
plasma (Fig. 8c) is approximately equal to the simulator cathode-to-
ambient plasma potential difference. This suggests that these electrons
are ones that have been accelerated into the ambient plasma from the
simulator hollow cathode and have had few energy-degrading collisions.
It is noted that the ratio of primary-to-Maxwellian electrons in the
ambient plasma is generally not large (usually less than 10% as in the
case of the data of Fig. 8). The data of Fig. 8b show the density of
the Maxwellian electrons upstream of the double-sheath drops rapidly
with distance from the contactor cathode. The floor symbol drawn on
Fig. 8b upstream of the double-sheath location indicates that the
Maxwellian density and temperature were not measurable at this location
because the primary electron signal to the Langmuir probe overwhelmed
the Maxwellian one. The data of Fig. 8c show the primary electron
density upstream of the sheath is more than an order of magnitude
greater than that downstream. The primary electron density upstream of
the sheath is also seen to increase as the distance from the contactor
decreases probably because these electrons are being concentrated as
they stream radially inward toward the cathode. Finally, it should be
noted that the energy of the primary electrons in the region upstream of
the sheath (35 to 45 V) is roughly equal to the sheath potential drop
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(Vo). This suggests that primary electrons found in the high density
plume are indeed those that have been accelerated across the sheath from
the Maxwellian electron group in the ambient plasma. This result also
supports the proposed physical model of the electron collection process.

When the retarding potential analyzer (RPA) is used to measure the
azimuthal profile of the current density of ions expelled across the
double-sheath of a contactor collecting electrons at the conditions
listed on Fig. 8, the data of Fig. 9 are obtained. One can integrate
these ion emission current density data over a hemispherical surface
with the radius of the RPA sweep arc (18 cm) to determine the overall
ion emission current flowing from the contactor to the ambient plasma.
The result of so doing is 4.2 mA in this case. Applying a simple model
describing space-charge-limited electron collection through a spherical
double sheath (Wei and Wilbur, 1986) one computes an ion emission
current (2 mA) that is approximately one half of the measured value.
Considering the uncertainties associated with these measurements and the
space-charge-limited model being applied, this is considered to be
acceptable agreement.

If the current being collected through the double sheath is space-
charge-limited, theory (Langmuir, 1929; Wei and Wilbur, 1986) indicates
the ion and electron currents counterflowing through the sheath should
be related linearly and should be independent of other conditions such
as expellant flowrate and sheath voltage drop. Figure 10 shows this
linear variation between ion centerline current density, which is
proportional to the total ion emission current, and electron collection
current, It is noted, however, that the slope of the line in Fig. 10
corresponds to an ion-to-electron current ratio that is about (1/250).
This value is nearly twice the expected theoretical value (1/490--the
square root of the electron-to-ion mass ratio). The could be due to
geometrical differences between the actual shape of the double sheath
and that assumed in the simple theoretical analysis.

When the size and shape of the double sheath and the voltage drop
across it are changed dramatically, the ion emission current is
unaffected provided the electron collection current is held constant.
For example, Fig. 11 shows the changes induced in the equipotential
contour maps of a contactor collecting 900 mA of electroms by increasing
the xenon flowrate from 2.7 to 11 scem. The data of Fig. 12 show such
flowrate changes induce a substantial change in the sheath voltage drop,
but no significant change in the centerline ion emission current
density occurred,

Ion Production to Support Electron Collection. The location of the
upstream boundary of the double sheath is determined by the rate at

which low energy ions are supplied to it. Increasing this supply rate
causes the upstream boundary to move downstream and this causes the
sheath voltage drop to decrease (Williams, et al., 1987). The means by
which the ions are produced in the plume region of a contactor
collecting electrons is therefore a matter of interest. Some ions are
produced by electrons that are drawn through the hollow cathode orifice
and collide with neutral atoms in this region, however, production by
this mechanism may be insufficient to induce a low voltage drop. It is
believed, in fact, that these ions will sustain a low voltage drop only
to an electron collection current level of about 100 mA. Above this
electron collection current, test results indicate a new mechanism of
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ion production, related to the onset of the ignited mode of operation
identified in Fig. 5, becomes important. This transition, which is
accompanied by a sudden and dramatic increase in the luminosity of the
contactor plume, is believed to occur when the voltage drop across the
double sheath is sufficient to induce excitation and ionization of
expellant atoms coming through the cathode orifice by the electrons
being collected. Evidence that excitation reactions are occurring in
the ignited mode is provided by plume luminosity. The fact that
increased electron collection current accompanies the transition

(Fig. 5) suggests that ion current flow also increases to sustain
operation at space-charge-limited conditions. Because increased ion
production would be required to sustain this ion current, the electron
collection current increase implies increased ionization accompanies the
transition.

Additional evidence of substantial ionization in the plume of a
contactor collecting electrons in the "ignited mode" is obtained by
calculating the streaming electron/atom ionization rate in the contactor
plume. This has been accomplished by measuring the neutral density
distribution downstream of a hollow cathode using the movable Shultz-
Phelps gauge and then computing the ion production induced by electrons
streaming from the ambient plasma through this atomic cloud toward the
hollow cathode. A rough calculation suggests the resulting ion
production is more than sufficient to supply the total ion current
required to sustain operation at the space-charge-limited condition for
a spherical double-sheath (Williams and Wilbur, 1989).

Effects of Anode Area on Electron Collection. Typical plasma
potential data measured downstream of a contactor operating with a 3 cm
diameter anode are compared to those measured near a contactor with a
12 cm diameter anode in Fig. 13. The most striking differences between
these data are the higher voltage levels, the spreading of the double-
sheath and the reduction in the size of the contactor plume when the
smaller anode is used. Although the relative position, magnitude and
shape of the equipotential contours are different, it is argued that the
voltage difference that exists must be sustained because acceleration of
counterflowing ion and electron currents is occurring in both cases.
Thus, the potential structure associated with both anodes must reflect
the essential phenomena associated with a double sheath. The
differences between the sheaths shown in Fig. 13 appear to develop
because the inner boundary of a double sheath must remain anchored to
and therefore have a dimension that is about equal to the associated
anode diameter. This constraint on the sheath size at the contactor is
reasonable when one recalls that the charge carried by electrons
collected into the plume must eventually reach the anode.

A simple double-sheath model (Williams and Wilbur, 1987) can be
applied to determine the voltage drop across the near-spherical double
sheath associated with the large anode data given in Fig. 13. Although
this model is not suited to the irregular shape of the double-sheath
associated with the small anode, it is expected that the smaller anode
case can be modeled numerically provided the double-sheath phenomena are
reflected in the model. It is noted that the potential structure shown
for the 3 cm anode is similar to structures reported by Patterson and
Aadland (1987) for tests involving electron collection from what appears
to have been a rather low ambient density plasma at current levels above
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1 A on a contactor that utilized a 24 cm diameter anode. A review of
their data together with data obtained by the authors suggests a double
sheath takes on an irregular (non-spherical) shape when the current
being collected exceeds the ambient plasma random electron current
density times the area of a hemispherical double-sheath with a radius
that is about equal to that of the contactor anode.

Although double sheaths observed in the laboratory appear to tie
themselves to the contactor anode, it 1s considered possible that a
large double sheath that might develop in space could be spherical and
not be tied to the outer boundary of an anode. Whether or not this
would occur appears to depend on whether or not such a double sheath
would be stable (Hastings and Blandino, 1989). In any event it is
considered important to utilize an anode that is as large as practicable
to realize a high electron collection current capability with a low
voltage drop in a space plasma.

