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ABSTRACT

We present a survey of a very incomplete subject. Our presentation is intended in part as
an introduction to topics to be covered in greater detail by others later in this Workshop. The
best-developed and simplest theories for current collection are steady-state collisionless theories,
and these must be understood before departures from them can be analyzed usefully, so we begin
with a review of them. We include some recent numerical results by one of us (L.J.S.) which
indicate that steady-state collisionless Laplace-limit currents remain substantially below the Parker-
Murphy (1967) canonical upper bound out to very large electrode potentials, and approach it
as a limit only very slowly if at all. Attempts to correct this theory for space-charge effects
lead to potential disturbances which extend to infinite distance along the electrode’s magnetic
shadow, unless collisional effects are also taken into account. However, even a small amount of
relative plasma drift motion, such as that involved in a typical rocket experiment, can change
this conclusion fundamentally. It is widely believed that time-averaged current collection may be
increased by effects of plasma turbulence, and we review the available evidence for and against
this contention. Steady-state collisionless particle dynamics predicts the existence of a toroidal
region of trapped orbits which surrounds the electrode. Light emissions from this region have
been photographed, indicating that collisional ionization may also occur there, and this, and/or
scattering by collisions or possibly turbulent fluctuations in this region, may also increase current
collection by the electrode. We also discuss effects on particle motions near the electrode, associated
with “breakdown of magnetic insulation” in the region of large electric fields near it.

1. INTRODUCTION

Even without magnetic-field effects, the problem of predicting current collection by objects
(“probes”) in plasmas is one of the most formidable in plasma physics. Reasonably complete
solutions of it exist only for very simple geometries, in the limits of large and small mean-free-
paths, and in the absence of flow effects. For objects in space plasmas, this situation has been
summarized by E.C. Whipple in the preceding paper.

When magnetic-field effects are introduced, the problem becomes notoriously intractable. As
one would expect, available treatments of it generally involve extreme simplifications. For space
applications, the collisionless approximation seems not extreme but instead inevitable. However,
we shall see that even in cases of large mean-free-paths, magnetic fields can cause collisional effects
to become important.

In spite of this, collisionless theories form the most important category of available theories,
and also must be understood before departures from them can be usefully analyzed. Accordingly, a
review of collisionless, steady-state theories (Section 2) forms the next part of this presentation. It
seems inevitable also to make a further division of such theories, into ones for the zero-space-charge,
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or large-Debye-length, limit (one would expect these to be the simplest), and those for finite Debye
length. However, even this division is complicated by magnetic-field effects. It turns out that a
strictly collisionless theory cannot be exact in cases of finite Debye length, because the disturbance
of electric potential produced by the object then extends infinitely far along the magnetic-field
direction. However, this conclusion is modified radically by even a small amount of relative plasma
drift motion. This situation is discussed in more detail in Sections 3 and 7. Our review includes the
work of Sanmartin (1970), who has himself given an extensive review of older theories. A review
of probe use in fusion plasmas has been given by Stangeby (1989).

It has often been asked whether any steady-state theory can give a correct prediction, in view
of the tendency of fluctuations, or “plasma turbulence”, to carry charge across magnetic field lines
in magnetic-confinement fusion experiments. Measured return currents in electron-beam-emission
experiments in space have frequently been in excess of predicted values from steady-state theory,
and such observations have often been cited in support of this view. An alternative explanation,
involving energization of ambient electrons by an interaction with the beam, is supported by results
of the CHARGE-2 (Myers et al, 1989) and SPEAR I (Katz et al, 1989) rocket experiments. We
discuss this question in Section 4.

Collisional ionization may cause important increases in current collection beyond those pre-
dicted by steady-state collisionless theory. The presence of a magnetic field greatly increases phase-
space volumes available to particles on “trapped” orbits near the probe, and the long lifetimes of
trapped particles in these regions greatly increase opportunities for collisional ionization to occur.
The observation of “toroidal glow” regions around spherical probes in low-pressure laboratory mag-
netoplasmas (W.J. Raitt and A. Konradi, private communication, 1987; Antoniades and Greaves,
paper appearing later in these Proceedings) lends support to this idea. Ionization may produce
“explosive” growth of the probe’s sheath (Lai et al, 1985; Cooke and Katz, 1988). Independently
of collisional ionization, the existence of trapped orbits also increases the opportunity for cur-
rent collection to be increased by particle scattering, both collisional and turbulent. We discuss
collisional-ionization and collisional-scattering effects in more detail in Section 5. '

Enhanced current collection by a probe at large attractive potentials requires increased trans-
port of particles across magnetic-field lines, and this phenomenon is often called “breakdown of
magnetic insulation”. A brief discussion of some aspects of this phenomenon appears in Section 6.

If the probe is a large object compared with the ambient Debye length, and is moving rapidly
compared with the ion thermal speed as in the proposed Tethered Satellite Experiment, a variety
of complicated phenomena can occur near it. This situation has been studied by Thompson (1985).
A discussion of it appears in Section 7. Unexpectedly, this discussion leads to an inference that
even the small relative drift velocities characteristic of rocket experiments can modify radically
the processes governing collection of electrons, and can “revalidate” collisionless theories of such
collection. A separate issue is the enhancement of current collection by the use of a “plasma
contactor” (4 papers, by Hastings, Wilbur and Williams, Katz and Davis, and Cooke, respectively,
which appear later in these Proceedings).

Some concluding remarks appear in Section 8.

Much of our discussion in this paper is directed toward current collection at large positive
electrode voltages. Interest in predicting such collection has recently increased because of applica-
“tions to the design of high-voltage power systems for use in space and also because of large induced
voltages expected in the Shuttle Electrodynamic Tether experiment.




2. COLLISIONLESS STEADY-STATE THEORIES

In this Section, we consider a spherical probe in a collisionless plasma containing a uniform
magnetic field B. We give brief summaries of the treatments of Parker and Murphy (1967) and Ru-
binstein and Laframboise (1982, 1983) and of new results by one of us (L.J.S.). We also summarize
results of an analogous treatment which has been done for an infinite cylindrical probe inclined
at an arbitrary angle to B, by Laframboise and Rubinstein (1976) and Rubinstein and Lafram-
boise (1978). For the spherical-probe case, we choose cylindrical coordinates (r,8, z) centred on the
probe, with the = axis aligned with B. In the presence of B, our situation no longer has spherical
symmetry, and this makes our task much more difficult. However, it still has rotational symmetry
about the direction of B, and therefore the electric potential ¢ will be independent of 8. In this
situation, there are two constants of collisionless particle motion, the total energy E, given by:

E= %m (72 + 726 + £2) + 48(r. 2) (1)

and the canonical angular momentum component J about the z axis, given by

| .
J=mr?0 + EqBr2 = mr? (0 + %w) (2)

where m and ¢ are particle mass and charge, and w = ¢B/m is the particle’s gyrofrequency. We also
define the absolute gyrofrequency w, = |w| = eB/m, where e is the magnitude of unit electronic
charge.

We eliminate § from these two equations, and obtain:

2
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The first term on the right of (3) is the kinetic energy of particle motion in the (7,2) plane. The
remaining two terms are then the “effective potential”

(4)

for particle motion in the same plane. Since the kinetic energy must be nonnegative, it follows that
a particle having a particular E and J will be confined to those regions of the (r, 2) plane for which
E > U(r,z2), i.e., inside the particle’s “magnetic bottle”. Some examples of the general appearance
of magnetic bottles are shown in Fig. 1.

Some properties of magnetic bottles follow readily from inspection of Eq. (3); see also Section
IV of Rubinstein and Laframboise (1982). These are as follows:

(1) Magnetic bottles have rotational symmetry about the z axis, i.e. their boundaries are
independent of 4.

(2) A particle orbit (having a given E and J) can touch the boundary of its magnetic bottle
only if 7 and 2 are both zero at the same point on the orbit. Since this is very unlikely, particle
orbits generally do not do so.



(3) We define a radius r, by the relation:

1
J = §mwr?, (5)
(if w > 0). In Eq. (4), the last term in U(r, z) will then vanish at r = r,, and is positive for r # r,,
increasing without limit as r — 0 (unless J = 0) or as r — oco. Therefore, particles for which J # 0
are prevented from reaching the z axis.

(4) For w > 0, particle orbits for which J < 0 encircle the z axis once per gyration; orbits for
which J > 0 do not.

(5) A nonencircling orbit having energy E and canonical angular momentum J will have the
same projection in the (r,z) plane, and also the same magnetic bottle, as those of an encircling
orbit having the corresponding values F +wJ = £ + %mwzrg and —J. In a strong magnetic field,
an encircling orbit will have a much larger energy and also a much larger gyroradius than the
corresponding nonencircling orbit, and encircling orbits will then make vanishing contributions to
number densities and fluxes.

We now present a derivation of the Parker and Murphy (1967) canonical upper-bound current.
Besides the assumption of collisionless, steady-state conditions, their work contained two additional
ones. They assumed that any particle whose magnetic bottle intersects the probe is itself collected,
and they ignored the effect of a particle’s thermal motion at infinity on the question of whether
such an intersection exists for that particle. The first assumption results in their current expression
being an upper bound on the corresponding exact value. The second assumption amounts to taking
the limit £ — 0 in Eq. (3). We shall see that this approximation does not lead to an upper bound,
so actual currents can exceed the Parker and Murphy (1967) values. When this approximation is
made, particles having the largest J for which collection occurs then have a magnetic bottle similar
in appearance to that shown as (a) in Fig. 1, but with one important difference: the condition
E — 0 means that at large |z|, the inner and outer surfaces of the bottle collapse onto the common
radius 7,. To find the value of r,, we make the further substitutions 7 = 0, 6=0,r= Tp, and
¢ = ¢, in Eq. (3), where ¢, is the probe’s potential relative to space, r, is its radius, and ¢¢, <0
for an attractive probe potential for the particle species considered. We then substitute for J using

Eq. (5). We obtain:
) Slag, | \ !
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The positive sign corresponds to tangency of the bottle’s inner surface with the probe, as shown in
Fig. la. ’

We now note that with Parker and Murphy’s approximations, the collected current is equal to
the product of the random thermal particle flux with the combined area 2772 of the two disks of
radius r,, located at z = +oo, through which all collected particles of charge ¢ must pass.

In terms of the random current Ip = 47rr§qnoo(kT/27rm)%, and using Eq. (6), we now obtain:
; ,
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where k is Boltzmann’s constant, and T and n, are the temperature and ambient rnumbefr density
of the attracted particles. Apart from notation, this is the same as Eq. (13) of Parker and Murphy

(1967).



