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Introduction

SCOLE stands for the "Spacecraft Control Laboratory

Experiment". The objective of the SCOLE Program is to

provide an example configuration and control objectives
which enables direct comparison of different techniques in
modeling, systems identification and control. The "SCOLE
Design Challenge" was formulated in 1983 by L. W. Taylor and
A. V. Balakrishnan. The details of this challenge are reprinted
at the end of this document.

Annual SCOLE Workshops have been held for specialists
to share and compare their research results. This proceedings
is a compilation of the material presented at the Sth
Workshop held at Hilton Lodge at Lake Arrowhead, California
on October 31, 1988.
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DYNAMIC ANALYSIS OF THE JOINT
DOMINATED BEAM (TRUSS BEAM)
by
Flias G. Abu-Saba

Raymond C. Montgomery
Willham M. McGinley

(1)



INTRODUCTION

Construction in Outer Space of:
- Platforms for Space Stations
- Antenna Systems for Space Explorations
- Support Structures for Solar Panels

- Housing for Space Workers

(2)



ABSTRACT

Method Presents

- Theoretical Analysis of the Vibrational
Modes of the Joint Dominated Beam

- Cantilever Truss Beam is Used for the
Analysis

- Chord Members Contribute Most

Deformations. Web Members are
Ignored

- Lumped Mass System is Used for
Analysis

(3)



- Algorithms are Developed to determine
Flexibility of the System

- System is Analysed With and Without
Joint Contribution

- A Set of Joint Flexibility is Used

- Computer Programs are Developed to
Obtain Numerical Results: Frequencies

and Mode Shapes

- Conclusions and Recommendations are

Provided

(4)



DYNAMICS
EQUATION OF MOTION OF SYSTEM
[BI{Y}=0

[B] =[A]- _1_[I]

mhw
3 3
Aii=_1_(2-1) ,i=1,....N
24F1
3 2
Ri = _1_ 3(2i-1) .i=1,....N
24E1
Aij= Aijl +Ri ,j=i+1,...N
Aij= Aji

(3)



Wvad n\m.:&\_ » 3¥NB14

¥

1

(53)



JOINT PARTICIPATION

Assumptions
- Behavior of the Joint is Linear
- Damping of the Joint is Not Included
- Free Play 1s Not Considered

- Forces in Members are Axial

(6)



MODIFIED FLEXIBILITY MATRIX

3 2
Atj=Aij + 1 s@) (2j1)
24EI

k = Flexibility of the Joint

(7)
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CONCLUSIONS

- A Practical and Simple Approach for
Predicting Frequency Response of
Structures

- Computational Cost, Time and Storage

Requirements Provide a Clear
Advantage over Finite Element Method

(9)



EXPERIMENTAL PROGRAM
STAGE 1 Static Loading

1. Determine the flexibility of the
joint assembly.

2. Determine the combined flexibilty of
the truss and joint assembly for
increasing numbers of truss panels.

3. Under the action of static loading
measure the stress distribution 1n the

truss panels.

(10)



EXPERIMENTAL PROGRAM

Stage 2 Dynamic Response

1. Measure the deflection and the
truss cord stress variations for a single
truss panel and joint assembly.

2. Measure the dynamic response
(deflections and stresses) of an
increasing number of truss panel
and joint assemblies. Frequency
response will be determined from
these measurements.

(11)
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DESIGN O THE SCOLE BOOM
BASED ON THE DYNAMIC ANALYS1S OF THE JOINY DOMLINATEL

BEAM

Elias G. Abu-Saba
North Carolina A&T State University

Raymond C. Montgomery
NASA Langley Research C(Center

William M. McGiniey
North Carolina A&T State University

|13



ABSTRACT

Mathematical models have been developed to predict the
dynamic response of the joint dominated beam. Various
assumptions of the force interaction between the beam
elements and the joints have been studied using these models.
However, the validity of these models have not been
adequately determined. In any dynamic analysis of
assemblies, the effects of joint imperfections must be also
included. To accomplish these tasks, a combined analytical
and experimental investigation will be conducted to evaluate
the significance of the various joint behaviours with respect
to the overall stiffness of the beam. Results of the
experimental analysis will be incorporated in the dynamic
analysis of the beam.

Models of the truss-beam will be constructed at North
Carolina A&T State University and tested to determine the
validity of the analytical method. Test data will be
obtained for a particular joint type with negligible free
play. Using the measured material properties of the joints
and truss model, the equation of motion will then be used to
predict the dynamic behaviour of the truss-beam. A

comparison of predicted and observed behaviour will be made

14



and the adequacy of the analytical methods evaluated.
Modifications of the analytical procedures will be made as
required by the comparison study. This approach of the
dynamic study of the truss-beam system can be used in the

dynamic analysis of the scole.

15



INTRODUCTION

Manned space stations are on the drawing board, and
structures to house astronauts and support personnel will be
erected in outer space. These stations will be used tor
communication, power generation, docking, and launching space
vehicles in the future. Since all structural components have
to be fabricated and preassembled on earth and packaged for
shipment via the space shuttle, weight and volume become a
determining factor in the design. Light weight materials as
epoxy graphites are used in the members, and interlocking
joints are provided to facilitate deployment.

As the exploration of outer space is increased, the need
for more reliable structures which perform various tasks in
orbit becomes essential. Since these structures are
deployable, large, and highly flexible, their dynamic
analysis and control using established methods yields results
that differ from those obtained on board testing. Hence
further modifications of the mathematical model will be

necessary to increase convergence between theoretical and

experimental results.

DYNAMIC EQUATION

The general equation of motion for a linear structural

system is expressed as

2
{Y 3 = w LAJCMILY 3 ..., (1)

I6



where

{ Y1} = Displacement vector

L A1 = Flexibility matrix ot the structure
C M1 = Mass matrix of the structure

W = Natural frequency of the system

rad/sec

The dynamic study of the truss-beam is seen to depend on

its flexiblitity.
FLEXIBILITY OF THE TRUSS BEAM

Consider that the truss-beam behaves as a cantilever as
shown in Figure (1). For a slender truss the transverse

nodal displacements will be mainly attributed to the axial

’
’
a

¢ ] L
[ L = Nt

FIG. | . TRUSS BEAM

strain in the chords. Thus the contribution from the web
members can be neglected with very little error. If the joint
response were to be excluded innitially, the flexibility

matrix C A J for the structure can be readily obtained from

the following algorithms:

17



1 3
A = —memmm—- (2i -1, i=1, N
ii 24EI
3
) 2
R S —— 326 -1, i=1,N (2)
i 24E1
A = A + R, j=1i+1, N
ij ij-1 i

ij ji

When the bays are identical, the nodal masses will be
equal throughout the structure. Letting m represent the mass

of one bay, the mass matrix can be expressed by:
CMI1 = mC1]13 (3)

Substituting Equaion 3 into Equation 1 and simplitying

the result yields

LB1T{L{Y Y = 0 (4)

where

C B 1 = [ LAl - 2L 11 ] (%)

19



LA - (6)

Given the material property E, the cross sectional area
of the members of the truss-beam, the depth of the bay h, and
the length 1, the number of bays N and the density of the
material used in the structure, a computer program has been

written to provide the natural frequencies of the system.
FLEXIBILITY OF THE TRUSS BEAM WITH JOINT RESPONSE

To simplify the response of the joint, it is assumed that
the joint displacements are caused by the strain in the chord
members. Another assumption which is used in the study is
that the displacement in the joint is due to axial forces in
the chords acting on the connecting pin as a spring. ‘lhe
joint is thus replaced by a flexibility k. No other tactors
that contribute to joint imperfections are included at this
stage.

Introducing the joint flexibility k, the modified

flexibility matrix is given by

A = A 4+ mmmmmmee i (2§ -1 (7)
ij i 24ET



where A is given by Equation 2 and s is obtained from
1j
the following expression:

12 E1 k
: (8)

APPLICATION TO THE METHOD

An example is used with a typical panel of 20" in length
and 20" in depth. The cross sectional area of the chord is
0.25 sq. in. The values of E and the density are 3k+7 psi and
0.282 pci, respectively. The finite element method is
applied to the same example for comparison. Since the finite
element method does not include joint imperfections, the
value of k is taken as zero. The results of this comparison

are shown in table 1 and Figure 2 for N varying from 3 to 80.

EXPERIMENTAL PROGRAM

To confirm the accuracy of the theoretical procedure, an
experimental approach has been proposed to be performed at
North Carolina Agricultural and Technical State University.

The proposal has been submitted to NASA at Langley Research

Center for funding.

Since the accuracy of the analysis is highly dependent on
the mass and flexibility of the truss panels, in addition to
the flexibility of the joint, these quantities must be
accurately measured before a reliable evaluation of the

analytical procedure can be made.

20



Lo°L
19°¢
%0
£9° L
18°9
61°S
61°¢
G9°1
6S°0

S60°0

1 {1°9e

1 SE°61

1 L0761
1£°11
01°8
[A AR
8Tt
9°1
9°0

S60°0

g1

08=N

T1°%%
68°0%
10°S¢
£s° 97
[A8:]
79°¢1
S8°11
1£°9
[A A

8L°0

Hid

oy

N

6°96
96 LL
LE°09
1R
LA ARAY
1L°1¢
1 SR
L9

6t

8¢°0

N

[OAR

6756

9L°18

0'9¢

%6°9S

t£L°8¢

8¢ L7

66° 17

99°8

67" 1

Wiad

0¢=N

e 68t
S6°11¢
88 TYT
te 8l
€7 0Ll
L8
[ A
S8°92
8G'6

£ES°1

01

0=3 *o°1 uoridajiaduy 3utol oN

§°97¢ 0°o%st
1°202 (VT AN
9°TL1 [ANA (]
6791 1°0eL
v Lel  T°8IS
9°10T 0°%SE
12°%9 S'tiC

96 %S $'801

¢t 87 6678t

99°¢ 11°9

W4 1:61
01=N

sTaued jo zaquny = N

(04S/SAvVY¥) AODN3NOI™A

°68S
8 6LS
L£°S1s
7 90§
£TGLY
S*60¢
§roee
981 *86%1
6°1¢1 2°99%

91'tYy {5°69

W34 gL

J9s/pey ‘saousnbady |eanjeN - | aqej

01

JAONW

21



FREQUENCY (RAD/SEC)

FIGURE 2

400.0

350.0

300.0

250.0

200.0

150.0

100.0

50.0

FREQUENCY CORRELATION

0.0
0.0

PANELS (N)

22



snijededdy burisal jo orjewsyos

L

_

140ddng
ssnuy

\
°olqe] J1y |,

—hp———

LOpc:uu<.IIIILVm

3140ddng aojenyoy
pue czov-u~oz\\\\\HWr 7

dwed4 burystisay

U uswryoadsg mm:gh.\\\ N

M3IA NVd

23



Only one type of joint will be evaluated during the
experimental phase. Furthermore, the joints will be
fabricated so that free play in the joint is negligible
and can be ignored. Once the accuracy of the analytical
procedure have been contfirmed for this type of joint,
subsequent investigations can determine the effects of

varying joint flexibility and free play.
TESTING APPARATUS

Truss joint specimen will be tested using a Forney
Material Testing machine located in the Structures Laboratory
at the North Carolina Agricultural and Technical State
University in Greensboro, North Carolina.

In an effort to reduce cost, the same apparatus will be
used to test the truss panels and truss panel assemblies. A
schematic of the proposed testing apparatus is shown 1in
Figure 3. It consists of a truss support frame, air cushion
table, actuator, and an adjustable actuator support and
"hold-down". The apparatus will also include devices to
measure the deformation and chord strains at various
positions on the specimen, in conjunction with a high speed

data acquisition system and a micro-computer.

24



REMARKS AND CONCLUSIONS

The approximation of a large space truss by a beam modei
provides a practical approach for predicting the frequency
response of the structure. The computational cost, time and
storage requirements may render discrete finite element
analysis impractical, particularly in the conceptual and
design phases when parameter studies and alternate designs
are being evaluated.

The proposed beam method offers a structural model with
significantly fewer elements (N) and degrees of freedom (N),
compared to a finite element model with (4N+1) degrees of
freedom, where N is the number of panels in the actual
structure. Frequencies for the first five modes obtained by
the beam model are found in good agreement with those
obtained by the finite element, especially as N gets large.
The proposed algorithm saves significant programming effort

as well as results in considerable economy of computational

time, cost and storage.

25
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Nonlinear Damping Model: Response to
Random Excitation

Weijian Zhang*
Electrical Engineering Department
6731 Boelter Hall
UCLA
Los Angeles, CA 90024

November 10, 1988

Abstract

The objective of this study is to investigate stationary Fokker-Planck equa-
tion corresponding to nonlinear random vibration problem. A method of en-
ergy approximation (MEA) is proposed to obtain a modified model as an ap-
proximation of the exact model. The closed form solution of the stationary
Fokker-Planck equation corresponding to the modified model is obtained, and
so are the various moments of the stationary response. Comparisons are made
between MEA and MEL (method of equivalent linearization) to illustrate the
advantage of MEA over MEL. The MEA also overcomes the shortcoming of
non-Gaussian closure method in which the density might have negative value
caused by truncation.

*Research supported in part under AFOSR grant No. 83-0318. Presented at the 5th Annual
NASA SCOLE Workshop, Lake Arrowhead, California. Nov., 1988.
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1 Introduction

Experimental evidence in SCOLE [1] seems to support the need for nonlinear
models-the decrement is much smaller than predicted by linear models. Nonlin-
ear damping model under random excitation becomes a random vibration problem
which has received significant attention in recent years in both civil and mechanical
engineering. When the excitation is a white noise process, the response is Marko-
vian. The transition probability density function, which together with an initial
distribution completely describes the response, satisfies the Fokker-Planck equa-
tion which is a linear but degenerate parabolic type partial differential equation.
A variety of approximate methods have been proposed to solve the Fokker-Planck
equation corresponding to broad-band excitation of a nonlinear dynamic system.
All of the methods investigated so far appear to involve prodigious amounts of
labor.

In this paper, a Method of Energy Approzimation (MEA) is proposed to find
the approximate solution of the stationary Fokker-Planck equation corresponding

to one-dimensional nonlinear damping model under white noise excitation.

2 Energy Approximation Model
Let us first consider a concrete model due to Balakrishnan and Taylor (2]:
i+ 26wot + 2 ™|z|*2™ 2] + wiz = on(t) (1)

where 0 < a,3 < 1, £, ¥ > 0, and m, n are nonnegative integers. n(t) is a Gaussian

white noise process.

28



Notations:

g o— Wty
2
y = ¢z
+
g = m+n+ —ﬂ
2
We observe the following:
qumlxlai2n+l|ilﬂ
— '7|x|2m+°‘lyl2"+ﬁy
i a £
= 2m+a (ngZ)m+2(y2)n+2y
Wo
= = (2B - )™ 2B - wia) ™y
w

0

We consider the following replacement of the above:
17
Ho—7mra (2E)%y
Wo

Here g is chosen such that

/OHH V2E sin 9 |*™+4|\/2E cos ¢ |*" /2 cos v — 1o(2E)*V2E cos ]*dy

Wo
is minimized.

In the above minimization, we consider E as a constant because in situations
where the response has reached stationarity and where the damping is small, the
energy dissipated through damping and the energy input through the excitation
during one cycle, will, on average, be small fractions of the total energy level in

that cycle.

29



Computation gives:

4 (" ot n+2
o = ;/; sin®™*® o) cos i Y dy

20 (m+ <20 (n + 1+ £
m I'(qg+2)

Then, we obtained the following energy approximation model:

&+ 2€wot + —r (wiz? + 28)%% + wiz = on(t)

THo
wgm-{»-a

(2)

When there is no random noise excitation, computer simulation shows the

mation model. Of course, this fact only referrs to no noise models.

Krylov-Bogoliubov approzimation given by

da(t VHO 2n

d(t ) = —&wealt) — T"wé’ TPty
dé(t) _

@ =

da(t) 1 2r .
dt - 2w _/0 D(asin, awg cos ¢) cos dyp
dd’(t) N 1 2r ) .
dt 27rwya /(; D(asin ¢, awg cos ¥) sin ¢dy

30

Krylov-Bogoliubov approximation of (1) is a very good approximation when ~
is small. It happens that (1) and (2) have exactly the same Krylov-Bogoliubov

approximation, which is an evidence to support the validity of the energy approxi-

Proposition 1 Both the ezact model (1) and the modified model (2) have the same

(3)

Proof: Straightforward computation based upon Krylov-Bogoliubov approximation



3 Stationary Fokker-Planck Equation

In this section, we solve the stationary Fokker-Planck equation corresponding to
the energy approximation model. The technique is used in [3].
The stationary Fokker-Planck equation is

8 3.,
0 = —‘5:;(3/1))4'55(%1‘1’)

0 THo
+ 5;[(25‘-00?/ + ;}—g,,m(ZE)qy)p] + =

dz Jy dy Oz
) Yo o® dp
—_— ———(2E)? _——
+ ay[(2£w0y+ w(?)m+a( ) y)p+ 2 ay]
2
Yo o* dp
0 = 2 ——(2E)7 —

In the above, we used the following fact

_Q(QE B (3E Y —
p)+ 5 (5;p) =0
p(;l;,y) :p(E)::>{ 2232_ aua_p dy\ oz

3y — YoE

Therefore, the stationary density is given by

26w
p(z,y) = Coexp[— on(ZE)—%(?E)q“]
28w
= Coeap|~ 272 (wha? +47) — m(wle® +v)™]
where
- YHo
1 02w3m+a(q+1)
Lo ey,
Co Wo 40
T
= _I_F(SO)
wo,yq-i-l

3l



[e o]
— _tqt+1
e %te " dt

by
S
il
S5

0
28w

1
2,91
(20 5

4 Moments of Stationary Response

EzFy' = 0 if either k or ! is odd. If both k and ! are even, then

1
k1 k
Ezfy' = JOEE(woz) Yy
_ GI(3P)r(H)
)
% 2
X/o p'F exp[— ifop—'np"“]dp
_ TN () ) (so)
(B A F(so)

5 Comparison with MEL (Mehtod of Equivalent
Linearization)

Consider ¢ < 0 case of (1). The Krylov-Bogoliubov approximation of (1) is given

by (3), which can be solved as

a(O)elelwﬂt
a(t) = mowin A T (4)
1+ at(0) 22 (et 1)}
We have
) _ 2|¢]| L def _
A el) = e =

for any a(0) # 0. This fact implies that the exact model (1) has a stable limit cycle

with radius between @ and woa (approximately).

32



Actually, the modified model (2) does have a limit cycle

z°(t) = @ sinwgt
4 — wa (5)
y%(t) = woa cos wot

or, on phase plane (£)* + (;4)* = 1.

Proposition 2 The limit cycle (5) of the energy approzimation model (2) 1s asymp-

totically stable.

Proof: To prove the asympotic stability of the limit cycle (5), we consider the

corresponding linear variational equation

£ =y
{ W= 2 (20(2),°(t)) e + GE(2°(1), ¥°(1))y ©)

where
Yo
Y(z,y) = —28woy — ;—gm—w(ngz + ¥}y — wiz
The linear system (6) with periodic coefficients always has a non-trivial Z—’;-
periodic solution which is given by (£°(t),3°(t)). Therefore p; = 1 is a characteristic
multiplier. By Theorem 2.1 of [4, page 217|, it is sufficient to show the other
characteristic multiplier p; < 1.
Since
2x
= 9Y
wo 0 0
= p1- Py = €X —(z"(t),y (t))dt
pr = o1 pa = exp| [ T (a(0),°(0))
it is sufficient to show
5% oY, 0
[ 5o, @)dt <o

By
In fact, by noticing the definition of @ we have
Y o 0 2n+p -2 2
a—y(x (t),4°(t)) = —2&wo — Ypowg" " a(1 + 2q cos” wot)

= —2&wq — 2|€|wo(1 + 29 cos® wot)

= —4q|€|wo cos® wyt

33



and hence
2%

/“0 —4q|¢|wo cos® wotdt = —4mg|€| <0
0

which establishes the asymptotic stability of (5). O

What is more interesting is that the stationary solution of the corresponding

Fokker-Planck equation given by

2|&|wo

S0 (wis? + ) — m(wle + v (7

p(z,y) = Coezp|
achieves maximum on the ellipse (limit cycle).
Zy2 Y \2
bt 2y =1
Cr+()
and achieves local minimum at the origin.
The following Van-der-Pol self-excited oscillator

i+ (yz* = n)i+ z = on(t) (8)

is a particular case of the above discussion with § = —n/2 (7 >0), m=1, n =

o = ﬂ = 0, Wy = 1.
One can easily find o = 1/4, @ = 24/n/~ and the energy approximation model

is given by
#+ [v/4(z? + £*) — n]E + = = on(t)
with the corresponding stationary density
_ M2 2 Y o2 2)2
p(z,y) = Coexp[—5(2* +¢*) — go5 (=" +v')]

where

Lo \/2/'77r3/20e2"2/"2"[1+<1>(
o(z) & \f2/r /0 “ et

2n
o

34



6 Generalization

The MEA described above can be easily generalized to nonlinear random vibration

problem in the following general form
i+ D(z,%) + wiz = on(t) (9)

Our conclusion is that the exact model (9) can be approximated by the following

modified model

2,2 4 .2
woz® +y

£+ p( )z + wiz = on(t) (10)

where u(E) minimizes

[TIp2E

Wo

sin v, V2E cos Y) — ,u.(E)\/Z_Ecos Y)*dy

and is given by

u(E) = n\;ﬁ /: D(\{fo—Esin ¥, V2E cos 1) cos pdyp (11)

Proposition 3 If D(z,y) ts even with respect z and odd with respect to y, then both

the ezxact model (9) and the modified model (10) have the same Krylov-Bogoliubov

approzimation.

Proof: For the exact model (9),

da(t) _ 1 /(-)n D(asiny, awy cos ) cospdy (12)

dt 2mwg

By the assumption on D(z,y),

do(t) = 1 /2" : :
it = Frecalo D(asin 9, awg cos ¢) sin dy
1 3
= - / D(acos ¥, awg siny)) cos dyp
TWoa J-%
= 0
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For the modified model (10), the Krylov-Bogoliubov approximation is given by

da(t 1 2 wia?
d(t) = ‘——_27rw0/o u(——oz )woacoszz/)dzﬁ
2 2
e wga
= —ou(=-)
1 2
= _27rw/ D(asin ¢, woa cos 1)) cos Pdy
0 Jo
do(t 1 o wlia? )
%(Z—) - 27rw0a/o u( 02 Jwoa cos ¢ sin pdy
=0

Therefore, (9) and (10) have the same Krylov-Bogoliubov approximation. O

The solution of the stationary Fokker-Planck equation corresponding to (10) is

given by
w212+y2
2 [
p(z,y) = Ce:cp[——E/ u(z)dz]
o Jo
where
1 27 [ 2 ¢
2= [T enpl -5 [ wlz)dzldp

C Wp JO

Example: Consider the following saturation type active damping model
i+ 2¢wo + Atan~1(bZ) + wiz = on(t)

By the identity

x/2 \/ b —
/ tan~!(bcos z) cos zdx = Tvitb—i
0

be R
5 b <

one can compute

w(E)
- W\j2_]§ /0%[2&'0)0\/2—Ecos¢ + Atan~}(bV2E cos )] cos ydyp
— 2w+ ,\m' 1

bE
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And consequently, one has

2 [(E
~= ), p(z)dz
_ 2w 2 ATmE
ol olb

4\
3 In[1 + V1 + 2b%E] + const.