Electron Emission

The plasma potential field measured downstream of a typical
contactor emitting electrons is shown in Fig. 14. The contactor cathode
(at the 0,0 location) is at the lowest potential (-14 V) of any peint in
the maps. Downstream of that point the potential rises to a ridge along
which the potential peaks before it drops off and then levels out. The
peaked potential structure is particularly noteworthy and was initially
unexpected. It is noted that the data in Fig. 14 were collected using
an emissive probe and this probe becomes iIncreasing inaccurate as it is
moved closer to the cathode. More specifically, it indicates potentials
that fall progressively further below the true plasma potentials as it
is moved into denser plasmas, i.e. Into regions closer to the cathode
orifice. This inaccuracy arises because the probe cannot be held at the
temperature required to assure adequate electron emission in the plasma
environment close to the cathode without burning out. Thus it can be
stated that the potentials rise to even higher peak values than those
indicated at the crest of the ridge shown in Fig. 1l4.

Potential profiles measured downstream of a contactor emitting
electrons, when the tank is floating relative to the contactor and
simulator (tank bias switch in Fig. 3 open), are shown in Fig. 15. The
low emission current potential profile (15 mA) is considered to be quite
accurate because plasma densities are low close to the cathode in this
case and the emissive probe should, therefore, indicate accurately. 1In
this case the potential hill is obvious. At the higher current (250 mA)
where plasma density close to the cathode is high, however, the probe
error would be expected to be greater, and the potential hill is not
very obvious. :

Downstream of the potential hill the data of Fig. 15 show a region
of relatively uniform plasma potential before the potential rises to the
ambient plasma potential. These potential structures should be measured
correctly by the emissive probe so they are considered accurate. The
complexity of the complete potential structure suggests that electron
emission is at least as interesting phenomenologically as electron
collection.

Some light can be cast on the mechanisms that could induce the
potential profile data shown in Figs. 14 and 15 by considering the
simplified schematic and corresponding potential profile shown in
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Fig. 16. In the potential environment close to the cathode, electrons
from the cathode could be accelerated through the potential gradient at
the cathode until they had the kinetic energy needed to excite and
ijonize neutral atoms that would be present at a high density level near
the cathode orifice. At a sufficiently high cathode emission current,
the ionization could be sufficient to produce an overabundance of ions
that would cause a potential hill to develop near the cathode. This ion
overabundance is expected because the electron kinetic energy would
typically exceed the ionization energy. Thus the electrons coming from
the reaction would tend to leave the region of ionization more rapidly
than the ions (Langmuir, 1929). Immediately downstream of the peak
potential, the potential drops and forces develop that decelerate the
electrons and accelerate the ions in an effort to maintain plasma
neutrality. Beyond this region, ions and electrons stream outward and
expand to the point where another double sheath can develop to
accommodate coupling of the ambient and expansion region plasmas. This
sheath, which is typically located 40 to 100 cm downstream of the
emitter, exhibits a potential rise of ~10 V. It serves as a boundary
between the plasma coming from the emitter and the ambient plasma that
fills the majority of the vacuum chamber. It is considered possible
that is it is stabilized by interactions with the vacuum chamber wall.
Whether or not this is the case has not been verified, but it is noted
that the existence of the sheath is not influenced by switching the tank
between contactor cathode to floating potentials. On the other hand,
connecting the tank to the simulator anode causes it to disappear.

Additional insight into the phenomenological model associated with
Fig. 16 can be obtained by considering plasma property data collected
throughout the regions shown. Figure 17 presents data collected at a
750 mA electron emission current with the tank bias switch (Fig. 3)
open. The solid plasma potential curve shows data measured using the
emissive probe. The dashed line indicates what is expected considering
emissive probe errors in the high density plasma at the emitter cathode.
While the height of this hill is not known for certain, preliminary RPA
probe measurements of ions coming from it into the plasma expansion
region suggest it may be a few tens of volts high.

The plasma density, temperature and energy data of Fig. 17, which
were collected using a Langmuir probe, show the plasma expansion region
contains primary (mono-energetic) electrons but essentially no
Maxwellian ones. The energy of the primary electrons suggests they came
from the cathode--their energy (15 eV) is about equal to the expansion
region plasma potential measured relative to the cathode. The density
of these primary electrons drops off rapidly with distance from the
cathode to a level below that of the 5 eV Maxwellian electrons in the
ambient plasma (middle plot of Fig. 17). A more detailed study of the
plasma expansion region (Williams and Wilbur, 1989) has shown that
primary electron density decays there as 1/r?. This suggests in turn
that a collisionless, spherical expansion model of the region between
~10 and 40 cm is appropriate.

The plasma expansion model of the region between the potential
hill and the ambient plasma regions is similar to that used by Davis et.
al. (1987). Their model differs in that it involves Maxwellian electron
expansion in accordance with the barometric equation rather than mono-
energetic electron expansion.
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Finally, it is noted that the ambient plasma contains mostly
Maxwellian electrons with a temperature near 5 eV. The fact that
primary electrons there have an energy near the plasma potential
associated with the ambient plasma measured relative to the cathode
suggests primary electrons come from the cathode and that they produce
the ions needed to sustain the ambient plasma.
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Research Center under Grant NAG3-776.

Conclusions

Hollow cathode plasma contactors can be used to establish a low
potential difference connection between an object attached to the hollow
cathode and an ambient plasma under conditions where the object is
either positive or negative of the ambient plasma, i.e. electrons are
being collected or emitted, respectively. The potential structure and
therefore the voltage drop associated with the electron collection
process is dominated by the development of a space-charge-limited double
sheath. This double sheath maintains a boundary near the outer diameter
of the contactor anode. The process of electron collection is more
efficient when the contactor is "ignited" and some of the ion current
required to sustained the double sheath is created by electrons that are
being collected.

The potential structure associated with the electron emission
process appears to be dominated by a "potential hill" and a plasma
expansion region that develops downstream of the contactor. The
potential hill and expansion region appear to facilitate the ion
production needed to establish a low impedance plasma bridge between the
contactor cathode and the ambient plasma.

A contactor designed to both emit and collect electrons should be
connected with its anode attached to the largest conducting surface on
the spacecraft. This assures a large effective anode area and efficient
electron collection (a low voltage difference between the contactor and
the ambient plasma). The size of the anode doesn’t appear to influence
electron emission process significantly.
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Abstract

Previous theoretical work on plasma contactors as current collectors has fallen into two
categories: collisionless double layer theory (describing space charge limited contactor clouds)
and collisional quasineutral theory. Ground based experiments at low current are well explained
by double layer theory, but this theory does not scale well tc power generation by electrodynamic
tethers in space, since very high anode potentials are needed to draw a substantial ambient
electron current across the magnetic field in the absence of collisions (or effective collisions
due to turbulence). Isotropic quasineutral models of contactor clouds, extending over a region
where the effective collision frequency v, exceeds the electron cyclotron frequency w,., have
low anode potentials, but would collect very little ambient electron current, much less than
the emitted ion current. A new model is presented, for an anisotropic contactor cloud oriented
along the magnetic field, with v, < we.. The electron motion along the magnetic field is nearly

collisionless, forming double layers in that direction, while across the magnetic field the electrons
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diffuse collisionally and the potential profile is determined by quasineutrality. Using a simplified
expression for v, due to ion acoustic turbulence, an analytic solution has been found for this
model, which should be applicable to current collection in space. The anode potential is low

and the collected ambient electron current can be several times the emitted ion current.