If effects of thermal motion are included, then Eq. (7) is no longer an upper bound on the
(collisionless, steady-state) probe current, although we shall see that it remains a good approximate
upper bound for large potentials and large magnetic fields. Calculation of the canonical upper bound
including thermal-motion effects is much more cumbersome. It has been done by Rubinstein and
Laframboise (1982). Here we give only their result, which is in analytic form, as follows:

t=1 + 1 (8)

where i; and i, are the (normalized) currents due to nonencircling and encircling particles, respec-

tively, given by:
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where § = 1,/@ = rp|w|(2m/ 7rl<:T)'-lr is the ratio of probe radius to mean attracted-particle gyrora-
dius, and ¥, = —q¢,/kT > 0 is dimensionless probe potential. Rubinstein and Laframboise (1982)
also obtained a corresponding analytic result for repelling probe potentials ¢, < 0, given by their
Eqgs. (30), (36), and (37), and plotted in their Fig. 10. In contrast with tﬁe usual exponential
variation of collected current at these potentials, their result shows a “rounding of the knee” of
the probe’s current-voltage characteristic at small negative ¥,. In the limit of large attractive
potentials ¥, >> 1, Eqgs. (8) — (10) reduce to:

1 V¥, 1

) + o + 202 (11)
The first two terms of this are the same as the Parker and Murphy (1967) result. The last term is
a contribution from encircling orbits, which vanishes in the limit of strong magnetic fields: 8 — oc.
A comparison of the Parker-Murphy (1967) canonical upper bound with results of Rubinstein and
Laframboise (1982) for attracted-species currents is shown in Fig. 2. The increasing curves in
Fig. 2 show least upper-bound currents. The portions of these curves to the right of the “kinks”
(discontinuities of slope) are the canonical upper bounds given by Eqs. (8) — (10). The portions
to the left of the kinks are “helical” upper bounds also calculated by them, and based on an
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assumption that particle orbits are helices near the probe. The decreasing curves are adiabatic-
limit (effectively lower-bound) currents also calculated by them, also assuming helical orbits near
the probe, but assuming a “one-dimensional” rather than “three-dimensional” velocity-space cutoff.
For a probe at space potential, ¢, = 0, the upper- bound and adiabatic-limit currents coincide, and
are the same as those given in Fxg 17 of Whipple (1965). For any given value of 3, we see
that the upper-bound and lower-bound curves separate rapidly as ¥, increases. This is clearly an
unsatisfactory situation, but it appears to represent the best that can be done without resorting to
the expense of numerical orbit integration. We present results of such a calculation below.

As mentioned above, the adiabatic-limit currents decrease as v, increases. This “negative-
resistance” behavior results from the fact that in the adiabatic limit, the kinetic-energy gain of
incoming particles goes entirely into increased speed parallel to B. This increases the pitch of
their orbits. Some orbits whose pitch becomes greater than roughly the probe diameter can now
bypass the probe, and current collection will be decreased. When 1, is small, we also expect the
actual currents to approach the adiabatic-limit currents, since the adiabatic-limit condition is that
changes in the probe sheath electric field are small over an average particle gyroradius. We further
expect that as 1, becomes more positive, adiabatic-limit conditions will break down, and collected
currents will then rise toward the upper-bound values.

We therefore expect the current-voltage characteristics to be “N-shaped”. Such behavior was
predicted qualitatively by Laframboise and Rubinstein (1976) and Rubinstein and Laframboise
(1982), and more recently seen in data from spherical electrostatic probes on the University of Towa
Plasma Diagnostics Package flown on several Shuttle flights (G.B. Murphy, private communication,
1983). We present later in this Section a quantitative prediction of such characteristics.

Figure 3 shows the same comparison of the Parker and Murphy (1967) and Rubinstein and
Laframboise (1982) upper-bound currents over a larger range of attractive probe potentials. It
is evident from this Figure, and also from Eq. (11), that these bounds do not coalesce at large
potentials, but only for large magnetic fields.

Corresponding upper and lower bounds on current have been calculated for an infinite-
cylindrical probe inclined at an arbitrary angle to B by Laframboise and Rubinstein (1976) and
Rubinstein and Laframboise (1978), and for spheroids and finite cylinders, including disks, whose
axis of symmetry is aligned with B, by Rubinstein and Laframboise (1983). In all cases, their
helical upper-bound and adiabatic-limit currents depend on all aspects of probe shape, whereas
their canonical upper-bound currents depend only on the probe cross-section perpendicular to B.
We reproduce here only their result for the canonical upper-bound current to an infinite cylindri-
cal probe. For the cyljndrical case only, we redefine I and I to be the current and the random
current 277,qn., (kT /27rm)7 respectively, both per unit probe length. For the attracted particles
(¥, 2 0), thelr result [Rubinstein and Laframboise, 1978, Eqs. (10) and (11)] is:

i= gsmﬂ+ 3/2ﬂ [(3—2¢p)ﬁ erfc(\/zlz—p) ezp(wp) +64/%, ] (12)

where 8 is the angle between the probe axis and the direction of B. For large ¥,:
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A corresponding result for repelling probe potentials ¢, < 0 is given by their Eq. (13). The most
remarkable feature of our Eq. (13) is that it gives the same one-half-power dependence of probe
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current on probe potential as in the spherical case [Egs. (7) and (11)], in spite of the difference
in probe shape. As in the spherical case, the canonical upper bound may not be the least upper
bound, especially at small 8 and 3,; see Figs. 2 and 3 of Rubinstein and Laframboise (1978).
Equations (12) and (13) should be useful for estimation of currents collected by tether wires in
space.

All of this leaves unanswered so far the question of how nearly the actual current collection
approaches these upper-bound values. For cylindrical probes, experimental data presented in Fig.
4 of Szuszczewicz and Takacs (1979) provide a partial answer to this question. They found that
adiabatic conditions are easily violated in the cylindrical configuration. For spherical probes in the
limit of large Debye length (Laplace-potential limit), we present results from an exact numerical
calculation of probe currents by one of us (L.J. Sonmor, Ph.D. thesis, in preparation). This calcu-
lation is “exact” in the sense that in the limit of zero discretization and roundoff errors, it would
produce results corresponding exactly to the physical assumptions made.

In the Laplace-potential limit, an important computational advantage can be gained by scaling
the collisionless charged-particle orbits. These obey the equation of motion mF = ¢ (E + ¢ x B).
We introduce the scaled position vector ¥ = r/(]mqbprp/qul)l/3 and time 7 = (¢B/m)t. This
equation then reduces to:

2~ . o~ . o~ ~
ﬂ—;_i———"ﬁ“"z o (14)
dr (72 + 52)3/2 dr

X i,

which contains no free parameters. The calculation method then involves integration of (14) for
various scaled initial positions ¥ and velocities dF/d7 on a plane Z = constant located sufficiently far
from the origin of coordinates. This yields a data base of distances of closest approach to the origin.
The appropriate integration over this data base then yields the current-voltage characteristics (¢ vs
Yy, for various §). Separate data bases must be created for attractive and repulsive probe potentials.
To obtain values of ¢ having a relative accuracy of 1% or better required the integration of about two
million such orbits, and this consumed about 25 hours of CPU time on the University of Toronto
CRAY X-MP computer.

Results from this calculation are shown in Figures 4-7. Figures 4(a) - (d) show representative
particle orbits, together with their corresponding magnetic-bottle boundaries. The orbits shown all
have positive total energies (E > 0) so they all originate at z = +00. As we mentioned following
Eq. (4), such orbits generally do not touch their bottle boundaries, but they evidently come very
close to them near points of reversal of z velocity, because |#| and |2| can be simultaneously very
small near such points. Our earlier discussion implies that actual currents will equal canonical-
upper-bound values [Eqgs. (8) - (10)] if every orbit reaches the point closest to the origin on its
bottle boundary, but that in general, orbits do not do so. Comparison of Figures 4(b) - (d) shows
that the nearness of an orbit’s approach to this point can be very sensitive to its initial phase.
Figures 4(a) - (d) also show significant violation of the adiabatic-limit approximation, including, in
(b) - (d), reversals of z-velocity.

Figures 5 and 6 show attracted-particle current-voltage characteristics for smaller and larger
ranges of attractive probe potential, respectively, and for two different values of 3. Also shown
are the Rubinstein and Laframboise (1982) canonical upper bound [Egs. (8) - (10)], and, in Figs.
5(a) and (b), their helical upper bound and adiabatic limit. Features visible in Figs. 5(a) and (b)
include, as predicted above, a negative-resistance region in the attracted-particle current-voltage
characteristic. When 3 = 3, this region extends over a larger range of probe potentials than when

f=1



In this region, the slope of the exact characteristic appears to be less negative than that of the
adiabatic-limit curve everywhere, even at small potentials. One can identify three possible reasons
for this. One of these is that the mechanism causing this bahavior, namely that some orbits miss
the probe because they are “stretched”, i.e., their pitch is increased near it, does not operate
as effectively for the real orbits as for the helical ones assumed in the adiabatic-limit calculation.
Another is that nonadiabatic effects also cause some particle gyroradii to increase (Fig. 4), allowing
more particles to be collected. A third possible reason is radial drift motions caused by electric-field
inhomogeneities (Fig. 4a). A current-collection theory based on such drift motions was developed
by Parker and Murphy (1967, Fig. 2 and Table 1).

Figures 5 and 6 appear to leave unresolved the important question of whether the exact currents
approach the canonical upper-bound values at large attractive potentials or remain substantially
below them. This question is examined directly in Fig. 7, but the outcome is still not clear. What
is clear from Fig. 7 is that even if the actual currents approach the canonical upper-bound currents
at large potentials, the approach is so slow as to be irrelevant to most practical purposes. It is
noteworthy that at the largest probe potential shown in Fig. 7, i.e. 1,bp = 500, the Parker-Murphy
(1967) canonical-bound values are much closer to the Rubinstein-Laframboise (1982) values than
the exact currents are, so the latter currents also remain substantially below the corresponding
Parker-Murphy values. Some evidence of the level of numerical errors in these “exact” results also

appears in Figs. 6(a) and 6(b).