The solution of the stationary Fokker-Planck equation:

4)
b

p(z,y) = C[1 + /1 + b (wdz? + y?)]>%

2 4
Xezp[—%(ngz +y?) - -oTb\/l + b (wiz? + y?)]

where

1 T 2&0)0

C  wob? ezp( olb? )

S 4 26(}.}0 4
X/].. (1+\/5)mezp{—mz— m\/ﬁadﬂz

It is easy to realize that p(z,y) achieves maximum at the origin.

7 Concluding Remarks

A Method of Energy Approximation(MEA) is proposed for the investigation of
nonlinear damping problem under random excitation. Closed form steady state
density is obtained for the energy approximation model. It is shown through an
example that MEA gives better accuracy than MEL and MEA reflects the nonlin-
ear nature in the damping. This problem is pending further research. Problems
such as spectral density of the nonlinear damping model, the absolute difference
between the exact steady state density and the density obtained by MEA are under

investigation by the author.
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Abstract

A new, explicit representation of damping operators for strictly proportional damping
for the torsion mode of a finite beam with end mass is presented. The damping operator is
the square root of the stiffness operator (enhanced to include the boundary) and is calcu-
lated using the Balakrishnan formula. It is nonlocal, and turns out to be a finite-limit
version of the Hilbert transform for the clamped-clamped case. If strict proportionality is
required, the operator is more general and involves boundary terms which, however, tend to

zero as mode frequency increases.
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1. Introduction

In the design of active controllers for stability agumentation of flexible structures it is
naturally important to have a model for the inherent passive damping already present. Often
it is assumed that the damping in each mode is strictly proportional to the mode frequency.

If, as in [1], we formulate the problem in the abstract wave equation form as:
Mi(r) + Ax(r) + 2LDx(®) + Bu. () = 0,

for strictly proportional damping we will need to have

D = VM ~NT VM

where
T - WM avm! .
Usually M commutes with A so that

D = VM VA .

In any event we are left with the problem of calculating VA. In this, the first part of a
two-part paper we calculate the square root for the case of a beam torsion model — or the
familiar “string” equation. When the controls are on the boundary — as in current large
space structure control design [2] — the square root introduces terms on the boundary.
This should certainly be considered much more unnatural than the fact that the damping
operators are nomnlocal (not differential operators). Asymptotically however the modes do
approach those of the clamped-clamped (or fixed-ends for the string case) beam. In
particular for the clamped case the square root has the form of a “finite-limit” Hilbert

transform. Our point of departure is the fractional-power formulas due to the author [3].

4



2. Beam Torsion Model
We begin with the torsional mode of vibration of a uniform Bernoulli beam of finite

length, with one end fixed and the other end with control force. Thus we have:

2
paa—sg’j)-—leaz—g(;’-‘zl=0, O<t, L<s<?t A

s
u(t,-8) = 0, 0<t f 2.1
leu’(t,t) + Li(e,®) + u (t) = 0 )

where for our purposes we need only note that pa, GI,, and /4 are given positive constants.
The primes denote derivative with respect to s, and the superdots derivative with respect to .

The abstract formulation is obtained by taking
’ = L,[-2 2] x R'.

* Let us use the following notation for elements in X:
u(?) ,
we H; w = b , u(-) e Lh-£, £}, be R .

We shall shorten L,[-£, £] to L, in the sequel. Define the operator A with the domain in
H given by:

'u(’)

u(®) , u'(e Ly, u(-£)=0 ]

DA) = [w=

(where primes denote derivatives with respect to the space variable), and

-u"(+)
u'(%)

mapping D(4) into H.
Then it is readily verified that A is closed, self-adjoint and, [, ] denoting inner-product
in H:
4

£
(Aw, wl = [ —u(s) u(s)ds + w®u'® = [ w(s)ds.
-2 -t
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Hence A is nonnegative definite. Also A has a compact (Hilbert-Schmidt) resolvent and zero is

in the resolvent set. As in [1] we may reformulate (2.1) as an abstract wave-equation in H:
Mx(f) + Ax(9) + Bu () = 0 2.2)

where B maps R! into M by

0
u/GIw

(palGl,,Ju()

(14/Gl,)b 23)

Bu = w =

?

Our first objective is to calculate the (positive) square root of A denoted VA . For this

purpose it is helpful to use the notation
ROL -A) = (M +A)"

so that we can write the Balakrishnan formula [3] for the square root:
VAw = %f A2+ A YAw dh,  for w in D(A) . 2.4)
0

It is convenient now to introduce the operator a, with domainin L, with
Dap) = [u() | w'C) e Ly, u(-2) =0 =u(t)]
and

"

aou=—u.

Then q, is closed, self-adjoint and nonnegative definite and hence we may proceed to define

Vo, , by
Yo, u = %f 7&'“2(7J+a°)—laou d\ (2.5)
0

Our first result is:

Theorem 2.1.

T(Vag ) = [u() |w'() e Lp; u(-2) =0 and u(2) = 0] (2.6)
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and

has the representation

4
vs) = 1 J cos (ms/28)
T2 sin (ns/28) - sin(no/2%)
-2

Proof. We use (2.5). Let u € I(a,) and let:
uo(d) = (M +ay) aou .
Then ug(A) is the unique solution of
Aug(h, 5) — ug(A, s) = —u(s)
uo(h, -8) = uo(A, ) = 0 }

and is given by:

* sinh VA(2— 5) sinh VA(24+0) o 4
VA sinh 2VA £ (o) do

w9 = |

¢ inh VA(£ ) sinh VA(£-0O)
S1 + 5 Sl - "
* J VA sinh 2VA £ (u'(o)) do.

5

Integration by parts yields

* sinh VA(2- 5) cosh VA(2+0) . .\
sinh 2VA 2 (u(o)) do

up(A, 5) = J.

-£

L
_ [ sinh VA(2+ 5) cosh VA(2-0) .oy a4
J. sinh 2VA £ (wioy do-

$

Using the known formula: [6, p. 344]

u'(c) do, ae -L<s<?.

2.7)

(2.8)



oo

J‘ sinh ax cosh bx d
sinh cx

0

we can see that for 6 < s

n sin (an/c)
2¢ cos (am/c) + cos (brm/c) ’

1 ~ -1/2 sinh \/x(f.— s) cosh \/X(2+0)
! j A o
0

and for s< 0O

sinh 2VA £

2 j"’ sinh x(2-s) cosh x(2+0)
I sinh 2x%
0

1 cos (ms/28)
28 sin (ns/28) - sin (nG/2R)

_lj”x—llz sinh YA(Z + s) cosh YA(2-0) a
n
0

Hence for a.e. in (£, £)

17212
;J AU, s) dh =

sinh 2VA 2

_ gJ" sinh x(£+5) cosh x(£-0) dx
T Tn sinh 2x£
0

1 cos (ms/2K)
2% sin (ns/2%) - sin (no/2R)

t
_l_f cos (ms/28)

22 sin (ns/28) - sin(mo/2R)
-t

u'(c) do

providing of course that we can justify the change in order of integration. Let

and let

1 [ cos Ts/28 )
22 \sin ns/28 - sin no/2%

|14
ve(s) = [ Hg(s, o)u'(0) do
iy

where u() € T(a,). We can decompose Hg(s, O) as

45
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L <s,0<?f.

(2.9)

(2.10)
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1 (s — O) 1. _1ns + 0)
Hp(s,0) = aL cot aL - 2 tan 4z .

For any u(*) in L,,

t
vi(s) = ﬁj‘ [cotﬂz—f—g] u(c) do, L<s<?t
“t

the integral taken in the Cauchy sense at s = G, is defined wherever the Hilbert transform

(s - 0)

14
lj HO) _ 45
r
-2

is defined, and hence we note that v,(*) is actually also in L,(-£, £). Hence

£
1 :
va(s) = HI tan I‘—%i—")-u(c) do
-1

which is defined in the open interval —£ < s < £, must be in L;, if vi() + vy(*) is.

Next, for a finite L, we can clearly change the order of integration, and hence let:

L 14
v (s) = %f o X' dh = [ H(L, s, o)u'(o) do .
0 -

Let
R(L, 5, 0) = %—f sinh x(f.—:gn;:lo;l;zx(2+c)dx , L <o<s<?
L
P wsinh x(£+s) cosh x(£-0
=—fj ( sgnthZL )dx, f£<s<0o<t
L
so that

14
vi(s) - vi(s) = [ R, s, 0)u'(s) ds .
-2

Now for x > L and L sufficiently large,

sinh x(£-s) cosh x(£+0) _ -x(s-o)
sinh 2x2 ¢ ’ §>0
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sinh x(£+s) cosh x(£-0) _ e—x(o-s)

sinh 2x¢ ’ G>s
Hence
~L(s-0)
2 e
R(L, s, ©) X (5-0)° §>0
—2 e—L(o—s) 5o
T (6-35)"° >
and hence
£
[ RL s ooy ds = [ RULsow©@ds + [ RLs 0)u(0)do.
-2 |s-ci>¢€ Js—Oi<e

The first term goes to zero as L - e, for any € > 0. The second term can be written

_Z_J‘Eu’(s+‘t) - u'(s-1) Lo
T T
0

and since u(') € I(qa,),
T
W(s+1) - w(s-1) = [ w'(s+o0)do
-t
goes to zero with V1. Hence v, (s) converges to vp(s), a.e. in (-2, £). But v, (*) converges

to Va,u in L, and hence

ve() = VYag u,

or we have justified changing the order of integration. Of course, we have also proved that
vp (") defined by (2.12) is actually in L,, for u in D(a,).

Let us next establish (2.6). The orthonormalized eigenfunctions of a, are

0, (5) = \j—lz’tsin——(—)-kﬂ:?,g’z , L<s<®
and
km
‘Ja—oq’k = '2_£¢k

Hence for A >0,



has the solution

”[f!¢]
g =2 ;mq’k
ST

where the series is absolutely convergent. Hence
g®) = 0.

Also term-wise differentiation is valid, showing th.t g°() € L,.
Since the domain of Va, is precisely the range of the resolvent (A + Vo, )'l , it follows

that for g in the domain of Va, we must have that
gf) = 0; gC) e L.

Conversely for any g in L, with these properties we can find a sequence u, in D(a,) such

that u, converges to g'(-) in L, and u, converges to g. We have only to take, for

example
u, = nn+a) g = T~y [g 00 -
n+ (53
Then

” ‘ao (un - un+p)l|2 = "u’: - u':+p||2 .

Hence a, u, converges. Hence it follows that g € D(Va, ), or (2.6) is proved. Also

Vo u, - v,

n

where

£
[ Hg(s, o)u,(0) do
-£

Vn(S)

4 ]

1 s — 0 . 1 (s + O) .

42,[ cot v, u,(c)do - 4£J tan L u,(0) do
-t -2

where the first term converges in L, and the second term for each |s| < £. Hence it follows

48



that if

vV = li’I.nit Vo,

4
vis) = | Hp(s,0)g0) do,  ae, L<s<?.
-t
Hence for every g in D(Va, ) we have the representation above.

(o]
Let us note in conclusion that
2
v(s) = f Hg(s, 6)u(o) do
Y
is defined a.e. in (-£, £) for every u(*) in L, but vp(-) is in L, if (and in fact only if)
£
f u(c)do = 0.
-2
Finally, for £ = +eo, it is known (see [4, 5] for example) that \/ao- u is Hu' where H is the
Hilbert transform. Hence (2.12) may be viewed as the Finite-limit Hilbert transform, new with
this paper.

We can now get back to VA .
Theorem 2.2.

u() ,
DVA) = [w: I ) ‘ , u(ye Ly, u(—l)—ﬂ]

and we have the representation:

u(-)
u(f)

VAw = VA = Dow + Tw (2.12)

where T is a compact linear bounded operator on # into H, and Dy has the same domain

as VA and is closed thereon, and has the form:

Lu'(-) + u(2)

Dow =
0 (h, u')

where L is linear-bounded on L, into L;, and A(") € Ly, ¢() e L,
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Proof. We use (2.5). Let w e D(A); and

u(:)
w = .

u(t)

Let
wd) = (M +A)  Aw, A>0.
Then
A,
W) = u(A, -)

u(A, £)

is the unique solution of
Au(h, s) — u'(h,5) = —u'(s), L<s<?t

Au(h, £) + w'(h, 2) = w(2)
u(h,-2) = 0.
Let, as in the proof of Theorem 2.1,
uo® ) = (A+ag) aou()
and let
z(A, 5) = u(h, 5) — up(A, ).
Then z(), -) is the unique solution of
Az(A, 5) - z°(A,5) = O
zZ(A,-2) = 0
Az, £) + (A R) = w(R) - ug(\, 2).
Hence
z(A, s) = a(A) sinh VA (£ + )

a()(\ sinh 2VA £ + VA cosh 2VAR) = w'(®) - ug(h £).
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But

ug(A, s) = u'(s) - u'(c) do

IS\K cosh VA (£— s) cosh VA (£+0)
. sinh 2VA £

B Il‘fx cosh VA (£ + s) cosh YA (£-G)

(o) do .
y sinh 2VA £ 4
Hence
]
h VA (£+0) :
A = J — ) do . 2.14
) J, (sinh 2K )(VK sinh 2K 2 + cosh 2VA2) “1) @14
Hence
17 ,-112
E\Of A 2(A, s) dA
]
1 ¢ =112 sinh VA (2+s5) cosh VA (£+0)
= =| A 7dr f (6) do 2.15
“J - (sinh 2VA £2)(VA sinh 2YA 2 + cosh 2VAR) #(©) .15
20 dx L ,
= EJ (Sith 2x2)(x sinh 2+ & cosh %) [f sinh x(£+s5) (cosh x(£+0))u'(c) do
-t
‘ (2.16)
and the second integral in parenthesis can be expressed
1ot 1t
5[ (sinh x(28+5+0))u'(C) do + if (sinh x(s — 6))u'(G) do . (2.17)
-t -t
The second integral in (2.17) can be integrated by parts to yield
1 o1t
= 3 (sinh x(s — £))u() + -2-f x (cosh x(s — 0))u(c) do .
-t
Hence (2.15) can be expressed
1 f i dx f! (sinh x(28 +5+06))u'(0) do
4 (sinh 2x£)(x sinh 2x€ + cosh 2x%)-
0 - (2.18)

L
+ [ M@, o)u(o) do + ¢(s)u(®)
-t
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where

_ 1 ”sinh x(s—K) 1 N
o) = uJ S RE . Gremh T+ coh mp v Thssst (2.19)
0

and is an absolutely continuous function which goes to zero as £ 5 co, and the kernel M(-, *)
is given by

1 x cosh x(s — O)
M(s, 0) = nf (sinh 2x%) (x sinh 2x£ + cosh ) & (2.20)
0

and is absolutely continuous in -2 < 5,06 <£, (and also goes to zero as £ 5 o). Hence

1 ¢ =122
Eof A V2w, 5) dh

£
= o()u®) + [ M(s, o)u(o) do
iy

1 dx
+ n_[ (sinh 2x£)(xsinh 2x€ + cosh 2x£)
4]

|14
[ sinh x(22 + s + O)u’(0) do
-t

207, sinhx(2-35) ¢ ,
+ EJ dx & siih szs L cosh x(£ + o)u'(c) do

2 (7, sinhx(®+ ) " ,
E_[ dx & sifm 2;; f cosh x(£ - 6)u'(0) do .

We now combine the last three terms and then justify interchanging the order of integra-

tion. The sum of the last three terms can be expressed as:

1 J dx
T (sinh 2x£)(x sinh 2x£
0

£
o D [ sinh x(2 + s + O)u’(0) do
-t

L
sinh x(s + o)u’(c) do

1
- _[ sinh fo. -

1
* J sinh 2xz flsmhx(”HG—S)u(O)do

f sinh x(2£ + s — O)u’(0) dC .
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The sum of the first two terms

dx

1
vi(s) = EJ (xsinh 2x€ + cosh 2xf)
0

4
[ (cosh x(s +6) - xsinh x(s+0))u'(0) do  (2.21)
-t

For w(") in $(A), u"(*) is in L,, and hence we can change the order of integration in the

last two terms and express their sum as:
Lt ns - 0)
1 . ns - ©
vy(s) = 42[ u’(o) cot at dc ,
-t
Defined wherever the Hilbert transform is,

£
v(s) = 41_2_[ u(c) cot E%,l do ,
-t

L<s< .

L<s<?

(2.22)

(2.23)

yields a bounded linear transformation mapping L, into L,. It follows in particular that

v3(*) isin L,. Let

28 <t< 2.

L
N cosh x(s + 6) ~ xsinh x(s + 0')]
KL, s, 0) = f [ xsinh 2 + cosh 2:f dx
0
and
1 " fcosh tx - xsinh tx
k@ = nf [x sinh 2x2 + cosh ?.xf.] dx ,
0
Then

L
[ KL, s, 0)u'o) do,
iy

converges in Ly to vi3(*) as L 9. Now
K(s + 6)| = O[ﬁ_—o) ,

and hence the integral
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£
[ K(s + o)u'(0) do
-t

is defined for each s, s # £. Also for some M < oo,

£
[ KGs+0) - K(L, 5, 0)| w'(0)| do
-2

N

t sLQt-s-0)
M| S WO do
-

oL2t-9) £
< BT MIE |u’(0)| do
and hence
4
vi(s) = f K(s + o)u'(c™ I, LR,
-2
Hence finally, we have, for w in D(A):
u(- v(-
Gw - GO O
u®) v(£)
where
v(s) = vi(s) +va(s) + vi(s)
where

14
vi(s) = 0(s)u(®) + [ M(s, o)u(o) do
-

£
Va(s) = ZIEJ u'(G) cotﬂs—4-—z—ol do
“t

4
vi(s) = f K(s + o)u'(c) do.
-2

Next let us calculate

f AV 2) dh = J’ AV, 0 dh, (since up(A,2) = 0)
2 0
2 0 ¢ h x(£ + 0)
cosh x(£ + ,
N EJ & J *sioh 2+ cosh 2 (@ 40
'
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Now

t
< f cosh x(£ + o)|u’(0) do
-t

12
[ cosh x(2 + o)u'(o) do
-2

t
Ol \j_flcoshzx(uo) do
and
2 .
2 sinh 4x£ 2x8
f cosh*x(£ + ) do = % [1 * Soh 4x2] .

-2

Hence (2.26) is smaller in absolute value than

Vsinh 4x£ \/1 + ﬂ%ixl
e O NCP ;
2x (x sinh 2x£ + cosh 2x%)
0

and because of the presence now of Vx in the denominator, the integral is readily verified
to be finite. Hence we can change the order of integration in (2.26) and express it as
t
[ h(s)u'(s) ds (2.27)
-t

where A(-) is defined for -£ <5< £ by

o0

- cosh x(£ + 5)
hs) = .[ x sinh 2x£ + cosh 2x£ dx (2.28)
0

and is positive for every s. Moreover since

4
[f h(s)lu'(s)| ds] < [l’C)ll - const.

-2

it is clear that

t

[ (s uts) ds

5%



defines a continuous linear functional on L, and in particular
t
_f h(s)* ds < oo.
-t
Define the operators on L, into L,:

L

v = Tu; v(s) = (s u(f) + f M(s, o)u(o) do .
-t
and
4
v = Hu; v(s)=Ju(0)c0t£(S—4£—Oldc, ae. —-L<s<?,

ey

where the integral is defined in the Cauchy sense at s = 6. Then for w in DA):

v(*)
VAw =
L
I, hoyu'(s) ds
where
v(s) = vi(s) + va(s) + va(s), a.e.,
where
vi = Tu
v, = Hu'
]
vis) = [ K(s + 0)u'(0) do

-t

Next we let w e D(VA). Then we can find w, € D(A) such that

w, & W

and

VAw, + VAw.
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u, (*)
u, (£)

Wn

INAw, — YAw,I? = |, - u.|?

and hence u,(*) converges in L, to u’, where

u(*) ,
= , and ¥’ € L, .
u(f)
Tu, + Hu, - Tu + Hu'.
Hence
t
vy ,(s) = f K(s + ©)u,(0) do , £<s<?®
-t
is such that
v3'n(')

converges in L,. But for each s, s < £, we do have that
2 L
f K(s + o)u (c)do - f K(s + o)u'(c) do .
Y] -t
Hence
L
f K(s + o)u'(c) do , ae. R<s<?®
-t
is in L,. Now given any z(-) in L,, we can define
s
u(s) = f 2(0) do
-t
and
t t
[ K(s + 0)20)do = [ K(s + o)u'(0) do .
-t -

Hence it follows that
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t
Ku = v; vis) = | K(s + 0)u(o) do (2.32)
-
actually defines a linear bounded operator on L, into L,.
Next let us consider the sequence
t
[ h(syu(s) as .

-2

This sequence converges to
[h, u’]

since u, convergesto u'.
Let us next show that any w in X of the form

u(-)

* “2 =0s
(@) u(-£)

where u'() € L, belongsto O(VA). Then we can find u, in L, such that
u,(-£) = 0
() € Ly

and such that u,(-) converges to u'() in L. Let

u, ()
u, (2) |

n

Then w, € T(A) and

Also

2
INAw, = VAw,l2 = [ lui(s) — ()P ds

-2

and hence

VA w

converges .

58



Hence we T(VA).

Thus finally for any w in &)(«IZ ) we have the representation

u(-)
u()

v()
(h, u’]

VAw =

where
v = Hu' + Ku' + Tu.

We can decompose VAw in various ways. For instance let L = H + K, and

Lu' + u(R)¢

Dow =
0 (h, u']

on D(VA). Then Dg is closed thereon. Let

Tw =

|Mu
0

where
4
Mu = v; Ws) = [ M(s, o)u(o) do .
-t

and M(-, +) is given by (2.20). Then T is compact and we have representation (2.12).
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3. Strictly Proportional Damping
It is known [1] that to obtain a “strictly proportional” damping model where the
damping is strictly proportional to the mode frequency, the abstract wave-equation (2.2)

must have an additional damping operator and be reformulated as:
Mi(t) + Ax(t) + Dx(r) + Bu () = 0 3.1
where, as in our case, M commutes with A, we must have
D = 20NM VA (3.2)

where { is the damping constant, 0 < { < 1. The eigenvectors ¢, of A, defined by

Aby = @My
and
¢, (s) = a, sin mk\Jpa/le £ +5s), £<s<t

where , satisfies
, 2(_1s
oi(t) - of (7] ou®

and as a result

W, - EE'\/-D—;' < 2z a 3.3)
Rewriting (3.1) as:
Y() = 4Y() + Bu, () (3.4)
where
0 1
4 = -1 -1
-MA -M D
0
Bu, = l »
-M "Bu,
where
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X € 3)(\11_4-)

X2E}t

X
Y - 1

?