1 Nomenclature

Bo=ambient magnetic field

c,=sound speed

C=numerical factor relating electron thermal conductivity to electron transport
e=charge on an electron

E=electric field

fi;=initial ionization fraction of source
Fy=azimuthal drag force on electrons
g=focussing factor due to anisotropy
I,=electron current

I;=ion current

I = I, + I;=total current
J=ambient electron saturation current density
Ji=ion current density

k) =perpendicular wave number
L=length of tether

me=electron mass

m;=ion mass

n.=electron density

n.s=ambient electron density
n..=contactor electron density
n;=ion density

n,.=contactor ion density
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n,0urce=80urce plasma density

no=neutral density

ne=electron density at infinity
neriticai=neutral density required for ignition
r=radial coordinate

fanode=anode radius

reore=radius at which electrons are collected, for any model
rinner=inner radius of double layer

router=0uter radius of double layer

ryource=source radius

ry=contactor cloud radius in anisotropic model
B,.q=load power

R,=tether resistance

Ri,aq=load resistance

T..=contactor electron temperature

u.=electron flow velocity

u;=ion flow velocity

vqa=Alfven speed

vq=electron azimuthal drift velocity

ve=electron thermal velocity

v,=radial velocity

v,=axial velocity, parallel to the magnetic field
vo=orbital velocity

z=axial coordinate

zo=half length of anisotropic contactor cloud

B.=ratio of electron pressure to magnetic pressure
~=optical depth of source region to electron ionization

Ag¢=potential drop across double layer
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r)=elecﬁrica.l efficiency of the tether
x=cross field electron thermal conductivity
Ap=Debye length

AD inner=Debye length at rinner

AD outer=Debye length at rouser

p=ratio of ion mass to proton mass v,=effective electron collision frequency
§ = I/L;=gain

pe=electron gyroradius

o=electron impact ionization cross-section
¢=potential

do=anode potential

Drotqy =total tether potential

wee=electron cyclotron frequency

wpe=electron plasma frequency

2 Introduction

Plasma contactors are plasma clouds which allow the passage of charge between an electrode
and an ambient plasma. They have been proposed for use in power generating devices such as
electrodynamic tethers!l] because they may substantially reduce the impedance of the electron
current collection from the ionosphere and make the emission of electrons much less energetically
expensive than using an electron gun. In this paper we will concentrate on plasma contactors
used at an anode to collect electrons in the ionosphere or some other ambient plasma. Such a

contactor will emit ions, as well as collect electrons. Two figures of merit for such a contactor are

its impedance ¢o/I, and the gain £, defined as

§ = I/ Li(Tanode)-
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The impedance determines the maximum power that can be generated by a tether, since the total
tether potential ¢;,¢o is fixed at v,BoL. If we ignore the ionospheric impedance and the impedance

of electron emission, then
btotal = Rigadl + ReI + ¢Q(I)

The maximum power Rj,qqI? at fixed ot and Ry is obtained when Rioa = Re + déo/dl =~
R, + ¢o/I. The power is greatest when the contactor impedance is lowest. The gain is important
because it determines the rate at which gas must be used (to produce ions), for a given total current.
If the gain is high, less gas is used to collect a given current.

Both the impedance and the gain will depend on the current. In general there is a trade-off: at
very low current, both high gain and low impedance are possible, but the power is low. While at
high current, high gain can be obtained only at the cost of very high impedance (again resulting
in low power). Low impedance and high power are possible only with low gain. To illustrate these
trends, we may consider the extreme limits. When the current is equal to the electron saturation
current of the ambient plasma over the surface area of the physical anode, then the gain is infinite
(since no ions need be emitted to draw this much electron current) and the contactor impedence
is zero, but the power (for low earth orbit and practical tether and anode parameters) is at most
tens of watts. Arbitrarily large current (and high power) may be obtained by emitting a large
ion current, but unless the anode potential is high enough,'it will not be possible to collect many
electrons across the magnetic field, and the gain will approach unity. A basic goal of contactor
research is to determine how large a gain is possible at a given power level. If it turns out that
at the power levels of interest for tethers (typically tens of kW) the maximum gain is close to
unity, then there is no point in using plasma contactors for current collection; in effect, the best
plasma contactor is no better than an ion beam. If, on the other hand, gains at least a few times
greater than unity are possible at power levels of interest, then plasma contactors are useful as
current collectors for tethers. We will present theoretical results suggesting that this is the case,
although the gains are only moderate, in the range of 2 to 10. These theoretical results pertain
to a regime (collisionless electron motion along the magnetic field, collisional diffusion across the

magnetic field) which we expect to be valid in low earth orbit for high current contactors, but for
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which there have been no ground based experiments. Such experiments are very important for

confirming the theory, or showing how it must be modified.

In previous work(23] it has been suggested that the plasma contactor cloud will consist of
several different regions. First will be an inner core where the cloud will be isotropic because the
two major directions of anistropy, namely the earth’s magnetic field and the direction of motion of
the source will be shielded by the dense plasma from the contactor source. There will then be two
outer regions where the two directions of anisotropy are manifested. Previously, it has generally
been assumed that a substantial current of ambient electrons can be collected only from field lines
that pass through the inner core region{2'4]. However, we will show in Section 4 that for conditions
in low earth orbit it may also be possible to collect a significant electron current from the outer
core region, where the anisotropy due to the magnetic field is important.

There has been much debate about the size of the core region from which electrons can be

collected. One estimate is obtained by matching the cloud density to the ambient densityls'el

ne("corc) &3 fleg
and another by taking magnetic field effects into account!’]
Ve (rcore) 3 Wee

where v, is the radially dependent electron collision frequency (including effective “collisions” due
to turbulence). A third estimate is obtained by requiring regularity of the self-consistent potential‘s’

¢

3 0

Pcors

and finally a fourth estimate comes by requiring a consistent space charge limited flow inside the
9
core

. 2
m.ﬂ‘ﬂ.- l'eon i m‘“‘“c I'covc'

These diverse theories give a wide range of current enhancement factors for the plasma cloud.

If we assume a core cloud of radius rere, then continuity of current gives

I = L(Tanode) + Ie(Tancde) = Li(reore) + Te(rcore)
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and the gain is
+1

= Jelreors) | Klrere) = Elranase)
Ii(ranode) Ii(ranode)

Plasma contactor clouds enhance or produce electron current flow through two possible paths.
First (the first term on the right hand side of the equation), they can serve as virtual anodes
through which electrons from far away can be drawn and collected to the real anode at the center
of the cloud. Secondly (the second term on the right hand side), the neutral gas associated with
the cloud can become ionized, creating electron-ion pairs. The electrons will be collected to the
anode, and the ions will be repelled. For use in space with an electrodynamic tether, however,
ionization of contactor neutrals i.srnot an efficient use of neutral gas; if this is the only means by
which the current is enhanced, then the same neutral gas can be used more efficiently by ionizing
it internally in an ion source. Plasma contactors will be useful if they enable the ionosphere to
supply electréns. The two sources of electrons in the ionosphere are the ionospheric plasma and the
ionospheric neutrals. However the mean free path for ionization of the ionospheric neutral gas is so
long (many kilometers) that ionizatién of this ga's on the length scale of the plasma contactor cloud
is highly unlikely. For this reason we shall assume that all ionization associated with contactors is
jonization of contactor neutral gas. Therefore plasma contactors can be useful with electrodynamic
tethers only if they enhance current by collecting ambient electrons from the ionosphere. The
collected electron current I, (r..re) will generally be the saturation current times the area of the
core cloud 4xr3,,,, or, if the contactor is only collecting electrons along magnetic field lines running
" into the core cloud, then I(rcore) will be the saturation current times 2xr .. (If, a8 we consider
in Section 4, the core cloud is not spherical but is elongated in the direction of the magnetic field,
then reor is the minor radius, across the magnetic field.) For this reason the size of rqore 18 crucial
to the effectiveness of plasma contactors as electron collectors in space.