An important limitation of the exact results shown in Figs. 4-7 is that they apply only in
the Large-Debye-length limit. As the Debye length is decreased, space-charge effects influence
more and more strongly the potential disturbance around the probe. As a result, this potential
becomes progressively more “short-range”, with increased electric fields in the sheath region near
the probe, and decreased fields in the presheath region farther away (see below, however). M.J.
Mandell (private communication, 1989) has suggested that in this situation, the current collection
may increase above the values shown in Figs. 5-7 toward the canonical-upper-bound values, because
adiabatic-limit conditions now are more strongly violated near the probe, and this permits incoming
particles to acquire larger gyroradii, so that more of them are collected. This is in contrast with
the nonmagnetic situation, in which attracted-species current collection decreases with decreasing
Debye length; see, for example, the preceding paper by E.C. Whipple.

Figure 7 contains a feature which may illuminate this question. This Figure shows a “crossover”
of the current-voltage curves for various values of § as the probe voltage 9, increases, with the
currents for the largest $ values becoming the closest ones to the upper-bound currents at the
largest ¥, values shown. If one considers the magnetic bottles which correspond to the attracted-
particle energles making the most important current contributions at large 1, then among these
bottles, those which correspond to the largest 3 values will have the least relative widening (Figs.
1 and 4) near z = 0. Figure 7 therefore implies a tendency for bottles with the least widening to be
the “most filled” by the orbits confined inside them. If this tendency carries through to situations
in which space-charge effects are important, it will tend to counteract the mechanism described in
the preceding paragraph, and the attracted-species current may then decrease rather than increase
with decreasing Debye length as in the nonmagnetic case. Another mechanism which may act in
the same direction is the tendency of magnetic bottles to form “bulges” or even disjoint “bubbles”
as a result of space-charge effects on the probe sheath potential distribution (Section 5).
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3. COMBINED EFFECTS OF SPACE-CHARGE AND COLLISIONS

In some presheath locations, a decrease in Debye length will produce an increased rather
than decreased electric field. To see why, we consider the depletion of particles at large distances
from a spherical probe, caused by the probe’s current collection. If B = 0, this depletion occurs
equally in all directions for both ions and electrons, and therefore results in a spherically-symmetric
distribution of net space charge and therefore of potential. If B # 0, it occurs predominantly along
and adjacent to the probe’s “magnetic shadow”. In other words, we expect that at large |z|, both
the ion and electron density disturbances (in the collisionless limit) will become functions only of the
cylindrical radius r. In contrast with the nonmagnetic case, however, these disturbances will have
different dependences on 7 for the ions and electrons, because the much smaller average gyroradius
of the electrons will cause the electron depletion to be confined much more closely to the magnetic
shadow itself, whereas the ion depletion will be more widespread (Fig. 8). If the Debye length is
finite, the resulting charge imbalances will produce a potential disturbance which will also depend
only on r at large |z|. Unless the probe potential is very negative, this disturbance will be positive
in sign (Sanmartin, 1970). In the absence of collisions (and assuming steady-state conditions), no
mechanism exists to cause the charge-density disturbances to decay with increasing |z|, and the
resulting potential disturbance must therefore also extend to infinity in both directions along the
probe’s magnetic shadow. This further implies that if the charged-particle mean-free-paths are
finite, no matter how large they are, collisions will ultimately repopulate the depleted regions as
|z| — oo. Some of these collisionally-redirected particles will travel toward the probe. In doing so,
they will produce effects on both the space-charge density near it and on current collection by it.
Some of the same particles will have negative values of the total energy E defined in Eq. (1); if
the potential disturbance is positive in sign, this can happen only for electrons. These particles
cannot escape from the probe’s potential disturbance unless it extends to infinity or they undergo
another collision; otherwise the 2z component of their velocity, if initially directed away from the
probe, must eventually reverse. The electron current reaching the probe will therefore include a
contribution due to electrons which have negative total energies. In contrast with the situation
for B = 0, this contribution will persist rather than vanish in the limit of large mean-free-paths;
increasing the mean-free-path will result merely in a corresponding increase of the scale of distances
over which collisions provide this contribution.

We therefore conclude that a collisionless, finite-Debye-length theory cannot be formulated for
a probe in a magnetoplasma, unless some approximation is made (discussions with H.A. Cohen,
unpublished). On the other hand, effects of this may be negligible in at least some real situa-
tions. For example, the calculations reported by Katz et al (1989), which were done in support of
the SPEAR T electrostatic probe measurements using the NASCAP/LEO and POLAR simulation
programs, gave good agreement (within about 4% in the case of the more-accurate POLAR calcu-
lations) with these measurements (see their Fig. 10), and these were collisionless calculations. The
NASCAP/LEO calculations used analytic approximations for space-charge densities in the sheaths
around the SPEAR 1 probes and rocket body, whereas POLAR calculated these densities by track-
ing particle orbits inward from sheath edges. It is noteworthy also that all the theory which we have
discussed so far has been for a nondrifting ambient plasma. In Section 7, we discuss a description
by Thompson (1985) of the disturbed region around a high-voltage orbiting object. Thompson’s
description implies that a drift transverse to B, even at much less than orbital speed, may change
fundamentally the structure of this disturbed region, and a completely collisionless calculation of
collected current then may still be applicable. We discuss this question in more detail in Section
7. Here we confine our discussion to nondrifting situations.
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The most thorough available treatment of the combined effects of collisions and space-charge on
probe current is that of Sanmartin (1970), who performed an asymptotic analysis on this problem,
using ion and electron collision models based on cumulative small-angle scattering by multiple
Coulomb encounters. In his treatment, electron collection by the probe is limited by the fluxes
of electrons which are supplied by collisions to the above-mentioned two regions (one for z > 0
and one for z < 0) of positive potentials in the probe’s magnetic shadow. To be collected, these
electrons must also cross a potential barrier which exists between each of these regions and the
probe when the probe potential is close enough to space potential. This barrier exists because at
such probe potentials, each region is more positive than at either the probe or infinity, i.e., there
is an “overshoot” in the potential distribution as a function of |z| in each region (Fig. 9). The
most important effect of this situation on the probe current near space potential is to decrease the
electron collection, thereby “rounding the knee” of the probe’s current-voltage characteristics as
computed by Sanmartin. His results for the electron-current characteristics are reproduced in Fig.
10. Sanmartin’s treatment assumes that the ion-to-electron temperature ratio is close to unity,
the electron average gyroradius @ and the Debye length Ap are both << rp, and rpf both the
mean free path for multiple small-angle Coulomb collisions and the ion average gyroradius. In his
analysis, the magnetic shadow region on cach side of the probe is divided into: an outer layer which
extends to infinity, is quasineutral and collision-dominated, and in which the potential rises to a
maximum value as one approaches the probe; an intermediate layer, also quasineutral, across which
the potential is uniform and whose thickness is of the order of the local electron mean free path;
and an inner layer which is collisionless and in which the potential decreases steeply to its value on
the probe. Sanmartin’s approximations include a point-to-point matching of the particle fluxes as
a function of 7 across the intermediate layer. For electrons, this is done by equating his Eqs. (44)
and (65) for these fluxes. The result is to exclude the possibility of an attraction-region increase
in current collection due to effects of particle orbital motions, so his attraction-region currents
saturate at ¢ = % as 1, — oo, in contradiction with the results discussed in Section 2. His theory
in its present form therefore is useful primarily for probe potentials close to space potential when
Tp >> Ap and the magnetic field is large enough that § = rp/@ >> 1 (See, however, the last
paragraph of Section 4). For a probe at space potential, ¥, = 0, the currents predicted by him
(Fig. 10) are much lower than the collisionless currents given by Fig. 17 of Whipple (1965) for
the case r, << Ap- At present, there is no theory available for probes in magnetoplasmas which
includes effects of particle orbital motions together with collisional and space-charge effects, and
we have seen (Section 2) that at larger probe potentials, orbital-motion effects become increasingly
important.

4. EFFECTS OF PLASMA TURBULENCE

A persistent and widespread suspicion has been that when probe potential is sufficiently posi-
tive, spontaneous fluctuations or “plasma turbulence”, driven by the large electron-density gradients
which then exist near the edges of the probe’s magnetic shadow, will transport charged particles
transversely to B and produce probe currents much larger than those predicted by the steady-state
theories described in Sections 2 and 3. The existence of probe-induced spontaneous fluctuations, for
probes having a sufficiently large positive bias, is well-established by laboratory observations (Bal-
main, 1972; Urrutia and Stenzel, 1986; Stenzel, 1988). Spontaneous density fluctuations of up to a
few percent amplitude have also been observed in the disturbed region around the Shuttle Orbiter
(Murphy et al, 1986). What is less clear is whether such fluctuations can increase substantially the
time-averaged currents collected by probes.
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For a long time, only one theoretical treatment, due to Linson (1969), has been available which
includes predictions of plasma turbulence effects on current collection by a probe. An alternative
formulation by P.J. Palmadesso appears later in these Proceedings.

Linson’s (1969) treatment is semi-empirical because it depends on a parameter whose value
is inferred from experimental data rather than predicted. Linson suggests that the unneutralized
electron population in the sheath region around a probe having a large positive bias may be sub ject
to a gyroresonant instability whose onset depends on a sufficiently large value of the parameter:

Q = W [wi (15)

where w, = (neez/meeo)% is the electron plasma frequency, w, = eB/m, is the electron gyrofre-
quency, m, and n, are electron mass and number density, and €, is the permittivity of space. Linson
cites evidence that the onset of this instability occurs when @ is close to or somewhat smaller than
1; jonospheric values of @ are generally greater than 1. Linson then assumes that the resulting
turbulent diffusion produces a region of uniform electron density around the probe (Fig. 11), that
this region is greatly extended in the z direction, and that electric fields parallel to z are small
compared to those perpendicular to z. Assuming also that ions are completely excluded from this
region then permits him to write a cylindrically-symmetric Poisson equation:

d¢ en,
rdr( dr) ?a— (16)

for potentials within it. He solves this equation subject to the boundary conditions:

¢ = ¢, whenr =1, (17)
¢:0,3—(§—_—0whenr=rs (18)

Equation (16) is of only second order, so with three boundary conditions given in Egs. (17) and
(18), this system of equations is overdetermined. Solving it therefore also provides a value for the
sheath radius r;. We obtain:

2 2
1 ... Ty Ty
bp = 5Q¢ (F;) In (;;) 1| +1 (19)

where ¢* = 2m wy 22 /e This result is Linson’s Eq. (13). It provides an implicit relation for r; as a
function of the probe potential ¢,. Linson then proposes, as an upper bound on probe current the
random current incident on both ends of a flux tube of radius r,. In terms of the random current