X2
and we introduce the energy inner product on TH(VA) x ¥ by

IYIP = [NAx;, VAx)] + [Mx, x5]

the eigenvectors of 4 are given by

b —
wl=[ ]; Y = W

YOO, O
and the eigenvalues are
A, = Lo, t ioNT - &
where
y=-{ + N1 =0 .
We have thus strictly proportional damping in the sense that

Re. A,
Im. A,

&
= constant = :
V-0

The concrete version of (3.1) is

2 2
pa d ;!izzsl - Gl, d ;(;7_)_’ 5, ZC(\Jpale )[¢(s) %u(t, L) (3.5)

£ 2 L
+ IR(s, o)%’ldo + fM(s, c)a%u(t, o) do] -0
-t -2

£ 2
Gl u't, ) + L, £) + 2UVI.GI, _flh(s)a?Tu(t, s)ds + u,(®) = 0 (3.6)
where
R(s, 0) = alzcot ’”42 9 . K +0).
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The main unnatural feature of this operator is the presence of the new terms in the
boundary equation (3.6). Unfortunately, this is essential for strictly proportional damping.
It would be interesting to search for an operator without this feature that yet retains

asymptotically proportional damping:

Re. A
k Im. ;"k \jl - §2

In particular this would also retain the main feature of (3.4) in that 4 generates an
analytic semigroup [1]. Of course the eigenfunctions ¢,(-) approach those of a, as k 5 oo,

because of (3.3) — ¢,(£) goes to zero as k - ee.
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Abstract

A special class of nonlinear damping models is investigated in which the damp-
ing force is proportional to the product of positive integer or the fractional power
of the absolute values of displacement and velocity. For a one degree of freedom
system, the classical Krylov-Bogoliubov “averaging” method is used, whereas
for a distributed system, both an ad hoc perturbation technique and the finite
difference method are employed to study the effects of nonlinear damping. The
results are compared with linear viscous damping models. The amplitude decre-
ment of free vibration for a single mode system with nonlinear models depends
not only on the damping ratio, but also on the initial amplitude, the time to
measure the response, the frequency of the system, and the powers of displace-
ment and velocity. For the distributed system, the action of nonlinear damping

is found to reduce the energy of the system and to pass energy to lower modes.

1.0 Introduction

One of the major challenges remaining in the development of large space struc-
tures is to determine a damping mechanism in order to stabilize flexible flight
structures such as solar arrays, antennas and platforms. As the size and flexi-
bility of space structures increase, the need to characterize energy dissipation in
a more appropriate and accurate manner also increases. Under the assumption
of linear viscous damping, the amplitude decrement of free vibration depends

only on the damping ratio, regardless of what the frequency or initial condi-
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tions might be. Numerous experimental results, such as those in the Spacecraft
Control Laboratory Experiment (SCOLE)[I'Q], indicate that this is far from suf-
ficlent and that there is a great need for understanding the damping mechanism
which may be inherently nonlinear.

Various nonlinear models, such as linear dampers with clearance, Coulomb
friction dampers, velocity-nth power damping, etc., have been investigated in the
past 3-51. In many cases, these models can be represented by a damping force
that is proportional to the product of integer or fractional powers of the absolute
values of displacement and velocity. Balakrishnan introduced this nonlinear
model in [8] and obtained approximate solutions using the Krylov-Bogoliubov
“averaging” method (7). He also showed that these results can be quite useful to
study the response of flexible structures to nonlinear boundary feedback control.
In this paper we further study this special class of nonlinear damping models.
We use the Krylov-Bogoliubov “averaging” technique for a one degree of freedom
system and employ both an ad hoc perturbation method and a finite difference
technique for a distributed system.

This paper is organized as follows. In Section 2, the approximate equations
of amplitude are derived for a single degree of freedom system with nonlinear
damping. In Section 3, the transient response of free vibration of a single mode
nonlinear system is compared to that of a system with linear viscous damp-
ing. In Section 4, the perturbation solution is derived for the vibration of a

pinned-pinned beam with nonlinear damping. In Section 5, the vibration of the
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pinned-pinned beam with nonlinear damping is simulated via finite-difference
methods and the results are compared with those obtained using the perturba-

tion solution discussed in Section 4.

2.0 Single Degree of Freedom System

The classical Krylov-Bogoliubov “averaging” method, introduced in 1947, is
basically a method of variation of parameters. Over the decades, this averaging
technique has been employed to study nonlinear mechanics and solutions can
be found in the literature [8] for special cases of nonlinear differential equations.
Balakrishnan applied this averaging method to a particular class of nonlinear
damping models [6] which will be discussed in detail in this section. Since this
damping model is representative of a variety of nonlinear damping mechanisms,
we further study the effects of the model on vibrating structures of the special

class of nonlinear damping represented as

m# + c|z|®|¢|’z + kz = 0 (la)
or

i+ v|z|°|2]b2 + w?z =0 (1)

z(0) = Ap,and £(0) =0 (le)
where v = £ and w? = % , ¢ is damping constant, and “a, b”> 0

Note that the term y|z|® |[® £ represents the dissipating effect of a nonlinear

damper with “a” and “b” both being positive integers or fractions.
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When ¥ << 1 (c small relative to m) we may apply the averaging method

of Krylov-Bogoliubov [7] to obtain an approximate equation

z(t) = A(t)sin(wt + &(1))

where the amplitude A(¢) and phase angle ¢(t) satisfy the following equations

dA(t

% = —%Ko(t) (2a)
and

dé(t) _ v

TRy Ll (26)

The functions Rp(t) and Py(t) in equations {2a) and (2b} are defined as

2T
Ko(t) = % / D(Asin ¢, Aw cos ¢) cos ¢d¢ (3a)
Py(t) = —2—1; /J D(Asin ¢, Aw cos @) sin ¢d¢ (3b)

where D(z,z) is equal to |z|® |z|* for the choice of nonlinear damper in
equations (la-1b), that is, D(z, z) 2 D(Asing, Awcosg). Substituting D(z, )

into equations (3a) and (3b) we obtain

Ko(A) = wb+1Aa+b+1p (1a)
Po(A) =0 (4h)
where
1 2x )
- = ; a +2
I 27r/o | sin ¢{¢| cos ¢| ¢ (4¢)
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Equation (4b) implies that for the choice of a nonlinear damper represented
by v|z|* |z]® #, the phase angle ¢(¢) does not, on the average, change over time.
The positive number g in equation (4c) is called the nonlinear damping

factor. By changing variables in equation (4c), it can be shown that

2 TI'/?
U= ;/ | sin ¢|%| cos ¢|**+2dg (4d)

The above expression for p is very similar to that for the so-called ”damping
force amplitude ratio 7,,” proposed by Jacobsen [9] when studying equivalent
viscous damping. By employing the properties of the Gamma function, it is

found that
_ T[eR] T[4

= T[“—';t—m—]_ (4de)

WM

where T'(-) represents the Gamma function. Furthermore, when “a” is an

odd number | it can be shown that

2(n+ )n!

_ for any b
Sl ey me R

With the above information we are in a position to derive equations for the

amplitude A(t) and displacement z(t) for a system with nonlinear damping.
For the nonlinear damping system, (“a + b” > 0), we substitute equation
(4a) into equation (2a) to obtain a differential equation for the amplitude A(t)

dA(t
___dg ) = —yuwd A(t)*+PH!
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It can be shown that

A(t m i 5
0= (G +tc)) (52)
where
m
t, = 5b
cpwt(a + b)Ap®T? (5%)
and

z(l) = <c,u(a T tc)) coswt (5¢)

Recall that for linear damping viscous damping (“a + b” = 0) [1°]
z(t) = Age™¢*!coswt

In equation (5¢), the quantity t. is associated with the initial conditions but
is not the initial time. The constant ¢, has units of time and is never equal to
zero.

Defining t + ¢, & n#* and replacing A(nzw—7r —t.) by A(n) in equation (5a),
we obtain an expression for the amplitude in terms of the number of cycles of

nonlinear vibration

: m g2 o
A(n) = 5d
() (c,u(a + b)kib;:ll(%rn)) (54)

where n is the number of cycles of oscillation.

3.0 Transient Response of Nonlinear Damping

Using the solution for the nonlinear damping system in equations (1a) -(1c),

it can be shown that the logarithmic decrement, &, which is the ratio of two
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successive amplitudes, is given by

1 T
b= ——1In |1 6
a+bn( +t1+tc) ((1)

In equation (6a), ¢, is the time when the response is first measured to com-
pute the amplitude ratio, 6, and 7T is the period of oscillation. Assuming t; =0

and using equation (5b) for t. , we obtain

b—~1 ga+bd
5= lbln <1+2’”‘c(“+b)“’ Ay ) (6b)

m

For linear viscous damping it is well known that the logarithmic decrement is
[10] given by

§=1In (ﬁ) = 2 (6¢)

Comparing equation (6b) with (6¢) one may conclude that while the rate of
amplitude decay depends only upon the damping ratio, ¢, for the lincar damping
model, the amplitude associated with the nonlinear damping system decreases

more rapidly as:
a) the initial amplitude Aq increases
b) the frequency increases
¢} “a + b”, especially “b”, increases

d) damping ratio ¢ increases
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Numerical Examples

Some numerical results are summarized in Figures 1 through 4, which contain
the time histories for the nonlinear and linear damping models (@ = & = 0) and
for the single degree of freedom system with mass m = 1, stiffness k = 4, and
damping coefficient ¢ = 0.01.

For the nonlinear damping cases, “a + b” = 1 in both Figures 1 and 2,
but “a + b” = 2 in Figure 3. The initial amplitude Aq is 25 in Figures 1
and 3, and 50 in Figure 2. It can be seen that while the amplitude decrement
remains constant for all of the linear damping cases in Figures 1 through 3, it
decreases more rapidly for the nonlinear damping model. This condition is more
evident: (a) at the initial time than at a later time, (b) as the initial amplitude
increases and (c) as “a + b”, especially “b” increases. This is in agreement with
observations made in practical engineering problems.

Figure 4 compares the logarithmic amplitude decay in terms of the number
of cycles of vibration represented by equation (5d) for a system with the same
parameters as in Figures 1 through 3. The sum of “a + b” remains constant
(“a + b” = 3) as “a” and “b” vary individually. It is found that the rate of
amplitude decrease is greater as the value of “b” increases, even though the sum

of “a” and “b” remains constant.

73



4.0 Perturbation Solutions of Nonlinear

Damping for Distributed Systems

Consider the vibration of a pinned-pinned beam with non-linear damping

pii + Cop|u”|2|4" 20" + ETu™ =0 (7a)
u(0,1) = u(L,t) = u"(0,t) = u"(L,t) =0 (7h)
u{z,0) = Asin mzx (Te)

where p is the mass per unit length, L is the length of the beam, and Cyy 1s
the nonlinear damping constant.

In [6], Balakrishnan applied the Krylov-Bogoliubov method to a multi-
dimensional system and obtained expressions similar to those in the single mode
case. A common approach to treat an elastic system, such as the pinned-pinned
beam discussed here, is to use a modal expansion method to convert a partial
differential equation into a series of ordinary differential equations; however,
great difficulties were encountered in the modal expansion due to the presence
of the absolute value function in equation (7a). For this reason, both an ad hoc
perturbation technique and the finite difference method presented in Sections 4
and 5 were utilized to study the effects of nonlinear damping for a pinned-pinned
beam.

For small values of nonlinear damping coefficient, Cys, the system will oscil-

late at the frequency

14



and period
Pm = 27r/wm (76)

Let the perturbation solution after one period be

U(x,Pm) = UO(I,Pm) + Au(x,pm)

where u°(z,t) is the unperturbed solution of equations (7a-7c) with Cop = 0,

and Au(z,t) the perturbed solution. In other words

mnx

u’(z, pm) = Asin (8a)
and
> kmx
A m) = E Apsin—— !
u(z, pm) 2 Esin— (8h)

The values of the coefficients A; in equation (8b) indicate the degree to
which the initial mode is damped out and the other modes are excited. The

perturbed solution in equation (8b) is given approximately by

Ail = gﬂ!u”lalanlbuu (9(1)
p

with u(z,t) on the right hand side of equation (9a) being further approxi-

mated by u°(z,t), that is,
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mnk

u(z,t) = u’(z,t) = Asin cos Wmt (9b)

hence

cos wmt (9c)

2
u(z,t) = -A (TLE) sin 2L

Substitution of equations (9b-9c¢) into equation (9a) gives

. . mnw . maz
At = ﬂmlsznT]“+bszn

|cos wmt]® - |sin wmt|®sin wmt (9d)
where B, is a constant that depends on many of the system parameters, such as
the nonlinear damping coefficient, Cqp, the amplitude A, and the mode number
m, etc., that is,

Cab

4 _ Cab satbpr, b1 (M7 H
fn 2 Bm(a,b) = Z At (57

L

whereféa+b+1

The coefficient 3 is proportional to 2(a+b+ 1) powers of the mode number
m, hence, Aii in equation (9d) may become quite large for higher modes. This
suggests that the perturbation solution may apply only to low frequency modes
and not to higher frequency modes.

Because we are mainly interested in the maximum perturbation of the ampli-
tude decay due to nonlinear damping after half a period, we integrate equation

(9d) twice from 0 to t(t < p;/2) to obtain
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mnx

L

mmwx

L

Au(z, P—é-"—) = Buer|sin |2+ sin (9¢)

where

A Pm/2 t
cT:/ dt/ | coswmt]®|sinwpnt|® sinw,, 7dT
[ [

The quantity e is a constant that depends on the half period p,, as well

W

as “a” and “b”, but does not depend on z. In order to examine the nteraction
between different modes in Au(z, £2) in equation (9e), we expand Au(z, &)
mmwr

into a sine Fourier series in terms of the multiples of the initial mode sin 7=,

that is

Au(z, p—éi) = ; Apm sin nn}/ﬂ':}: (91)

It can be shown that if the pinned-pinned beam in equation (7) 1s excited

mxxr

7=, then for any positive numbers “a” and “b”,

only by a single mode Asin

all of the even multiples of the initial mode will not be excited; only the odd

multiples of the initial mode get excited. In other words
Apm =0, for n=2j
Apm = ¥ntr foL [ sin IZ |atb gip MIT gip WAL Jz
for n=2j-1
Now expand Au(z, ) into a sine Fourier series to obtain the Fourier coef-

ficients Ap,,, as represented in equation (9f).
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It can be shown that fora=10, b=1

Anm =0, for n=2j3
(10)

= Car®mia? o
Anm = [(21'—32)(2;-17(12,41)],,“, for n=2j-1

Similar expressions can be derived for any positive integers “a” and “b”.

Equation (10) relates the initial mode Asin ™2 to the distributed nonlinear

damping coefficient A,m,. Because the perturbation solution contains compo-
nents of other modes, they too will be excited. The degree of excitation is
illustrated by the values of A,m,. It is obvious that the even-multiples of ini-
tial modes are not excited while all of the odd-multiples are. It will be shown
later that for a beam excited by fundamental modes, equation (10) provides an

estimate for the amplitude decay after a half period due to nonlinear damping.

5.0 Finite Difference Simulation for Nonlincar Damping

In this section, the transversal vibration of a pinned-pinned beam excited by
a single mode is simulated via the finite-difference method. We will present
a finite difference scheme for solving the partial differential equation, derive
the stability conditions and then discuss numerical results. Specifically, we
will compute amplitude decay after half a period and compare the results with
both linear and nonlinear damping. We treat only the case of a = 0, b =1
for nonlinear damping. Finally, we compare the amplitude decrement using
the finite difference method with the amplitude decrement obtained using the

perturbation method presented in Section 4.
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Finite Difference Formulations

When modeling the nonlinear differential equation (7a) with the finite dif-
ference method, we represent beam displacement as u(z;,1;) = u;;, where z;
is defined as z; = iAz, and t; is defined as ¢; 4 jAt. Both grids Az and At
are defined as Az 2 ;I;‘l-,and At 2 %, where m and n are the numbers of grids
used for L and T'. L is the beam length and T represents the half period for the
initial mode. With the above definition, the nonlinear finite difference equation

(corresponding to equation (7a)) for the displacement at z;, tj 41 is given by

i1 = Y(Uigaj — duiprj + 6w — duioyj +uio2j) + (2uij ~ uij-1)

+Bl(uigr; — wigrj-1) = 2(uij = wij-1) + (wiz1j — ticy,j-1)
Wuigr — wigrj-1) — 20 — wij—1) + (i1 — tiz1,j-1)]

(11a)

If linear damping is assumed (“a” = “b” = 0), then equation (7a) becomes
pii + i’ + EIu' =0 (11b)
and the corresonding finite difference equation is
Uij1 = Y(Uiga; — g1+ 6uij —duioyj +uiozj) + (2ui; — wij-1)

+af(uipry — wig1i-1) — 205 = wij-1) + (wio1j — viz,j-1)]

(11c)
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Finally, if no damping is present, equation (11c) is further simplified as

wijar = Y(Uipzj — dipry + Ouiy — duimy + o) + (2ue — i)
(11d)

where

__EIAt2 _ Cas and o = cAt
7= pAzt " pAzt’ T Az

(11e)

Formulas for central differences have been used to approximate both u'?
and ii. Forward differences for t and central differences for z are used to obtain
the mixed derivative @ in equations (11a), (11c), and (11d). Two fictitious

boundary conditions have been created such that the zero moment conditions

are satisfied at both ends for the pinned-pinned beam. They are

Umtl,j = —Um-1j and w-1; = U

j=01,2..n

Stability Conditions

It should be noted that equations (1l1a), (1lc), and (11d) belong to the
explicit forms of finite difference formulation, for which there always exists a
stability problem for the specific finite difference scheme [11]. In other words,

when the finite difference scheme is stable, there exists an upper limit to the
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extent to which any error arising during the simulation can be amplified. This
implies that the numerical solution will not diverge. Clearly, stability alone
does not necessarily guarantee that the deviation between the true solution to
a certain partial differential equation and its finite difference approximation
will be small in any sense. Stability only implies the boundedness of the finite
difference solution, at a given time, as At approaches zero.

In the case of a beam without damping, the equation of motion is

pii + EIu' =0 (12a)
Assuming harmonic motion, that is,
u(z,t) = A T(1) (12b)
Using the finite difference method, equation (12a) can be replaced by
T(t 4+ At) — 2T(t) + T(t — Al) + y[(e2 27 4 ¢~ 87)

—4(e?B% 4 e7IATY L 6]T(2) = 0 (12¢)

Since [eXAT 4 ¢~ 2 AT _ 4(IB% 4 ¢7JA%) 4 6] = 16 cos?(2Z), equation (12¢)

)

is simplified to obtain

T(t+ At) —[2— 16y cos‘%%)]T(t) +T({—-At)=0 (12d)

Substituting 4 in equation (1le) into equation (12d) and utilizing the stabil-

ity criteria for the eigenvalues of a difference equation, we find the stability



condition for the finite difference equation (11d) to be

EIA?Z Az, 1
=y< =
AL cos®( 3 ) < i (12¢)
or
EIAL? 1
oAz <3 (12f)

For a beam vibrating with linear damping, represented by equation (11b),

the difference equation for the stability condition is

T(t + At) — [2 — 16y cos%%) —4a sinz(g)]T(t)

+[1 — 4o sin2(fA2—x)]T(t —At)=0 (13qa)

This can be further simplified to

AEIAt?  , Az, 20/EIpAt . , Az
= el Wk S il - <
Azl cos(2)+ oAz’ 5111(2)_1

or

EIAt?  (JEIpAt < 1
pAzt 2pAz2 — 4

(130)
which is similar to equation (12f).

Notice that the stability condition similar to equations (12f) and (13b) is
not available for the nonlinear difference equation. This is mainly because of

the difficuties encountered due to the presence of the absolute value function in

equation (11a).

82



Numerical Examples

The numerical example used for the simulation i1s a pinned-pinned beam which
resembles the SCOLE project mast [1] with L = 130 ft, EI = 4E(07 1b.ft?,
p = 0.09556 slug/ft. The beam is initially at rest and is excited by a single
mode Asin ﬂzﬁ with A= 1.3 ft and ¢ = 1,2,3,4. The first frequency is 11.95
rad/sec and its corresponding period is 0.5258 second. We proceed to evaluate
the displacement of the beam for the first half period T.

Because the stability condition (12f) implies that Az can not be arbitrarily
small, we first chose m = 10 (Az = L/m = 13ft) when verifying the stability
condition. It was found that if n > 64, At = T/n < 0.0041, |y]| = 0.2473 < 0.25,
then the numerical scheme was always stable. On the other hand, if n = 63, |7] =
0.2552 > 0.25, the numerical scheme was found to be unstable, which confirms
our stability criteria represented by equation (12f).

Before we compare the amplitude decrement using the perturbation and the
finite difference methods, it is necessary to verify the finite difference scheme
used in the simulation. We compare the finite difference displacement results
with those obtained using an analytical solution after a half period for a beam
vibrating without damping (corresponding to equation (12a)). We also com-
pare the finite difference results with that for the logarithmic decrements of the
amplitude for a beam vibrating with linear viscous damping (corresponding to
equation (11b)). We believe that as long as the finite-difference scheme con-

verges reasonably well for both equations (12a) and (11b), the scheme should
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work for equation (11a) with nonlinear damping.

The relative errors were computed for the displacement of a beam vibrating
without damping after half a period when 20 intervals in L and 1100 intervals in
T were used. The relative errors are defined as the difference between the dis-
placement using finite difference method and that using an analytical method.
The difference is then normalized by the analytical values. The relative errors
are quite uniform for each mode over all locations of the beam with their maxi-
mum values being 0.0025%, 0.037%, 0.23%, and 0.54% for modes 1, 2, 3, and 4
respectively. This implies that the finite difference method provides quite accu-
rate results for beam vibrations without damping. Notice that the errors can be
greatly reduced if more intervals are used for L and T, subject to the stability
condition of equation (12f).