In Section 3 a collisionless double layer theory will be derived, along the lines of Wei and
Wilburlg], Amemiya(w‘, and it will be shown that this theory provides a gooa quantitative de-
scription of ground-based experiments at moderately low currents, but it will not be applicable to
space-based contactors except at extremely low current and power. If the electrons are strictly col-

lisionless, then the magnetic field prevents electrons from reaching the anode unless they originate
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on field lines that pass close to the anode (which limits the current that can be collected) or the
anode potential is high enough to pull electrons across the magnetic field to the anode from some
distance away. A necessary condition for this, which depends on the anode radius r4no4e, was found
by Parker and Murphy[u]. Another constraint on ran,4. 18 that it must be less than the inner radius
of the double layer. We will show that any spherically symmetric double layer with space-charge
limited current greater than a very low limit (about 50 mA collected electron current, correspond-
ingto 1 rnAremitted ion current, for dayside equatorial low earth orbit, and even lower current for
nightside) which satisfies these constraints must have an anode radius that is close to rcore. Such a
plasma contactor would serve no purpose, since it would hardly collect any more ambient electron
current than the bare anode. This means that an unmagnetized collisionless space-charge limited
double layer model, as analyzed by Wei and Wi]burlgl, cannot apply in space, except at very low
currents, no matter how great the potential is. If the anode emits a current greater than this, at
zero initial velocity (i.e. space-charge limited), and if the electrons are assumed to be collisionless,
then the double layer cannot be spherically symmetric, regardless of the potential. Electron collec-
tion will be inhibited across the magnetic field, and the collected electron current will be lower than
predicted by the Wei- Wilbur theorylg] for that anode potential and emitted ion current. Although
a theory valid in this regime is not available, we can still obtain on upper limit on the collisionless
electron current that can be collected, and a lower limit on the anode potential, for a given ion
current, by assuming that the Parker- Murphy condition is marginally satisfied for a double layer
obeying the equations of Wei and Wilbur, and ignoring the constraint that the inner radius of such
a double layer must occur at a greater radius than r;,,4.. We then obtain an upper limit to the
power than can be generated by a plasma contactor collecting electrons to a 20 km long tether in
space, in the absence of electron collisions. This maximum power is quite low, only a few hundred
watts, less than an order of magnitude above the power that can be generated by a tether without
a plasma contactor, using a bare anode to collect electrons.

At higher emitted ion current, there will be a region where the electrons cannot go straight to
the anode, but where ambient electrons will be trapped, to keep the plasma quasineutral. These

electrons will remain trapped for a time long compared to the time it would take for an unmagne-
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tized electron to go straight to the anode. If there are effective collisions due to instabilities, some
of these trapped electrons may be able to diffuse to the anode, and the collected electron current
may be much greater than what would be found in the collisionless model.

In Section 4, we will describe work on a model of the outer core region, in which the motion
along the magnetic field is collisionless, forming a double layer, but the motion across the magnetic
field is collisional and quasineutral. This model, which is expected to be applicable to contactors
in space, suggests that significant current may be collected from this outer core region, with low
contactor impedence. Unfortunately there are, to our knowledge, no experiments in this regime,

to which the theory can be compared. Conclusions will be presented in Section 5

3 Double-Layer Theory and Implications

3.1 Collisionless Unmagnetized Model

Ground-based experiments in which double layers are seen are well described by a collisionless
unmagnetized model, as we will show. A schematic radial potential profile for such a model is
shown in Fig. 1. We assume that the potential is monotonic, so there are two components of
plasma, an ambient component and a contactor component. The ambient ions and electrons are
maxwellian at positions r well beyond the double layer, with ion and electron temperatures T;,
and T,,, and density no. The contactor plasma has maxwellian electrons at temperature T,, and
cold ions streaming radially out from a plasma source localized near the anode, with ion current
I;. The potential drop ¢o between the source, at r = r,ource, and the ambient plasma at r — oo, is
assumed to be much greater than any of the temperatures, and the radius at which the double layer
forms is assumed to be much greater than a Debye length. With these assumptions, the plasma
is quasineutral everywhere except inside the double layer, at ripper < r < router. (Here rouser is
the radius, called r.., in the Introduction, at which the ambient electron saturation current is
collected.) Inside the contactor cloud, at r< Tinner, there are no ambient ions, and the density of
ambient electrons, which have been accelerated in the double layer, is much less than the density of

contactor electrons, so quasineutrality requires n.(r) = n;(r). The densities of contactor electrons
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and ions are related to the potential ¢ (defined relative to r — o) by
Nee = NyourceXP((¢ — 60)/Tec| (1)

N = nlouru(”courcc/")z[l + (¢0 - ¢)/Tw]-l/2 (2)

where we have assurned that ions are emerging from the source at the sound speed (T /mi)V/3,

due to acceleration in a Bohm presheath, and we have neglected any ionization or recombination
occurring at £ > F,ource. Setting the right hand sides of Eqs. (1) and (2) equal to each other gives

a transcendental equation for ¢(r). It is evident that for r > r,ource,
¢(r) N Po — 2T¢cln("/fmuru) (3)

so the potential only drops a few times T.. inside the contactor cloud, much less than the total

potential drop. The source density n,,urce i8 related to the ion current I; by
L= 4’"3ource¢"louru (Tee/ ”"")l/2 (4)

Outside the double layer, at r > rou.r, the ambient electron density decreases from ny, as r
decreases, because no electrons are emitted from the double layer. We assume that there are no
sources of electrons, or collisions, which could fill in the resulting empty region of velocity space.
From quasineutrality, the ambient ion density must also decrease as r decreases (even if the density
of contactor ions, accelerated in the double layer, is small compared to the ambient ion density),
so the potential must rise by an amount on the order of T;,. If Tig is much less than T,,, then
the ambient electron density is not affected by the potential, so it is reduced from no by a simple

geometric factor

Aea(r) = 3enld + (1 = /) (5

and the potential is given by
#(r) = Tisln(neo/Nea) (6)

(This rise in potential going from infinity to r,user causes the ambient electrons to become supersonic
by the time they reach royter, so that they satisfy the Bohm sheath condition(12:13, This potential
was calculated by Alpert, Gurevich and Pitaevskiill4l for the case Tia = Tea, 30 we have labeled
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this region the “Alpert-Gurevich presheath” in Fig. 1.) The potential drop from router to oo is just
T;.In2, much less than the total potential drop. Most of the potential drop must therefore occur in

the double layer. Within the double layer, rinner < r < fouter, the plasma is not quasineutral, and

Poisson’s equation (for spherical symmetry)

1d ,d
g dr = rne - ) (M)

must be satisfied subject to the boundary conditions that ¢ and d¢/dr be continuous at rin,,., and
router.- These four boundary conditions specify a solution to the second order differential equation,
and the values of the free parameters rinn.r and rouser. Since most of the drop in potential occurs

in the double layer, to a good approximation the boundary conditions are

¢(rl'M¢') = ¢g — 2Te-cln('imur/"oouru) (8)
¢(rou¢¢r) =0 (9)
d¢/dr =0 at rinper and router (10)

If, as we have assumed, T;; < T4, then the ambient ion density drops much more quickly than the
ambient electron density as the potential starts to rise going inward from r,yter, and we can neglect
the ambient ion density in Eq. (7). Similarly, since the energy of the contactor ions is greater than
Tec at Tinner, €ven if only by a logarithmic factor, the contactor electron density drops much more
quickly than the contactor ion density in going outward from r;np.,, and to rough approximation
we can neglect the contactor electron density in the double layer. In the double layer, then, we

must solve Poisson’s equation, Eq. (7), with

Moo ,.2 tey .
ny = D2 10U exp(4/Too)[1 - erf(y/¢/Tea)] (1)