IR defined just prior to Eq. (6), Linson’s upper-bound current is now given by:

i=1I/Ig= -;- (7~3/1-1,)2 (20)

Figure 12, which is a reproductlon of Linson’s Figure 3, shows a comparison of the currents given
by Linson’s treatment for ¢ = 4— and 1 with those given by the result of Parker and Murphy
(1967) [our Eq. (7)] and by the nonmagnetic, spherically-symmetric, space-charge-limited theory
of Langmuir and Blodgett (1924). This Figure suggests that turbulent transport produces a major
increase in the probe’s electron collection, perhaps to values close to the nonmagnetic ones.
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Experimental evidence for this contention has been ambiguous until recently. This is in spite
of the launching, since 1969, of no fewer than 25 separate rocket and satellite experiments which
included measurements of the potential acquired by surfaces of the vehicle when an electron beam
was emitted from it. Reviews of these experiments have been given by Winckler (1980), Linson
(1982), Szuszczewicz (1985), and Maehlum (1988). During the same period, space experiments
have also been performed which involved either the emission of ion beams, with measurements of
the resulting vehicle surface potentials, or the application of a differential bias which caused one
part of the vehicle to acquire a large negative potential relative to space, with the resulting ion
collection current measured. In such cases, magnetic-field effects on ion collection are relatively
small because of the relatively large average gyroradii of ions. Of greater importance in these cases
are effects of relative ion drift motion. Exact collisionless theory for ion collection in the presence
of ion drift is relatively incomplete. A review of available approximate theories for this situation
has been given by Godard and Laframboise (1983). Substantial disagreement exists between these
theories and experimental results (Makita and Kuriki 1977, 1978) but the approximations in the
theories are severe enough that this does not constitute evidence that the collisionless, steady-state
model is invalid for ion collection. In contrast with this, the electron current-voltage observations
generally imply currents exceeding the Parker and Murphy (1967) values. The amount of excess
current appears to increase with ambient electron density. Popadopoulos and Szuszczewicz (1986)
have proposed that a collective interaction between the beam and the ambient plasma may energize
some of the ambient electrons, and these then provide a greatly increased return current to the
vehicle because of their much larger velocities.

This hypothesis is supported by the results of the recent CHARGE-2 (Myers et al, 1989)
and SPEAR I (Katz et al, 1989) rocket experiments. In the CHARGE-2 experiment, the payload
was separated into two sections joined by am insulated conducting tether. One of the sections
carried a 1 keV electron gun. The sections were separated by up to 426m across the geomagnetic
field. Return current collection was observed for positive potentials up to 1 &V on both sections.
In all measurements, return currents to the section carrying the gun exceeded Parker-Murphy
(1967) values, while those to the other section agreed well with these values. In the SPEAR I
experiment, no beam was emitted. SPEAR I carried two spherical electrostatic probes of radius
10cm, separated from each other by 1m and from the rocket body by 3m. Positive voltages up
to 45.3kV were applied to one of the two spheres. In the results presented by Katz et al (1989),
the other sphere was grounded to the rocket body. Also grounded to the rocket body was a
stem which supported both probes and was separated from them by resistive bushings of length
1m. Katz et al (1989) calculated that when a 46kV bias was applied to one sphere, the rocket
body and the other sphere floated at —8.3kV, and the biased sphere then floated at 37.7kV. The
measured current-voltage curve gives a current of 52 mA at this voltage. This is about twice
the Parker-Murphy (1967) value [Eq. (7)] for these conditions, but the calculations of Katz et al
(1989) indicate that this discrepancy results from the breaking of canonical angular momentum
conservation [Eq. (2)] by the strong asymmetry of the sheath around the probe; this asymmetry
in turn is produced by the presence of the oppositely-biased large rocket body and other probe (I.
Katz, private communication, 1989). The results of this experiment therefore can be interpreted
as providing further support for the validity of the canonical upper bound on current collection
[In these experiments, the correction term %/02 in Eq. (11) was negligible, so the canonical upper
bound was essentially equal to the Parker and Murphy (1967) upper bound given by Eq. (7).
This in turn indicates an absence of significant turbulent-transport effects on such currents in the
absence of beam-induced disturbances, contrary to the hypothesis advanced at the beginning of
this Section. '

However, Palmadesso (paper appearing later in these Proceedings) has pointed out that one
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expects turbulent-transport effects to become important only when the region of large electric
fields near the probe extends radially beyond the region in which the probe is readily accessible
to particles on the basis of steady-state fields only. For the radii of these two regions, he uses the
nonmagnetic spherical sheath solution of Langmuir and Blodgett (1924) and the Parker-Murphy
(1967) radius r,, given by Eq. (6) with a positive sign, respectively. He points out that the
Langmuir-Blodgett radius is initially smaller but grows more rapidly as probe potential increases,
so one should expect significant turbulent transport effects only for large enough values of probe
potential. This appears to indicate that turbulent transport may yet prove to be important at
large enough positive voltages, so the indications to the contrary provided by the CHARGE-2 and
SPEAR I experiments may not be conclusive.

This apparent absence of turbulent-transport effects in space situations runs counter to
widespread expectations, as we noted at the beginning of this Section. An example of such expec-
tations is a discussion by Stangeby (1989, Sec. ITIA) of particle transport across magnetic fields in
magnetic-confinement fusion experiments. Stangeby summarizes the evidence for the well-known
conclusion that such transport generally agrees with' the empirically-obtained Bohm value (Bohm
et al, 1949), and is much larger than the “classical” value which forms the basis of the Sanmartin
(1970) theory discussed in Sec. 3. However, probe use in fusion plasmas generally involves very
different conditions than in space (P.C. Stangeby, private communication, 1990). Because of in-
terpretive difficulties, probes in fusion plasmas are generally operated at voltages below floating
potential (Stangeby and McCracken, 1990, Figures 2.4 and 2.5). Ion and electron densities are then
nearly equal to each other almost to the probe surface, whereas in the CHARGE-2 and SPEAR
I situations, the probes were surrounded by large electron sheaths. This difference presumably
affects the turbulent-transport mechanisms involved, but these are understood very poorly, so firm
conclusions cannot be drawn.

5. PARTICLE TRAPPING AND THE “TOROIDAL GLOW” REGION

We have seen that imposition of a magnetic field changes fundamentally the characteristic mo-
tions of charged particles in the disturbed region around a probe (Sections 2 and 3). An important
consequence of this is a qualitative increase in the possibilities for trapping of attracted particles
in this region. This in turn creates the possibility of significant increases in probe current because
of collisional or turbulent scattering into and out of this region, or collisional ionization of neutrals
in it. We examine each of these aspects of this situation separately.

We illustrate in Fig. 13 the region of space in which particle trapping occurs in the presence
of a magnetic field. For the attracted-particle species [qcbp < 0], this Figure shows the general
appearance of “open” magnetic bottles which extend to z = +oo and correspond to E > 0, and
“closed” ones which correspond to E < 0, all drawn for a particular value of J which is chosen such
that the bottle for E = 0 marginally fails to intersect the probe. Since ¢ = 0 at infinity, £ > 0 for
all particles coming from the ambient plasma. Therefore, in the absence of collisions, the “trapped-
orbit” (E < 0) region of one-particle phase space, corresponding to closed magnetic bottles such
as those shown in Fig. 13, must remain unpopulated. However, if a particle is scattered into this
region, by either a collision or (possibly) a turbulent scattering event, it will remain there until
another such event scatters it out again. If the collision frequency is very small, such a particle is
likely to remain there for a very long time. Therefore, even in the limit of small collision frequency, a
steady-state particle population will build up in the trapped-orbit region. This population will not
be larger than the equilibrium value given by the usual Boltzmann factor, but this bound permits
very large attracted-species populations if potentials near the probe are very large. This population
will always remain less than the equilibrium value, because particles can also be scattered out of
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it into “collection” orbits which intersect the probe. Assuming that the probe is nonemissive, this
sets up a net unbalanced flux of particles into it, using the trapped orbits as an intermediary stage
(Fig. 14), and therefore detailed balancing cannot occur, and an equilibrium population of these
orbits cannot be attained. This unbalanced flux also constitutes an additional current to the probe.
So far, the problem of calculating this current is completely unsolved.

In the absence of a magnetic field, approaches to this problem have been made by Wasserstrom
et al (1965), Chou et al (1966), Bienkowski and Chang (1968), Self and Shih (1968), Talbot and
Chou (1969), Thornton (1971), Shih and Levi (1971), Parker (1973), Friedland and Kagan (1979),
and others, using various approximations. A review of most of this work has been given by Chung
et al (1975, Section 2.5).

Our depiction in Fig. 14 of the intermediary role of trapped orbits is schematic, and applies
whether or not a magnetic field is present, even though the orbits when B # 0 will generally be more
complicated than those shown. However, one feature of the trapping phenomenon is fundamentally
different when B # 0. In either the nonmagnetic or magnetic case, the term ¢¢(r,z) in Eq. (4)
will have a local minimum as a function of z at z = 0 for each r, so trapping will occur, i.e. the
effective potential U(r, z) in Eq. (4) will have a local minimum, if the last term in Eq. (4) has a
minimum outside the probe as a function of r for at least some values of J. Inspection of this term
shows that in the nonmagnetic case (w = 0), this term has minima only if |g¢(r, z)| decreases more
slowly as a function of r than an inverse-square potential ¢ = const. r—2 over at least some range
of r values (Mott-Smith and Langmuir, 1926; Bernstein and Rabinowitz, 1959; Laframboise, 1966;
Laframboise and Parker, 1973). Accumulation of a trapped-particle population adds space charge
of a sign opposite to that on the probe surface, and this causes the sheath potential to steepen,
tending to destroy the conditions necessary for trapped orbits to exist, and thereby limiting their
population (Laframboise, 1966, Section VIII). However, in the magnetic case, the last term in Eq.
(4) always has minima as a function of 7. A steepening of the potential therefore can modify the
resulting minima of the effective potential U(r, z), but cannot destroy them. We therefore expect
trapped-orbit effects to be much more important when significant magnetic fields are present.

