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Abstract

In the current study, a method based on Fourier analysis is

developed to analyze the force and moment data obtained in large

amplitude forced oscillation tests at high angles of attack. The aerodynam-

ic models for normal force, lift, drag and pitching moment coefficients are

built up from a set of aerodynamic responses to harmonic motions at

different frequencies. Based on the aerodynamic models of harmonic data,

the indicial responses are formed. The final expressions for the models

involve time integrals of the indicial type advocated by Tobak and Schiff.

Results from linear two- and three- dimensional unsteady aerodynamic

theories as well as test data for a 70-deg delta wing are used to verify the

models. It is shown that the present modeling method is accurate in

producing the aerodynamic responses to harmonic motions and the ramp

type motions. The model also produces correct trend for a 70-deg delta

wing in harmonic motion with different mean angles-of-attack. However,

the current model cannot be used to extrapolate data to higher angles-of-

attack than that of the harmonic motions which form the aerodynamic

model. For linear ramp motions, a special method is used to calculat the

corresponding frequency and phase angle at a given time. The calculated

results from modeling show higher lift peak for linear ramp motion than for



harmonic ramp motion. The current model also shows resonably good

results for the lift responses at different mean angles of attack.
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Nomenclature

Bj

Cave

Cj

c_

CD

CL

CL_

CLq

Cm

CN

d

E_

i

J

k

M

coefficient of cosine Fourier series

coefficient of sine Fourier series

the average value of the constant terms in the harmonic

oscillation responses

reference values

2-D lift coefficient

3-D drag coefficient

3-D lift coefficient

variation of lift coefficient with respect to angle of attack

variation of lift coefficient with respect to pitch rate

3-D pitching moment coefficient

3-D normal force coefficient

a constant

constants associated with the virtual mass effect

constants in amplitude function to be determined

imaginary part of a complex number

index

reduced frequency (=o_/v_)

Mach number
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n

N

PDj

t

t'

UQVLM

Greek:

O_

c_

am

Q

e

index for reduced frequency, also index for the coefficient

in Pad_ approximants

the number of frequency

Pad_ approximants

coefficients for Pad_ approximants

time

nondimensional time (=tv_/Q)

unsteady quasi-vortex lattice method program

free stream velocity

angle of attack (=% coskt')

defined as c_+a

amplitude of angle of attack

mean angle of attack

time rate of change in angle of attack

time rate of change in c_

reference length

dummy time integration variable

running variable in time

defined as O=kt'

phase angle
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Chapter 1

Introduction

Due to the requirement of increased performance and

maneuverability, the flight envelope of a modern fighter is frequently

extended to the high angle-of-attack regime. Vehicles maneuvering in this

regime are subjected to nonlinear aerodynamic loads. The nonlinearities

are due mainly to three-dimensional separated flow and concentrated vortex

flow that occur at large angles of attack. Accurate prediction of these

nonlinear airloads is of great importance in the analysis of a vehicle's flight

motion and in the design of its flight control system. As Tobak and Schiff

mentioned in ref. 1, the main difficulty in determining the relationship

between the instantaneous aerodynamic load on a maneuvering vehicle and

the motion variables is that this relationship is determined not only by the

instantaneous values of motion variables but also by all of the prior states

of the motion up to the current state. Due to advanced computer

techniques, one straightforward way is to solve the flow-field problem and

the dynamic equation together. For example, a CFD method can be used

to solve the Navier-Stokes equations governing the separated flow field.

Then the calculated forces and moments are used in the dynamic equations

governing the vehicle's motion to calculate motion variables. The motion



variables will change the vehicle's attitude, and thus the forces and

moments. Results of repeatedly calculating these coupled equations would

be the complete time histories of the aerodynamic response and of the

vehicle's motion. Although solving these coupled equations is the exact way

to account for the time-history effects in predicting the aerodynamic

response to arbitrary maneuvers, this is obviously a very costly approach.

In particular, at high angles of attack, the aerodynamic loads depend

nonlinearly on the motion variables. Under such conditions, even if the

vehicles start from closely similar initial conditions, they can experience

widely varying motion histories. Thus, a satisfactory evaluation of the

performance envelope of the aircraft may require a large number of coupled

computations, one for each change in initial conditions. Further, since the

motion and the aerodynamic response are linked together in this approach,

there can be no reutilization of the previously obtained aerodynamic

reactions.

To avoid the disadvantage of solving the coupled flow- field equations

and aircraft's motion equations, an alternate approach is to use a

mathematical modeling to describe the steady and unsteady aerodynamics

for the aircraft's equations of motion. Ideally, with a mathematical model,

an evaluation of the aerodynamic terms specified by the model would be

required only once. The specified model can be reutilized to solve the
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aircraft's equations of motion over a range of motion variables and flight

conditions.

In the classical linear potential flow theory (refs. 2 and 3),

researchers in the field of aeroelasticity used the Fourier transform to

relate the aerodynamic response of step change in angle of attack of a wing

to that of harmonic oscillatory motions. The transient aerodynamic

reaction to a step change is termed the "indicial function" and has been

calculated for several classes of isoIated wings (refs. 2-5). By a suitable

superposition (ref. 6) of these results, the aerodynamic forces and moments

induced in any maneuvers can be studied (refs. 2 and 3). Tobak has

applied the indicial function concept to analyze the motions of wings and

wing-tail combinations (ref. 7). Later, based on a consideration of function,

Tobak and his colleagues (refs. I and 8) have extended the concept of

indicial function into the nonlinear aerodynamic regimes. The simplest

nonlinear aerodynamic model proposed in ref. 1 has been applied by several

authors (refs. 9-13) to perform the analysis. However, that simplest model

is accurate only to the first order of frequency. It needs to be improved for

a more general response.

Aerodynamic forces and moments acting on a rapidly maneuvering

aircraft are, in general, nonlinear functions of motion variables, their time

rate of change, and the history of maneuvering. How these unsteady

aerodynamic forces and moments may be represented becomes uncertain,
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in particular at high angles of attack. If the response is measured by wind-

tunnel dynamic testing, questions arise as to how the measured time-

history data can be analyzed and expressed in a form suitable for flight

dynamic simulation. For a certain type of nonlinearities produced in a test

with small-amplitude oscillation, the analysis has been accomplished by

separating the time-history data into in-phase and out-phase components

(ref. 14). When large-amplitude forced oscillations are employed in the

wind-tunnel testing at a large mean angle of attack, the aerodynamic

phenomena may involve dynamic stall and/or strong vortex flow, with or

without vortex breakdown.

the aerodynamic response

In this case, higher harmonic components in

are expected to exist (ref. 15) and the

phenomenon of aerodynamic lag may be important. Therefore, a more

general modeling technique is needed.