For free vibration of a pinned-pinned beam with linear viscous damping,
represented by equation (11b), it can be shown that by assuming harmonic
motion (as in equation (12b)), the damping ratio, ¢, for each mode depends
only on damping constant ¢, beam properties p and EI, but not on the mode

number i, that is,

[

3/pET

According to classical vibration theory (10}, it is well known that the ampli-

¢= (14a)

tude decay after half a period for single degree of freedom system is
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§ = ¢ (14b)

which also does not depend on the mode number 1. Specifically, if ¢ = 0.003,
then theoretically § should equal to 0.0094 after half a period for any single
DOF system. Using the same numbers of grid points for L and T as before,
the amplitude decay, 6, after half a period for modes 1 and 2 at a variety of
locations on a beam with linear damping (¢ = 0.003) were computed. For both
mode 1 and 2, the amplitude decay, §, remains almost i1dentical at all locations
of the beam, as if each point on the beam vibrated as a single DOF system. It
is interesting to note that the amplitude decay, 6, is about 0.0094 for mode 1,
and 0.0096 - 0.0097 for mode 2, both of which are close to 0.0094 (= 7¢). These
results are in good agreement with equations (14a-14b) and further confirm that
the finite-difference algorithm used is quite reliable.

Figures 5 and 6 compare the values of the amplitude decay for modes 1-
3 after half a period T' for the same beam with: (1) linear damping using
finite-difference method, (2) nonlinear damping using finite-difference method,
and (3) the perturbation method discussed in Section 4. The abscissas are a
dimensionless quantity damping ratio {. Linear damping coefficient ¢ is equal
to 2(+/pEI, and the nonlinear damping coefficient Cyy si equal to 4e. These
values are used for both finite-difference and perturbation methods. For the
case of linear damping, the amplitude decay takes almost the same value for

modes 1-3 (e.g., § = 0.0064 for modes 1-3 when { = 0.02), which is consistent
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with equation (14a).

From Figures 5 and 6 we observed that: (1) the effect of linear damping
exceeds that of nonlinear damping for mode 1, (2) the effect of lincar damping
is about the same as that of nonlinear damping for mode 2, and (3) the effect of
nonlinear damping outweighs that of linear damping for mode 3. These results
imply that in the case of nonlinear damping the amplitude of higher modes
will be damped out faster than the lower modes, whereas in the case of linear
damping, the modes are all equally damped. This is consistent with the results
of Section 3 for a single degree of freedom system, as well as with common
engineering judgement.

Finally, when comparing the results in Figures 5 and 6 for nonlinear damping
using either finite-difference or perturbation methods, it is observed that for
fundamental modes the perturbation method provides a very conservative upper
bound of amplitude decrement after half a period. This result might be useful in
preliminary assessment of the impact of nonlinear damping effect, since in many

occasions, we are mainly concerned with the system’s fundamental frequencies.

Conclusions

A space systems dynamics and controls analyst is often confronted with the
problem of gaining a better understanding of the damping mechanism which is
inherently nonlinear. Fortunately, some of the difficulty in handling nonlinear-

ities is offset by the fact that damping is still small. This makes it possible to
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obtain approximate solutions using the classical Krylov-Bogoliubov “averaging”
technique to study a class of nonlinear damping models.

In this paper, the damping force is assumed to be proportional to the product
of positive integer or fractional powers of the absolute values of displacement
and velocity. As is expected that for a typical nonlinear system, the amplitude
decrement of free vibration with nonlinear models depends not only on damping
ratio, but also on the initial amplitude, the time to measure the response, the
frequency of the system, and the powers of displacement and velocity. For a
pinned-pinned beam, both an ad hoc perturbation method and a finite difference
technique are used to study the vibration of a beam with nonlinear damping.
The action of nonlinear damping is found to reduce the energy of the system
as well as to pass energy to lower modes. As a result, the amplitude of higher
modes will be damped out faster than the lower modes. All of these results
are very useful to study the response of a flexible structure to the action of a

nonlinear boundary feedback control.
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Figure 1 Time History for Linear and Nonlincar Damping: a4b =1

Ao = 25, Mass = 1, Stilfness = 4, Damping Cocl. = 0.01

Figure 2 Time History for Linear and Nonlinear Damping: a4 h=1

Ao = 50, Mass = 1, Stillness = 4, Damping Cocf. = 0.01

Figure 3 Time lHistory for Linear and Nonlinear Damping: ath=2

Ao = 25, Mass = 1, Stiflness = 4, Damping Coel. = 0.01

Figure 4 Amplitude vs. Number of Cycles [or Linear and

Nonlincar Damping

Figure 5 Amplitude Decay vs. Damping Ratio after Half Period

FDS: Finite Difference Simulation

Figure 6 Amplitude Decay vs. Damnping Ratio after llalf Period

I'DS: Finite Difference Simula(ion
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Nonlinear and Distributed Parameter Models
of the Mini-MAST Truss

Lawrence W. Taylor, Jr.
NASA Langley Research Center
Hampton, Virginia

ABSTRACT

Large spacecraft such as Space Station Freedom employ large trusses in
their construction. The structural dynamics of such trusses often exhibit
nonlinear behavior and little damping which can impact significantly the
performance of control systems. The mini-MAST truss was constructed to
research such structural dynamics and control systems. The mini-MAST
truss is an object of study for the Guest Investigator Program as part of
NASA's Controls-Structures Interaction Program. The Mini-MAST truss is
deployable and about 65 feet long. Although the bending characteristics of
the Mini-MAST truss are essentially linear, the angular deflection under
torsional loading has exhibited significant hysteresis and nonlinear stiffness.
It is the purpose of this study to develop nonlinear and distributed
parameter models of the truss and to compare the model dynamics with
actual measurements. Distributed parameter models have the advantage of
requiring fewer model parameters. A tangent function is used to describe
the nonlinear stiffness in torsion, partly because of the convenience of its
easily expressed inverse. Hysteretic slip elements are introduced and
extended to a continuim to account for the observed hysteresis in torsion.
The contribution of slipping to the structural damping is analyzed and found
to be strongly dependent on the applied loads. Because of the many factors
which affect the damping and stiffness in a truss, it is risky to assume
linearity.

INTRODUCTION

Future missions in space require spacecraft which are considerably
larger and more flexible than current spacecraft. Large spacecraft such as
Space Station Freedom employ large, complex trusses in their construction.
The structural dynamics of such trusses often exhibit nonlinear behavior
and low structural damping which can impact significantly the performance
of control systems. For example, in reference 1, Lallman studies the effect
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of damping on the performance of the attitude control system of the Space
Station Freedom. The mini-MAST truss was constructed to research the
interaction of such structural dynamics and control systems and is an object
of study for the Guest Investigator Program as part of NASA's Controls-
Structures Interaction Program.

The Mini-MAST truss was designed to be deployable to a length of
66.14 feet when fully extended. The bending characteristics of the Mini-
MAST truss are essentially linear. The angular deflection under torsional
loading, however, has exhibited significant hysteresis and nonlinear stiffness
during laboratory tests.

The complexity of such structures create a burden to optimal design
and to systems identification for upgrading dynamic model parameters by
analyzing experimental test data. The large number of model parameters
which results if each structural mode is assumed to be independent can be
greatly reduced if distributed parameter models are used.

It is the purpose of this study to develop distributed parameter
models of the Mini-MAST truss and to compare the model dynamics with
the actual dydamic characteristics. A second purpose is to model the
nonlinear stiffness and damping properties of this joint-dominated truss. It
is hoped that the study results will be useful in designing control systems
for large spacecraft such as Space Station Freedom which employ similar
trusses.

DISCUSSION

Because the Mini-MAST truss is representative of structures that will
be used for large spacecraft such as ‘the Space Station Freedom, the study of
its structural dynamics is valuable in assuring the dependablhty and high
performance of spacecraft control systems. Figure la. pictures the Mini-
MAST truss being deployed. The reduction in volume is striking when
compared to the deployed truss shown in figure 1b. Reference 2 describes
in detail the design of the Mini-MAST. Because of the complexity of the
truss it is important to study simplifying models of its dynamics. Figure 2
shows how many modes are required to depict accurately the static
deflection of a cantilevered beam. The problem is compounded if the modal
parameters are considered to be independent. Because of the resulting
complexity there is considerable advantage in using distributed parameter
models. Due to the greatly reduced numbers of parameters required for
such models as shown in figure 3, the ability to employ systems
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identification (Reference 3) and optimal design techniques is greatly
facilitated. Because of these advantages it is valuable to determine the
accuracy with which distributed parameter models can represent the Mini-
MAST truss. For example, can such simple models predict accurately the
peaks of the frequency response shown in figure 4?7 If distributed
parameter models represent accurately the dynamics of the Mini-MAST
truss, then the model equations can be used to upgrade the model
parameters using systems identification. Also the models will be useful in
integrated control-structures design because their form provides easy access
to global varibles such as the modulus of elasiticity.

The Mini-MAST truss, being deployable, requires a large number of
joints. The compliance and possible slippage of the joints may affect the
overall stiffness of the truss when viewed as an equivalent beam. The
action of the joints may also affect the damping of the truss as well. It is
important to know accurately the damping of a spacecraft in order to assure
reliable and high performance control. It is also important to understand
and to model any nonlinear behavior caused by the numerous joints.

Distributed Parameter Bending Model

The Mini-MAST truss is modeled as a cantilevered beam with an
added tip mass as depicted in the schmetic in figure 5. The partial
differential equations (Euler beam equation) and boundary condition
equations (Cantilevered and tip mass) are solved thereby determining the
modal characteristics. First, the calculated static deformation resulting from
a constant 15 pound for applied to the tip is compared to actual test results
in figure 6. The value of the stiffness parameter, EI, for an equivalent Euler
beam derived from this test is 27.6 x 106 pound feet squared. The
comparison suggests that the model deformation matches the actual
deformation within the measurement error. The resulting modal
frequencies in bending are then compared with experimental results and
those for a finite element model (Reference 4) in figure 7. The frequencies
for the first few bending modes of the distributed parameter model
accurately match the actual bending frequencies of the truss. At higher
mode numbers, however, the actual modal frequencies are lower than the
theoretical values for the Euler beam model. Belvin, in reference 5, showed
that the shear deformation of a similar truss cannot be ignored as is done in
the Euler beam model. Belvin used the techniques of reference 6 in his
study. The Timoshenko beam, in contrast, accounts for the shear
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deformation and more accurately models the frequencies in bending as
shown in figure 7.

Figure 7 also shows the accuracy with which the frequencies of a finite
element model match the actual frequencies of the truss. The finite element
model is reasonably accurate even at high mode numbers. The parameter,
El, used in the finite element model equals 29.8 x 106 pound feet squared.
In figure 8 the bending mode shapes generated by the same finite element
model exhibit shapes similar to Euler beams with one exception. Examina-
tion of the third mode reveals that the shear deformation is significant
enough to give a change in slope almost at the bottom of the truss. The
general contour of the mode shapes in figure 8 compare well with those of
the Timoshenko beam (not shown) but the irregularities which show
significant local deformation will be missing from the distributed parameter
models. It is possible that overlookong such local deformations could cause
control system instability. )

The effect on the first bending mode frequency of changing the mass
at the tip of the equivalent beam is shown in figure 9. The frequency
response measurements of figure 4 had a tip mass which weighs 70.125
pounds (mass ratio = .31). The Mini-MAST truss excluding its tip mass
weighs 229 pounds. The Euler beam model depicts accurately the change in
frequency when the tip mass is removed. The assembly for the active
control of the Mini-MAST is expected to weigh in excess of 300 pounds. The
frequencies for higher mode numbers will not change as much as that for
the first mode because as mode number increases the motion of the tip mass
diminishes, thereby approaching a pinned end condition.

Distributed Paran_leter Torsion Model

Similar to the bending case, the truss is modeled in torsion as an
uniform shaft which is fixed at one end and has a tip body attached to the
other end. Based on the angular deformation due to an applied moment the
torsional parameter Glpolar equals 2.16 x 106 pound feet squared per
radian. The partial differential equations and end conditions are solved and
in figure 10 the model's torsional frequencies are compared with
experimental results and the finite element model of reference 4. The close
comparison indicates that the modal frequencies for both the distributed
parameter model and the finite element model compare closely with the
actual frequencies.
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Nonlinear Torsional Stiffness

Because the Mini-MAST truss exhibits significant nonlinear stiffness
and hysteretic behavior in torsion, it is necessary to model these
characteristics. The nonlinear stiffness model will be discussed first. The
hysteretic model will be treated in the next section.

Although the form of the nonlinear stiffness is approximately cubic,
a tangent function is used because (1) its form gives the nearly linear plus
cubic relationship that is needed, and (2) the tangent has a conveniently
express inverse. Figure 11 depicts the tangent model of the nonlinear
stiffness in torsion and introduces the parameters, K, and, B, which govern
the linear and the cubic contribution, respectively. The parameter, K, then is
the usual torsional stiffness.

In figure 12 it is evident that the tangent relationship compares well
with the experimental results. The data shown is believed to not involve
any slipping as it represents the relaxation from a load having been applied.
As the load is increased slipping does take place and will next be considered.

Torsional Slip Model

The torsional hysteretic model is comprised of an infinite number of
slip elements. An individual slip element is assumed to slip instantaneously
upon reaching a particular moment threshold. A reverse slip is assumed to
take place at a moment of equal level but opposite sign as depicted in figure
13. A slip distribution function is introduced which describes the
probability density function of the values of moment threshold. The second
order exponential form of the function, shown in figure 14, was chosen to fit
the experimental data. Effort is underway to link this distribution function
to the vertical loading of the joints. The total deflection amplitude consists
of (1) the deflection due to compliance without slipping plus (2) the
deflection due to an accumulation of slips due to the applied moment. The
expected value of the accumulation of slips is given by the integral of the
slip distribution function between the last moment reversal or zero and the
current applied moment. The deflection equation is depicted in figure 15.

The total hysteretic model which contains both the nonlinear stiffness
and the hysteretic slipping is compared with actual test results in figure 16.
The close comparison of the model results and the actual hysteretic behavior
gives validity to the model for torsional deflection due to applied moment.
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The hysteretic behavior is expected to be dependent on the vertical loading.
When the 300 pound plus active control assembly is attached to the top of
the Mini-MAST the total angular deflections are not expected to change
significantly, but an increase in the moment threshold is expected. Because
of the effect of gravity it is difficult to determine the hysteretic behavior in
an unloaded condition as in space.

Structural Damping

The damping for the first bending mode is affected by the mass of the
tip body as shown in figure 17. The damping ratio which was measured for
the truss without tip mass was about 3.3%. This value was about three time
the value expected based on the assumption that the dimensional damping
of the truss would not change. The damping ratio would be expected to
double from the value of about .45% for the 70 pound tip mass. This
discrepency is probably due to slipping being affected by vertical loading, as
is the case for torsion.

In torsion it is possible to link slipping to damping by accounting for
the loss of energy due to slipping. Figure 18 shows that the expected
contribution to damping from slipping for oscillations about the unloaded
condition reflect the shape of the slip distribution function. The damping
contribution for oscillations in torsion about a loaded condition may be as
low as zero because of the complete lack of slipping.

The statically determinant truss to be used on the Space Station
Freedom can be expected to involve internal loading. As a result the
damping of the truss for small amplitudes is not expected to involve slipping
and will consequently exhibit very low damping.

Laboratory tests have revealed a damping ratio for bending modes for the

cantilevered truss to be about .0045. The damping ratio will decrease when
large bodies are added to the truss. In the absence of air, the damping can

be expected to be even smaller, perhaps approaching .002.

Past practices of using a constant damping ratio of .005 for space station

studies does not represent the worst case. Lower values of damping should
be used which reflect mass loading and internal loading effects.
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CONCLUDING REMARKS

The Mini-MAST truss has been tested and analyzed for the purpose of
understanding the dynamic characteristics, nonlinear stiffness and
hysteretic damping of large spacecraft.

It was necessary to use a Timoshenko beam model for bending to
account for the shear deformation of the Mini-MAST truss. The modal
frequencies of the Euler beam model were higher than the actual values.

A tangent function model of the nonlinear torsional stiffness was
developed and its parameters estimated to match experimental results.

A hysteretic slip model for torsion was developed using the experimental
test data. The slip distribution function used has a second order,
exponential form. The hysteretic behavior is expected to be affected by
changes in the vertical loading due to gravity.

The damping contribution in torsion of the hysteretic behavior was
deduced by analyzing the torsional slip model. The damping due to slipping
was determined to be quite dependent on loading conditions. A steady load,
for example, might eliminate slipping and consequently any damping
contribution due to slipping.

Future studies of control system performance should use lower values of

structural damping than the .005 used in the past, and should consider the
nonlinear effects.
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Figure 1 The Mini-MAST Truss Being Deployed.
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EFFICIENCY AND CAPABILITIES OF MULTI-BODY SIMULATIONS

R.J. VanderVoort
DYNACS Engineering Co., Inc.
Clearvater, Fl

ABSTRACT

Simulation efficiency and capability go hand in hand. The more
capability you have the lower the efficiency will be. Section 1 of this
paper discusses efficiency and section 2 deals with capabilities. The lesson
we have learned about generic simulation is: Don’t rule out any capabilities
at the beginning but keep each one on a switch so it can be bypassed when

varranted by a specific application.

1. EFFICIENCY

Efficiency means different things to different people. For the person
running simulations interactively on a terminal quick turn around time is
efficiency. For the person making 10,000 Monte-Carlo runs low cost 1s ef-
ficiency. For the person running real time simulations minimum CPU time is

efficiency.

Three aspects of a simulation should be considered when dealing with
efficiency; hardvare, software and modeling.

Bardvare A fast processor will reduce CPU time for a given simulation but
this doesn’t necessarily equate to improved efficiency. For example, the
Monte-Carlo simulation may take 10 minutes on a super computer and 2 weeks
on a PC but if time is free on the PC then that may be an efficient solu-
tion. We will not discuss hardware related issues except for two points. 1.)
Fast hardware is of primary importance to the real time simulation because
it means higher fidelity models can be incorporated 2.) Vector processors
and parallel processors should use custom algorithms that take full ad-
vantage of the special machine architecture.

Software A fast algorithm will also reduce CPU time but again this doesn’t
necessarily equate to improved efficiency. For example, it is generally
accepted that an ad-hoc simulation is much faster than a generic simulation.
The cost of developing and testing the ad-hoc simulation may exceed the run
time saving thereby reducing overall efficiency.
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Recent work in the area of symbolic programming has shown that sig-
nificant savings can be achieved by symbolicaly forming the equation of
motion and numerically solving them. Other algorithms have been proposed
that promise similar savings. There is one point that software developers
should keep in mind. Vith generic simulations the user must have complete
flexibility in retaining or deleting different parts of his model. This is
because generic simulations are often used for model development and valida-
tion. In that environment an analyst will add or delete certain features to
determine the effect on performance and whether or not the feature should be

retained in the model.
More on this subject in section 2.

Modeling This is the domain of the simulation user and the area in wvhich
many improvements in efficiency can be made. For example, deleting a high
order mode in a flexible body model has a compound effect. It reduces the
model complexity and at the same time allows a bigger integration step size
both of which reduce run time. Often times the reduced fidelity is justified

by the savings in run time.

The point to be made 1s that the analyst is the end authority on the
"correct” model for a given application. The more flexibility he has in
changing his model the easier it is for him to select the best model for the

job.
2. CAPABILITIES

Capability in our context is synonymous wvith flexibility and not with
complexity. A simulation may be very detailed and complex but if it can’t be
changed then 1it's only useful in a narrov range of applications and has

limited capability.

In our experience with TREETOPS and DCAP ve have found that it is much
easier to generate a model and obtain a response than 1t is to predict the
correct response. In other words, when ve don’'t get the expected response
the simulation is usually correct and our expectation is wrong. This is not
entirely unexpected because it is very difficult, even for an expert, to
solve the equations of anything but the simplest dynamical systems. The
solution to this dilemma 1s flexibility. Start vith simple models that have
known analytic solutions. Then add complexity one step at a time vhile
gaining confidence 1in Yyour model and instsht into the behavior of your

system.
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For multibody systems with flexible bodies the same arguments apply but
the complexity of the model increases more rapidly than for rigid bodies.
The person doing software development makes assumptions that simplify the
resulting equations of motion. If this is done carelessly then terms are
dropped that may prove essential in specific applications. On the other
hand, if simplifications are not made then the computation burden becomes
too great.

The lesson we learned is that you must retain as many terms as possible
in the kinematics but they must have associated switches so you can easily
add or delete them from a specific application. This is done for two
reasons. 1l.) to give you insight into the effect of various model elements
on system response and 2.) to allow the selection of the most efficient

model for a given application.
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AUTOMATIC GENERATION OF THE

EQUATIONS OF MOTION AND THEIR

SOLUTION FOR FLEXIBLE STRUCTURES

Ramen P. Singh and Larry Taylor.
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1. INTRODUCTION

Supported by the Spacecraft Control Branch of NASA Langley Research Center
under the Spacecraft Control Laboratory Experiment (SCOLE) program, the Con-
trol Research Corporation continued the investigation into the control design
challenges of large space systems and Spacecraft Control Laboratory Experi-
ment. This study concentrated on the second stage of a two-stage approach to
active control of the flexible orbital configuration of SCOLE. The principal
objective was to investigate if the structural vibrations excited by time-
optimal line-of-sight pointing slew maneuvers of the bang-bang type could be
quickly suppressed via "modal-dashpot”™ design of velocity output feedback

control.

Structural vibrations in future large space systems such as space anten-
nas, space platform, space station, or of deployed flexible payloads attached
to the space Shuttle orbiter, and their interaction with on board controllers
have become a major concern in the design and operation of such control sys-
tems as, say, for pointing and stabilization. The natural vibration frequencies
of such systems are unconventionally low (tenths of 1 Hz in many cases) and
closely spaced, many of which lie inside or nearby the bandwith of varilous
traditional (rigid-body) control systems. In the past few years, many
approaches were proposed for designing advanced control systems that would
suppress vibrations in large flexible space structures, and various in-house
laboratory experiments were also conducted, each being specifically set up for
demonstrating some particular design techniques of interest. In 1983, the
Spacecraft Control Branch at NASA Langley Research Center initiated the Space-
craft Control Laboratory Experiment (SCOLE) program and the NASA/IEEE
Design Challenge [1] to promote direct comparison and realistic test of dif-
ferent approaches to control design against a common open-to-public laboratory
article. As shown in Fig. 1-1, the article was intended to resemble a large
space antenna attached to the Space Shuttle Orbiter by a long flexible mast,
similar to the proposed space flight experiments and various space-based
antenna systems, and to have a truly three-dimensional complex dynamics.

As stated in Ref. [1], the primary control task of the Experiment 1is to
rapidly slew or change the line-of-sight (LOS) of an antenna attached to
the space Shuttle orbiter, and to settle or damp the structural vibrations
to the degree required for precision pointing of the antenna. The objective is
to minimize the time required to slew and settle, until the antenna line-of-

sight remains within a specified angle.

Research on a practical two-stage approach and some associated control
design challenges in the context of SCOLE had been conducted earlier by Lin
(2]-[5]. His initial efforts, also supported by the SCOLE program, were con-
centrated on "Stage 1" while the flexible-body dynamics of the configuration
with a flexible mast beam was being actively developed at the Langley Research

Ceunter.