We have so far not mentioned what may be the most important consequence of trapped-
orbit population. Particles scattered into the trapped-orbit region will be accelerated by large
electric fields in this region if the probe potential is large. In the more central regions of the
closed magnetic bottle accessible to each particle, it will then have enough kinetic energy to cause
collisional ionization of neutrals. If the attracted particles are electrons, this will occur for probe
potentials above a few hundred volts. Some of the new charged particles thus produced will be on
collection orbits (Fig. 14), and this can produce a substantial increase in probe current. Another
consequence of energetic collisions in the trapped-orbit region is light emission. Such emission was
first observed as a “toroidal glow” region, in a laboratory experiment by W.J. Raitt and A. Konradi
(private communication, 1987). The toroidal-glow phenomenon has since been studied in detail by
Antoniades and Greaves (paper appearing later in these Proceedings), who have also observed the
above-mentioned increase in probe current. They have observed these phenomena in a test chamber
which was large enough to permit a well-developed trapped-orbit region to exist around the probe,
but they did not see them in tests done in a smaller chamber. So far, these phenomena have not
been observed in space. Antoniades and Greaves discuss in detail the conditions under which one
can expect them to occur. One feature of the toroidal-glow region, which may be expected on the
basis of Fig. 13, is that it should have “pointed ends” in the %z directions, and this feature is
evident in photographs of it presented in their paper.

When the magnetic field is sufficiently weak, their results show that the toroidal-glow region
disappears and either no discharge or a spherically-symmetric discharge occurs. If the ambient
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neutral density is large enough, the establishment of a spherically-symmetric discharge, around a
probe at a large positive voltage, involves a process of “explosive sheath ionization”, which has
been studied by Lai et al (1985) and Cooke and Katz (1988). In this process, electrons created
by ionization of neutrals in the sheath migrate quickly to the probe, while similarly-created ions
accelerate slowly away from it. This results in a net positive contribution to the space charge in
the probe sheath. This contribution enlarges the sheath and thereby enlarges the region in which
the electrons have been accelerated through a sufficient change of potential to ionize neutrals. This
results in more net positive space charge and a consequent runaway sheath expansion.

Magnetic-bottle shapes similar to those shown in Figs. 1, 4, and 13 do not exhaust all possi-
bilities. The dependence of |¢(r,z)| on r for z = 0 in a steady-state situation invariably involves a
steep decrease toward space potential in the sheath region, followed by a much less rapid decrease
in the presheath region beyond the sheath edge. For some values of J, the effective potential U(r, z)
for the attracted particle species in Eq. 4 may then have, instead of a single minimum as a function
of r for z = 0, two minima separated by a maximum. Depending on the value of E, this can cause
the corresponding magnetic bottles to have “bulges” or even disjoint “bubble” regions (Fig. 15).
In the latter case, particles travelling along collisionless orbits from infinity will be unable to enter
these “bubble” regions even though permitted by their values of £ and J to exist there. In the
case of “bulges”, such particles are likely to be partly prevented from entering the bottle regions
closest to the probe; a similar effect was discussed in connection with bottle “widening” at the end
of Section 2. To some extent, all of these effects will limit access to the probe of attracted-species
particles which initially (z.e. far from the probe) move along orbits located outside the probe’s
magnetic shadow. This may possibly invalidate the conjecture, mentioned at the end of Section 2,
that space-charge effects on the potential ¢(r, z) may cause the current collection to increase above
the Laplace-limit values calculated by Sonmor (see Section 2), toward the canonical-upper-bound
values. However, the SPEAR I and CHARGE-2 current-collection values discussed in Sections 3
and 4 appear to show good agreement with the canonical-upper-bound values, so at present there is
no clear experimental evidence for a collected-current decrease caused by the formation of “bulges”
and the breakup of magnetic bottles into disjoint “bubble” regions. As noted in Section 2, the
numerical results of Sonmor support the idea that this may occur. However, a definitive answer to
this question will require a more specific investigation of it than any done so far.

6. BREAKDOWN OF MAGNETIC INSULATION

“Magnetic insulation” is the tendency of a magnetic field to inhibit the transport of charged
particles across magnetic flux surfaces. In Sections 2-5, we have considered various ways in which
magnetic insulation can break down and current collection by a probe can increase as probe voltage
becomes more attractive for the particle species considered (most specifically, the electrons). We
have examined effects of violation of adiabatic invariance (Section 2), collisions (Sections 3 and
5), self-excited fluctuations (Sections 4 and 5) and particle trapping combined with collisions,
fluctuations, or collisional ionization (Section 5). Here we take a different view of the collisionless
particle motions treated in Section 2 (discussions with D.L. Cooke, unpublished). We consider
specifically the motions of particles in the trapped-orbit or “toroidal glow” region discussed in
Section 5. For particles which have a small enough 2-component of velocity, one may expect these
motions to be well-approximated by a circumferential E x B drift with superposed gyromotion in
the plane z = 0, together with small oscillations about this plane. However, we now show that this
is not necessarily the case.

To show this, we note that the usual analysis for particle motion in uniform crossed E
and B fields (see, for instance, Tanenbaum, 1967, Section 1.4) yields an E x B drift velocity
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v4 = (E x B)/B?%. The magnitude of v, is E/B. This can easily exceed the speed of light. This
happens when E > Be. For B = 0.3 Gauss = 3 X 10~3T, corresponding to the low-latitude iono-
sphere, and ¢ = 3 X 108m/sec, this inequality becomes E > 9000V/m. The SPEAR I probes had
radius r, = 10cm. Ignoring space-charge effects gives a surface electric field E, on these probes
given by E, = —(d¢/dr), = ¢,/r,. The above-mentioned inequality is then fulfilled when the
probe potential ¢, > 900V . Since space-charge effects can be expected to increase electric fields
near a probe, this inequality would have been fulfilled at even lower probe voltages in the SPEAR
I experiment. Since drift velocities greater than the speed of light are impossible, something is
clearly wrong with this analysis.

What is wrong is that the usual derivation of v4 is non-relativistic. For planar geometry, the
correct approach to the derivation of vy involves use of a Lorentz transformation (Longmire, 1963,
p. 30; Jackson, 1975, pp. 582-584), which can eliminate the component of E perpendicular to B,
yielding the usual E x B drift result, only if E < Be. If E > Be, a Lorentz transformation to a
frame moving at velocity E x B/E? (rather than E x B/B?) now eliminates the component of B
perpendicular to E. In this frame, particles now accelerate indefinitely parallel to E, so no magnetic-
insulation effect is predicted. The situations treated here do not involve probe potentials large
enough to produce strong relativistic effects, but what is instead implied is that orbit curvatures
due to the magnetic field become so slight that electron motions become dominated by electric-
field inhomogeneities associated with the rotational symmetry of the probe’s potential distribution.
Therefore, the non-relativistic magnetic-bottle analysis of Section 2 still applies, and still predicts
that radially-inward motion toward a probe will eventually be limited, except for particles having a
zero value of the canonical angular momentum component J defined in Eq. (2). Palmadesso (paper
appearing later in these Proceedings) has numerically calculated particle orbits in model spherical-
probe sheath potentials in magnetic fields, and these orbits display both of the phenomena just
described, namely the breakdown of E x B drift in strong electric fields, and the limitation of the
resulting radially-inward motion because of conservation of J. The same phenomena are visible also
in results from the NASCAP/LEO simulation of SPEAR I flight conditions, presented by Katz et
al (1989). We have reproduced their Figures 8(a) and (b) herein as Figures 16(a) and (b). Figure
16(a) shows their calculated bipolar-sheath potential contours for a 46kV bias on one spherical
probe and a —6kV assumed floating potential for the SPEAR I rocket body. Figure 16(b) shows
the trajectory of an electron in the potential of Figure 16(a). A sudden transition from E x B drift
motion to accelerated motion is clearly visible, as also is orbital motion caused by nonzero angular

momentum, closer to the probe.

7 PHENOMENA AROUND LARGE ORBITING OBJECTS AT HIGH VOLTAGES

Our discussion so far has been directed primarily toward rocket experiments involving large
positive electrode voltages. In such experiments, effects of spacecraft motion (relative plasma
drift) on sheath structure and current collection are generally thought to be unimportant. A very
different situation arises in the planned Electrodynamic Tether experiment, which is part of the
Shuttle-borne Tethered Satellite System (T.S.S.). In this experiment, it is planned to deploy an
insulated conductive tether of up to 20km length, extended vertically upward from the Orbiter’s
cargo bay. At the end of the tether is to be located a conductive spherical subsatellite. One
expected consequence of this arrangement is the generation of large-scale systems of low-frequency
plasma waves in the ionosphere (Banks et al, 1981; Raitt et al, 1983; Grossi, 1984; Rasmussen et al,
1985; Urrutia and Stenzel, 1989; Stenzel and Urrutia, 1989). Another experimental objective, more
closely related to our present discussion, is to investigate whether induced currents in the tether
due to its motion across the geomagnetic field can provide a useful source of electric power in space.
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This depends on achieving as large as possible an electron current collection by the subsatellite,
either passively or with the aid of a low-energy plasma source known as a “plasma contactor”. Here
we consider only passive current collection; the performance of plasma contactors is analysed in
four papers, by Hastings, Wilbur and Williams, Katz and Davis, and Cooke, respectively, which
appear later in these Proceedings. In the Orbiter’s reference frame, the ambient plasma contains an
upwardly-directed v x B electric field of about 0.24V/m, where v is the Orbiter’s orbital velocity.
The Orbiter is to carry an electron emitter (Banks ef al, 1981; Raitt et al, 1983) which is intended
to keep its potential close to that of its surroundings. The subsatellite will then acquire a potential
up to about 5kV positive with respect to its surroundings.

The planned diameter of the subsatellite is 1.4m (Raitt et al, 1983). Much larger subsatellites
(conductive balloons) have also been considered (Williamson and Banks, 1976; Banks et al, 1981).
In either event, the subsatellite’s radius will be large compared with both the average gyroradius
and the Debye length of ambient electrons. The situation around the subsatellite therefore appears
likely to be similar to that analyzed by Sanmartin (1970; our Section 3), except that the ions
and electrons will now have a drift speed U = 8km/sec relative to the subsatellite. Since the
mean thermal speeds 7; and ¥, of ambient ions and electrons are roughly 1km/sec and 300km/sec,
respectively, drift effects would appear likely to be important for ions but negligible for electrons.
However, in the case of electrons, this conclusion turns out to be untrue. The following discussion
is based in large part on a treatment by Thompson (1985), and also on unpublished work by W.B.
Thompson.