In this research, a numerical method will be developed to analyze the

nonlinear and time-dependent aerodynamic response to establish the

generalized indicial function in terms of motion variables and their time

rates of change.
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Chapter 2

Mathematical Development

2.1 Aerodynamic Modeling

2.1.1 Historical Review

For the conventional airplanes, linear relationships are used to

represent the aerodynamic responses to motion variables (ref. 16). For

example, the total lift for an airplane in symmetric steady flight can be

written as

CL=CL o+CL a_b
(1)

where ok_b is the angle of attack measured with respect to wing-body mean

aerodynamic chord and CLo is the lii_ when _b=0. CL is the lift-curve

slope of the whole configuration and a is the angle of attack of the zero lift

line of the airplane as shown in figure 1. This relationship is good only for

airplanes flying below stalled a. When airplanes fly at high angles of

attack, as most modern fighters do, the relationships between the

aerodynamic responses and motion variables become nonlinear and are

much more difficult to describe. To deal with the aerodynamic responses

for helicopters during dynamic stall, Wayne (ref. 17) developed an empirical



model to predict the dynamic stalllift.In flightsimulation, two common

ways are used to treathigh-angle-ofattack aerodynamics. One isusing the

tabulated data (ref.18) and the other is to use a locallinearized model

which form a piecewise continuous fitof the nonlinear response (ref.19).

Based on the functionalanalysis,Tobak and Schiff(ref.1)is able to

develop a fundamental formulation of aerodynamic response for arbitrary

motion. Their methodology is briefly reviewed in the following. By

assuming that small step changes of a and qQ/vooat time _,the incremental

response AC L at time t is written as

lira ACL(t,_)

aa-0 Aa - CL [a(_),q(_);t, _]

lira ACL(t,_)

A(q_/v,)-0 A (q_/v=)- CL [a(_),q(_);t,_]

(2)

where _ is a running variable in time over the interval zero to x(see fig. 2),

is a reference length and voo is the free stream velocity. The incremental

response aCL due to a step change is called the indicial response. If the

variation of variables a and q over the range 0 to t is replaced by the

summation of many step changes as shown in figure 3, the summation of

incremental responses yields an integral form for CL at time t as
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LteL(t) "- eL(O) ÷ CLs[a(_), q(_); t, T] da

(3)

for dqd_÷ -- eL [a(_), q(_); t, _']
V_

To have practical applications, this functional integral form needs to

be simplified. By assuming that a and q are analytical functions in a

neighborhood of _=_, variables a and q can be expanded by their Taylor

series at _=_. The indicial responses Ca , for example can be expressed
Gt

as

CL [rr(_), q(_); t, *] = CL[t , _; a('O, /t('O," ........,

q(t), q(t),- ........]
(4)

By further assuming that only the first two coefficients are needed

in Taylor expansion of indicial responses, the integral form of eq. (3)

becomes

CL(t)=CL(0)+f0 [t,t; a (t)Ji (t),qC_),dl(t)]-_ta dt

÷ fotCL
(5)

Eq. (5) is applicable to the study of rapidly varying maneuvers, where

hysteresis phenomena are known to exist. However, it is difficult to

implement eq. (5). By introducing the assumption of no hysteresis effect



and a slowly varying motion, Tobak and Schiff neglected the dependence of

the indicial response on & and _l. By further assuming that the indicial

response is a function of elapsed time t-z instead of t and z separately, a

much simplified expression of eq. (3) can be written as

CT (t)=C_ (0)+fo [t-_;a(_),q(_)l_) d_

+---_f 'C L [t-z;aC_),q(,)] dq.Cz) dz
V JO q d'_

(6)

Although the form of eq. (6) represents a great simplification over that of

eq. (3), the equation still includes the full linear form as a special case.

Jenkins (ref. 20) applied a local Taylor expansion to indicial response

CL and used that Taylor expansion form to fit numerical indicial responses

calculated from a program called NLWAKE. By substituting CL into eq.
c_

(6), Jenkins was able to predict the oscillating motion for airfoil at low

frequencies.

2.1.2 Current Development

In the current research, the hysteresis effect is included and the

assumption of low frequencies will be removed. Therefore, a form between

eq. (5) and eq. (6) is written as
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da(Z)dz
CL(t)=CLCO)+fotCL.[t-_r; a(_), d_('¢), qCz), q(z)] d_

+!ftCL [t-_; a(_), _(_), q(_), q(_)]

i

v=JO q d_

(7)

In wind-tunnel testing, q is the same as 6. Since the method

developed in this study will be used to analyze wind tunnel data, awill be

used instead of q in the following investigation and the investigation will

be focused on lift force. The effect of i2(i.e, dl ) is included in the virtual

mass effect (noncirculatory response). As explained in reference 2 for 2-D

incompressible flow, the noncirculatory response is identical in every

harmonic motion and therefore, is indepedent of the time history of motion.

The same concept is adopted in the present study. Then eq. (7) is rewritten

as

CL(t)=CL(O)+ noncirculatory response

+ftCL,[t-_;Jo a(_), &(_)]
da(_)d_

d_

+!ftCL [t-z; a(q:), &(z)] d/(('O d. _

v. O .

(8)

The main objective in the present investigation is to find a suitable form for

the integrand of eq. (8). Then the time response CL(t) can be calculated

through the integration by substituting the suitable form of C L and CL°.
{l
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In the linear theory (refs. 2 and 3), the aerodynamic response could

be separated into a product of an amplitude function and a phase function

in harmonic motion. The amplitude function depends on motion variables

and their time rate of change. On the other hand, the phase function is a

function of frequency and accounts for any phase lag between the response

and the excitation. In a two-dimensional linear theory, the phase function

is given by Theodorsen's circulation function (refs. 2 and 3). After response

has been obtained at different frequencies with the same amplitude in

harmonic oscillation, the phase function can be determined numerically.

After use of reciprocal relations (ref. 21), the indicial function can be

defined by numerical means. This approach has been used for numerical

determination of indicial lii_ for plunging airfoil in ref. 5 and for plunging

wings in re£ 22.

The method for the linear theory will be generalized as follows.