Among the most commonly held ideas for pointing/retargeting of large flex-—
ible space systems is the following intuitively appealing and rather practical
two-stage approach: (Stage 1) slew the whole structure like a rigid body in a
minimum time under the limited control moments and forces first, and then
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Fig. 1-1 Spacecraft Control Laboratory Experiment (SCOLE)--
the orbital Shuttle-Mast-Antenna configuration.
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(Stage 2) damp out the excited structural vibrations afterwards. Such an
approach undoubtedly will be a very relevant, and realistic as well, to study
with SCOLE.*

To slew a spacecraft for a given angle in a prespecified time, there are
many ways to command the slew actuators on board. The one that 1s easy to
implement is a bang-bang control. That is, a constant force at its allowable
maximum is applied in one direction half of the time and then in the opposite
direction the other half. Such is the most convenient and common with reac-
tion-jet thrusters, and most spacecraft including the space Shuttle use thrus-
ters. As the structure considered for future space antennas and optics was
becoming larger and more flexible, structural dynamicists suggested modifying
the constant profile by a sine or versine function so as to smooth the switch-
ing. To explore further in their theorectical and experimental investigations,
control engineers also started to apply Pontryagin's Maximum Principle of the
optimal control theory [6] to develop open-loop profiles that would "minimize”
excitation of the first few vibration modes.** Including more than a few
modes generally will make it almost impossible, even with the aid of powerful
digital computers, to carry out the complicated computations necessary for
applying the optimal control theory. To implement any such slew profile other
than the bang-bang type will also require that the thrusters be at least
“throttleable” in fine steps, which is still beyond the current state of the

art.

To slew SCOLE for the desired 20° under the specified limits on control
moments and forces in a minimum time, instead of some arbitrarily fixed time,
application of the well-known time-optimal bang-bang control theory [6]-{7]
was considered the most appropriate for the Stage-1 design. The theory, how-
ever, is not directly applicable to SCOLE: due to the asymmetrical configura-
tion and the moving coordinate frame that is fixed on the Shuttle body axes,
all axes are tightly coupled through nonzero products of inertia as well as
through different moments of inertia. After examining the major assump-
tions in the theory, Lin [2]-[3] was able to develop a useful practical design
technique for time-minimized single-axis bang-bang slew maneauvers. This in-
cludes the possible "bang-pause-bang control” when some judicious slew rate
limits are imposed on the slew design.

Analytical and numerical studies were then conducted on the implicit tran-
scendental nonlinear expression initially provided by NASA Langley Research
Center for SCOLE's line-of-sight error. A designer's choice of allowable in-
itial alignment to take advantage of the low moment of inertia in the roll, as
suggested by Taylor [l], was determined directly analytically. The slew
angles to achieve the desired LOS pointing were thus determined. [4]-[5]

A computer program for SCOLE's complete 3-axis rigid~body dynamics was
developed and used to simulate numerically the application of various time-

# The Space Shuttle, while in orbit, is under the single-axis “"phase-plane”
rigid-body attitude control of "Digital Auto-Pilot” (DAP). If the two—stage
approach is applicable, then the current DAP can be used conveniently with
various proposed flexible-structure flight experiments in space without having
to make a major specific change in operation or design to suit each different

experiment setup.

*% Usually all but 2 to 3 modes of the structure were ignored.
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minimized bang-bang type attitude slew maneuvers. The numerical simulation
test results indicated that the single-axis bang-bang or bang-pause-bang slew
maneuvers work fairly well for pointing the LOS of SCOLE under the specified
conditions. 1In particular, applying a maximum allowable control moment (1.e.,
10,000 1b-ft) on the Shuttle and a maximum allowable control force (i.e., 800
1b) on the Reflector, plus imposing 5 deg/sec slew rate limit on the design,
yields the best pointing accuracy (0.097°) with minimized slew time (3.733
sec) and least sensitivity to nonzero products of inertia. Such is a best
design for LOS pointing slew maneuver for the SCOLE configuration so far as

the Stage 1 is concerned.[5]

For designing vibration control systems (the Stage 2), a standard choice
would be to apply the wmodern control and estimation theory, namely, the
linear-quadratic-Gaussian (LQG) state-feedback control technique. The LQG
technique has been well accepted because of 1its success in various other
applications. Control spillover and observation spillover, however, have
surfaced as major roadblocks to successful application of such a state-of-the-
art state-feedback design technique to control vibrations in large flexible
space structures. Current spacecraft and many other engineering systems on
which the LQG technique has been very sucessful are of the rigid-body type
that do not have as many closely spaced low-frequency vibration modes as
there are in a future large flexible space system. Earlier, Balas [8] showed
by an example and Herrick [9] followed by a hardware experiment that, because
of control and observation spillover, even a simple flexible beam, which was
initially stable in the open loop, became unstable when the "modern modal

control” loops were closed.

On the other hand, dynamic properties of large flexible space structures
can be enhanced by active augmentation of modal damping and stiffness through
proper output-feedback control [10]-[24]. Lin [20]-[23] showed analytically
that an appropriate output feedback control system, particularly when it is of
the type of "modal dashpots” and/or "modal springs” [21], can even ensure
full-order closed-loop asymptotic stability of a very general class of
lightly damped large flexible space structures while improving their dynamic
characteristics.

For Stage-2 design to damp the excited vibrations in the SCOLE configura-
tion, one can consider using a modal-dashpot type of output feedback control
system first. One may then consider using a modal-dashpot augmented LQG
optimal state feedback control system, if the LOS stabilization performance is
not enough to satisfy the specified stringent accuracy requirements.

Before proceeding to designing a vibration control system for SCOLE, many
technical issues need to be addressed. For example, one needs to characterize
SCOLE's vibration modes with respect to (i) the excitation by the rapid slew
maneuvers, (ii) their contribution to the vibration (jittering) of SCOLE's line
of sight, and (iii) the control authority of the control actuators. Which
modes need to be controlled directly? Which modes only need some additional
damping? Which are more likely to cause serious control spillover if not in-
cluded as "modeled modes"? Those are among many technical questions one gen-
erally should look into before starting out a meaningful design for SCOLE's
vibration control system.
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2. MATHEMATICAL MODEL OF THE ORBITAL SCOLE CONFIGURATION

To assist our quantitative assessments of the vibratory impact of rapid
bang-bang slew maneuvers on the flexible SCOLE configuration and the perfor-
mance of proposed vibration control designs, we have developed a computer pro-
gram to simulate various vibratory responses of the configuration. The com-
puter simulation was based mainly on the modal data set D3D585 provided by
Dr. Suresh M. Joshi of NASA Langley Research Center as the flexible~body dyn-
amics, and the nonlinear LOS error expression formulated by Mr. Larry Taylor
[1]). We extended a portion of the expression by including a few more terms to
take a better account of the effect of bending in the mast.

2.0 Outline of the Orbital Shuttle-Mast-Antenna Configuration

As shown in Fig. 1-1, the configuration of the SCOLE represents a large
antenna attached to the Space Shuttle Orbiter by a flexible beam as the Mast.
The configuration was chosen for its similarity to proposed space flight exper-
iments and various space antenna systems.

The dynamics of the SCOLE configuration are described [1] by a distributed-
parameter beam equations with rigid bodies in the three-dimensional space, each
having mass and inertia at either end. One body represents the space Shuttle
Orbiter, having the mass, inertia, and dimensions typical of the real one. The
other body is a large antenna reflector. The equations of motion for the com-
plete configuration are formed by incorporating the three-dimensional rigid-
body equations into the partial differential equations of beam bending and tor-
sion. The flexible mast is treated as a standard slender beam. The boundary
conditions at the ends of the beam contain the forces and moments applied to
the rigid Shuttle and reflector bodies. The mast is not attached to the
mass center of the reflector, but rather significantly away in both x and y
directions. The nonlinear kinematics of the two sizable bodies and the offset
attachment of the reflector couple the threée otherwise uncoupled beam equa-
tions. The reader is referred to Taylor and Balakrishnan's paper [1] for the
details. The rigid-body part of the mathematical model was used by Lin ear-
lier in his studies on the LOS pointing (i.e., the Stage 1) of the configuration.
The studies on vibration control reported here were based on a most recent
version of the flexible-body part available; see Section 2.1 below.

The line-of-sight (LOS) error of the SCOLE configuration is a highly nonli-
near implicit expression. The line of sight is defined by a ray emited from
the feed on the Shuttle which is reflected at the center of the Reflector. It
is affected by the pointing error of the Shuttle, the offset attachment of the
Reflector, and the misalignment due to the deflection and torsion of the Mast.
The reader is again referred to Ref. [1] for the original formulation of the
LOS error. An equivalent expression having a simple modification, which is
nore convenient than the original for both efficient numerical computations
snd in-depth analytical investigations, was used by Lin in his earlier rigid-
body studies [3]-[5]. For the current flexible-body studies, the nonlinear LOS
crror expression also needs some more terms in order to have a better
accounting for the bending of the mast beam; see Section 2.2 below.
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2.1 Flexible-Body Dynamics

The bending and torsion characteristics of the SCOLE configuration were
originally formulated in partial differential equations by Taylor and Balak-
rishnan {l}. Robertson [25] derived the corresponding equations of free motion
taking into account the kinematic coupling resulted (i) from the offset attach-
ment of the Reflector to the Mast and (ii) from the nonzero products of
inertia of both the Shuttle and the Reflector. He then solved the equations in
terms of trigonometric and hyperbolic functions and computed a set of natural
frequencies and mode shapes. Such results are not readlily useful for control

studies.

To facilitate the control analysis and design for SCOLE, Joshi [26] first
derived a state—space model from Robertson's results; the data set was named
"BMDT3D". Later, he improved Robertson's results, and also derived another
state-space model, named "D3D585". Our computer simulation program was in-
itially based on the data set BMDT3D, which contained only the first five flex-
ible-body vibration modes. It was then updated when Dr. Joshi furnished us
with the set D3D585 later.

The set D3D585 provides modal data in the state-space (A,B,C) form. It
contains only the first 10 flexible-body modes but no rigid-body modes nor any
nonlinear rigid-body dynamics. This set was quite appropriate for our purpose
of assessing the vibratory impact on SCOLE. We found it more effecient and
convenient, however, to compute the time transition of the states using the
second-order modal equations directly, because of the decoupled nature of the
former, than to do so using the first-order state equations. We thus con-
verted the furnished data back to the following standard modal form:

m
r‘{i + 80, + oiny = Z o'{kauk i=1,...,N (2-1)
k=1
n
yj = Z(Cvj¢ini + CDj¢ini) J = 1,---,!' (2-2)
i=1
where 8, = 2¢ 0, o = wiz (2-3)

are, respectively, the damping and stiffness coefficients of the wunit-mass
linear oscillator representing the ith vibration mode; w; and ¢; denote the
natural frequency and mode shape, respectively, of mode i; ¢y denotes the in-
herent damping ratio of mode i, which had been assumed to be 0.3% for all
flexible-body modes of SCOLE [l]. nqy and ny denote the coordinate and velo-
city, respctively of the ith mode.

The kth force (torque) input is denoted by ug, with column vector bpy rep-
resenting the corresponding actuator influences on SCOLE. The jth measurement
output 1is denoted by Y with row vectors Cy; and CDj representing, respec-
tively, the velocity and displacement sensor influences.

Putting (2-1) and (2-2) into a wmatrix form, we get
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n+ AR+ In= oTBFu (2-4)
y = CVOﬁ + CDOn (2-5)
where
s = diag [2¢w], I = diag[wiz:l (2-6)
¢ = [¢1» peey ¢n]s BF = [bFl’ ey me] (2-7)
Cyp | Cpp |
C, = : C =
\' CVR, D LCD"

[n ] [ ] [y, ]

.
. .

n= ° us=| ° y = (2-8)
nN Yo yl

In accordance with Robertson's formulation, we also assume that the bend-
ing and torsion in SCOLE are referred to the coordinate system defined on its
initial undeformed configuration. Thus, before any deformation, the center of
mass of the Shuttle is at the origin of the coordinates; the roll, pitch, and
yaw axes (i.e., body x, y, z axes) of the Shuttle, align with the x, y, 2z coor-
dinate axes* respectively; and, in particular, the straight mast beam coincides
with the z coordinate axis. Note that, since the flexible mast was not tre-
ated as a cantilevered beam in Robertson's derivation, not only the mast may
not be tangential to the z coordinate axis, but the center of mass of the
Shuttle also may not remain at the origin, nor may the Shuttle body axes
remain parallel to the coordinate axes, when a significant deformation of the
mast occurs. The line of sight of the SCOLE configuration will thereby be sig-
nificantly affected.

2.2 Line-of-Sight Error Expression with More Bending Terms

In order that the jittering of the line of sight (LOS) due to excited vibra-
tions can be more accurately evaluated, we used almost the same nonlinear
expression for the line-of-sight (LOS) error of the SCOLE configuration as ori-
ginully given in Ref. [1]. Unlike the orginal, however, our improved version
also takes into account the z-axis dislocation of the Reflector due to
bending of the mast, and like the one Lin used earlier [4]-[5] the LOS vector
R o5 is not normalized. Note that the LOS error expression could be expanded
in a Taylor series and a linearized version could be obtained by taking the
first—order terms. A linearized version, though useful in linear-quadratic

* Robertson's y and z axes are opposite in sign to those defined by Taylor for
SCOLE. We continue to adopt Taylor's definition for consistency with Lin's
earlier studies [2]~[5] on the Stage 1.
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optimal control designs, 1is not appropriate for our current use since the
excited vibrations are sufficiently large in magnitude and the second- and
higher-order terms of the series expansion may not be negligible at all.

The location of the center of the Reflector, reprcsented by RR ,is defined
by the location of the joint where the Reflector is attached to the Mast; see
Figure 2-2. Denote by Rj the location of the joint relative to the center of
the Reflector, and by Ry the location of the same point (also the tip of the
mast) with respect to the center of the Shuttle. Then the vector Rg is given

by

T
Re =R, - T, T, R (2-9)
[ -18.75
32.5
where RJ = L 0 (2-10)

The vector Rj is constant in magnitude because of the rigid reflector, but its
orientation with respect to the Shuttle is affected by the deflection at
the tip J. The product Ter4 of coordinate transformations T} and T4 1s to
take care of the angular change. As in Ref. 1, T; denotes a direction~cosine
transformation from the Shuttle to the Earth (inertial) coordinates, and T, one
from the Reflector to the Earth coordinates.

A reasonable approximation for the tip location is given by

[ Bendy

Bendy _
Ry = (2-11)

-/ 130% - Bendx® -Bendy?

where Bendy = Urs = YUyr Bendy = uyS - uyR

uxs and uyg denote the deflections of the mast at the Shuttle end in the
xz and yz planes, respectively; uyp and uyR are the corresponding deflections
at the Reflector end.

Eqs. (2-9)-(2-11) constitute our additional modification to the LOS error
expression. Note that the vector Rp originally given as (18.75, -32.5, -130) in
Ref. [1] corresponds to the undeformed case. To see it, assume that ther

are no deflections at all. Then Bendy and Bendy are both zero, and T4 is
equal to T). Therefore, Ryt = (0, O, 130). Consequently, Rg = Rt =Ry = (18.75,
-32.5, 130).

In the analytical studies on the LOS error of SCOLE [4]-[5], we found it
more convenient not to normalize the LOS vector Rypgg first, although the res-

ulting error expression is the same since division by its norm is still made
later at the end. The LOS error with such a trivial modification is given by

eos = * stnl [ Dy x Tikios|| / | IRyosl| | (2-12)
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with the unnormalized LOS vector being defined as

- 1= _ - - -
R gg = RF Ry -Rg 2[(RR RF).RA]RA (2-13)
Where as defined in [1], Rp is the vector representing the feed location (3.75,
0, 0). Rp Is a unit vector in the direction of the Reflection axis in the Shut-
tle body coordinates, i.e.,

T 0
Ry =Ty Ty o0
1

For the target direction specified in [1] as Dt = (0, 0, 1), Expression
(2-12) reduces to

-1
®Los ~ * sin I:V(Tlrl Rios) + (Typp Rpog)' /| IRyggl l} (2-14)

where Tj,1; and Tjyp2 denote respectively the first and the second rows of
matrix Tj.
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3. VIBRATORY RESPONSES TO BANG-BANG TYPE RAPID SLEW MANEUVERS

Several LOS pointing slew maneuvers of the bang-bang type were applied to
our computer simulation of the SCOLE flexible-body dynamics. The resulting
responses range from excessive to minimal, depending on the magnitude of the
applied force at the Reflector. Note, however, that all these slew maneuvers
were designed to provide minimized slew time under the increasingly tight limit
imposed on the respective applied force.

The slew maneuver that excited the most violeat vibratioms in SCOLE was
chosen for studying the control design and for generating in-depth insights
into the vibration control challenges. On the other hand, the least violent
one deserves further exploration in the future, since it may potentially
require a smaller total time for both slew and stabilization.

In assessing the impact of structural vibrations on SCOLE, we view the
slew maneuvers as time-dependent disturbances instead, and only the vibra-
tory portion of the time-domain responses are of real interest. Therefore, it
is reasonable that we concentrate only on the flexible-body and temporarily
ignore any rigid-body dynamics in this study. This assumption is equivalent to
the absence of rigid-body dynamics. It is also reasonable to assume that,
before being subject to such disturbances, SCOLE was initially at rest and had
no deformation nor LOS error. The former assumption is equivalent to setting
to zero the initial conditions on the normal coordinates and velocities of all
modes, and the latter equivalent to aligning the undeformed SCOLE configura-
tion with the attitude (¢:,61,¥1) that corresponds to zero LOS error. Such
roll-pitch-yaw Euler angles, calculated and used by Lin earlier [4]-[5], are
listed below for reference:

¢, = -14.03624347°; 91 = -6.38707294°% wl = 0°.

1

3.1 Excitation by the Rapid Time-Minimized Bang-Pause-Bang Slew Maneuver

We first examined, through numerical simulation, the SCOLE flexible-body
dynamics under the excitation of the rapid time-minimized roll-axis bang-
pause—-bang (BPB) slew maneuver that was considered a best candidate for
pointing the line of sight of the SCOLE as a rigid body [4]-[5]. Among many
other single-axis LOS pointing slew maneuvers of the bang-bang type previously
studied, this BPB maneuver was judged to be the best compromise in terms LOS
pointing accuracy achievable, slew time required, and performance robust-
ness to nonzero products of inertia. It was designed to slew the SCOLE confi-
guration about the negative roll (i.e., -x) axis for about 20° to correct the
initial 20° LOS error specified in [1]. This slew maneuver requires that the
maximum allowable moment (10,000 1b-ft) be applied to the Shuttle about the
negative roll axis and simultaneously the maximum allowable force (800 1b) at
the Reflector center along the negative y axis, both for only 0.867 sec.;
then, after a long pause of 3.158 sec., these maximum moment and force be
applied again for only 0.867 sec. but in the opposite directions (i.e., positive
roll and y axes, respectively).

Such a BPB slew maneuver was applied to our computer simulation of the
SCOLE flexible-body dynamics. The simulation results are summarized by the
plots in Fig. 3-la, which show that such a maneuever would cause excessive
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Fig. 3-1 Vibratory responses to Rapid Time-minimized Bang-Pause-Bang Slew;
a. Line-of-sight error and Mast tip deflection.
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vibrations in SCOLE! Observe that: the 1line of sight vibrated with error
between 89.8° (or 133.3° if not taking on the principal value of the arcsine in
Expression (2-14)) and 14.7% the tip of the mast vibrated in the yz-plane

between +114 ft and ~113 ft.

Fig. 3-1b show the deviations in Euler attitude angles of the Shuttle (S)
and the Reflector (R) from their "nominal” alignment of zero LOS error. These
deviations correspond to the bending slopes and the torsion at the respective
end of the mast. Observe that the Shuttle rolled to the right and the left
between +17.16° and -17.06°, while the Reflector rolled to the left and right
between -86.96° and +88.35°. There were virtually no pitch and yaw motions of
the Shuttle, but the Reflector pitched between -10.63° and 8.75° and yawed
betweeen -32.27° and +27.97°.

In general, some significant excitation of the vibration modes of a flexi-
ble space system, such as the orbital SCOLE configuration, should be expected
when large moments and forces were used to their limits in a bang-bang wmanner
to minimize the slew time. The appalling magnitude of the vibratory impact,
however, was indeed a surprise.

Such excessive vibrations certainly post serious challenges to the Stage-2
design, i.e., the control design for suppressing such vibrations after the exci-
tation. Can such large-magnitude vibrations be brought down to some tolerable
level in about the same length of time (say, 5 sec.) as the slew maneuver?
How to design such a fast effective vibration controller? We shall continue

to address such design challenges in Section 4.

3.2 Excitation by Other Rapid Time-Minimized Bang-Bang Slew Maneuvers

Are all slew maneuvers of bang-bang type so terrible to flexible space
systems? Why are the excited vibrations in SCOLE so large in magnitude? Even
when one can design a powerful fast vibration controller capable of damping
out such vibrations, one still cannot stop thinking of these and other puzzling
questions: To investigate further, we conducted the following numerical
experiments on our computer simulation of SCOLE flexible-body dynamics. All
were the same as before, except that a different bang-bang slew maneuver was
applied.

3.2.1 Experiment F10 —- No force on Reflector. First we tried to use
- only the 10,000 1b-ft moment on the Shuttle. The same roll-axis bang-bang
slew maneuver using only such a moment for accomplishing the same 20° pointing
task in the minimum time as was previously designed and evaluated on the rigi-
dized configuration in [4]-[5] was tried. This maneuver requires that the max-
imum moment be applied first about the negative roll axis for 6.307 sec, and
then switched to the opposite directions (i.e., positive roll axis) for another
6.307 sec. It was truly a bamg-bang (BB) control.

The simulation results, as shown by plots in Fig. 3-2, clearly show that
the vibratory impact was greatly reduced. The LOS error was only 6.25° at
most, and the mast tip vibrated only between +5.06 ft and -5.18 ft.

0f course, the (minimized) slew time is much longer; it is a main reason
why this maneuver has been rejected earlier [4]}-[5] as a Stage 1 design for
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SCOLE. This simulation is useful only when its results are compared with the
foregoing case of using additional 800 1b force on the Reflector: it serves as
an opposite cxtreme, since no force was applied to the Reflector at all.

By a careful inspection of the time histories of the tip deflection in both
cases (see Figs. 3-1b and 3-2b), we can make the following interesting observa-
tions. While the moment was being applied to the Shuttle about the negative
roll axis without any force on the Reflector, the beam bent backwards and the
Reflector lagged behind*. On the contrary, the addition of the maximum force
on the Reflector reversed the situation, even though the additional force had
exactly the same purpose of rolling the configuration to the same side as the
moment on the Shuttle! The Reflector then became leading instead of lagging.