In the nondrifting situation analyzed by Sanmartin (1970; our Section 3), electron depletion
by the probe created a positive potential disturbance which extended in both directions along the
probe’s magnetic shadow without attenuation until distances of the order of an electron mean free
path were reached. However, in low-Earth-orbit conditions, electrons drift at speed U toward the
upstream surface of this positive-potential region. They then enter this region, migrate along it to
the subsatellite, and are collected. The flux associated with this drift, integrated over this surface
out to a distance of order L = D%,/U in both directions from the subsatellite, where D = 27, is
the subsatellite’s diameter, then supplies the subsatellite’s electron collection current. The speed
and direction of this drift will be modified near this surface by electric fields associated with the
potential change across it. The upstream surface of the positive-potential region (on each side
of the subsatellite) now is no longer parallel to B but is “swept back” relative to B by a small
angle 8 ~ tan~1(U/%,) (Fig. 17). This implies that the region of positive potentials now tapers to
zero width in a distance of order L along each of the directions parallel and antiparallel to B. This
distance will be large compared to D, but generally much smaller than the electron mean-free-path,
so in this situation, a self-consistent collisionless treatment can be formulated. Positive ions striking
the upstream side of this region reflect forward from it (Fig. 17), creating conditions conducive
to two-stream instability just forward of it. Whether such instability has any substantial effect on
electron collection has not been determined. The same repulsion of ions from the positive-potential
region also creates an extensive ion-depleted wake region on its downstream side, and this wake
region can be expected to contain negative potentials (Fig. 17). In Thompson’s description, the
total length of this wake region parallel to B, i.e. transverse to the relative plasma drift, will be of
order 2L.

From our viewpoint, the most important question regarding the treatments of Sanmartin
(1970) and Thompson (1985) is whether they lead to different predictions for electron collection
by the subsatellite. Sanmartin’s theory includes collisions, and therefore leads to the populating of
orbits which have negative total energies with respect to space potential and therefore cannot be
populated by particles moving collisionlessly from infinity. In fact, the electron population reaching
the probe in Sanmartin’s treatment is a Maxwellian, with a reduced density factor [his Eq. (65)]
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which at the probe depends on position perpendicular to B (our r coordinate in Section 2 and
elsewhere). Therefore, in Sanmartin’s description, most of the electron current reaching the probe
is carried by negative-total-energy electrons.

The collisionless description given by Thompson (1985), and summarized above, is very differ-
ent. Tn this description, the definition of space potential is more complicated because in a reference
frame fixed on the subsatellite, there exists an ambient v x B electric field of about 0.24V/m.
However, this does not substantially affect what we can conclude about the velocity distribution of
electrons reaching the subsatellite. This remains as follows: all electron orbits not connecting back
to infinity are unpopulated. This includes all negative-total-energy orbits, and also those positive-
total-energy orbits which are caused to return to the subsatellite by electric or magnetic fields. The
positive-total-energy orbits which connect back to infinity have populations which are a function
of their ambient velocities. This function is just the drifting Maxwellian velocity distribution of
the ambient plasma. However, the drift velocity of these electrons is, as we have seen, very small
compared to their mean thermal velocity, and even though this “small” amount of drift is crucial
to the construction of a self-consistent collisionless treatment, it nonetheless has a negligible effect
on the population of those orbits which connect back to infinity. This population can therefore be
regarded as isotropic, i.e. dependent only on the total energy of each electron impacting the sub-
satellite, and this energy is conserved along the electron’s orbit, again assuming that the electron
has not passed through a region of significant time-dependent fluctuations (Section 4). If this is
the case, we then have complete knowledge of the velocity distribution of impacting electrons if we
know the “cutoff boundaries” in velocity space which separate the orbits which connect back to the
ambient plasma from those which do not (Laframboise and Parker, 1973). This last question in turn
is easy to resolve if electron acceleration into the positive-potential region is adiabatic (gyroradius
<< scale of changes in the electric field E), because the cutoff boundary is then “one-dimensional”,
i.e., if the z direction is again parallel to B, electron orbits arriving at the subsatellite surface are
populated only for v, values such that %mevz —ep, > 0, where ¢, is the subsatellite’s potential
relative to space (Laframboise and Parker, 1973; Laframboise and Rubinstein, 1976; Rubinstein
and Laframboise, 1982; see also Section 2). All of this now implies that with these approximations,
the velocity distribution of impacting electrons is just an “accelerated half-Maxwellian”, and the
electron current collected by the subsatellite is just the random current collected by the projection
of its area onto a plane perpendicular to B. The dimensionless current i defined in Eq. (7) is then

just equal to %

However, this estimate may be much too small, because it excludes any correction for nona-
diabatic effects on electron motions near the subsatellite; these were discussed in Section 2. It
may seem surprising that such effects should be significant, because the average ambient-electron
gyroradius @ is much smaller than the subsatellite radius r,. Forr, = 0.7m, B =0.3G = 3x107*T,
and kT, = 0.1€V, the ratio § = r,/a defined following Eq. (10) is equal to 22.2. In spite of this,
for a subsatellite potential ¢, = 5keV’, The Parker-Murphy (1967) upper-bound value for ¢, given
by either Eq. (7) or the first two terms of Eq. (11), is 11.86; the correction given by the third
term of Eq. (11) is insignificant. For this value of 8 and for the value %, = 5 X 10* implied by the
parameter values just given, the numerical results of Sonmor given in Fig. 7 appear to indicate that
the actual current will be very close to this upper-bound value. One cannot infer a firm conclusion
on this point because the Sonmor results are for a Laplace potential distribution (infinite Debye
length), rather than for the actual sheath potential distribution around the subsatellite, and no
clear information exists on whether actual currents will be larger or smaller than the corresponding
Laplace-limit currents (Sections 2 and 5). Nonetheless, the wide disparity between the values of %
and 11.86, given just above for i, suggests that nonadiabatic effects on electron motions near the

subsatellite are very strong, and therefore the actual velocity-space cutoff boundary for electrons ar-
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riving at the subsatellite is very different from that given by the “one-dimensional” cutoff-boundary
relation noted above. However, this conclusion in turn could be affected strongly by the breakup
of magnetic bottles into disjoint regions, which we noted in Section 5 and in Fig. 15, so it still
requires detailed numerical verification.

For increasingly large subsatellite diameters D, the half-length L of the positive-potential
region increases in proportion. It is instructive to ask at what value of D does L become large
enough that a transition will occur from the collisionless description of Thompson (1985) to the
collisional one of Sanmartin (1970). To calculate the electron mean-free-path, we use the classical
Spitzer (1962, Chapter 5) results for the electron collision frequency in a fully- 1omzed gas. To use
these results, we consider an electron “test particle” whose velocity v, is given by mv = 3kT,, i.e.
which has kinetic energy equal to the average value for electrons at temperature 7.

We include contributions to its cumulative angular scattering from both ambient electrons and
ambient ions. For ambient-electron density n, = 105 /cm? and temperature T, = 0.1V, Eq. (5.22)
of Spitzer (1956) gives an electron mean-free-path A, = 725m for cumulative angular scattering.
We have just seen that the most important distinction between the collisionless and collisional
descriptions is likely to be the energy distribution of electrons in the positive-potential regions.
Another important mean-free-path therefore is that for energy exchange among electrons, also
defined by Spitzer (1956, Eq. 5.25). Bearing in mind that electron-electron encounters change the
electron energy distribution much more rapidly than do electron-ion encounters, a recalculation of
Table 5.3 of Spitzer (1956) to include ion effects indicates that the energy-exchange mean-free-path
is only moderately larger than A, for most electrons.

A good approximate criterion for collisionless current collection by the subsatellite therefore is
that L << ),. With the above-mentioned relation L = D3,/U and the values U = 8km/sec and
= 300km/sec, this criterion reduces to D << 19m. This result implies that collisional effects
can become significant for balloon subsatellite diameters which are within the realm of possibility.

In rocket experiments, U is generally much smaller, and this criterion then becomes much more
severe. For U = 1km/sec, we obtain D << 24m. The SPEAR I probes (Sections 3, 4, and 6),
whose diameters were 20cm, are comfortably within this limit, so we infer that even the relatively
small amount of spacecraft motion present in the SPEAR I experiment was enough to ensure that
current collection by these probes was essentially a collisionless process. The collecting portion of
the CHARGE-2 daughter payload (Myers et al, 1989) was somewhat larger, with a largest dimension
of 82 cm, but was still within the above-mentioned approximate limit. As mentioned in Sections 3
and 4, current collection in both experiments appeared to be described well by collisionless, steady-
state theory. A surprising prediction of the discussion in this Section is the extreme sensitivity of
this conclusion to very small values of ambient-electron drift motion. The effects of this drift motion
appear to remove the apparent contradiction between the conclusion of most of our discussion in
Section 3 (which applied in the strict absence of drift) and the apparent success of collisionless,
steady-state theory in both of these experiments. To put this interpretation on a firmer basis will
require the development of a theory which is capable of making quantitative predictions of collected
current in the transitional regime between the collisionless situation described by Thompson (1985)
and the collisionally-influenced one of Sanmartin (1970).
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8. CONCLUSIONS

Our discussion in Sections 2-7 has revealed subtle and surprising aspects of the problem of
predicting current collection by probes in the space magnetoplasma. Many of these aspects involve
unresolved issues. They include the following:

(1) The attraction-region current-voltage characteristic of a probe in a magnetoplasma can
contain a “negative-resistance region” near space potential (Section 2).

(2) Numerical calculations of collisionless, steady-state, Laplace-limit currents indicate that
these remain substantially below the canonical-upper-bound current values even at large attractive
potentials. Implications for current collection in more reahstlc potentials are not clear (Sections 2

and 5).

(3) In a nondrifting plasma, no current-collection theory is p0551ble which includes space-charge
effects but not interparticle collisions, no matter how large the ambient charged-particle mean-free-
paths are (Section 3). However, even a very small amount of relative plasma drift, such as that
involved in a typical rocket experiment, can change this conclusion fundamentally (Section 7).

(4) Plasma turbulence appears to have an important influence on current collection by probes
in fusion plasmas but not in space plasmas. Such turbulence is not understood well enough to

explain why (Section 4).

(5) Space-charge eﬁects which tend to steepen the sheath potential profile near a probe,
decrease attracted-particle collectlon in nonmagnetic situations, but may possibly increase it in
magnetic ones (Sectlon 2). However, formation of “bulges” and breakup of magnetic bottles into
disjoint “bubble” regions by such space-charge effects may reverse this effect. Presently available
experimental results and theory do not provide sufficient evidence to indicate whether an increase

or a decrease actually occurs (Section 5).