Instead of assuming that the aerodynamic response is a product of an

amplitude function and a phase function as it is in the linear theory, it is

taken to be a sum of the products of amplitude functions and phase

functions in harmonic motion; i.e.,

CL=Co+E(amplitude function)j
.I

• (phase function)j

10



In the linear theory, j equals 1 in the equation. To determine what

the forms of the amplitude functions and the phase functions are, the

aerodynamic response due to harmonic oscillation is assumed to be of the

form

Cv. = Fo +F(a,ct )a + G(a,a )a (9)

and it is defined that

al = _ + o_ cos(kt')

a = ao cos(kt')

ct = (-%k) sin(kt')

where k is the reduced frequency, t' is the nondimensionalized time, c_, is

the mean angle of attack and ao is the amplitude of angle of attack. To find

the constant F o and functions F and G as functions of co(t) and & (t), a

functional analysis is needed. However, the following method, "successive

Fourier analysis," represents a practical way to accomplish the task. The

first step is to Fourier-analyze the response over one period. For simplicity,

a Fourier series with three terms will be used to explain the procedure of

the modeling. Then

11



CL = -%o+ A_ cos0 + A2 cos20 + As cos30

+ B_ sin0 + B 2 sin20 + B s sin30 (10)

The second step is to split the result into the form ofeq. (9) with F(a,& )

and G(a,& ) being Fourier-analyzed again. The result after "successive

Fourier Analysis" becomes

Ct. = Ao + { CC[0,0] + CC[1,0]a + CC[2,0]a 2

+ DC[0,1]& + DC[1,1]a& + CC[0,2]& 2 }a

+ { CS[0,0] + CS[1,0]a + CS[2,0]a 2

+ DS[0,1]a + DS[1,1]aa + CS[0,2]& 2 }a (11)

The detailed procedure of "successive Fourier analysis" is shown in

Appendix 1. By collecting the same order terms of a, & and their products

together, the result of CL becomes

CL = Ao + { CC[0,0]a + CS[0,0]_ }

+ { CC[1,0]a 2 + DC[0,1]c_ci

+ DS[0,1] ci 2 }

+ { CC[2,0]a 3 + DC[1,1]a2ci

+ CC[0,2]aa 2+ CS[2,0]a2ci

+ DS[1,1]aci 2 + CS[0,2]_ _ }

+ CS[1,0]aci

(12)
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Equation (12) is a useful form for determining stability derivatives based

on forced oscillation tests. However, it can be seen that for each different

frequency k with the same amplitude, there will be different response CL

and different coefficients CC, DC, CS and DS. To have practical

applications, a general representation of these coefficients as a function of

reduced frequency at a constant amplitude is needed. For applications to

a maneuvering aircraft, the following representation of aerodynamic

response based on the generalized indicial lift concept is more convenient.

It is recalled that in the classical airfoil theory the circulatory lift is

written as the product of Theodorsen's circulation function (representing

the phase lag) and the quasi-steady lift (representing the amplitude

function). In the present nonlinear theory, the same form will also be

adopted. From the classical potential theory (ref. 23), it has been found

that Pad_ approximants provide an accurate approximation of the

theoretical phase function. Therefore, Pad_ approximants will be used for

the present model as phase functions to represent coefficients CC, DC, CS

and DS. Question arises as to what the amplitude function would be.

Since the quasi-steady lift (lift without lag) represents the amplitude

function, one way to find the amplitude function is to extrapolate

coefficients CC, CS, DC and DS from very small k values to k=0. However,

difficulty may arise in extrapolation as illustrated in the following.

13



From the classical airfoil theory (ref. 2), the lift coefficient for a flat

plate oscillating with one radian amplitude and with respect to midchord

in incompressible flow can be written in complex form as

c_ = 2_ [0.5 (t + C(k) (a + 0.5 (_)] = c_d kt

and

u

c_ = 2x [0.5 ik + C(k) (1 + 0.5 ik)]

= 2_ [0.5 ik + (F(k) + iG(k) ) (1 + 0.5 ik)] (13)

where the first term inside the brackets is the virtual mass effect. C(k) in

the second term is the Theodorsen's function for the phase lag and the term

(1 + 0.5 ik) represents the amplitude function or the quasi-steady lift.

Therefore, the response cQ can be calculated by taking C(k) value from a

table (ref. 24) and substituting k and C(k) into eq. (13). Suppose the

responses are known for each k value but not the amplitude function. Then

the amplitude function needs to be extrapolated from small k values. Eq.

(13) is rewritten for the unknown amplitude function as

i

c_ = 2n [0.5 ik + C(k) (1 + H1 ik)] (14)

14



Separating eq. (14) into the real and imaginary parts, it is obtained as

I

C_R = 2_ (F(k) - H_ G(k) k) (15a)

and

c_i = 27:(0.5 k + G(k) + H_ F(k) k) (15b)

For k=0.01, the exact values of the phase function (ref. 24) are

F(k)=0.9824215 and G(k)=-0.0456521. The response cf is calculated from

a very accurate 2-D UQVLM program and cQi=-0.2245678. Then, H_ is

obtained by dividing the small difference

c_2_ - (0.5k + G) = 0.0049110

by a small value of k and H1=0.49989. In application to a general problem,

G, F and H1 are all unknowns. Therefore, numerical errors will be

exaggerated in predicting H_ and the result is unpredictable. For nonlinear

cases, the phase functions are also unknowns and need to be solved.

Therefore, a small error in assuming the phase function will make the

prediction of quasi-steady response inaccurate. The numerical solution in

a direct optimization method would be difficult to converge as has been

15



experienced. To avoid this kind of difficulty, a form for the amplitude

function is modeled in the present research and to fit the aerodynamic

responses at given k values by a one dimensional gradient method. For

this purpose, eq. (9) (or the experimental oscillatory results) is rewritten in

a complex form, as follows:

eL = Ao + (A1 - iB1) ei_t' + (A2

+ (A3 - iB 3) ei3kt'

- iB2) e12kt'

(16)

It should be kept in mind that only the real part of the response has

a physical meaning. The reason to put in the complex form is to benefit

from the great mathematical convenience of the e ikt' notation. If ix is

rewritten as

iX -- ix0 eikt'

and

= (iaok) e ikt'

16



then eqs. (12) and (16) and the classical airfoil theory suggest that the

response could be put in the following form involving the products of

amplitude functions and phase functions as

CL " C0t )

+ Ena + F_la + C l • (I-Ina + H:I&) • (1 - PD 1)

+ El2a 2 + E22_2 + C 2 * (I'I12 a2 + H22a& + H32 a2)