3.2.2 Experiment F180 -- 80 1lb Force on Reflector. The leading of
the Reflector might be responsible for the huge increase in LOS error, as imp-
lied by the above observations. It is therefore reasonable that reducing the
applied force might reduce the lead and hence reduce the LOS error. A second
experiment was thus conducted with an 80 1b maximum force, which is only one
tenth of the original allowable maximum.

A new roll-axis slew maneuver was designed, in the same way as the first
BPB slew maneuver; but only 80 1b, instead of 800 lb, force was to be used in
conjunction with the same 10,000 1b-ft moment to accomplish the same 20° LOS
pointing in a minimized time. It turned out to be a bang-bang maneuver in-
stead, since the slew rate would not reach the imposed 5 deg/sec limit. 1In
almost the same way as in the case of 800 1b, the slew maneuver requires that
both the moment and the (tighter-limited) force be applied with respect to the
corresponding negative axes for 4.416 sec, and then reversed to the corres-
ponding positive axes for another 4.416 sec, but with no pause in between.

The simulation results, as summaried by plots in Fig. 3-3, confirmed what
we thought. The lead by the Reflector is now greatly reduced, and so are
the LOS error and the mast bending, compared to the case of 800 1lb (Fig. 3-1).
The LOS error was only 24.7° at the highest peak of its time history; the tip
deflected only between +20.59 ft and -10.83 ft; and the Reflector rolled only

between +15.98° and -8.31°.

These results have clearly shown that the 800 1lb force was directly res-
ponsible for the excessive vibrations and the unreasonable LOS error.

Next, compare these results with those of Experiment F10 (Fig. 3-2). A
peak LOS error of 24.7° is fairly large compared to only 6.25° of Experiment
F10; so is a maximum deflection of 20.59 ft compared to only 5.18 ft of F10.
Does this mean that no force should be applied to the Reflector at all? No,
we did not think so! Instead, we reasoned that if one could reduce the lead
slightly further, one could further reduce both the LOS error and the tip def-
lection. So a third experiment with a slightly smaller force was performed.

* Note that when a negative moment is applied to the Shuttle, a positive def-
lection indicates the lagging of both the mast tip and the Reflector.
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3.2.3 Experiment F125 -- 25 1lb Force on Reflector. Since the Shuttle-
attached SCOLE configuration was chosen because of its similarity to proposed
space flight experiments [27]-[29], we thought it would also be more realistic
to consider a force of about the same level as the vernier RCS thrusters on-
board the Shuttle Orbiter. Since the existing vernier thrusters generate 24 to
24.5 1b thrust each [30], we simply selected 25 1b for the third experiment.

Again a new roll-axis slew maneuver was designed in the same way as
before for accomplishing the same 20° LOS pointing in the minimum time. It
certainly is a bang-bang maneuver, like the case with 80 1b force. This BB
slew maneuver requires that both the 10,000 1b-ft moment and the 25 1lb force
be applied with respect to the negative roll and y axes, and then switched to
the positive axes, as before, for 5.479 sec each time.

The results, as shown in Fig. 3-4 by plots, are very pleasing, indeed. The
largest LOS error was less than 0.51°% the tip deflected only between +0.25
and -0.3 ft; and the Reflector rolled only between +0.16° and -0.3° ! All are
one order of magnitude smaller than those from applying no force on the
Reflector! Of course, the time required for completing the 20° slew of the
line-of-sight is also shorter. In summary, for a BB slew maneuver of the
flexible SCOLE configuration, using a force of 25 1b on the Reflector in
addition to a 10,000 1b-ft moment on the Shuttle is in all aspects supe-
rior to using no additional force there.

The force of 25 1b is simply a rather arbitrary trial value. One could
continue to search for an optimal value that would result in still smaller tip
deflection, but we did not do so because we felt that our original purpose had

already been served very well.

If LOS error were the only concern and time were not so important, then
one should immediately stop studying the use of 800 lb force on the Reflector.
On the other hand, since time is at least equally important for SCOLE, it 1is
not clear at all that 25 1b might be preferred outright to 800 1lb: the mini-
mum time required for the same 20° slew is 10.959 sec for the case of 25 1b
but only 4.892 sec for the case of 800 1b, that is, more than twice longer.
Moreover, in both cases, some active vibration controllers are still needed to
damp out the excited vibrations; and hence some additional time 18 required in
order that the required LOS accuracy of 0.02° can be met.

To damp out excessive vibrations, such as excited by the BPB roll-axis
maneuver using both an 800 1lb force and a 10,000 lb-ft moment, can be serious
challenges to the Stage-2 control design. 1Insight and techniques generated
from dealing with such challeanges certainly will be useful in designing
effective vibration controllers for the case of using a smaller force, such as
25 or 80 1b.
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4. ACTIVE VIBRATION CONTROL FOR SCOLE

4.1 Direct Velocity-Qutput Feedback Control

Let yy denote the velocity-sensor outputs. Then from the system Egs.
(2-4)-(2-5), we have

Yy = Cyn (4-1a)
The general form of direct velocity-output feedback control is
u= - GyV (4-1b)

where G denotes a matrix of constant feedback gains. Substituting (4-1) in
(2-4) results in the following closed-loop system

T+ (s + oTBFchqs) Hn+In=0 (4-2)

The modal stiffness matrix I of SCOLE flexible-body dynamics is positive
definite, since no zero-frequency rigid modes were included in dataset D3D585.
By applying the classical Kevin-Tait-Chetaev theorem, its extensions, or Liapu-
nov's second method, one can show (see, e.g. [17]-[23]) that the closed-loop
system (4-2) is:

(1) stable (in the sense of Liapunov) if the augmented damping matrix
(4 +0TBFGCV0) is symmetric and nonnegative definite, and

(i1) asymptotically stable if the augmented damping matrix is positive definite.

When the velocity sensors are, as generally assumed, co-located with the
sensors, i.e., Cy = BFT, the additional damping matrix (OTBFGCVO) is always
nonnegative definite*, whether the gain matrix G is positive or merely non-neg-
ative definite. In other words, direct velocity-output feedback control at
least will never destabilize the system, even when no inherent damping exists

(i.e., & = 0).

For most practical cases where there are less actuators than vibration
modes and there are virtually no inherent damping (i.e., 8 is small and some of
its diagonal elements are virtually zero), the existing theory cannot help det-
ermine whether a closed-loop system is asymptotically stable or not, though

numerical results can [17].

The theory is not enough to help design the feedback gains, either. Usu-
ally designers simply restrict the gain G to be diagonal matrix, and therefore,
make each co-located pair of actuator and sensor act like no more than a (pas-
sive) dashpot. Having no systematic method to help calculate the required or
desirable values for the feedback gains, some designer even set the diagonal
elements rather arbitrarily to some trial positive numbers. A practical ques-

* Only in a rare special case, which is rather unrealistic to truly flexible
large space systems, where there are as many independent actuators (and co-
located independent sensors) as there are vibration modes and the influence
matrix By 1s nonsingular, will a positive definite gain matarix G quarantee
that the product OTBFCV<D is also positive definite.
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tion is: how to design the gains so as to add more damping selectively to some

specific modes than others? How not to restrict the resulting design to be
strictly local feedback? How to design the direct velocity-output feedback as
a rcally multi-variable control system? A systematic design mcthod is needed.

4.2 Concept of Modal Dashpots

The diagonal form of feedback gain matrices spreads the control effort
thin over all the vibration modes. One cannot design the diagonal form for
adding desirable amounts of damping respectively to certain selected vibration
modes. On the other hand, when one wishes to add a certain amount of damping
to each mode, one might consider computing the gain matrix G as the general
solution of the following NxN matrix equation

oTB, G Cy¢ = a* (4-3)

without restricting it to be diagonal, where A* denotes the matrix of desired
additional modal damping. Expressed in terms of additional damping ratio ¢y
desired of each mode, the matrix A* may take on the same simple form as Eqs.
(2-6), (2-3), i.e.,

a* = diagl: a’i‘] (4-ba)

and ‘SI = 2;‘;@1 1i=1, «.y N (4-4b)

Note that for a realistic flexible space structure there are much more vibra-
tion modes than there are locations for placing actuators or sensors (i.e.,
N>>% and N>>m). Thus, if one wishes to augment some indeterminate amount of
active damping to all the modes, then one may try to obtain an approximate
solution of Eq.(4-3), such as of the least squared error like the following

P

P L (ol
G (oTB)

a* (c 0 (4-5)
where af denotes the Moore-Penrose pseudo-inverse. No conditions on the
matrix ¢IBp or Cy® need to be satisfied, and the pseudo-inverses can be calcu-~
lated numerically using the singular value decomposition [31}-(32].

Solutions of the form (4-5) have three major practical drawbacks. First,
the number N of vibration modes in a realistic flexible structures is enor-
mously large, making it impractical, if not impossible, to calculate the
pseudo-inverses of the extremely large matrices OTBF and Cy?. Secondly, one
still cannot really focus a specific subset of the modes, since the solution GP
is merely a least-square approximation, with errors spread all over the
modes. Thirdly, also because of approximation errors, the resulting product

T P
¢ BF G CVO

might not be symmetric, and hence stability might not be guaranteed.
In practice, ome needs to concentrate on a relatively small number of

important modes. In many cases, one cannot care less for those modes which
are less important when one cannot even get what is required for suppressing
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the more important ones. Thus, assume that some n modes (n<<{N) are the most
important, and a reduced-order dynamic model is formed by selecting only those
n modes. Call those modes modeled modes and the rest unmodeled modes. Par-—
tition the matrices n, ¢, A, and I accordingly into the modeled (M) and the

unmodeled (U) parts, i.e.,

[y

n = }_“UJ ® = [9,%;] & = black-diag{ay,sy] =z = black-diag[ Iy, L] (4-6)

Then, the closed-loop equation for the reduced-order model is

- T . .T . - -
Ry + (B + &BeGCLo) A + Eymy = 0 (4-7)

Now, let a reduced matrix Aﬁ be given that corresponds to the desired
additional damping for the n modeled modes. Then the design 1is reduced to
solving the following wmuch smaller nxn matrix equation, instead of the NxN Eq.

(4-3), for the gain matrix G:

T - A ¥ -
9Bp G Cy®y = Ay (4-8)

As before, a solution in the same general form as (4-5) can be obtained numer-
ically by computing the pseudo-inverses of influence matrices (OMTBF) and
(Cy¢y). It is still an approximate solution unless some rank conditions are

satisfied by the influence matrices.

Of the particular interest is when the control influence matrix (OMTBF)
has the full row rank and the observation influence matrix (Cy¢y) has the

full column rank. In other words,
rank(@TB ) = row(OTB ) =n (4-9a)
MF M°F
rank(Cy¢,) = column(Cy¢,) = n (4-9b)
Such a special case requires that n{¢ and n<m, i.e., the number of modeled
modes do not exceed both the number of actuators and the number of sensors to

be used in the feedback control. Under the full-rank conditions (4-9), the
pseudo-inverses are also generalized inverses. That is,

Ta P = (6Tr 3R = T
(OMBF) (@MBF) right generalized inverse of %yBp

-1
- (oiﬁBF)T [( ogBF)(ogBF)T] (4-10)

P L
(CVOM) (CVOM) left generalized inverse of CVOM

=Bc o )T (C. o ﬂ—l (G0 )T (4-11)
VM V' M V'™
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The gain matrix G* computed therewith solves Eq. (4-8) exactlyt. The closed-
formw expression is given by

*

x _ T, \R
¥ = (o) Ay

- L
((,VoM) (4-12)

Consequently, the reduced-order closed-loop system equation (4-7) thereby
simplifies to

- *
iy * (AM + AM) UM + Iy = 0 (4-13)
*
The desired damping Ay is thus added [ to the reduced-order model exactly as

specified. For stability, the matrix Ay of additional damping only needs to be
nonnegative definite; it need not be diagonal.

When A;; is chosen to be a diagonal matrix, as it is often convenient and
reasonable to do in practice, the resulting velocity-output feedback control
will perform like a separate "dashpot™ attached to each mode of the
reduced-order model. Specifically, let

* *
ah = dtag [sMJ (4-14)
Then (4-13) can be rewritten in the component form like (2-1) as follows:

. * .
g * g * Sg) gy * 9g g = O (4-13)
where Myi denotes the normal coordinate of the ith modeled mode. Eq. (4-15)
obviously means that the ith modeled mode, like an independent linear oscil-
lator, is augmented with an additional dashpot whose damping coefficient is
8Mi.- This is why Canavin called such s design a "decoupled controller”, or
"modal dashpots” [1l1].

*
The diagonal elements §&yi should be nonnegative to pake a practical sense.
Like (4-4), it can be given In terms of damping ratios SMi and natural frequen-

cies wMi as

k3 *
Syi = 2 Tmi YMi (4-16)

t Given whatever values to the matrices, it is mathematically an exact solu-
tion so far as the equation (4-8) 1is concerned. Of course, it may not be an
exact solution so far as the system (4-2) or even (4-7) is concerned, when any
matrix, for example the modal matrix ® as usual, contains some modeling or
computational errors. Small errors in ¢ may invalidate stability results of
general feedback gains but not the modal-dashpot type [20]-[23].
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4.3 Improvement on the Design Method

One can design very effective vibration controllers by the method of modal
dashpots, as demonstrated by our applications to SCOLE. The interesting simple
formula (4-10)-(4-12), however, does not by 1itself complete the design
method for an effective control of structural vibrations. In fact, when
the concept of modal dashpots was initially formulated by Canavin [10]-[12] as
"decoupled controller”, it was accompanied by two major technical drawbacks
that almost rendered itself practically useless. Later, through various
numerical evaluations and theoretical analyses, Lin and his associates
[20]-[24] identified the underlying causes of these problems, and greatly
enhanced the utility of this concept. 1In the course of applying it to the
challenging SCOLE vibration control design problem, we also made some addi-
tional improvement on this design method.

A first initial technical drawback was the high-gain low-damping problem.
After he applied it to a representative large space structure (of which 37
vibration modes were considered), Canavin concluded that "the decoupled con-
troller may be of limited utility due to the high gains produced by this
approach "[11]. The feedback gains were mostly in the orders of 10!* to 10'2,
while only additional 10Z of critical damping was designed for each of the 12
modes he had selected to be "controlled” (i.e., modeled) modes.

Aubrun [13] proposed the approach of low-authority control (LAC) by limit-
ing to 10% modal damping and by using sufficiently small gains so that the
amount of active damping achievable is predictable. Since then, direct velo-
city-output feed back control has been commonly thought to be of only low
authority, low performance, and secondary importance. However, the vibration
controllers of Aubrun's design should be of low authority, not because of
direct velocity-output feedback, but rather because of the applicability of
Jocobi's root perturbation formula on which he based his theory. For his use
of the perturbation formula to remain valid, the coantrol authority (and
specifically the feedback gains) must be sufficiently low so that the closed-
loop eigenvalues and eigenvectors would be resulted from only infinitesimal
perturbations, i.e., only very small increase in damping ratios.

A second initial technical drawback of the basic design method was severe
interactions between modeled and unmodeled modes. When the method was
applied to another representative large space structure (i.e., ACOSS model 2
[33]), the interactions were so severe that the desired damping performance on
the modeled modes was degraded very badly, although the closed-loop system

remained stable [24].

The following common causes were discovered.

(1) Some modeled modes had too small control Influences (¢M1TBF) or too small
» observation influences (Cyé¢pyi). This made the generalized inverses (OMTBF)R
or (CV0M)L, and hence the resulting gain matrix, unnecessarily large.
Theoe low~-influence modes should he deleted from the reduced-order model,

or else some actuators or sensors should be relocated to improve their in-

fluences on these modes.

(2) Some of the rows in matrix &yTBp had too small degree of independence from
the others, or some columns of Cy¢y had the similar situation. This also
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made the generalized inverses, and the gain matrix, unnecessarily large in
magnitude. Like (1) above, these modes should be excluded, or the location
of some actuators or sensors be improved.

(3) some low-frequency unmodeled modes had too large control influences
(¢UjTBF) or observation influences (CV°U%3 compared to those of the modeled
modes. This made excessive spillover. hese modes should be added to the
reduced-order model; otherwise, some actuatore or sensors should be relo-
cated, or their influences be properly synthesized [35]-[36]-

(3) Some of the desired additional damping coefficeints (5Mi*) were too large
for some modeled modes, even all were set equal to the same small design
value (say, IMi{ %= 0.1). This made some part of the gain matrix unneces-
sarily large, and hence increased interactions with some unmodeled modes.

Open-loop responses of individual modeled modes should be analyzed and the
need for additional damping realistically guesstimated with respect to the
control/observation influences on each modeled mode. For properly designed
modal dashpots, e.g., our design for SCOLE, the additional damping could be as
high as 67% for some modes or as low as 3% for some others, depending on the
ability of the actuators as well as on the individual open-loop responses.

We have begun to develop the concept of modal dashpots into a useful sys-—
tematic design method for direct output feedback vibration control. Although
the closed-form formula has reduced the design of modal dashpots to simple
cranking of numbers, yet to make it really work for effective control of large
excited structural vibrations in flexible space systems, such as the SCOLE con-
figuration, many careful pre-design steps have to be taken.

The design method was initially formulated by Canavin without explicit
consideration of limitations on the requirement for control forces and torques.
Now, the explicit limits must be considered when applying the method to SCOLE.
Also, some saturation "circuitry” must be imposed on the feedback control so
that the magnitude of the forces or moments generated by the modal dashpots
would automatically be limited to 800 1b and 10,000 1b-ft, respectively.
Saturation may not destroy stability when actuators are co-located with sen-
sors [37], but would somehow limit the performance of the feedback con-
troller.
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5. DESIGN OF MODAL DASHPOTS FOR SCOLE

The vibrations in the SCOLE configuration excited by the rapid time-minim-
ized BPB LOS pointing slew maneuver, as reported in Section 3.1, posted three
serious vibration control design challenges:

(1) The excited vibrations were excessively and unrealistically large in magni-
tude: the line of sight once had an error of 89.9° (or beyond) and the
130-ft mast once had a tip deflection of 114 fe.

(2) The allowable time was extremely short: it should be minimized, so only
an equally short time (specifically, only 5 sec, which was approximately
equal to the maneuver time) was allowed.

(3) The available control forces and moments were limited: the 800 1b and
10,000 1b-ft limits were imposed the same way as on slew maneuvers.

In order to design effective modal dashpots for suppressing such excessively
large vibrations in SCOLE in a very gshort time, we conducted careful pre—design
analyses on the vibration modes and their influences by the actuators and sen-
sors. The candidates for modeled modes were selected, and then divided into
two groups according to the actuator influences. The design of the modal
dashpots was therefore divided into two parts accordingly.

5.1 Analysis on Vibration Modes

Initially, two different numerical analyses of SCOLE vibration modes were
made, each with a different standard measure of importance. The results were
inconsistent. Then a third measure was developed and used; the results were
finally fair and satisfactory. s

5.1.1 Measure 1: LOS Error due to Initial Modal Displacement

"L0S error coantribution” is a common measure used by many structural dynami-
cists for determining if a vibration mode is “critical” or not, i.e., if it needs
active control or not. It was used by Draper Laboratory (33]-[34]), and
accepted by other ACOSS* and VCOSS** contractors [38]-[45] as the standard
approach, in the modal analysis of both Model No. 1 (namely, the Tetrahedron)
[34] and Model No. 2 [33] of representative large flexible precision space
structures. The standard approach is to express the LOS error as a linear
function of physical coordinates under the assumption that all the displace-
ments are sufficiently small. When the physical coordinates are transformed
into the normal coordinates of the structure, the LOS error become a linear
function of the normal coordinates. The “critical modes” are then determined
by comparing the modal coefficients of the LOS error.

Such a measure is not directly applicable to rapid pointing of the SCOLE
configuration nor, in general, to large space structures that are subject to
rapid slcw or retargeting maneuvers. First, the displacements (deflections and
“.rsions, for example) generally are large, hence the linearization of the LOS
error is not valid. Thus, for SCOLE, we used the original nonlinear expression

*
Active Control of Space Structures, a DARPA technology program.

vVibration Control of Space Structures, sponsored by Air Force Wright
aeronautical Laboratories.
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without linearization. Secondly, the LOS error is a dymnamic vibratory res-
ponse, instead of being simply a static displacement of the line-of-sight.
Thus, instead of comparing only the LOS error coefficients, we compared the
time histories of the LOS crror the individual modes would scparately cause if
they were intially excited alone.

For this analysis, the SCOLE configuration was assumed to be initially at

rest with no LOS error*, and only one mode was excited each time because of a
unit initial displacement in its normal coordinate. Specifically, for the ith
time history, the initial condition was assumed to be:

ni =1, and nj = 0 for all j #1; ﬁj = 0 for all j.

For each such initial modal displacement, the time history of the resulting LOS
error was calculated separately using our computer simulation program.

The results of 10 separate cases (one for each mode) are shown together by

the overlapped plots in Fig. 5-1, where each curve represents a completely
separate time history of LOS error. Listed below are the highest peak value

of each time-history curve.

Mode: 1 2 3 4 5 6 7 8 9 10
Peak: .37 .53 .54 .93 1.3 .14 .51 .002 .18 .03

The relative importance of the 10 modes is thus given in the descending order
as follows.

Mode: 5, 4, 3, 2, 7, 1, 9, 6, 10, 8.

5.1.2 Measure 2: Modal Response to the Rapid Pointing Maneuver

By intuition, a vibration mode 1s more in need of active control than others
when its magnitude of excited vibration is larger. Thus, a second measure of
importance for the SCOLE configuration naturally is the vibratory response of
each mode to the rapid pointing maneuver. For this analysis, the configuration
was assumed, as before (in Section 3.1), to be initially at rest without any
LOS error or any nonzero initial conditions, and the same BPB slew maneuver
was the source of excitation. The time history of the resulting modal res-
ponse ni(t) was calculated for each mode separately.

The results are shown by the plots in Fig. 5-2, with each curve represent-
ing an individual mode. Listed below are the highest peak value of the curves.

Mode: 1 2 3 4 5 6 7 8 9 10
Peak: 21.6 603 41.2 13.7 0.49 0.48 0.28 .058 .041 .001

Accordingly, the relative importance of the 10 modes is thus given by the fol-
lowing descending order:

Mode: 2, 3, 1, 4, 5, 6, 7, ...

* As stated in the beginning of Section 3, we assumed that, before any of its
vibration mode was subject to excitation, SCOLE was initially at rest and had
no deformation nor LOS error. Specifically, the undeformed configuration was
assumed to have been aligned with the attitude angles of zero LOS error.
Therefore, if all the normal coordinates and velocities were zero, the LOS
error would remain zero.
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5.1.3 Measure 3: LOS Error Solely due to Each Mode Excited by the Man-
euver

To measure by the LOS error a vibration mode could cause, or to measure by the
extent to which a vibration mode could be excited, seems to be a rather rea-
sonable technique by itself, but the resulting rankings were inconsistent and
rather confusing. For example, Mode 5 is the most important one by Measure 1
but only the fifth by Measure 2. Moreover, Mode 5 could even be ignored
because of its insignificant Measure-2 value (about two orders of magnitude
smaller than the fourth). Similarly, Mode 1 ranks number 3 by Measure 2 but
only number 6 by Measure 1. It was hard to determine rationally which modes
would really need active control. A third measure was then developed.