(6) The existence of trapped orbit regions around a probe provides pathways for additional
current collection due to collisional ionization, collisional scattering, and possibly turbulent scat-
tering. The first of these is undoubtedly important; no predictions are available for the other two

(Sectlon 5) B -

(7). Clrcumferentlal “Ex B drlftmg motion can break down in the strong electric fields that
exist near a probe, and be replaced by radially-accelerated motion. This motion in turn can be
limited by angular-momentum effects closer to the probe (Section 6).

32




ACKNOWLEDGMENTS

We are grateful to many people, including J. Antoniades, H.A. Cohen, D.L. Cooke, 1. Katz,
M.J. Mandell, G.B. Murphy, L.W. Parker, W.J. Raitt, P.C. Stangeby, W.B. Thompson, and E.C.
Whipple, for valuable discussions and comments. Various aspects of this work were supported by
the U.S. Air Force Geophysics Laboratory under Contract No. F19628-85-K-0043, the U.S. Naval
Surface Weapons Center under Contract No. N60921-86-C-A226 (Auburn University Space Power
Institute Subcontract No. 86-209), the Institute for Space and Terrestrial Science of Ontario under
Project Number 182-10, and the Natural Sciences and Engineering Research Council of Canada
under Operating Grant A-4638 and Supercomputers Access Grant 120. We wish to thank the
Ontario Centre for Large-Scale Computation for the use of their facilities and for valuable technical
assistance.

REFERENCES

Balmain, K.G., Probe-Triggered Audiofrequency Plasma Oscillations, IEEE Transactions on An-
tennas and Propagation AP-20, 400, 1972.

Banks, P.M., P.R. Williamson, and K.-I. Oyama, Electrical behavior of a Shuttle Electrodynamic
Tether System (SETS), Planet. Space Sci. 29, 139,1981.

Bernstein, I.B., and I.N. Rabinowitz, Theory of electrostatic probes in a low-density plasma, Phys.
Fluids 2, 112, 1959.

Bienkowski, G.K., and K.-W. Chang, Asymptotic theory of a spherical electrostatic probe in a
stationary weakly ionized plasma, Phys. Fluids 11, 784, 1968.

Bohm, D., E.H.S. Burhop, and H.S.W. Massey, The use of probes for plasma exploration in strong
magnetic fields. In: The Characteristics of Electrical Discharges in Magnetic Fields, edited by
A. Guthrie and R.K. Wakerling, pp. 13-76, McGraw-Hill, New York, 1949.

Chou, Y.S., L. Talbot, and D.R. Willis, Kinetic theory of a spherical electrostatic probe in a
stationary plasma, Phys. Fluids 9, 2150, 1966.

Chung, P.M., L. Talbot, and K.J. Touryan, Electric Probes in Stationary and Flowing Plasmas:
Theory and Application. Springer-Verlag, New York, 1975.

Cooke, D.L., and 1. Katz, Ionization-induced instability in an electron-collecting sheath, J. Space-
craft and Rockets 25, 132, 1988.

Friedland, L., and Yu. M. Kagan, The theory of electron current to a spherical probe at interme-
diate pressures, J. Phys. D: Appl. Phys. 12, 739, 1979.

Godard, R., and J.G. Laframboise, Total current to cylindrical collectors in collisionless plasma
flow, Planet. Space Sci. 31, 275, 1983.

Grossi, M.D., Spaceborne long vertical wire as a self-powered ULF JELF radiator, IEEE Journal
of Oceanic Engineering OE-9, 211, 1984.

Jackson, J.D., Classical Electrodynamics, 2nd Ed., Wiley, New York, 1975.

Katz, I., G.A. Jongeward, V.A. Davis, M.J. Mandell, R.A. Kuharski, J.R. Lilley, Jr., W.J. Raitt,
D.L. Cooke, R.B. Torbert, G. Larson, and D. Rau, Structure of the bipolar plasma sheath
generated by SPEAR I, J. Geophys. Res. 94, 1450, 1989.

33



Laframboise, J.G., Theory of spherical and cylindrical Langmuir probes in a collisionless,
Maxwellian plasma at rest. Institute for Aerospace Studies, University of Toronto, Report
No. 100, 1966.

Laframboise, J.G., and L.W. Parker, Probe design for orbit-limited current collection, Phys. Fluids
16, 629, 1973.

Laframboise, J.G., and Rubinstein, J., Theory of a cylindrical probe in a collisionless magneto-
plasma, Phys. Fluids 19, 1900, 1976.

Lai, S.T., H.A. Cohen, K.H. Bhavnani, and M. Tautz, Sheath ionization model of beam emissions
from large spacecraft. In: Spacecraft Environmental Interactions Technology 1983, edited by
C.K. Purvis and C.P. Pike, NASA Conf. Publ. 2359/Rep. AFGL-TR-85-0018, pp. 253-262,
Air Force Geophys. Lab., Hanscom Air Force Base, Mass., 1985.

Langmuir, 1., and K.B. Blodgett, Currents limited by space charge between concentric spheres,
Phys. Rev. 23, 49, 1924.

Linson, L.M., Current-voltage characteristics of an electron-emitting satellite in the ionosphere,
J. Geophys. Res. 74, 2368, 1969.

Linson, L.M., Charge neutralization as studied experimentally and theoretically. In: Artificial
particle beams in space plasma studies, edited by B. Grandal, pp. 573-595, NATO Advanced
Study Institutes Series B: Physics, Volume 79, Plenum, New York, 1982.

Longmire, C.L., Elementary Plasma Physics, Wiley /Interscience, New York, 1963.
Maehlum, B.N., Beam-Plasma Experiments, Computer Physics Communications 49, 119, 1988.

Makita, H., and K. Kuriki, Comparative study of spherical and cylindrical drift probes. In: Proc.
10th International Symposium on Rarefied Gas Dynamics, edited by J. Leith Potter, pp. 1007-
1014, Progress in Astronautics and Aeronautics, Vol. 51, Amer. Inst. of Astronautics and
Aeronautics, New York, 1977.

Makita, H., and K. Kuriki, Current collection by spherical Langmuir probes drifting in a collisionless
plasma, Phys. Fluids 21, 1279, 1978. :

Mott-Smith, H.M., and 1. Langmuir, The theory of collectors in gaseous discharges. Phys. Rev.
98, 727, 1926.

Murphy, G.B., J. Pickett, N. D’Angelo, and W.S. Kurth, Measurements of plasma parameters in
the vicinity of the space shuttle, Planet. Space Sci. 34, 993, 1986.

Myers, N.B., W.J. Raitt, B.E. Gilchrist, P.M. Banks, T. Neubert, P.R. Williamson, and S. Sasaki,
A comparison of current-voltage relationships of collectors in the Earth’s ionosphere with and
without electron beam emission, Geophys. Res. Lett. 16, 365, 1989.

Papadopoulos, K., and E.P. Szuszczewicz, Current understanding and issues on electron beam
injection in space, COSPAR General Assembly 1986.

Parker, L.W., and B.L. Murphy, Potential buildup on an electron-emitting ionospheric satellite, J.
Geophys. Res. 72, 1631, 1967.

Parker, L.W., Computer Solutions in Electrostatic Probe Theory. I Spherical Symmetry with
Collisions. Air Force Avionics Laboratory, Wright-Patterson Air Force Base, Ohio, Report
No. AFAL-TR-72- 222, Part 1, 1973.

34



Parker, L.W., Computer Method for Satellite Plasma Sheath in Steady-State Spherical Symmetry,
Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., Report No. AFCRL-TR-
75-0410, 1975.

Raitt, W.J., P.M. Banks, and P.R. Williamson, Electrodynamic tether experiments in the iono-
sphere. In: Active Experiments in space, edited by W.R. Burke, European Space Agency Publ.
ESA SP-195, pp. 361-367, 1983.

Rasmussen, C.E., P.M. Banks, and K.J. Harker, The excitation of plasma waves by a current source
moving in a magnetized plasma: the MHD approximation, J. Geophys. Res. 90, 505, 1985.

Rubinstein, J., and J.G. Laframboise, Upper-bound current to a cylindrical probe in a collisionless
magnetoplasma, Phys. Fluids 21, 1655, 1978.

Rubinstein, J., and J.G. Laframboise, Theory of a spherical probe in a collisionless magnetoplasma,
Phys. Fluids 25, 1174, 1982.

Rubinstein, J., and J.G. Laframboise, Theory of axially symmetric probes in a collisionless mag-
netoplasma: aligned spheroids, finite cylinders, and disks, Phys. Fluids 26, 3624, 1983.

Sanmartin, J.R., Theory of a probe in a strong magnetic field, Phys. Fluids 13, 103, 1970.

Self, S.A., and C.H. Shih, Theory and measurements for ion collection by a spherical probe in a
collisional plasma, Phys. Fluids 11, 1532, 1968.

Shih, C.H., and E. Levi, Determination of the collision parameters by means of Langmuir probes,
ATAA J.9,2417, 1971.

Spitzer, L., Jr., Physics of Fully Tonized Gases, Interscience, New York, 1956.

Stangeby, P.C., The interpretation of plasma probes for fusion experiments. In: Plasma Diagnos-
tics, Vol. 2: Surface Analysis and Interactions, edited by O. Auciello and D.L. Flamm, pp.
157-209, Academic Press, San Diego, 1989.

Stangeby, P.C., and G.M. McCracken, Plasma boundary pheonomena in tokamaks, 1990 (submit-
ted to Nucl. Fusion).

Stenzel, R.L., Instability of the sheath-plasma resonance, Phys. Rev. Lett. 60, 704, 1988.

Stenzel, R.L., and J.M. Urrutia, Whistler wings from moving electrodes in a magnetized laboratory
plasma, Geophys. Res. Lett. 16, 361, 1989.

Szuszczewicz, E.P.; and P.Z. Takacs, Magnetosheath effects on cylmdrlca] Langmuir probes, Phys.
Fluids 22, 2424 1979.

Szuszczewicz, E.P., Controlled electron beam experiments in space and supporting laboratory
experiments: a review, J. Atmos. Terrestrial Phys. 47, 1189, 1985.

Talbot, L., and Y.S. Chou, Langmuir probe response in the transition regime. In: Proc. 6th
Internat. Symposium on Rarefied Gas Dynamics, edited by L. Trilling and H.Y. Wachman,
pp- 1723-1737, Academic Press, New York, 1969.

Tanenbaum, B.S., Plasma Physics, McGraw-Hill, New York, 1967.