• (1 - PD2)

+ E13_ 3 + E23{]3 + C 3 * (HI3 _3 + H23a2{_ + H33a_ 2 + H43 _3)

• (1 - PD3)

(17)

where PD is a Pad4 approximant with order 2 and is defined as

PDj = Plj (ik)2 + P2j (ik)

P3j (ik) 2 + (ik) + P4j

E u a j + E21 t_j etc. are the virtual-mass effect and account for the

noncirculatory lif_ (ref. 2). The variables &j and _j are defined as

5_j = ik ao j e ijkt'

and

17



_ = -k2 _J e Ukt'

to be consistent with higher order terms. When j= 1 in the above equations,

1 ---a and a 1 = tt. In addition, H2_, H22, H_, etc., are related to the pitch-

rate effect. It should be noted that those terms inside the parentheses

following C1, C2, C3, such as (Hl_a + H21d_ ), represent the quasi-steady

response and (1 PDj) represents the unsteady aerodynamic lag in

response. Therefore, the present assumed form for aerodynamic modeling

encompasses the classical linear theory.

Cj are the reference values used to normalize the lift given by _. - i

Bj in the least squared-error method, j is the index consistent with the

exponent of the exponential term in eq. (16). For example if the j's term in

eq. (17) represents the coefficient of e ikt', then j is 1. If the j's term in eq.

(17) represents the coefficient of e i2kt' then j is 2, etc. The first term, Co(k),

in eq. (17) is a constant term, supposedly a function of frequency. From

available experimental data (ref. 25), it is found that an averaged constant

can be used to represent Co(k) term as shown in Figure 4 for a delta wing.

The unknown coefficients Pu, P_, Psi and P_ are calculated from the least

squared-error method. El, E21, Hu, H_2, etc., will be obtained separately

by minimizing the sum of squares of errors. This is equivalent to a two-

level optimization method to determine the unknowns in eq. (17). That is,

E, H, etc., are assumed first. Then Pu, etc., are determined by minimizing

18



the sum of squared errors. The values of Ell, H n, etc., are varied next so

that the sum of squared errors is minimized. It was found that this

approach is more effective in determining a global minimum solution for

the unknowns than a straightforward optimization (one level) method

because of nonlinearity in the unknowns in the optimization problem. It

should be noted that in the literature the phase function has been typically

determined by the response to plunging motions. Therefore, those terms

associated with & in eq. (17) do not appear. This would very much simplify

the mathematics of determining the Padd approximants. The details of the

present method are discussed in the following.

2.2 Least-Square Method

By choosing proper values of E:I, H n, H:2, etc., in eq. (17), the

corresponding _ - i Bj term in eq. (16) is then divided by the amplitude

function. The result will appear as

vj + iWj = I - Ai - iBj - Ezjik- _i (-k_)
(amplitudefunction)j

_ (ik)+ (ik)

(18)

If both sides of eq. (18) are multiplied by the denominator of the Padd

approximant and separated into real and imaginary parts, then

19



Re - P_k"- PsjVjk_+ P_ Vj- Wj k = 0 (19a)

and

Im - P_k + PsjWjk 2 - P4jWj - Vjk = 0 (19b)

The sum of squared errors is defined as

Err ',. E Re(kt) 2 + E IIn(kl) 2 (20)

By equating the first derivatives of squared errors (eq. 20) with respect to

variables P_, Pu, P3j and P_ to zero, the unknown coefficients P_, P2j, P3j

and P4j can be determined by

_' o -xvg rvg

-rv,_' rw,_' rC#k:+w_')-SCc,_+w_%5

rv,_' -_¢¢,__:C#k,_+w,5 rcc_'+wb

pillrwg]

P3j 0

p,j. 0 1

(21)

where i varies over the range of input frequencies, and the mode subscript

j on V and W has been omitted.
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2.3 Gradient Method

After the unknown coefficients P_, P_, P3j and P_ have been found,

a one-dimensional gradient method is used to find E and H values which

will make the sum of the squared errors minimum. The E or H value is

perturbed first by a small amount AE or AH to find the gradient of the sum

of squared errors. If the gradient tends to reduce the error, then the E or

H value is perturbed further until several iterations has been reached (it

is set to be 5 iterations in the current program). After that, the same

procedure is applied to other E or H. Then the whole procedure is repeated

again until several iterations has been reached (it is set to be 10 in the

current program).

Finally, the response of C L is written as

C L = Care

+ Ella ÷ F-_ta + C l * ( Hlt_ + H2ta) * (1 - PD1)

+ El2a 2 + E22¢]2 + C2 * ( H12 a2 + H22aa + H32_; 2) • (1 - PD2)

+ EI3_ 3 + E23_ 3

+ C 3 • ( Hx3 a3 + I-I23a2& + I-I33aa 2 + H43_ 3) • (1 - PD3)

(22)

It is easily seen that each term in the above equation is a product of an

amplitude function and a phase function. The procedure to put oscillating

response data into the form of eq. (22) is summarized in the next section.
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2.4 Summary of Numerical Procedure

Step 1. Unsteady-response analysis:

Use Fourier analysis to analyze the harmonic motion responses

for different frequencies over one period. For each frequency, the responses

should be in the same form as in eq. (16).

Step 2. Constant-term analysis:

From step 1, if constant terms appear in the Fourier analysis

then Cave is calculated from each constant term due to different frequencies

as

C&vo --

N

E Ao(k _) (24)
I1"1

N

where N is the number of frequencies used in step 2 and Ao(k n) are the

constant terms due to different frequencies 1% in Fourier analysis.

Step 3. Amplitude-phase identification:

In this step, the coefficients _ and Bj calculated from step 1 are put

into the form of a product of amplitude functions and phase functions as in

eq. (22). The procedure is as follows:

3-a Set the reference values Cj
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3-b Set the initial guess for E or H values.

3-c Use the least-square method to find unknown coefficients

P_, P_, P3j and P_.

3-d Use the gradient method to find better E or H values.

Repeat steps 3-b to 3-d until the sum of square errors reached

minimum or the iteration limit is reached.

Although three-term Fourier series are used in the above, the

procedure is applicable to any number of Fourier terms.

2.5 Indicial Formulation

In linear theory, the reciprocal relations (or Fourier summation) (re£

21) has been used to calculate the indicial response. However, in nonlinear

theory those relations can not be applied. As Tobak (ref. 7) mentioned in

his paper, the aerodynamic response due to a step change should reach

steady-state value asymptotically at subsonic speeds. In linear theory,

these asymptotic relations are represented by exponential functions (refs.