Eourcc ¢0 — ¢ -1/
Ny = Nyource 4 2 ( ch (r)) (12)

An approximate analytic solution, which provides some physical insight, may be found when the

double layer is thin, t.e. Fouter — Pinner K Finner- Then, in the vicinity of Finper, for Ap K r—ripper <

Pouter = Tinner, the potential approximates a Child-Langmuir sheath, with negligible n,

. 4/3
H(rinner) — #(r) = 34/3T,c1n(r.-nm/r,w,“) (r—);—fﬂ) (13)
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where

Az . _ Tecln("“nner/r‘ou!q‘) ( r"ﬂﬂ‘r >2 (14)
D inner 27e2n,0urce Tsource

is the Debye length at ripn.,. In the vicinity of router, for Ap K fouter — ¥ < Touter — Finner, the

potential approximates an inverted Child-Langmuir sheath, with negligible n;

34/3 r -r s
¢(') ~ 2 Tu( ;u!or ) (15)
D,outer
where
T,
’\ZD,outar = '21’6;:1—;, (16)

is the Debye length at rouser. The transition from Eq. (13) to Eq. (15) occurs when n, s n;, which
is to say at the point where the two expressions for ¢(r), Eqs. (13) and (15), have second derivatives
that are equal in magnitude (but with opposite signs). At this point, the two expressions for ¢(r)
must have the same first derivative. This means that the transition from Eq. (13) to Eq. (15)
must occur half way between ri ., and Touter with ¢(r) antisymmetric about this point, and the

coefficients in front of the two expressions for ¢(r) must be equal,
2T¢cln("inw/rlourcc)/\Bf.'/:m = Tca’\z—)f‘{:g" (17)
Eq. (17) leads immediately to the well known double layer requirement!’!

L/L = ("‘i/""c)l/2 (18)
where I, = 2xr3,,,.J®, and J® = eny,(2xT.s/m.)!/? is the ambient electron saturation current
density. In other words, the contactor cloud will expand freely until the ion current density I;/4xr?
is equal to the ambient electron saturation current times (m,/ m,-)l/ 2 If T,, s T.c, then this will

occur when the density of the contactor plasma is comparable to the density of the ambient plasma.

From Eqgs. (13), (15), and (17), the width of the double layer is related to the potential drop
A¢ = ¢("l'mur) - ¢('wur) by

2 A\ ¥4
Fouter — Tinner = EAD,M¢r<Té) (19)
e

and these results are valid only if the width given by Eq. (19) is much less than rin,.,. If this
condition is not satisfied, then Poisson’s equation must be solved numerically, as has been done by

Wei and Wilburl® and by Williams!!%), and in this case I./I; will be smaller than (m;/m,)'/%. .
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3.2 Comparison With Experiment

The model outlined above is in good agreement with the ground-based experiments of Wilburl16!
, in those conditions where double layers were seen. In these experiments, the anode had a radius
Fanode = 6 cm, but the effective source radius, where most of the ionization occurred, was r,ource & 2
cm. ¢o could vary from O to 70V, and the collected electron current could vary from 0 to 1A. (At
higher current, the effective collision frequency, due to streaming instabilities, was too high for
collisionless double layer theory to be valid.) Neutral gas, xenon, was introduced at the center of
the anode at a rate that could vary from 1.8 to 13.7 scem, which corresponded to a neutral density
ranging from 3 x 101! to 10!2 ¢cm™3, concentrated within r,ource of the origin. For ¢o above some
critical value, which depended on the neutral density, ambient electrons accelerated in the double
layer had enough energy to ionize the gas, and the contactor cloud underwent a transition to an
_ “ignited mode” in which this ionization was the major source of emitted ion current. The electron
temperature and density and the plasma potential were measured as functions of position. The
ambient ion temperature was much lower than the electron temperatures.

In a typical case, with ¢o = 37V, most of the potential drop, 25V, occurred in a double layer
(more or less spherical) located between rinner = 8cm and roysr = 11cm. The rest of the potential
drop occurred between the anode and rinner. The potential profile was virtually flat outside royter-
The ambient electron temperature was 5.5eV, and the ambient electron density was 3 x 107cm™3.
These electrons have a Larmor radius of about 15 cm in the earth’s magnetic field, which is greater
than Fouter — Tinner, and once they cross the double layer they have a Larmor radius of about 50
cm, which is greater than r3 ter/2Tanode, SO the electrons can easily reach the anode according to
the Parker-Murphy criterion[u], and the assumption in our model of unmagnetized electrons is
valid. The assumption of collisionless electrons was also marginally satisfied if we estimate the
effective collision frequency to be v, & 10~ 2wpe. At rouser we find v = 3 X 10%s~!, and the electron
mean free path is about 30 cm, greater than the width of the double layer, while at rinn.r we find
Ve=2X 10%s~! and the mean free ;iath of the accelerated ambient electrons is about 1 m, greater
than ripne. If the effective collision frequency is less than that taken here then the assumption of

collisionless electrons is easily satisfied. Note that at densities a few times higher, the electron mean
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free path would be comparable to the double layer width, and double layers could not exist. This
is in agreement with observations at currents above 1A. There was also a 40eV ambient electron
component (the “primary” electrons) of density 3 x 108cm 3. Such a component of electrons was not
included in our model, but their effect can be included by using an effective T, 5 9%V which would
give the same electron saturation current as that obtained from the 5.5¢V and 40eV components.

The collected electron current, 370mA, was in good agreement with this electron saturation
current integrated over the area of the double layer 2xr3,,, (not dxrj,,,, since it was a half
sphere). The electrons in the contactor cloud had a temperature T,. = 2eV, and a density which
went from 8 x 108¢m™3 at r,ource d0WD to 2X 107¢m ™2 at rinner. This ratio of ne(riource)/ne(Finner) is
close to (Finner/Tsource)? (B0 — #(Tinner)) /T“]V 2 the value given by Eq.(2). The emitted ion current
I; would then be 2xr2,, en,(Fsource)(Tec/m:)'/? = 0.4mA, fairly close to the ion current required
by Eq.(17), (m./ m.-)ll 2], = 0.7mA. The observed width of the double layer, router — Finner = 3cm, is
a few times greater than the width of 0.6 cm predicted by ‘Eq.(18), but it is likely that the mea.'-sured
width is smeared out by fluctuations in the position of the double layer. Such fluctuations could
be due to some intrinsic property of the double layer that would cause it to oscillate around
equilibriumlu] instead of asymptotically approaching equilibrium. Such behavior is likely to be
associated with non-monotonic potentials[w], a feature that we have not included in our model.
The fluctuations could also be caused by a more mundane effect, such as fluctuations in the gas

feed. It would be of interest to try to measure such fluctuations and to determine their cause.

3.3 Limitations of Wei and Wilbur Model Due to Magnetized Electrons

In Wilbur’s ground based experiments[m] the Larmor radius of the ambient electrons in the
earth’s 0.3G magnetic field is about 20cm, much greater than the 3 cm thickness of the double
layer, so the magnetic field will not significantly deflect the electrons as they cross the double layer.
Once they cross the double layer, they will have a Larmor radius of about 50 cm, and in the 8 cm
they have to traverse to get to the anode, they will be deflected by about 3(8)?/50 = 0.7 cm, less
than the 6 cm radius of the anode, gonsequently the magnetic field will not inhibit the electrons

from getting to the anodellll. Hence our model, which assumed unmagnetized electrons, ought

163



to be valid. An additional requirement of our model, rinner > Fanode, is also satisfied in Wilbur’s
experiments.