Thompson, W.B., Preliminary investigation of the electrodynamics of a conducting tether. In:
Spacecraft Environmental Interactions Technology 1983, edited by C.K. Purvis and C.P. Pike,
NASA Conf. Publ. 2359/Rep. AFGL-TR-85-0018, pp. 649-662, Air Force Geophys. Lab
Hanscorn Air Force Base, Mass., 1985.

35



Thornton, J.A., Comparison of theory and experiment for ion collection by spherical and cylindrical
probes in a collisional plasma, ATAA J. 9, 342, 1971.

Urrutia, J.M., and R.L. Stenzel, Anomalous currents to an electrode in a magnetoplasma, Phys.
Rev. Lett. 57, 715, 1986.

Urrutia, J.M., and R.L. Stenzel, Transport of current by whistler waves, Phys. Rev. Lett. 62,
272, 1989.

Wasserstrom, E., C.H. Su, and R.F. Probstein, Kinetic theory approach to electrostatic probes,
Phys. Fluids 8, 56, 1965.

Whipple, E.C., Jr., The equilibrium electric potential of a body in the upper atmosphere and
in interplanetary space, Ph.D. Thesis, George Washington University/NASA Goddard Space
Flight Center, Greenbelt, Maryland, Report No. X-615-65-296, 1965.

Williamson, P.R., and P.M. Banks, The tethered balloon current generator: A space shuttle teth-
ered subsatellite for plasma studies and power generation, Final Report, NOAA, 1976.

Winckler, J.R., The application of artificial electron beams to magnetospheric research, Rev. Geo-
phys. Space Phys. 18, 659, 1980.

36



(2861 ) osoquieayen pue uLrsuIn Y Jo ¥ sandg
wody poon posday) “A[Ransadser (g uong) s1uean punog-saddn peagours pue PRLETIUEE (TR INYTIAYY
SaAIND 231f1 u1 (ddofs jo sartnupuOINIP) SN, 91 Jo B pue 3o A3 0F soAINY Fuiseassu oy
Jo suotprod oy, ~1{nsas JULLIND-PNINIGIO (9ZGE) JmwuBue] pue YIMUG-10R Ay ST = ¢f 10)
anln u_:vdﬁu_: oYy, "soseIdu| u.\. S¥ SDAIND JO $135 OM] 2801]) Udwm)o L1edsip But seasa A prdes
WY} NON ¢ uol1eg uy PAssiIsip st juaLImd [enioe oy v J050[D s1 DAIRD ) M JO uo sonh o)
‘OSIMINYI0 KIPIIID SHUGLIND BKY) ‘00 «— ¢ Wy Ay U] “A[OANIdsIS ‘$IULLIND UIeqrIpe

pue punoq-raddn-jses) jmasardar soaind Suseordop pue Bmsworsuy sy, ufte = ¢ pGuans
ploy-oneuew ssajuotsudwip Jo sonfes snolea o ‘ry/%pb- = dp renuajod aqoid ssojoisuw
-Ip SnsioA ._u\_?.kw\&iao:vugki\\ = 3 D) opnaed-paaeayre ssojuotsus() 7 andg

d
S 2 e T 3 ! 0
; ~ T ﬁ T ;
© oz © o0z o s g9
{ ! b | !
O ————=—"—
0i= ot
sk — — — L
S
e— — 7
b — n -
- . OH@ ,
| z -2
3
-—
- T €L -1€
AHdHNW
LNV HINHVd ]
L 1 -
L8 g
o=¢
L i | 1 — 1 . i . ]

(2861 sstoquuesjer) pue
uIsuKnY Jo 9 N wos) paonposday [eouvd ut Arepunog o{110q oY 1PN0Y 00 ssop 1 yond
0JOZUOU SR 1110 YT J1 RIY 20U foqosd DIy wod) sep iqao Fuyupuouon HJA] v SEumols os|y
(Al U01129G *ZgGL ‘osloquierje] pue wRisUIGRY 7 HONVG) Sixe z oy Huyoaanouou 10 SpIIs
spqo vped Jof dures oY1 due sadeys dj0q 2y sIXe 2z oY1 hoge Lnoutiihs [euctieor vy
sa[110q IV "oqord a3 yanoy isnf umoys s[110q oy *(p) pue () (&) up ~(g) by ur pauyop s %
pue supes aqoxd ayy s1 % asoym (p) ()] 42 > pue [(2) *(¥)) s < °1 10y ‘spernod sqoid ()
*(2)] aamsndol pre [(q) ‘(¥)] oanvenie so) sopjoq dpuden, jo asueieadde fionor) 1| o

3804d

4 T T T T
d J 0,
t o
"

P

IDN - — —
d, i
(a) I
0,
Amv //t\\//‘\n

37



Figure 3. Comparison of the Rubinstein-Laframboise [1982; solid curves; given by our Egs.
(8) - (10)] and Parker-Murphy [1967; dashed curves; given by our Eq. (7)] canonical-upper-bound
values for dimensionless attracted-particle current 7 as a function of dimensionless probe potential
¥, for various values of the dimensionless magnetic-field strength 3. The curve for § = 0 is the
Mott-Smith and Langmuir (1926) orbit-limited-current result.
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Figure 4(a). Results of L.J. Sonmor (Ph.D). thesis, in preparation), for the trajectory in scaled
coordinates [ = r(lmg, rp/qllzl)'/ﬂ,i = z(|m¢,,r’,/q[}2|)‘/:'] of a charged particle in an attractive
Coulomb electric ficld and wniform magnetic field, given by numerical solution of Fq. (14). Also
shown are the boundaries of allowed motion (“magnetic bottle boundaries™) for the same particle,
implied by conscrvation of cnergy and canonical angular momentum. The # axis (parallel Lo the
magnetic field) has been compressed for purposes of display. The portions of the trajectory which
are onlside the plot houndary are monotonic progressions in # from and to infinity. The initiad
conditions are: 3 = -20, di/dr = VO.17, scaled radius 7, of guiding centre = /1.6, scaled
gyroradius = /2.2, and phase angle = 0.
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Figure 5{a). Dimensionless attracted-particle current i versus dimensionless probe potential ¥y
for a ratio A of probe radins to average ambient aliracted-particle gyroradius of 1. Also displayed
are the adiabatic-limit currents and the smaller of the helical upper-bound and canonical upper-
bound currents, calculated by Rubinstein and Laframboise (1982).
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Figure 5(h). Same as Fig. 5(a), except that g = 3.
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Figure 6{a). Dimensionless attracted-particle current i versus dimensionless probe potential
¥, for a ratio A of probe radius to average ambient attracted-particle gyroradius of 1, plotted for
a Yarger range of probe potentials than in Fig. 5(a). Also displayed is the canonical upper-bound
current due to Rubinstein and Laframboise (1982). The minimum in the exact current at d)P =~ 0.2,
which was evident in Fig. 5(a), is only barely visible here. Here and in Tig. 6(b), numerical errors
in the “exact” resulls at Yarger ), arc noticeable on the scale of these graphs, and we have therefore
marked actual computed valnes for larger ¥, by open circles, and a curve-fit to them by a solid
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Figure 6(b). Dimensionless attracted-particle current i versus dimensionless probe potential

¢, fur a ratio 3 of probe radius to average ambient attracted-particle gyroradius of 3, plotted for
4 . o o . . .

a larger range of probe potentials than in Fig. 5(b). Also displayed is Lhe canonical upper-bound

current due to Rubinstein and Laframboise (1982). The minimum in the exact current at ), = 0.9,

which was cvident in Tig. 5(b), is only barely visible here.
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Figure 7. Computed results of L.J. Sonmor (Ph.D. thesis, in preparation), showing transition
from adiabatic-limit current toward canonical upper-bound current as probe potential i, becomes
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radius. Igp 4 and Jp;c are the adiabatic-limit current and the canonical upper-bound current,
respeclively, both due to Rubinstein and Laframboise (1982). The canonical npper-bound current
is also given by Eqs. (8)—(10). In this Figure, the curves have been smoothed Lo reduce oscillations
caused by numerical errors in individual results.
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Figure 8. General appearance of representative collisionless ion and electron orbits far from
the probe but not beyond the positive-polential disturbance (Sanmartin, 1970) which extends along
the probe’s magnetic shadow. Diagram is schematic only since this disturbance can extend very
far in the z and —z directions.
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Figure 9. Gencral appearance of potentials as a function of z for 7 = 0 under conditions
analyzed by Sanmartin (1970) and described in Section 3.
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" Fignre 10. Reproduced from Fig. | of Sanmartin (1970), with notation changed, showing his
results for clectron current collection by a spherical probe in a magnetoplasma for which 7; = T, and
coutaining singly-charged jons. Other assumptions made in Sanmartin’s treatiment are described
in Section J.
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Figure 12, Reproduced from Fig. 3 of Linson (1970), with some notation changed, showing a
comiparison of current-versus-probe-voltage predictions from three models discussed by him. Their
asymptotic behaviour for large probe voltage 8, is shown. In this Figure, I, equals one-half the
random current {g defined in our Section 2. The dot-dash curve represents lhc Langmuir-Blodgett
(1924) spherical space-charge-limited current value. For constant potential, this current scales
approximately as I,,_‘/.I. The normalized voltage ¢* defined following our Eq. (19) is the same
as the quantity ¢, defined in Linson’s Eq. (8), and has been taken to be 178 volis, which is
cquivalent to Br, = 0.45Gm. A change in the constant Q displaces the solid curve horizontally by
the appropriate factor.
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Figure 13. General appearance of open magnetic bottles corresponding to £ > 0 and closed
ones corresponding Lo £ < 0, all for the same value of the canonical angubar momentum component
J about the z axis, defined in Eq. (2). Note the “pointedness™ of bottles corresponding to slightly
negative vafues of E.
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Figure 1.1, Nlustration of ow trapped orbits provide an additional current pathway to a probe.
Whetlier trapped orbits exist depends on electric and magnetic fields present; if B is negligible, E
must vary with r less steeply than r=3 for Lrapped orbits to exist (Section 5). The orbit classification
shown is that due to Parker (1973, 1975); sce preceding paper by E.C. Whipple in these Proceedings.
In a magnetic field, the shapes of these orbits can be much more complicated than those shown.
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Figure 15. Development of “bulges” and disjoint “bubble” regions in magnetic “bottles”, as
described in Section 5.
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Figure 17. Reproduced from Figure 2 of Thompson (1985), showing the structure of the
disturbed region around a large sphere in a drifting magnetoplasma. '
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