2 and 5), and these exponential functions are calculated through the phase

function. Therefore, the phase function in the current nonlinear modeling

will be converted into exponential function in time domain but the

amplitude function is kept unchanged. If eq. (21) is rewritten for m-terms

Fourier series as
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C L = C=v,

+ E11_ + E21_+ C 1 • ('HIIOt + H21Gt ) • (1 - PDI)

+ E12_t2 + E22_ 2 + C 2 * (I-It2¢ 2 + I-I22a& ÷ H32 &2) * (1-PD2)

+ Ex3{i 3 + E23_ 3 + C 3 * (H13t't 3 + I"L23¢E2_ + _33a_{ 2 + H43{x 3)

, (l_PD3) (25)

_- ******o°****°°.I.,.°.

-.aM 4.

m

4. E Elj_ j 4. E2j{_ j
J-I

+ (amplitude function)j • (phase fulaCtiOla)j

where the phase functions represented by the Pad_ approximants are

defined as

1 - Plj (ik) 2 + P2j (ik)

P3j(ik)2 ÷ ik + P4j

ik alj ik a2j
= I +

• +a3j ik + a4j

i(jk) alj i(jk) %
= I +

i(jk) + j%j i(jk) + ja4j

(26)

By applying the Fourier integral to the phase function, the corresponding

expression in time domain is calculated as
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1

2_ i(jk) f211
(ik)2÷ P2J(ik).]e 'a (jk}

ik. P,j

=1 - at] e -_¢ - a2j e -_¢

(27)

the detailedderivationisin appendix B. Then, the indicialresponse CL for

the circulatoryliftis written as

* e -a31tl - -C 1 ,(Hna + _dc) (1 - all a21 e "/)

+ C 2 * (H12 a2 + _I.22aa + H32 _2)

e-_2t_ e-=4'2¢)* (I - s12 - a22
_-.°°°.,°° ....

In

E (amplitudefunction)j
j-I

e-'_t' e-'_¢)• (1 - alj - a2j

(28)

In the current research, five terms Fourier series is used to analyze

the experimental data. Therefore, the response can be written as

C 1 • (Hna + H21_) * (1 - expl)

+ C 2 * (H12cc 2 + H22o_c2 + Ha2a 2) • (1 - exp2)

+ C 3 * (H13c_ s + H23(_2dt + Hzz(zCL 2 ÷ H_a 3) • (1-exp3)

+ C4 * (H_4 a4 + H24asa + H_a2a 2 + H_aa 3 + Hs4 a4)

• (1 - exp4)

+ C a • (Hm(z 5 + H_o_4(_ + Hsso_3a 2 + H4sa2c_ 3 + Hssa_z 4

+ Hesa s) • (1 - exps)

(29)

25



By differentiating with a and a, (CLi_._) a, (CLindicial)(_ are obtained

as follows:

(CL_).ffiC I*H n* (1-exp 1)

+ C 2 * (2H12a + I-I22a ) * (1 - exp 2)

+ C 3 * (3H13 a2 + 2I'I23a_ + I-I33(i2)

• (1 - exp.)

+ C 4 * (4H14a 3 + 3H24a2a + 2H34aa 2 + H_a 3)

• (1 - exp4)

+ C 5 * (SHIs(X 4 + 4H25a3_ + 3H35a2_ 2 + 2H45a_ 3 + H55 &4)

• (1 - exp 5)

(30)

(CL_j) 4 - C 1 * H21 * (1 - expx)

+ C 2 * (H22a + 2H32_ ) * (1 - exp2)

+ C 3 * (I-I23cf 2 + 2I-I33(X& + 3H43 &2) * (1 - exP3)

+ C 4 * (H24tz 3 + 2H340_2_ + 3H44a_2+ 4H_¢_ 3)

• (1 - exP4 )

+ C 5 * (H25c_ 4 + 2I-I35a3_ + 3Htsa2_ 2 + 4H55a_ 3 + 5H65& 5)

• (1 - exp_

(31)

By substituding these derivatives into equation (8), the integrand can

be determined. The initial condition CL(0) is calculated by setting the
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variable _ to zero in the indicial response CLi=u=.. Since the noncirculatory

lift is identical in every harmonic motion, it must be excluded from the

integral. Then the generalized response for arbitrary motion is obtained by

substituted the noncirculatory lift and the derivatives of the indicial

response to eq. (8). Therefore, the final form of time integration for

arbitrary motion is written as

C__(t_) = CL,._,.,[ t_-=, ¢(=), a(=)l_o

m

+ C.v e + _ (EIj&j + E2j_j)
j=l

j-I 0 da * (I-alje-%J(t'-')-a2je-aq(t'-'}_

da(-O d'_
d-_

+ "_-,,a_fo -,-g¢-'o -,,,_(t'-.o.t' d (amplitude funcdon)l *(1-alj¢ -aT-J¢ )
- d(i

(32)

2.6 Arbitrary. motions

In the current research, the indicial responses are derived from data

of harmonic motions. Therefore, to have a correct representation, an

arbitrary motion must be represented locally by a cosine function. Since

the values of al and d¢ are usually given at a certain time, they can be

described by the cosine and sine function as
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a, = am + % cos(_ + kt')= a_ +

= -o_k sin(_ + kt')

(33)

By defining a mean angle-of-attack(Q) and amplitude(%), the above

equations can be rewritten as

F 1 = a - ao cos(d) + kt') = 0

F2=a +aoksin(d)+kt')=0

(34)

the unknowns, the reduced frequency k and phase function angle d) at a

given time t', can be solved by Newton's method(see Appendix C for a

detailed derivation)
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Chapter 3

Results and Discussion

3.1 Linear Results

Because appropriate high-alpha experimental data to apply the

present modeling method are limited, the present method will first be

tested with linear theoretical results. Several cases in the two-dimensional

and three-dimensional linear flow have been studied to verify the proposed

method of aerodynamic modeling.

3.1.1 Two-Dimensional Flow

The first case studied is a 2-D flat plate oscillating in the

incompressible flow. The amplitude is 57.3 degree (one radian) in angle of

attack for the airfoil. Therefore it oscillates from 57.3 degree of angle of

attack to -57.3 degree of angle of attack then back to 57.3 degree of angle

of attack for one cycle with respect to midchord, i.e.

cz1 = 0.0 + 1.0 cos(kt') (in radian)

The steady lift is already known from the linear theory (ref. 2) as

2xa, and the oscillating complex lift is taken from a 2-D unsteady QVLM
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program (ref. 26) as input data for the current model and for comparison.