In space, on the other hand, the ambient electron temperature, at least in the equatorial region,
is much less, only about 0.1eV, 8o the Larmor radius is about 2.5cm, and the density is much less
than in the ground based experiments (about 10°cm™* rather than 3 x 107cm™3). Therefore, to
collect an electron current of several amps from the ambient plasma will require royeer of tens of
meters, much greater than the electron Larmor radius. The electrons can traverse such a distance
only if they undergo collisions (or effective collisions due to some kind of instability), or if they
can gain enough energy as they cross the double layer to remain, in effect, unmagnetized, until
they reach the anode. We have considered the latter possibility, and have found that, even with
rather optimistic assumptions, it requires a sheath impedance that is undesirably large, since it
would result in most of the tether potential drop occurring in the sheath. We conclude that effective
collisions of some kind are needed in a plasma contactor in space, in order to collect a large electron
current from the ambient plasma, at a reasonable impedance.

Parker and Murphy[u] have shown that, in the absence of collisions, and for egg > T4, a

" necessary condition which must be satisfied for electrons at rou.r to reach the anode is
r?mtcr/r?modc <l+ (se%/m‘wzcr:node)llz (20)

Eq. (20) is also a sufficient condition if all of the potential drop occurs in a thin double layer at roy¢er-
If the double layer is thick, or if a significant part of the potential drop occurs in the quasineutral
regions on either side of the double layer, then an even more stringent condition must be satisfied, in
order for electrons to reach the anode. Another condition that must be satisfied is rinner > Tanode- It
turns out that for most parameters of interest this condition and Eq. (20) cannot both be satisfied,
for a spherically symmetric space-charge limited collisionless double layer, as described by Wei and
Wilbur'® and Amemiya.(w]. This is true except at very low currents, or for anodes with rsn.4.
almost equal t0 fouser. If higher ion currents are emitted from an anode (with ranode €K Touter) With
zero initial velocity, and there are no collisions or turbulence allowing electrons to be transported
across the magnetic field, then a spherically symmetric double layer cannot develop, no matter how

great the potential is. Electron collection will necessarily be inhibited in the direction across the
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magnetic field; in this direction the potential profile will not follow the form found by Wei and
Wilburl®, because the collected ambient electron current will not be space-charge limited, but will
be limited by magnetic field effects. A theory giving the electron current and potential in this
anisotropic collisionless regime regime is not available. However, if we ignore the requirement that
Tinner > Tanode 30d assume that only Eq. (20) and the Wei-Wilbur equations must be satisfied, then
we can obtain an upper limit for the electron current than can be collected, and a lower limit for
the potential, for a given ion current and anode radius.

The electron current I, is related to rouser by
I, = 2xse3,,,J>® (21)

where J° = en,,(Tea/ 2er¢)1/ ? is the ambient electron saturation current. We have calculated
what the impedance of the double layer will be assuming Eq. (20) is barely satisfied, for rspoq. = 10
cm. If, as turns out to be true, the resulting impedance is too high to make an efficient plasma
contactor, we will know that we should look at plasma contactors in which the electrons undergo
collisions (or are subject to turbulence which causes effective collisions) and diffuse into the anode,
rather than going into the anode directly.

Using Eq. (21) for I, assuming Eq. (20) is barely satisfied, and using Wei and Wilbur’s
calculation!®) which relates Touter/Tinner uniquely to I,/I;, we can find ¢o and I, for a given I;
and electron saturation current J°. Since J® depends only on the properties of the ionosphere in
low earth orbit, both I, and ¢g are determined by I;. These values really represent an upper limit for
I, and lower limit for ¢o, since Eq. (20) is only a necessary condition, not a sufficient condition, for
collisionless electrons to reach the anode, and since we ignored the requirement that rinner > ranode-
The gain and potential drop are obtained by imposing the Parker-Murphy requirement and the
limited source requirement (Eq. (21)) on the Wei and Wilbur results.

In Figure 2 we show the gain ¢ against the ion current for argon and for a range of electron
saturation current densities which span the range experienced in an equatorial low earth orbit
(LEO). The gain is somewhat less than (m;/m,)!/? = 272 for argon, and is weakly dependent on
the ion current. We also show the associated potential drop through the double layer, which is
really a lower'limit on the potential drop. Typical potential drops are in the range of thousands
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of volts for ion currents in the milliampere range. In Figures 2 through 4, the curves are dashed
in the regime where Eq. (20) cannot be satisfied for a collisionless double layer with space charge
limited current except by violating finner > fanode- Note that the curves are dashed except at the
smallest ion currents, showing that a collisionless unmagnetized double layer with space charge
limited current is not possible for most parameters of interest in low earth orbit. This conclusion
does not depend on fanode. Making fanode < 10 cm would only make things worse, since, for a fixed
ion current, Finner Would shrink faster than ranode- Making fanode much greater than 10 cm would
allow higher ion and electron currents while satisfying Eq. (20) and ripper > Tanode- However, for
J® < 2x 1073 A/m?, this could only be done if ranode Were nearly equal t0 Fouser, in Which case
the plasma contactor would serve no purpose. Another way to show that this conclusion does not

depend on rapede is to use Eqs. (19) and (20), with go & Ad, Panods = Tinner, and router ™ 2finner-

Combining these equations gives us

bo & % (gfi)‘ (22)
rouer s (222) (23)

where wp, is the ambient electron plasma frequency and p, is the ambient electron gyroradius.

Equations (18) and (21) then give
1/2 4
L <2x (%) Jx (&'1> o} (24)

Wee
as the maximum ion current for which a collisionless unmagnetized double layer with space-charge
limited current is possible. This ion current depends only on ambient quantities and m./m;, not
O Panods O o, and is never greater than about 1mA for low earth orbit.

In Figure 3 the total current is shown as a function of the electron saturation current density.
The curve obtained for the collisionless double layer (really an upper limit) is shown for a fixed
ion current of 10 mA. For comparison, we also show the total current for the isotropic quasineutral
model described in Ref. [4], and for the anisotropic contactor model described in Section 4, for
a fixed ion current of 1 Amp. This figure compares the realistic range of operation for the three
models in typical ambient electron saturation current densities. A significant feature of this figure

is that as the source varies by two orders of magnitude from 2 x 107* A/m? to 2 x 10~2 A/m?, the
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total current (which is almost all collected electron current) varies by only a factor of 1.5, for the
collisionless double layer model. This would seem to invalidate one of the conclusions in Ref. [1]
which was that plasma contactors would not be useful on the nightside of an equatorial low earth
orbit because the collected current would drop to almost nothing. Here the double layer moves
out as the electron pressure drops so that the collected electron current is almost the same. On
the other hand, if we took into account the actual requirements for electrons to reach the anode,
rather than only using the Parker-Murphy condition, then it is likely that at low saturation current
the double layer would be inhibited from moving out so far, and the collected electron current
would be more sensitive to saturation current. Except for the upper end of the range of saturation
current, the actual electron current that could be collected without collisions is certainly far less
than the upper limit shown in Fig. 3. For the anisotropic collisional contactor model, which is
more relevant for high current plasma contactors in low earth orbit, Fig. 3 shows that the total
current is about 4 times higher, and the collected electron current is about 10 times higher, on the
dayside (J® = 2 x 10™? A/m?) than on the nightside (J® = 2 x 107* A/m?).

In Figure 4 the current voltage characteristic is shown for the range of electron saturation
current densities. At constant cuxlrent m the milliampere range the voltage is seen to vary by two
or three orders of magnitude for one order of magnitude variation in electron saturation current, for
the collisionless double layer. At constant voltage, the current is roughly linear with the electron
saturation current. Ampere range currents (which are mainly electrons) require tens of thousands
of volts of potential drop, even for the highest value of the electron saturation current. These
curves represent an upper limit on the electron current for a given potential, or a lower limit on
the potential for a given electron current. For currents greater than about 50 mA, the space charge
limited collisionless double layer model on which these curves are based cannot satisfy both Eq. (20)
and fipner > Fanode; the actual potential needed to collect such currents, in the absence of collisions,
would be far greater than the lower limits shown in Fig. 4. Curves for the isotropic quasineutral
model and anisotropic model discussed in Ref. [4] and Section 4 are shown for comparison.