For this analysis, the LOS error caused by a single mode alone was calcu-
lated separately, like for Measure 1, but the mode causing the error was
excited by the very maneuver of concern, instead of initial conditions. All
the initial conditions were assumed to be zero. On the other hand, the excita-
tion of the vibration modes was exactly the same as for Measure 2, but the
resulting LOS error, instead of the modal response, was taken as the measure.

This measure is a sound rational combination of the cause (slew exci-
tation) and the effect (LOS error) with respect to each vibration mode.
It can appropriately indicate for each mode individually the extent to which a
single mode could be excited, and the degree of LOS error this mode alone
could cause if it alone were so excited and, hypothetically, no other modes

were present at all.

The 10 separate numerical results are shown together by the plots in Fig.
5-3. Each curve represents the LOS error caused solely by a single mode
while the mode was being excited by the rapid slew maneuver. The table below
lists the highest peak value of the each curve.

Mode: 1 2 3 4 5 6 7 8 9 10
Peak: 3.26 88.6 9.57 6.53 0.33 .036 .077 .002 .004 .0002

The relative importance of the 10 modes is thus given by the following des-
cending order:

Mode: 2, 3, 4,1, 5, 7, 6,...

An inspection of this ranking and the peak values will show that a signifi-
cant break between the fourth- and fifth-ranked modes (i.e., modes 1 and 5,
respectively). We thus selected the four top-ranked modes, i.e., modes 2, 3,
1, and 4, as the primary candidates for modeled modes.

Mode 5 is marginally important compared to other modes, but is the fifth in
the rank and has a much higher value than the remainder. We therefore consi-
dered it to be a secondary candidate for modeled modes.

Mode 1 could have been ranked higher than Mode 4 if the time average were
used instead. This would make no significant difference, however, since both
were among the top four modes anyway, and these four had all been selected to
be primary candidates for modeled modes.
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5.2 Analysis on Modal Control Influences of Actuators

We recently discovered that the high-gain problem Canavin encountered in
his first modal dashpot design [l1l1} would not have existed if he had paid
attention to the ill conditioning of the coefficient matrix ¢yIBp he used in
his numerical example. Among the 12 "controlled modes” he selected to form
his reduced-order design model, several have very 1little control 1nfluences
from the 32 actuators he used on the structure*. It is intuitively apparent
that actuators having smaller influences on a given mode are less effective in
controlling the mode, and thus require to be compensated with larger gains.
Mathematically speaking, when the smallest "singular value"” of the coefficient
matrix QMTBF is one order of magnitude smaller, the largest singular value
of the resulting gain matrix G* as a solution of Eq. (4-7) generally is two
orders of magnitude larger. This means that not all his "controlled”™ modes
should be included in the modal-dashpot design without any discrimination
against excessively small control influences by the actuators. In other
words, all the available actuators need not be lumped together to control
all his "controlled”™ modes through one large feedback gainm matrix.

To make an effective design for the SCOLE configuration, we analyzed the
control influences of the actuators first and match those modes in need of
active control with the right actuators.

For evaluating and comparing their modal influences properly, we grouped
the actuators according to their location on the SCOLE configuration as well
as their type. As a result, the actuators** were divided into the following

four different groups:
Group l: Actuators 1 to 3, for applying moments on the Shuttle about its body
X, y, and z axes, respectively;

Group 2: Actuators 4 to 6, for applying moments on the Reflector about its
body x, y, and z axes, respectively;

Group 3: Actuators 7 and 8, for applying forces at the Reflector mass center
in the x and y directions, respectively;

Group 4: Actuators 9 to 12, for applying forces at two specific points on the
Mast beam in the x and y directions, respectively.

The control influences on each mode, say mode i1, from all the actuators in
a specific group can be summarized by calculating their RMS (Root-Mean-Square)
value

J[(qu)' +(ofbgy)? ... +(alby ) ]/k

over the group. Listed in Table 5-1 are these RMS values in the descending
order.

* The antenna-like structure consisted of a large dish in the forward section
and a gimbaled equipment section to the aft. It had 32 member dampers (as the
co~located actuators and rate sensors). Its finite-element model has 35 deg-

rees of freedom.
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Table 5-1 RMS Actuator Influences on first 10 Modes

Group 1 Group 2 Group 3 Group 4
Mode Act. 1 - 3 Mode Act. 4 - 6 Mode Act. 7 - 8 Mode Act. 9 - 12
2 0.30019961E~02 5 0.36487188E-01 2 0.14311218E+01 2 0.10711402E+00
4 0.41220308E-03 4 0.25172627E-01 1 0.14061384E+01 1 0.10338868E+00
1 0.40146321E-03 3 0.15999462E-01 3 0.81986851E+00 3 0.10171293E+00
3 0.19184369E-03 2 0.15595800E-01 4  0.39743480E+00 4 0.69439910E-01
5 0.11186474E-03 7 0.14711439E-01 7 0.30395976E+00 9 0.68373762E-01
6 0.69881789E~04 1 0.13037169E-01 9 0.25503686E+00 8 0.67025743E-01
7 0.36829457E-04 9 0.57048416E-02 6 0.21852742E+00 5 0.63191518E-01
8 0.26261532E-04 6 0.34139471E-02 8 0.14623879E+00 10 0.46103600E-01
9 0.15072107E-04 8 0.12352261E-02 10 0.10801539E+00 6 0.39935779E-01
10 0.13497747E-04 10 0.63637015E-03 5 0.74399590E-01 7 0.32263912E-01

Table 5-2 RMS Sensor Influences on first 10 Modes

Group 1 Group 2 Group 3 Group 4
Mode Sen. 1 - 3 Mode Sen. 4 - 6 Mode Sen. 7 - 8 Mode Sen. 9 - 12
2 0.28690067E-03 5 0.34890966E-02 2 0.13466856E+00 2 0.10711402E+00
4 0.39390128E-04 3 0.32387748E-02 1 0.12736945E+00 1 0.10338868E+00
1 0.39113598E-04 4 0.24055073E-02 3 0.12407852E+00 3 0.10171293E+00
3 0.18940789E-04 2 0.15346858E-02 4 0.38158901E-01 4 0.69439910E-01
5 0.10689848E-04 7 0.14879148E-02 7 0.36793593E-01 9 0.68373762E-01
6 0.66779044E-05 1 0.13531352E-02 9 0.30879460E-01 8 0.67025743E-01
7 0.35194691E-05 9 0.67911280E-03 6 0.20832075E-01 5 0.63191518E-01
8 0.25095521E-05 6 0.32624099E-03 8 0.14005536E-01 10 0.46103600E-01
9 0.14402938E-05 8 0.11804001E-03 10 0.10299906E-01 6 0.39935779E-01
10 0.12898448E-05 10 0.60812166E-04 5 0.90737212E-02 7 0.32263912E-01

Observe that Actuators 1 to 3 (Group 1) have an RMS value for Mode 2 that
i{s one order of magnitude higher than all other modes, and hence are most
effective in controlling Mode 2 than controlling other modes. Observe also
that Mode 2 ranked the highest in RMS value with respect to Group-3 actuators
7 and 8. In addition, this RMS value is two orders of magnitude higher than
that with Actuators 1 to 3. Consequently, Actuators 7 and 8 should be more
effective for controlling mode 2 and require much smaller feedback gains.
Note that Actuators 9 to 12 (Group 4) are less effective than Actuators 7 and

8 in controlling Mode 2.

With a similar argument, Actuators 7 and 8 are also most effective in con-
trolling Mode 1. Therefore, Modes 1 and 2 and no more others should be
selected as the "modeled modes” in the design of the modal dashpots using

Actuators 7 and 8.

Since Mode 3 is a torsion mode and is more appropriate to be controlled by
moments than forces. The RMS values clearly suggest that Actuators 4 to 6
(Group 3) will be more effective than Actuators 1 to 3 for controlling Mode 3.
Although among the four groups, Actuators 9 to 12 did have the highest RMS
values of control influences on Mode 3, we did not expect the proof-mass actu-
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ators (9 to 12) to be capable of suppressing large torsional vibrations of any
mode in such a very short time.

The RMS control influence on Mode 4 is larger from Actuators 4 to 6 than
from Actuators ! to 3. Consequently, both Modes 3 and 4 should be selected
as the "modeled modes"” in the design of modal dashpots using Actuators 4 to
6.

All the four primary condidates have been selected as the "modeled modes”
for the appropriate matching groups of actuators. A review of Table 5-1 will
show that Mode 5, the secondary candidate, has a higher RMS value of control
influences from the same Group 2 of actuators than both Modes 3 and 4.
According to a previous study by Lin and Jasper [24], such a situation would
result in large spillover of Mode 5, severe dynamic interactions of modeled
modes with unmodeled modes, and significant degradation of damping performance
if Mode 5 were not also modeled with Modes 3 and 4 for control by Actua-
tors 4 to 6.

To summarize, this analysis shows applying moments and forces at the Ref-
lector end of the Mast beam will be more effective in controlling the excited
vibrations in SCOLE (and particularly Modes 1 to 5) than at the Shuttle end or
at the Intermediate points of the flexible mast. Instead of lumping up all
candidate modes (1 to 5) to be controlled by Actuators 4 to 8 together, the
designer for modal dashpots should match these modes with their most effec-
tive or most appropriate actuators. Specifically, Modes 1 and 2 should be
controlled by Actuators 7 and 8 and Modes 3 to 5 by Actuators 4 to 6.

There is no need to include more modes to each group since there are
enough actuators to be distributed among all the 5 most important modes of
the SCOLE flexible-body dynamics. Including more modes may not always help:
it might simply increase the magnitude of the feedback gains without any real
benefit, particularly when the additional modes are of significantly smaller
control influences by the actuators; the increased feedback gains might in-
stead amplify various adverse effects of control spillover and system noises.

5.3 Design of Modal Dashpot MD1

The modal dashpot MDl was designed for SCOLE for quick suppression of the
excessive vibrations excited by the rapid BPB LOS pointing slew maneuver. It
is composed of two parts. Part 1 is for applying forces at the Reflector mass
center in the two transverse directions using a feedback of linear velocities
at the Reflector end of the beam. Part 2 is for applying moments also at the
Reflector about the three body axes but using a feedback of angular velocities
instead.

The location of these actuators are the same as specified by Taylor in
Ref. 1 for the control forces and moments at the Reflector. The sensors were
located where the "outputs" of Dr. Joshi's modal data set D3D585 had been cal-
culated. Some of the control inputs (uy) and observation outputs (yj) were re-
labeled for technical convenience. Sensors 1 to 8 are not really co-located
with the correspopnding actuators, but note that their RMS values of modal
observation influences (Table 5-2) exhibit virtually the same patterms as
those of modal control influences (Table 5-1).
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5.3.1 Part 1: Linear Velocity Feedback Force Comntrol

Two force actuators (or equivalently, a single force actuator capable of
delivering separate forces in two independent axes) are assumed to be placed
at the center of the Reflector. The force inputs* u7 and ug (in the x and y
directions, respectively) are each limited to 800 1lb as specified. Two linear
veloclity sensors (or equivalently a single velocity sensors capable of measur-
ing the rate of linear displacements in two independent axes) are assumed to
be located at the Reflector end of the mast beam. The sensor outputs** yg5
and y1g (in the x and y directioms, respectively) represent the time rate of
deflection of the Mast beam at the Reflector end relative to the Shuttle end.
Note that these sensors are only approximately co-located with actuators:
they are apart by 18.75 ft and 32.5 ft in x and y directions, respectively,

whereas the beam is 130 ft long.

The design problem is thus to determine a 2x2 gain matrix Gpyr for the
following linear velocity feedback control law

|—“7 Yls-‘
\_“8 J = -G yr yw_j (5-1)

The foregoing analysis of the control influences has suggested that only
Modes 1 and 2 be selected as the "modeled modes” for this part of design.
Accordingly, the control and observation influence matrices ¢yTBF and Cydy
on the two modeled modes to be used in the modal dashpot design equation (4-8)
have the following numerical values:

oIB. = .19875923E+01 .62669927E-01 (5-2a)
M°F .14599262E+00 -.20186396E+01
Co = .18012760E+00 .21140305E-01 (5-2b)
V'™ .55188192E-04 -.18927317E+00

Before solving the corresponding design equation (4-8) for a specific gain
mgtrix, we must specify the desired value for the additional damping matrix
Ay. For tec?ni%al simplicity, we choose it to be diagonal, so that 1its diago-
nal elements ' &y] and Sy2 can be used rather directly for guiding the modal-
dashpot design. Since both modes 1 and 2 substantially dominate the vibratory
response of the SCOLE configuration to the BPB poinc}¥g maneuver, we wish to

augment each with active damping as close to 70.7% of critical damping as

* These correspond to u4 = Fry and us = Fry, respectively, in Dr. Joshi's nota-
tion.

** These are indirectly equal to the derivatives of the deflections y7; = gy and
yg = gy in Dr. Joshi's notation.

¥ These terms represent the additional damping coefficients in the correspond-

ing decoupled equations of motion; see Egs. (4-14)-(4-15). In multivariable
.oot-locus analysis, these values also represent the “rate of departure” from

the open-loop poles when the feedback loops are closed.

tt 70.7% 1s an optimal value in the sense that the second-order system cor-
responding to the single mode will neither be too sluggish nor have a large
overshoot.
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possible. Let us attempt a theoretical 2% settling time of 3 seconds for
Mode 2 in estimating the desirable additional damping coefficient 62. The cor-
responding time constant is 3/4 sec; thus by definition

C2w2 = 4/3
where 22 denotes the closed-loop damping ratio desirable of Mode 2. Substi-
tuting in the natural frequency w, = 1.97024 rad/sec yields

T, = 0.6767,
which is acceptably close to the optimal value. Whence, the closed-loop damp-
ing coefficient desirable of Mode 2 is given by

62 = 2 Gy wy = 8/3.
Since an inherent damping of 0.3%7 has been specified in the data set

"D3D585" for each mode, the desirable additional damping coefficient? desirable
of Mode 2 is

* —
62 = 62 -2 Ly wy = 8/3 - 2 x 0.003 x 1.97024 = 2.6548

Next, we choose the additional damping desirable of Mode 1 to be 607,

i.e., §;* = 0.6, since Mode 1 has a smaller magnitude of vibration than Mode 2.

In summary, the desired damping coefficients as in Eqs. (4-14)-(4-15) for

the two modeled modes are then readily given as
* * *

GMl = 61 = 2 gy w = 2 x 0.6 x 1.7470 = 2.0964 (5-3a)
* *
GMZ = 62 = 2.6548. (5-3b)

Now the feedback gain matrix Gpygp is readily obtained from solving (4-8) as

_ [ -58420630E+01  .43392044E+00 (5-4)
LVR .42038249E+00  .69796355E+01

5.3.2 Part 2: Angular Velocity Feedback Moment Control

Three torquers (or equivalently, a single torquer capable of delivering
separate touques about three independent axes) are assumed to be located on
the Reflector. The torque inputs u;, us, and ug (about the x, y, and z axes,
respectively) are each limited to 10,000 1lb-ft as specified. Three angular
velocity sensors (or equivalently a single sensor capable of measuring separ-
ately the rate of rotations about three different axes) are assumed to be
located at the Reflector end. The sensor outputs** ¥ig, Y11, and Y1 (about
the x, y, and z axes, respectively) represent the time rate of rotations of the

# The corresponding additional damping ratio cg for Mode 2 is 0.6737. A few
slightly modified values were also tried when the design of this part was rep-
eated (see Section 6.2).

* These correspond to Dr. Joshi's ug = Tpx, wuy = Try, and ug = Ty,, respec-
tively.

** These correspond to Dr. Joshi's yj; = é., y13 = 8., and y;4 = V., respec-
tively.
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Reflector end of the mast due to bending and torsion. Again, these sensors
are only approximately co-located with the actuators. Note that the Ref-
lector itself is a rigid body.

The design problem is to find a 3x3 gain matrix Gpyg for the following
angular velocity feedback control law

I—UA-] le
uc | = ~¢ y
us AvR | Y11 (5-5)
6 Y12

Similarly, as suggested by the previous analysis on control influences, we
choose Modes 3, 4, and 5 to be the "modeled modes” for this part of the
design. Accordingly, the specific control and observation influence matrices
are given by

.10761780E-01 -.18101653E-01 -.18012847E-01 ]
ol = .37541741E-01 .22172032E-01 .45802862E-04 (5-6a)
MF | —-31739483E-01 .54643290E-01 .81303515E-03 |

.10592386E-02 «35194610E-02 -.30149737E-02 ]
C o = -.17367745E-02 .21135667E-02 .52175940E-02 (5-6b)
V'™ | —.52450669E-02 .13325330E-04 +23641118E-03 |

Since the vibratory responses of Modes 3, 4, and 5 are much smaller in
magnitude than those of Modes 1 and 2, it is reasonable to augment them with
only a relatively small amount of active damping. We chose rather arbitrarily
3% of critical damping for each. The diagonal elements of the desired addi-
tional damping matrix AM are then given as follows:

* * , _ -
GMl = 63 =2 x 0.03 x Wy = 0.3065 (5-7a)
* *

6M2 = 64 =2 x 0.03 x w, = 0.4470 (5-7b)
* *

6M3 = 65 =2 x 0.03 x w, = 0.7742 (5-7¢)

Substituting (5-5)-(5-7) in Eq. (4-8) and solving the resulting equation, we
get the following gain matrix

[ .24172707E+04 .16653096E+03 .45158162E+03 |
.15734103E+03 .21781213E+04 —.72768193E+03J

Cavr = L 13433660E+04  -.22055215E+04  .42951681E+04 (5-8)
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6. PERFORMANCE OF VIBRATION CONTROL DESIGNS ON SCOLE

To evaluate the vibration control performance of the modal dashpot design
MDl, we incorporate the two feedback laws (5-1) and (5-5) into the same SCOLE
flexible-body dynamic model as was used in simulating its vibratory responses
to the BPB pointing maneuver. As stated in the beginning of Section 3, the
undeformed SCOLE configuration was assumed to have been aligned with the spec-
ific attitude of zero LOS error. Thus, the velocity-sensor outputs would con-
tain only the flexible-body rates*, just as desired for feedback control of the
excited vibrations. Recall that the model is of the "full order” in the sense
that it includes all the ten modes as provided in the data set D3D585. In
order that the control moments and forces do not exceed their specified
limits, the computer program also simulates the saturation of the actuators at
their respective limits. For example, if at any time the feedback control
input, say, ug would command the actuator to exert more than 800 1b force to
the Reflector, the actual force applied would be only 800 1b maximum.

The feedback control consisting of the two parts of modal dashpot MDl is
turned on right after the completion of the BPB pointing maneuver. Thus the
terminal state of the SCOLE vibrations (i.e., the LOS error, the deflection and
its rate of change, the angular displacement and its rate, modal displacements
and velocities,...) at the end of the maneuver become the imitial conditions
of the feedback controlled system. The vibration control is applied for five
seconds, which is about the same duration as of the pointing maneuver. We in-
tentionally use such a rather "long” period in order to check if instability in
the closed-loop system might start to develop after the excessive vibrations
has been rapidly forcefully suppressed. Various versions of the modal dashpot
design MDl (each with a slightly different value for the additional damping
coefficient 8,*) were evaluated. Reported below are two representative cases.

6.1 Simulation Results of Modal Dashpot Design MDI

The specific values of the gain matrices Gpyr given by (5-4) and Gpyr 8&lven
by (5-8) were incorporated with the control laws (5-1) and (5-5) respectively
in the full-order dynamic simulation. The simulation results are summarized
by time-history plots in Fig. 6-1.

The history of the applied mrments and forces (Fig. 6-la) shows that the
applied moment about each axis never exceeded the limit of 10,000 1lb-ft, nor
did the applied force in each direction exceed the limit of 800 1lb. Large
moments and forces were needed only during the early portion of the control
period, but did not exceed the limits because of "saturation”. All the applied
forces and moments quickly reduced to minimum automatically because the
sensed rates of vibrations rapidly became insignificant.

Fig. 6-1b shows that the LOS error was rapidly subdued to 11.79° from
71.43% where the pointing maneuver ended. Note that the initial LOS error con-
tinued to rise to 85.29° (or 115.13° = 180° - 64.87° if not taking the principal

* If the configuration had not been so aligned, then rigid-body rate would also
be present and some filtering or signal processing might be required. Alterna-
tively, one could use relative sensors instead of inertially referenced sen-

s0rs.
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value of the arcsine function) because of its large rate of change at the very
instant of switching from pointing maneuver to vibration control. Neverthe-
less, the LOS error was suppressed down within 18.46" after only 2.5 sec of
active vibration control and remained below 17.54° thereafter. Moreover, it

was even reduced to 11.79° in 3.1 sec.

The bending of the mast beam was very rapidly suppressed to virtually
null. Observe in particular that even the y-directionally deflection at the
Reflector end (i.e., ¥yi4) continued to increase to 119.7 ft (again because of
the large "initial" rate of change), it was suppressed down into the band of
+5 ft in only 2 sec, and into the band of +0.5 ft in 4.2 sec. It is interest-
ing to notice that it took less than 2.9 sec* to settle within 2.4 ft, 2% of
the peak value. Recall that a 2% settling time of 3 sec for Mode 2 was used

in the design.

Fig. 6-lc shows the rapid reduction of the initially large deviations in
the Shuttle and Reflector attitude angles to zero in a very short time. The
last peak diviation of the Reflector roll, pitch and yaw attitude angles 1s
only 0.460°, 0.546° and 1.360°, respectively.

Fig. 6-1d shows that the large-magnitude vibrations of first five modes
all were rapidly suppressed to virtually zero in a very short time. Note in
particular that this vibration control was very effective for quick reduction
of the excessively large magnitude of Mode 2. Observe, on the other hand,
that Mode 5, the secondary candidate, was reduced only in a moderate rate by a
moderate amount, but recall that it was not really significant at first place
with respect to excitation by the BPB maneuver nor its contribution to the LOS
error. Mode 5 did not need much active control anyway, and hence only a very
small additional damping was designed for it.

The vibrations in other modes (i.e., Modes 6 to 10) remained virtually in
the same insignificant levels as before, and hence their plots are omitted.
Still their magnitudes were more or less decreased with time because of some
concomitant additional damping as a side benefit of spillover.**

6.2 Simulation Results of A Modified Version of MDlA

We also tried a few other versions of the modal dashpot design MD1 by var-
ying the additional damping coefficient §,* desired of Mode 2. Because of the
saturation of the actuators at the imposed limits, it is reasonable to consider
some smaller feedback gains. The following is a typical case.