Through numerical experimentation, it is found that only six frequencies

are needed to have accurate results. Through the modeling procedure as

summarized in section 2.4, the lift can be written as

cI=E n_ +E2:a +2x(H:la+H_:a)(1.0-PD 1)

and the values of coefficients Ell, E21, Hll, H21 and P::(for pad_ approximant

PD:) are listed in Table 1. The results for the lift coefficients are plotted

in Figure 5 for different numbers of frequencies used. Compared with the

aerodynamic responses by the 2-D UQVLM program, the numerical results

from modeling show excellent agreement.

Two Mach numbers, 0.2 and 0.4, are chosen in the 2-D compressible

flow to verify the current model. A two-dimensional unsteady QVLM (ref.

26) program is again used to calculate the complex lift as input data for the

current model and for comparison. The same frequencies as in the

incompressible flow are used as input also. The results for coefficients Ell,

E21, Hll, H21 and Pil are listed in Table 1. The aerodynamic responses c_

calculated by the model are plotted in Figures 6 and 7 to compare the

results from 2-D unsteady QVLM. These figures show that the numerical

results by modeling are very accurate.
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3.1.2 Three-Dimensional Flow

The same Mach numbers (includes 0) in the 2-D flow are used in 3-D

attached flow to verify the current model. The geometry is a 70 degree

delta wing which oscillate from zero degree angle of attack to twenty degree

angle of attack with respect to mid root chord, i.e.

al = 0.1745329 + 0.1745329 cos kt' (in radian)

This means that the mean angle of attack is ten degree (0.1745329

radian) and the amplitude of the oscillation is ten degree (0.1745329

radian). The input aerodynamic responses are calculated from a 3-D

unsteady QVLM program (ref. 27). In the program, the total lift is the

sum of steady lift at the mean angle-of-attack plus unsteady lift. Since the

steady lift is the same for every term, only the unsteady lift is used in the

modeling and for comparison. Through numerical experimentation, it is

found that the responses at low frequencies do not change significantly,

which results in inaccurate modeling. To have accurate approximation,

high frequency responses are needed. Seven reduced frequencies (k = 0.01,

0.1, 0.2, 0.6, 1.0, 2.0, 2.5) are used as input data in the 3-D attached flow

cases. The results for the coefficients of the modeling are listed in Table 1.

The responses CL from modeling are plotted in Figures 8 to 10 to compare
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with the results from 3-D unsteady QVLM program.

show very good agreement.

All of these figures

3.2 Nonlinear Results

The experimental data (ref. 25) for a 70-degree delta wing in pitching

oscillation is used to validate the current aerodynamic model. The angle

of attack which describes the pitching motion with respect to the 57% root

chord is given as

a 1 = 27.5 + 27.5 cos(180 + kt') (in degree)

which means the delta wing oscillates from zero degree angle of attack to

55-degree angle of attack then back to zero degree angle of attack for one

cycle. The reduced frequency k is nondimensionalized based on wing's root

chord and the pitching moment is measured with respect to quarter root

chord. Five sets of data corresponding to five different frequencies are

available and they will be used as the input data to calculate the

coefficients for the current aerodynamic model. Five terms in the Fourier

series are employed for the calculation. The calculated coefficients for the

current aerodynamic model are listed in Table 2 to Table 5 for CL, CD, Cm

and CN.

32



The lift coefficients obtained from the aerodynamic model(eq. 29) are

compared with the original test data in Fig. 11 with good agreement.

Experessions for CD, Cm and CN are obtained with the same procedures as

those used for C L. The modeled harmonic results are compared with data

in Figs. 12 to 14 respectively. Again, the good agreement indicates that the

present aerodynamic model is accurate in representing the experimental

harmonic data.

3.2.1 Indicial Formulation

Note that eq. (8) is valid for arbitrary motion.

validity in the nonlinear theory, extensive study has

Because the indicial responses consist of oscillatory

To check its range of

been conducted.

responses, two

oscillatory lift cases in the last section are used to verify the indicial

integration first. That is, by assuming oscillatory motion in eq. (8), the

time-integrated lift response should agree with the forced-oscillation data.

Since the angle of attack is set to be a complex number (cos(kt')+i sin(kt'))

in oscillating cases, only the real part of the integrated lift is taken. The

lift by integrating eq. (8) for a 70-deg. oscillating delta wing with

frequencies k=0.098 and k=0.165 are plotted in Figure 15. Compared with

the lift from aerodynamic modeling(eq. 25), the integrated lift shows good

agreement. Which confirms that at least the current methodology of

indicial integration works for harmonic oscillations.
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The experimental data(ref. 26) available for more general motion is

for harmonic ramp motion. That is, the 70-deg. delta wing model undergoes

a harmonic pitching motion(with respect to the 57% root chord) to a certain

angle-of-attack and then stops there. To verify the aerodynamic models

further, these harmonic ramp responses are applied. Note that the

experimental harmonic ramp motion is described by the following pitching

motion until reaching a certain angle-of-attack, i.e.

a_ = 27.5 + 27.5 cos(180 + kt') (in degree)

The results calculated from indicial integration for CL in ramp motion

up to 55 deg. angle-of-attack at two different frequencies are plotted in

figure 16. Compared with experimental data for the 70-deg. delta wing(ref.

28), the C L responses show good agreement for frequencies 0.0926 and

0.0714. The results for Ca in ramp motion up to a=35,45 and 55 deg at a

frequency equal to 0.0714 are ploted in figure 17. It is seen that the

present aerodynamic model is fairly accurate if the harmonic ramp motion

is from a = 0 to 55 deg. However, the final CL is overpredicted if the ramp

motion stops at an a less than 55 deg, even though the peak CL is still well

predicted. A possible reason for this is that the harmonic data based on a

= 0 - 55 deg. contain dynamic effect on vortex-breakdown characteristics at
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a < 55 deg. The results for CL at a steady a = 35 or 45 deg. should be

higher than the static values.

The corresponding drag and pitching moment coefficients at reduced

frequencies 0.0926 and 0.0714 are presented in figure 18 and figure 19. For

the Cm responses, the result is well predicted except at small time.

However, the drag coefficient is not as well predicted in ramp motions as

in harmonic motions(see Fig. 12). The same descrepancy in predicted drag

coefficients is also found in figure 20 for a harmonic ramp motion with a =

0 to 35 and 45 deg at a frequency eaual to 0.0714. It is not known whether

this is caused by differences in the test models and test Reynolds numbers.