With the use of these results we can calculate an upper limit for the current that could flow

through a tether using a plasma contactor to collect electrons. A circuit diagram for a tether is
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Table 1: Load power against efficiency of double layer contactor
n | L(mA) | € | I(A) | Poas(W)
0.1 7 26 | 0.18 100
0.3 6 27| 0.1 260
0.5 5 35 0.14 380
0.7 2.5 4] 011 400
0.9 0.8 75 | 0.06 290

shown in Fig. 1 of Ref. [19]. The total potential drop ¢t.ta across the contactor, tether, load,
and electron gun (or electron emitting contactor) is fixed by the length L of the tet'her, the earth’s
magnetic field By = 0.33 x 10*T, and the orbital velocity of the spacecraft v, = 8km/s. For
L = 20km, we find ¢totat = voBoL = 5333V. The potential across the load is Gioad = Ricad(li + I¢).
The potential across the tether is Ry(l; + I.), where we take the tether impedance R, = 200(1. We
could include the radiation impedance(zol but this is typically only about 1002, so may be neglected
compared to the tether impedance. We also neglect the impedance of the electron gun or electron
emitting contactor. If we assume a typical dayside ionosphere with J* = 2 x 10~2A/m?, a good
fit to the numerical results in figure 4 is ¢o = b(I; + I.)*® where b = 1.8 x 10%. For a given load

Rioed, the current I = I; + I, may be found by solving
btotal = Rioaal + Rel + b8 (25)

and we may then find the power across the load Pyaq = Rioaal?, and the efficiency n = Ricadl/Ptotal,
as functions of Rjeq. (This definition of efficiency neglects the energy needed to produce the ions,
but that is justified since this energy, about 50eV, is much less than the potential drop across
the double layer, unless n s 99%.) Table 1 shows Pioaq and ¢ as functions of the efficiency
1 = Risadl/Ptota-

 The maximum power to the load is 400 W, but this occurs when the efficiency is only 70%.
As noted in Ref. [1], in order for tethers to be competitive with other power systems in space it
is necessary for them to operate at high efficiency, at least 80% or 90%. This is because all of

the power has to be made up by periodically boosting the tether but only the load power can be
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usefully used. If we desire an efficiency of 85%, then the maximum load power we can obtain is only
320 W. The maximum power will in fact be much less than this, since Eq. (20) is not a sufficient
condition for electrons to get across the magnetic field to the anode[u], and is known to be far
from sufficient in the regime where router > Tinner, which is true at the maximum power. Also, the
requirement that rinner > ranode 18 far from satisfied at the ion current needed for maximum power.

We conclude that it is not possible to design a high power contactor which draws electrons
straight across a double layer without collisions. Instead we should consider designs where collisions
(or, more realistically, effective collisions due to instabilities of some kind) transport electrons across

the magnetic field to the anode.

3.4 Conditions for Ignited Plasma

The calculations so far with the double layer model have all been for a totally ionized plasma.
For a partially ionized plasma it is possible to include the effect of ionization and to show when the
plasma will ignite. If we assume the neutral gas is expanding radially from the source at r,ource,
and that only a small fraction of it gets ionized, then the neutral density varies with radius as

no(r) = no(Fiource)(Tsource/r)?. We apply conservation of mass from r,ource tO Finner to obtain

I(r) = Lu(Finner) exp(7(A¢)[ 7258 - Z22ret)) (26)

Tinner
where Y(A@¢) = no(Tsource)Tsourced- Here the electron ionization cross-section ¢ is to be evaluated
at a typical energy for an incoming ambient electron, A¢ + T,,. From conservation of current we

obtain the gain as
(&(rinner) — 1) exp(y(1 — faanze))

€= 1 T (€ (omer) ~ 1)1 — exp(701 = Eme))) &)

where £(rinner) = I/L;(Tinner). The ion current at the source in terms of the ion current just inside

the double layer is

ltssre) — 1+ (Erimmr) = 1)(1 - expla(1 - 252 (28

In order to interpret the calculations in Fig. 2 with ionization present we must interpret the ion

current in the abscissa as I;(r;uner), and the gain as £(r;nner). The relationship in terms of the ion
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current emitted at the source is given above. It is apparent that there may be no positive solution
of the source ion current for a given ion current at the double layer. Physically this will occur
when there is so much neutral gas that the mixed gas-plasma flow ignites giving an avalanche of
ion current. The ion current and collected electron current will continue to increase, and cannot
reach a steady state until the collisionless double layer model is no longer valid. By setting the
source ion current to zero we can obtain this critical neutral density for ignition as

- ln(l - l/f("iumr)) 1 (29)

(1 - raouru/'inrur) Frource?

Neritical =

If we relate the source neutral density to the ion flow rate and initial fractional ionization (f;) we

obtain ignition for
Li(Tinner) > gﬁf—mﬂ—&ﬂcmicd (30)

- fi

Taking rsource = 0.1 m, ¢, = 4.89 x 10° m/s, ¢ = Omaz = 3.21 x 1072° m~? (for ionization
of argon) and f; = 10~* which is typical of hollow cathode devices, we find that the critical ion
current is much greater, for a given gain, than the ion currents for which the collisionless double
layer model is valid in low earth orbit, shown as solid curves occur in Fig. 2. Hence ignition will

never occur in this regime. Ignition might be possible in the regime of higher ion current and lower

gain typical of the anisotropic collisional contactor model described in Section 4.

4 Anisotropic Contactor Model

Hastings and Blandinol4! considered a model where electrons were transported across the mag-
netic field by effective collisions due to ihstabilitia, and assumed that such transport could occur
6n1y 6ut to a distance Peore ,wlrxer'e' the effective collision frequency v, was greater than the electron 7
cyclotron frequency w,,. With that model, they found that the collected ambient electron current
for typicﬂ pé#meters in low earth orbit was less than the emitted ion current. Here, we consider
the possibility that electrons can be collected from a more distant region where v, < w... In that
region the contactor cloud will be anisotropic, extending further in a direction along the magnetic
field than across the magnetic field. We therefore use cylindrical coordinates z and r, where r now

refers only to the distance across the magnetic field, not to the total distance from the anode as it
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did in previous sections. We assume that the plasma density in the cloud is still great enough to
short out the electric field due to the orbital velocity, so the cloud will be cylindrically symmetric.
(At still larger distances from the anode, the effects of the orbital motion induced electric field
will become important, and the cylindrical symmetry will be broken.) In this region the electron
velocity will be mostly azimuthal, at the drift velocity

¢ 9 _1 O __T. bn,

MW Or  Mwee 3r  mMwen, Or

(31)

U4 =

For parameters of interest, this drift velocity is much greater than the radial flow velocity of the
emitted ions, which are effectively unmagnetized since we assume that the scale lengths are all
much less than an ion Larmor radius. The velocity difference between the electrons and ions
will then be nearly in the azimuthal direction. This relative cross-field drift velocity of magnetized
electrons and unmagnetized ions can give rise to a several instabilities, among them the ion acoustic
instability (both k;p, > 1 and kj p. < 1 varieties), the Buneman instability, the electron cyclotron
drift instability (also known as the beam cyclotron instability), the modified two-stream instability,
and the lower hybrid drift instability. Which of these instabilities dominates depends on such
parameters as T./T;, vi/c,, va/v., Be, Wpe/wee, and vg/vy. These instabilities will give rise to
turbulent azimuthal electric fields, which will exert an azimuthal drag force Fy = v.m.vy on the

electrons, giving rise to a drift in the F x Bg (inward radial) direction at velocity

v, = —£ 4 (32)