The test model for the harmonic motions(ref. 25) has two-sided chamfered

leading edges with a thickness of 0.5 inch at a Reynolds number of 1.64× l0 s

based on the root chord. The model for the ramp motions(ref. 28) is

chamfered only on the lower surface of the leading edge and has a thickness

of 0.25 inch, and tested at a Reynolds number of 1.54x108. The effect of

Reynolds number on the static lift coefficient for two different delta wing

models is taken from ref. 29 and reploted in figure 21. As shown in the

figure, the effect of Reynolds number for the one-side chamfered delta wing

appears to be confined to angle of attack above 28 deg and much less than

for the two-side chamfered delta wing. The effect of Reynolds number on

dynamic lift is reploted as figure 22. As the Reynolds number is increased,

the maximun lii_ tends to decrease. The similar effect of Reynolds number
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to other dynamic responses of the two-sided chamfered delta wing can be

found in ref. 25. Therefore, using the harmonic motion data of one model

to predict the ramp motion of another model may cause discrepancy in drag

coefficients.

To illustratethe application ofthe present aerodynamic model(eq. 30)

for arbitrary motions, a linear ramp motion is assumed in the integration.

As described in section 2.6, the linear ramp motion is represented by an

equivant local harmonic motion using a cosine function. However, from

numerical experimentation it is found out that due to the discontinuity in

slope(& ),ifthe mean angle and amplitude are set to have the same value,

then the calculated responses will have discontinuity there. To avoid the

discontinuity of the responses, the amplitude must be set larger than the

mean angle of attack. Three values of the amplitude have been tested for

the linear ramp motion from a = 0 to 55 deg. and the calculated lift

responses are plotted in figure 23. It can be seen from the figure that a 2.5

deg increase in amplitude will smooth out the response. Therefore, in

calculating the linear ramp response the amplitude will be set 2.5 deg.

larger than the mean angle-of-attack. The liftcoefficient for the linear

ramp motion for a = 0 to 55 deg is compared with that in a harmonic ramp

motion in figure 24. It is seen that the linear ramp motion tends to

produce higher CL beyond the peak value because ithas a higher value in
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6. Similar results can be found in figure 25 for lift coefficients

corresponding to the linear ramps for a = 0 to 35 and 45 deg.

The indicial lift responses consist of harmonic data which are based

on a = 0 to 55 deg are now used to calculate the lift responseto a linear

ramp motion up to cc = 76 deg. As shown in figure 26, the trend is

predicted but the magnitude is over-predicted. Therefore, it may be

concluded that the harmonic data based on cz = 0 to 55 deg. may not be

used to extrapolate the data to higher angles of attack.

The last case is to test the mean angle-of-attack effect. That is, using

the harmonic data(ref. 25) at o_ = % = 27.5 deg., harmonic responses under

different mean angles-of-attack are calculated. From numerical

experimentation, it is found that to have correct trend in the prediction, if

the mean angle of attack is greater than 27.5 deg, it is set to 27.5 deg. The

results from indicial integration are plotted in figure 27. Compared with

experimental data taken in a different tunnel with different

instrumentation(ref. 31), these numerical results show correct trend. Note

that the experimental data are taken under Re = 1.64x106 based on the root

chord(4.166 ft) for a 70-deg delta wing. The Reynolds number is the same

as that of the harmonic data with 27.5 deg. mean angle-of-attack for the

aerodynamic model but based on a larger size model and smaller free

stream velocity. In addition, the larger 70-deg model is oscillating with
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respect to the 40% mean aerodynamic chord(60% root chord) instead of 57%

root chord. Therefore, it is difficult to assess the accuracy of the present

aerodynamic model.
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Chapter 4

Conclusions and Recommendations

4.1 Conclusions

In the current

developed to analyze

study, a method based

the force and moment

on Fourier analysis is

data obtained in large-

amplitude forced oscillation tests at high angle-of-attack. Results from

linear two- and three- dimensional unsteady aerodynamic theories as well

as test data for a 70-deg delta wing are used to verify the models. It is

shown that the present modeling method is accurate in producing the

aerodynamic responses in CL, CD, Cm and CN to harmonic motions and the

ramp-type motions. The model also produces a correct trend for a 70-deg

delta wing in harmonic motion with different mean angles-of-attack. To

deal with the linear ramp type motions, a local harmonic motion represen-

tation is used in the current model. However, the current model failed to

predict the response to a ramp motion which has larger angles-of-attack

than that of the harmonic motions which form the aerodynamic model.
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4.2 Recommendations

In the current model, the effects of Reynolds number and Mach

number are not included in the modeling. The main reason is that not

enough experimental data or theoretical results are available to support the

study. Therefore, the recommendations for the future work are

(i)A consistent experimental work or numerical calculation for unsteady

longitudinal aerodynamics should include Reynolds number and Mach

number effects for each reduced frequencies in harmonic motions.

(ii)Modify the current mathematical model to include the Reynolds number

and Mach number effects based on the results from (i).
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Appendix A

Successive Fourier Analysis

The first step of "successive Fourier analysis" is to Fourier-analyze

the response over one period. For simplicity, a Fourier series with three

terms will be used to explain the procedure of the modeling. Then

CL = Ao + A1 cos(} + A 2 cos2O + A 3 COS30

+ B1 sine + B2 sin2e + B3 sin3O (A1)

where

1 f2x
Ao = -z-[ CL dO

C L Cos(nO) dO

C L sin(nO) dO

n=1,2,3 and 0=kt'

(A2)

Once the coefficients of Ao, A_ and B. have been found, the next step

is to split the coefficients into two groups by using the following formulas,

A.1



cos ne = C(n,0) cos_ - C(n,2) cos_-20 sin_

+ C(n,4) cos"-49 sin40 + ...........................

sin nO = C(n,1) cos°-10 sin0 - C(n,3) cosO-S0 sinS0

- C(n,5) cos"'SO sinS0 + ...........................