We will assume that the potential drop in the plasma cloud is very much greater than the ion
temperature T;, which is typically only a few eV. Since, as we will show later, T, tends to be only a
few times less than ¢, this implies that T, /T; >> 1, except perhaps near the edge of the cloud. Also
¢s € v4 < v,. In these circumstances, we expect the k 1 Pe > 1 ion acoustic instability to dominate
(this is the same as the ion acoustic instability in an unmagnetized plasma). The effective collision
frequency v, for this instability in its nonlinear saturated state scales with density like Wpe, and is
independent of ¢, /v4 for ¢, <« vq, but there is some uncertainty as to its dependence on T, /T: and
va/ v..r We will simply assume that

Ve 5 1073wy, (33)
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independent of the other parameters. There is considerable theoretical and experimental evidence
that the effective collision frequency due to ion acoustic turbulence is proportional to wp., and
somewhat weaker evidence that the constant of proportionality should be 1072, as in Eq. (33).
This evidence is discussed in Ref. [7]. In addition, we note that particle simulations of saturated
ion acoustic turbulence in infinite medium(21:22.23] generally give effective collision frequencies of
this magnitude, and that experimental observations of collisionless shocks are in agreement with
this result/24]. In a plasma contactor, the scale lengths are not infinite compared to the wavelengths
of the unstable rfnodee, the geometry differs from that of Ref. [24], and Eq. (33) may have to be
modified. (Indeed, the requirement that the wavelengths of the dominant unstable modes be small
compared to the radial scale length will probably set a lower limit on the ion current for which
this model is valid.) A proper determination of v, would require a 3-D particle simulation of
a contactor cloud, and experimental observations in the relevant regime to make sure that the
simulation includes all of the relevant physics. Short of that, Eq. (33) is a reasonable guess that
should be of help in choosing parameters for more careful theoretical and experimental studies.
The method we will use to find analytic expressions for ¢(r,z) and the collected electron current
may also be applied using more realistic expressions for v,.

The divergence of the radial flux of electrons due to v, and the radial electric field and temper-
ature and density gradients must be balanced by an inward flux of electrons along the magnetic

field, neglecting ionization and recombination:

19 a
';-a—;fﬂ,v,- + an.v, =0 (34)

At high densities, such as those in the experiment of Urrutia and St.enzellzs], with wpe > we.,
the mean free path of electrons will be short compared to the length of the contactor cloud, and the
velocity v, along the magnetic field may also be found by balancing the force from the electric field
ed¢/3z with the drag force m,v,v,. In this case Eq. (34) will generally not be separable in r and
z, and it is necessary to solve a fully two-dimensional partial differential equation. The boundary
conditions will be that v, = 0 and ¢ = O at the same surface, and the flux of electrons across this
surface must be equal to the flux of the electron saturation current of the ambient plasma (along

the magnetic field) outside the surface. The potential ¢(r, z) would be quasineutral everywhere.
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Since the position of the ¢ = 0 surface is not known in advance, this would be a difficult numerical
problem. The ambient plasma in low earth orbit has much lower density, wp, < w,., and this would
also be true in most of a space-based contactor cloud, which, as we will show, would extend along
the magnetic field to a distance where the cloud density is comparable to the ambient density. In
this case, the electrons will flow freely along the magnetic field, and a different model is needed. If
the total potential drop ¢o between the anode and the ambient plasma is greater than T, and Ti,,
then double layers will form at a distance zo along the magnetic field in both directions, where
0=t = () @
for thin double layers, just as in the unmagnetized collisionless case (see Eq. (18)). Here g(z) is a
factor to take into account that the ions are focussed by the potential ¢(r, z) if it is not spherically
symmetric. Although the flow of electrons along the magnetic field is nearly collisionless, we will
assume that there is enough drag to slow down the incoming electrons slightly, so that they will
not escape out the other end, but will become trapped in the cloud. Only/a small amount of
drag is needed for this if ¢g > T.,, and this could be provided by electron-electron streaming
instabilities which produce effective collision frequencies of oniy a small fraction of w,.. Even if all
of the electrons are not trapped, making this assumption will not introduce a large error if most of
them are trapped. At z = £z, the flux of electrons along the field must then satisfy the boundary

condition
nevs = FJ.° /e (386)

Because the flow of electrons across the magnetic field is collisional, no double layer exists in the
radial direction. For fixed |z| < zo, $(r, z) must decrease smoothly to zero at some ry (z), satisfying
quasineutrality all the way. For fixed r, along a given field line, as long as ¢(r,z = 0) > T(r),
#(r, z) will not go to zero for |z| < zo. If do is at least a few times greater than T, then ¢(r, z = 0)
will be greater than T, for all r not too close to ri(z = 0). It follows that r; is nearly independent
of z. The contours of ¢(r, z), and the flow of ions and electrons, are shown schematically in Fig. 5.

This means that Eq. (34) will be separable in r and z. The boundary conditions in r are

#(r = Tanode; 2) = $o + T.In(n.(z)/n(z =0)) (37)
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¢(r=r1)=0 (38)

2 _ 12T,
dr e Or

The last condition follows from the fact that v, = O outside the contactor cloud, and there is no

atr=r; (39)

source or sink of electrons at r = ry, hence v, must vanish at r; just inside the contactor cloud.

Eq. (31) (with T, = 0), and Eq. (32) then yield Eq. (39).

4.1 Electron Temperature

Before proceeding with the calculation of the potential profile ¢(r), we will briefly consider
whether we are justified in assuming that @y is at least a few times greater than T,. The electron
temperature profile 7,(r) is determined by the balance between convection, conduction, and ohmic
heating (both perpendicular and parallel to the magnetic field). We neglect ionization and line
radiation, whxch should only be important near the anode, and we neglect heat lost by electrons

boiling out along the magnetic field.

-3 9T, 1 8 AT, dé J;”( T,)_ '
2”r dr +rn.8rr or +w'8r+n,zo ¢ ¢ =0 (40)

Here x is the cross-field thermal conductivity, which is dominated by turbulence just as the drag

is. In general

e (41)
where C is a constant which depends on the details of the “collisions” causing the heat transport.
For electron thermal conductivity across a magnetic field due to Coulomb collisions(%], for example.
C=4.T.

The boundary conditions are
Te=0 at r=r (42)
O __ 9
Ar  4AXTansde®o
where Q is the heat flux going into the anode. This is generally greater than the convective heat

- n.va‘ at r= Fanode (43)

fux into the anode (the second term on the right hand side), because (v}) for a half-maxwellian is
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greater than (v3)(v:). So 3T, /dr > 0 at renod.. Because Te =0 at r = ry, 0T./dr must change sign

between rno4, and ry, and we can estimate that the second term in Eq. (40) is of order —&T,/n.r}.

Using Egs. (31), (32), and (41) we find

_ d¢ T,
”"n,T.c'(‘ar ar) (44)

Then the first term in Eq. (40) is of order +xe¢/Cn,r?, and the third term is of order +xe?? /CneTerd.
From Eqs. (34) and (36) the fourth term in Eq. (40) is comparable to (and has the same sign as)
the third term.

If C < 1, it follows that the second and/or the first term must balance the third and fourth
terms, so T, is of order e¢. If C > 1, then the second term alone must balance the third and
fourth terms, and T, ~ e¢/C/? « e¢. Our assumption that T, is at least a few times less than ¢
is thus valid if C' 