(A3)

where

C(n,m) : n! and
(n-m)! m[

n!=l,2,3,4******n

Therefore, the response of CL becomes

CL = Ao + A1 cosO+ A2[cos20 - sin20]

+ A3[cos30 - 3cos0 sin20]

+ B 1 sin0 + B2[2cos0 sin0]

+ B s [3cos20 sin0 - sin30]

= Ao + [A1 + A2 cos0 + A3(cos20 - 3sin20)] cos0

+ [B1 + 2B 2 cos0 + B 3 [3cos20 - sin20] sin0

= .% + F(cos0, sin0) cos0 + G(cos0, sin0) sin0

Perform the Fourier analysis again for functions F(cos0, sin0) and

G(cos0, sin0) by using Fourier series with the same terms as in the first
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step. Then

F(cose,sinS) = Fo + FA_ cose + FA_ cos2e + FA s cos3e

+ FB_ sine + FB 2 sin2e + FB s sin3e

G(cosS,sine) = GO + GAI cos{} + GA_ cos2e + GAs cos3e

+ GB I sin(} + GB 2 sin2e + GB 3 sin3e

where

•Fo -- -- F d 0 G o = -- G d 0
2_ 2x

1 ;_Fd8FA.-- _- GA. = _ G d 9
71

FBa=-- Fd0 GB.=_ Gd0
K K

n = 1,2,3

Using eq. (A3) again, then

F(cose,sine) = Fo + FA1 cos{} + FA_ [cos2e - sin29]

+ FA 3 [cos39 - 3 cos(} sin2(_]

+ FB1 sin(} + FB2[2cose sin(}]

+ FB3 [3cos2e sine - sin30]

G(cose,sine) = G O + GA_ cos(} + GA 2 [cos2e - sin2e]
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Therefore

+ GAs [cos3e- 3 cos8 sin2e]

+ GB I sine + GB2[2cos8 sine]

+ GB s [3cos28sine - sin38]

CL = Ao + {Fo + FAt cose + FA2 [cos2e- sin2e]

+ FA3 [cos_e- 3 cose sin2e]

+ FB I sine + FB2[2cose sine]

+ FB a [3cos=esine - sin3e]}cose

+ {Go + GAI cose + GA 2 [cos2e- sin=e]

+ GA= [cos3e- 3 cose sin2e]

+ GB_ sine + GB2[2cose sine]

+ GB3 [3cos2esine - sin3e]}sine

All the terms associated with cos_0 on the right hand side of the

above equation are divided by (%)" and the terms associated with sin_O are

divided by (-kao) _. After rearrangement, the response of C L becomes

CL = Ao + {CC[0,0] + CC[1,0] a + CC[2,0] a2+ CC[3,0]cc 3

+ DC[0,1] c_ + DC[1,1] aa + DC[2,1] a2ct

+ CC[0,2] a 2 + CC[1,2] aa 2 + DC[0,3] a s } a

+ {CS[0,0] + CS[1,0] _ + CS[2,0] cc2+ CS[3,0]cc 3
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+ DS[0,1] a
+ DS[1,1] a_ + DS[2,1] a2_

+ CS[0,2] _2 + CS[1,2] aa 2 + DS[0,3] a _ } a (A4)

where

CC[n,m] = FA='m , DC[n,m] = FB='m

[ao_ (-ka_)] [ao_ (-kay)]

CS[n,m] = GA"'m , DS[n,m] = GB.÷_

[ao (-kao)] [Cto (-k¢zo)]

and the coefficients CC[n,m], DC[n,m], CS[n,m] and DS[n,m] are zeros for

n+m _ 3. Comparing with eq. (A1), it is obtained that

Fo=Ao

F(a, a) = CC[0,0] + CC[1,0] a + CC[2,0] a 2

+ DC[0,1] a + DC[1,1] act + CC[0,2] ct 2

G(a, a) = CS[0,0] + CS[1,0] a + CS[2,0] a 2

+ DS[0,1] ct + DS[1,1] act + CS[0,2] a 2

Finally, collecting the same order terms together, then

CL=Ao

+{ CC[0,0]u + CS[0,0]a }
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+{ CC[1,0]a 2+ DC[0,1]aa +CS[1,0]a_ + DS[0,1] (2 2}

+{ CC[2,0]a 3 +DC[1,1]a2a + CC[0,2]a_ 2+CS[2,0]a2a

+DS[1,1]aa _ + CS[0,2]a 3 } (A5)
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Appendix B

Fourier Integration

of

Phase Function

then

By defining that _j(t') is the Fourier integration of phase function

_t/J(t') = 2n T(jk) [1 - PDj] e ijkL' d(jk)

1 f_: [1 - Pu(ik)2 + P2j(ik) ] e ijkt, d(jk) (B1)
2x i(jk) P3j(ik) 2 * ik + P4j

1 r.[[1 - i(jk) a_ _ i(jk) a2j ] eijkt'd(jk)

2_ i(jk) J-- i(jk) + ja3j i(jk) + ja4j

By the characteristic of Fourier integral, the above equation can be inverted

as

[1 - PDj] 1 -ijkt,
i(jk) - 2_ f-: _gj(t') e dt '

:_ _gj(t/) e-g kt' dt /

(B2)



The low limit of the integral has been changed from negative infinity to

zero due to the fact that there is no negative time. By introducing the new

dummy variable r such that

r = i(jk)

then eq. (B2) becomes

[1 - PDj(r)] _ 1 _-x?j(V) e -rt' dt /
r 2x (B3)

- 9_{x?j(t/)}

Therefore, _j(t') is the inverse of the Laplace transform, i.e.

_(t/) -- 9_-1 {[1 - PDj]}

= _-1 {[1 _ alj _ a_ ]} (B4)

r r + ja_j r + ja4j

e -j_,t, -ja_t,= 1 - a lj - a_ e
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Appendix C

Newton's Method

for

Finding Phase and Reduced Frequency

As described in section 2.6, the governing equations for arbitrary

motion are written as

F_ = a- ao cos(¢ + kt') = 0

F2=a +aoksin(O+kt')=0

Let the Jacobian matrix be defined as

8F 1 8F1

8k De

(c1)

where
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0F--.-L_=ao sin(¢ + kt'), 0F-----'-'=ccosin(¢ + kt t)
Ok 2¢

--2=a o sin(¢ + kt') + a o k cos(¢ + kt0,
Ok

--"=ao k cos(¢ + kt')

The absolute value of the Jacobian becomes

(C2)

IJacob/an I

= -ao2sin2(¢ + kt')

By Newton's method, the new values of unknowns k and ¢ are

calculated as

L¢i-lJ i ¢i

(C4)

where

Jacobian -1

IJacobian J

.

F * 0F2 F * 0F1

F* 0F2 + F 2*0F1
- 1-_'- _k

IJacobian I

(C5)
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The iteration will continue until both F1 and F2 reach 10 .6
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