* The peak occurred at t = 0.5 sec whereas the deflection was -2.24 ft at t =
3.4 sec.

*% In the standard LQG design, one will generally try hard to reduce spillover
because it has been well known to degrade performance and even to introduce
closed-loop instability. With a modal-dashpot design, spillover can be bene-
ficial instead, in leaking some active damping forces to unmodeled modes.
Such is particularly the case when the design is not carefully focussed. The
side benefit in our design was intentionally minimized because we tried to
maximize our effort on the most important modes and matched them with most
influential control actuators to minimize the leak.
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This version, let us call it MDlA, is almost the same as before, except
that the additional damping ratio ¢,* desired of Mode 2 was arbitrarily set
equal to that of Mode 1; namely,

F = ¥ = 0.60.
25 %
Therefore,
e; -2 ;; wy = 2 x 0.6 x 1.97024 = 2.36429 (6-1)

Mode 2 would then have a theoretical 2%-settling time of 3.38 sec.

Using the new value for 6,* in (5-3b), and repeating Part 1 of the modal
dashpot design, the following new value of the feedback gain matrix was read-
ily obtained.

o [ -58420557E+0L  .45784262E+00] (6-2)
LVR .42061494E+00  .62209375E+01 |

The same simulation was then repeated with these new values. Results are
summarized by the plots in Fig. 6-2. The applied moments and forces shown in
Fig. 6-2a are virtually the same as before (Fig. 6-la) with only some invisible
differences. Some meaningful differences do exist in the histories of LOS
error and beam deflection.

Observe that the LOS error (in Fig. 6-2b) quickly reduced to about 9.57°
from the same initial value (71.43%. Similarly, due to large initial rate of
change at the end of the pointing maneuver, the LOS error also continued to
rise to 85.61° (or 180° - 64.81° = 115.19° if not taking the principal value of
the arcsine). The large LOS error was suppressed down to the level of
16.66° in 1.8 sec, and remained under it thereafter. Moreover, it was reduced
to 9.57° also 3.1 sec after the vibration control began.

The bending of the Mast was also suppressed down very rapidly. Though it
continued to increase to 120.28 ft, the y-directionally deflection at the Ref-
lector end (i.e., y14) was suppressed down into the band of 17.35 ft in less
than 1.8 sec., and into the band of #0.75 ft in 3.7 sec. It took less than 3
sec for the large deflection to settle down to the band of 2% of the peak*,
i.e., *2.4 ft. Recall that 3.38 sec is the theoretical 27%-settling time used
for Mode 2 in this modified design.

The histories of attitude changes (Fig. 6-2c) and modal responses (Fig.
6-2d) are again virtually the same as before (compared to Figs. 6-lc and 6-1d,
respectively) with only some invisible or insignificant differences. The last
peak deviation of the Reflector roll, pitch, and yaw attitude angles is only
0.714% 0.582°% and 1.399° respectively.

* The peak occurred at t = 0.5 sec., whereas the deflection was only -1.95 ft
at t = 3.5 sec.
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6.3 Comments

6.3.1 The modal dashpot designs of vibration control met the vibration
control design challenges fairly well and are effective and fast in sup-
pressing excessive vibrations. Excited by BPB type rapid pointing slew man-
euver, the flexible mast beam deflected between +114 ft and -113 ft, but such
an excessive vibration was then quickly suppressed down to less than 0.75 ft
in less than 3.7 sec after a modal-dashpot vibration control was turned on.
The roll vibration of the Reflector between -86.96° and +88.35° during the man-
euver was also quickly suppressed down to less than 0.72°. The large LOS
error of 89.8° (or 133.3° if not taking the principal value of the arcsine) was
also reduced quickly to less than 17.54°.

6.3.2 The original version of the modal dashpot design MD1l performed
slightly better than the modified version MDIA in suppressing the deflection of
the Mast beam and all the attitude deviations, but not so well in reducing the
LOS error. The modified version used a slightly smaller additional damping

ratio for Mode 2 in the design, {i.e.,

cz* = 0.60 1instead of cz* = 0.6737.
6.3.3 When a velocity feedback control, whether it is of the modal-dash-
pot type or not, is not properly designed, even feedback gains of an intermedi-
ate magnitude can cause severe interactions between modeled and unmodeled (or,
equivelently, between "controlled” and “"uncontrolled"”) modes, and hence badly
degrade the desired performance of active damping augmentation [24}. The res-
ults of these two versions have shown, on the other hand, that if modal dash-
pots are properly designed, both the modal interactions and the performance

degradation are not problems.

Thus, some of the additional damping can be as high as the optimal value 0.707
if necessary, hence can have high feedback gains, to be really effective in
quick suppression of vibrations. In other words, not all velocity output
feedback vibration controllers are of low authority, low performance !

6.3.4 Now, not having to worry about the spillover and modal interaction
problems, the feedback gains of properly designed modal dashpots ideally can
be as high as the designer wishes. High gains can be as desirable for flexi-
ble-body vibration control as they have traditionally been for effective con-
trol of rigid bodies.

High gains are desirable for generating comparable negative feedback to offset
the vibrations. Theoretically, the higher the better. For example, the ver-
sion MDl has a higher gain (because of higher g,*) than the version MDIlA, the
deflection and attitude deviations can be continuously suppressed down to
smaller values (e.g., 0.5 ft vs *0.75 ft, in deflection; 0.46° vs 0.714° in

Reflector roll angle,...).

The size of the feedback gains for a properly designed modal-dashpot
vibration control is virtually limited only by the force and torque capability
of the actuators. Since the vibrations were initially very large, the high
gains resulted in requiring larger forces and torques than their limits. The
simulated saturation thus restrict the applied force/torques to the limits.
Therefore, there are no needs to be concerned with high gains as much as
before, even the actuators may saturate at their force/torque limits.
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6.3.5 Recall that the badly excited modes, i.e., Modes 2 and 1, were made
most strongly controllable and obserable by carefully matching them with
actuators and sensors with the strongest influences. Recall also they were
strongly controlled by selecting them as modeled modes in the Part 1 design of
the modal dashpots and by adding to them the highest additional damping
ratios. The results of Sections 6.1 and 6.2 show that the resulting modal-
dashpot designs are very effective for fast suppression of large vibra-
tions. The results also show that spillover is minimum and that the unmo-
deled modes receive some small concomitant additional damping because of spil-
lover.

6.3.6 Unlike all other vibrations (deflections, attitude deviations and
modal responses), the LOS error was not reduced to a smaller value by the
version MDl than by the version MDlA. Also, the LOS error was not continu-
ously reduced to near zero as were all other vibrations, although the reduc-
tion from its excessively high peak was quite substantial. Nomlinear proper-
ties of large Euler attitude angles, and the truncated forces and moments
from the saturated actuators (due to high feedback gains) likely are the
causes. We have no clear explanations at the present time. Nevertheless,
observe Figs. 3-lc, 6~lc and 6-2c that the Reflector continued to have suffi-
ciently large pitch and yaw ratations during the initial phase of the vibration
control, in addition to the main (and larger) roll rotations.

6.3.7 Figs. 6-1 and 6-2 show that after the excessive vibrations have all
been suppressed down to sufficiently low levels, the time rates of change
naturally start to become much less significant, and the modal-dashpot
vibration control also starts to become less effecitve. Unless the feedback
gains are increased thereafter, the vibrations may not continue to be reduced
to the desired precision in a reasonably short time. One way to achieve the
desired precision is to start to increase the modal-dashpot gains progressively
after the vibrations become sufficiently small, e.g., after 2 seconds of the

initial vibration control.

Another way is to switch to some form of "modern control™ for complet~-
ing the vibration suppression and precision pointing. When all the displace-
ments and rates of change have become reasonably small, the whole dynamic
system becomes legitimately linear, and the LOS error expression legitimately
linearizable. The condition is very suitable for application of the modern
optimal state-feedback control technique.

Modern control using standard Linear-Quadratic—Gaussian {LQG) optimal state
regulators and optimal state estimators has traditionally performed very well
in precision pointing and attitude control of rigid-body systems, even using
small signals. For application to a flexible-body system, the modern control
must be very carefully designed, however; otherwise the notorious spillover
problems may destabilize the system instead!

6.3.8 Several major approaches to extend or adapt the LQG design tech-
niques were proposed during the years of ACOSS (Active Control of Space Struc-
tures) and VCOSS (Vibration Control of Space Structures) programs [38]-[45],
[15], [46]-[50]. Either the weighting matrices in the control performance
index is modified in some ways [51]-[52], or some positivity requirement is
imposed on the design [53], or some pre—-design compensation of the actua-
tor/sensor influences is made [35]-[36]. All were successful to some limited
extents in addressing the major challenge of spillover problems, but are not
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readily applicable to realistic large flexible space structures.

Formal applications of the robustness theory [54]-[55] were started rec-—
ently [56]-[59]. The method of loop transfer recovery (LTR) was also
applied to recover sizable gain and phase margins of LQ regulators. The modi-
fication recently proposed by Blellock and Mingori [58] appears to have made
the LTR method more directly applicable to LQG controllers designed for large
space structures, so far as the uncertainties in the modal frequencies of the
plant are concerned. Recent results obtained by Sundararajan, Joshi, and Arm-
strong [59] are rather encouraging. Based on their interpretation of spillover
problems as additive uncertainty [60], [55], they were able to make an innova-
tive application of the LTR method to overcome spillover problem with their
LQG attitude controllers designed for the Hoop/Column antenna. This approach
has a great potential for practical application to realistic large flexible
space structures, since it appears to be able to overcome the spillover prob-
lem of an unlimited number of unmodeled modes.

Incorporating modal dashpots into a LQG or LQG/LTR design and following a
similar sequence of careful pre-design analyses certainly will greatly enhance
the stability and performance of the resulting LQG/MD or LQG/LTR/MD vibra-
tion controller. The two proof-mass actuators placed on the mast beam may
be used together with all the force and moment actuators on the Reflector and
the Shuttle for such a low-power but high-precision control.
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7. CONCLUSIONS

7.1 The two-stage approach is a feasible and promising one for rapid slewing
and pEEETEfEH_pointing/retargeting of large flexible space systems and, in par-
ficular, the orbital SCOLE configuration. It is capable of rapidly slewing
the line-of-sight and settling the excited vibrations in a minimum time.
The resulting control design, in general, will consist of the following three

parts in cascade:

Stage 1: a bang-bang type rapid slew maneuver based on the rigid-body dynamics
for pointing/retargeting in a minimum time; if excessive vibratlons may
be excited, using smaller forces and moments should be considered.

Stage 2, Part l: a high-power modal-dashpot design of velocity output feedback
control based on the flexible-body dynamics for fast and effective
reduction of large excited vibrations to a small magnitude;

Stage 2, Part 2: a LQG/LTR design of optimal state feedback control augmented
with a broad-band low-power modal-dashpot design of velocity output
feedback control, also based on flexible-body dynamics, for (1) achiev-
ing the specified pointing accuracy in a short time and (ii) maintaining
the precision and closed-loop system stability. The LQG/LTR design
may be incorporated or integrated with an appropriate modal-dashpot
design.

7.2 Not all bang-bang (BB) type of time-minimized slew maneuvers will excite
large structural vibrations. When large forces are used up to their extremes
(for example, 800 1lb on the Reflector) to complete the specified slew angle
(20%) of the rigidized configuration in the shortest time, the excited vibra-
tions can be excessively large in magnitude (e.g., a 114-ft peak deflection of
the 130-ft Mast beam), even only moderated maneuvers of the bang-pause-bang
(BPB) type is used instead. On the other hand, when properly selected small
forces, e.g., 25 lb, of the kind of vernier RCS thrusters onboard the Space
Shuttle, are used, even BB-type maneuvers will excite very 1little vibra-
tions (e.g., 0.3 ft peak deflection of the last beam).

If the excited vibrations are excessive, a "high-power”™ modal-dashpot design
of velocity output feedback control can be used in the first part of the Stage
2 to suppress the vibration down to a reasonable small magnitude quickly and
effectively. If the excited vibrations are relatively small, or have already
been suppressed to a small magnitude, some modified form of linear-qua-
dratic (LQ) optimal state feedback control augmented with a "low-power”
design of modal dashpots can be used in the Stage 2 to achieve the desired
pointing precision.

7.2.1 The vibration modes of the SCOLE configuration were excessively
excited when an 800-1b force was applied on the Reflector in the y direc~-
tion during a BB type slew maneuver. When the best Stage-l1 design, {i.e.,
the BPB roll-axis slew having the best LOS pointing accuracy with a minim-
ized slew time (4.89 sec) and the least sensitivity to nonzero products of
interia) was applied to the SCOLE flexible-body dynamics, the Reflector end
of the mast vibrated between +114 ft and -113 ft, the Reflector rolled
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between -86.96° and +88.35° and the line of sight jittered between 89.8°
(or 133.3° if not taking on the principal value of the sine function) and
14.7“0

Our carefully designed modal-dashpot type of velocity output feedback
control was able to suppress the excessive vibratiions quickly and
effectively: the Reflector end deflection down to +5 ft in 2 sec, and to
+0.5 ft in 4.2 sec; Reflector roll to #3.48° in 7.1 sec, and to #0.54° in 4.4
sec; and the LOS error down to 11.79° in 3.1 sec. In other words, after
only about 2 to 3 seconds of applying the "high-power” modal dashpots, the
vibrations were reduced to a reglon where some form of linear—quadratic
optimal “state"” feedback control (properly augmented with "low-power”
modal dashpots) would be effective in futher reducing the vibrations and
LOS errors to the desired precision.

7.2.2 The large magnitude of the force, i.e., 800 1b, applied on the Ref-
lector was responsible for the excessive excitation of vibrations in
the SCOLE configuration. Whether bang-bang type time-optimal slew man-
euvers would excite excessive vibrations or not depends on the allowable
maximum magnitude of the applied forces. When the limit of the force was
decreased to only one tenth (i.e., 80 1b) but the pointing slew maneuver
was still performed in a similar time-optimal bang-bang manner for the
same 20° angle, the excited vibrations were significantly decreased. The
maximum LOS error was 24.7°, comparable to the specified initial value (20%
due to the initial misaligment of the SCOLE configuration. The maximum tip
deflection (20.6 ft) of the mast beam was also quite reasonable compared
to the 1length of the Mast (130 ft). When no additional forces were
applied, however, the vibrations excited by the applied moments alone in-

creased, instead.

We found that if the applied force on the Reflector was about 25 1b,
i.e., in the range of the vermier RCS thrusters used on the Space Shut-
tle, the corresponding time-minimized bang-bang pointing slew maneuver
would excited very 1little vibrations in the SCOLE configuration. The
Reflector end of the mast vibrated only between +0.25 ft and -0.30 ft, the
Rellector rolled only between +0.16° and -0.30°, and the LOS error was at
most 0.51°. If the BB slew maneuver was followed immediately by some
form of linear-quadratic optimal “state” feedback control (properly aug-
mented with "low-power"” modal dashpots), such small vibrations and LOS
errors would be easily reduced to the desired precision.

7.2.3 During Stage 1, the BB maneuver using a 25 1b force on the Reflector
required 10.96 seconds to complete the 20° slew while the BPB amneuver
using a 800 1b force on the Reflector required only 4.89 seconds. A
"high-power” modal-dashpot design of velocity output feedback control
required additional 2.5 to 3 seconds to bring the excessive vibrations
excited by the 800-1b maneuver down to the same order of magnitude as the
vibrations excited by the 25-1b maneuver. Therefore, the total time
required for both Stage 1 (slew) and Stage 2 (stabilization and pre-
cision pointing) is likely to be around 10 and 12 seconds, respectively,
for the two cases.
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The two stages of the 800-1lb BPB maneuver will probably require the least
total time, but the excessive vibrations during the maneuver are impracti-
cal and undesirable.

The 80-1b BB maneuver requires a similar high-power design of wmodal-
dashpots for quick and effective suppression of the moderately large vibra-
tions to the same order of magnitude as the case of 25-1b maneuver. The
total time required for the two stages is likely to be also around 12
seconds or a little less.

7.3 Although modal-dashpot type of velocity output feedback control can be
designed as a usual diffuse (or "broad-band”) low-power (or "low-authority”)
control, the simulation results of our careful designs have shown that modal
dashpots can also be a concentrated high-power ("high-authority™) control for
fast and effective suppression of large vibrations. Careful pre-design ana-
lyses made it possible to do so for SCOLE.

7.3.1 Our pre-design analysis on the vibration modes of the SCOLE configu-
ration shows that modes 2,3,4,1,5 are the five most important modes
requiring for vibration control and LOS error reduction, with mode 2 need-
ing active control the most.

7.3.2 Qur Pre-design analysis on the modal control influences of the actu-
ators shows that: two force actuators on the Reflector in x and y
directions, respectively, are most effective for controlling modes 1 and 2;
three moment actuators also on the Reflector about the x, y, and z
(i.e., roll, pitch, and yaw) axes, respectively, are most appropriate for
controlling modes 3, 4, and 5.

7.3.3 For quick effective suppression of the excessive vibrations in the
SCOLE configuration excited by the time-minimized BPB slew maneuver, it is
more appropriate to design the modal dashpots into separate parts than to
lumping up all the 5 most important modes to be controlled by all the five
actuators together. High gains not only do not create spillover and
interaction problems as uaual but rather make the resulting modal dash-
pots truly powerful and effective for quick suppression of excessive vibra-
tions.

7.4 In general, modal dashpots when properly and carefully designed, can add
desirable amount of active damping to modeled (or "controlled”) modes. Unmo-
deled modes can also receive some concomitant active damping, as a benefit of
spillover to complement their inherent damping.
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8. RECOMMENDATIONS

We recommend that:

1. the two-stage approach be accepted as a promising one, and included in Part
Two of the Design Challenge, for validation using the hardware SCOLE labora-
tory facility and for comparison with other approaches, and

2. theoretical and simulation studies on the two-stage approach be continued
using the mathematical models of both the orbital and the laboratory SCOLE
configurations for further development of the technology.

8.1 Careful scientific studies have been successfully conducted on the two-
stage approach to rapid pointing and vibration control of the flexible orbital
SCOLE configuration, and the results have been very encouraging. Now that the
physical SCOLE labortory facility is operational, we recommend that the
design techniques developed and the technical knowledge gained on the two-
stage approach be translated to the tethered laboratory SCOLE configuration
and be tested and validated by the experimental apparatus. Specifically:

(1) Design a rapid time-minimize bang-pause-bang line-of-sight pointing slew
maneuver (Stage 1), and a fast effective modal-dashpot type of vibration
controller (Stage 2), using the mathematical model of the tethered confi-
guration and the actuators and sensors actually available on the labora-
tory article. Test the designs on the SCOLE facility in real time.

(2) Then, conduct a comprehensive sequence of experimental evaluations similar
to Steps (a) through (e) below.

8.2 To further develop the technology associated with the promising pratical
two-stage approach and to gain additional technical knowledge, we recommend
that studies be conducted on the use of MD—augmented LQG/LTR design of
vibration control for attaining the specified LOS pointing accuracy. We also
recommend that the limit om the applied force at the Reflector of the
orbital SCOLE configuration be lowered by one order of magnitude from 800 1b
to between 100 and 200 1lb, or alternately between 20 and 30 1b, in each direc-

tion.

Specifically, we recommend that:

(1) a series of design, simulation, study and evaluation be carried out on two
representative cases,

(2) the total time required from the beginning of the LOS pointing slew man-
euver to the end of stabilization with the desired 0.02° precision be deter-

mined for each case, and

(3) a trade-off study be conducted.
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Case 1. Limit set at 150 Llb*

(a) Use a Stage 1l design similar to the one described in Section 3.2.2 for the
time-minimized pointing slew maneuver. Simulate such a BB slcw maneuver on
the 3-dime¢nsional nonlinear rigid body dynamics of the SCOLE configuration
first; evaluate the LOS accuracy, and assess the effects of nonzero pro-
ducts of inertia during the rapid maneuver; compare the results with BPB

slew maueuver with the 800-1b limit.

Then simulate this slew maneuver on the flexible-body dynamics of the
configuration as if it were a time-varying disturbance, and analyze the
vibrations thus excited.

(b) Design a similar high-power modal-dashpot type of velocity output feedback
control (following the same design proceedure as in Section 5). Such a
vibration control design is to be used, as the first part of Stage 2 for
suppressing the (moderately) excited vibrations quickly and effectively to

some desirable low levels.

(c) Design a "low-power” modal dashpot (MD) type of velocity output feedback
control first. Augment the SCOLE configuration with the resulting modal
dashpot design. Then design a LQG/LTR type of optimal state feedback con-
trol. Such a LQG/LTR/MD control design is to be used as the second part
of Stage 2 for continuing on suppressing the vibrations quickly to the
desired LOS pointing accuracy of 0.02° All force and moment actuators,
including the two proof-mass actuators, are to be used in both the MD and
the LQG/LTR/MD designs.

(d) Simulate the entire Stage 2 design on the SCOLE flexible-body dynamics and
evaluate the vibration control performance numerically.

(e) Integrate the Stage-l and Stage-2 designs (for a continuous operation of
both pointing slew and vibration control), simulate their application on the
coupled SCOLE dynamics (i.e., flexible-body dynamics kinematically coupled
with rigid-body dynamics); evaluate the total LOS pointing and vibration
control performance and determine the total time required for achieving

the desired precision.

Case 2. Limit set at 25 1b

Use the same Stage 1 design as described in Section 3.2.3, instead of Sec-
tion 3.2.2, for the time-minimized pointing slew maneuver. Conduct all the
corresponding sequence of design, simulation, and evaluation as Case 1

except step (b).

* In the laboratory SCOLE configuration, the equivalent torque the thrusters on

the Reflector can generate is about two times the torque producible by the CMG
on the Shuttle. For the same ratio, the applied force on the Reflector of the

orbital SCOLE configuration is approximately 160 1b.
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SLEW MANEUVER DYNAMICS OF SPACECRAFT
CONTROL LABORATORY EXPERIMENT (SCOLE)

Y. P. Kakad

Dept. of Electrical Engineering
University of North Carolina at Charlotte
Charlotte, NC 28223

ABSTRA

In this article, the dynamics of slew maneuver of NASA Spacecraft COntrol
Laboratory Experiment (SCOLE) test facility are developed in terms of an arbi-
trary maneuver about any given axis. The set of dynamical equations incorporate
rigid-body slew maneuver and three-dimensional vibrations of the complete
assembly comprising the rigid shuttle, the flexible beam, and the reflector with an
offset mass. The analysis also includes kinematic nonlinearities of the entire assem-
bly during the maneuver and the dynamics of the interaction between the rigid
shuttle and the flexible appendage. The final set of dynamical equations obtained
for slewing maneuvers are highly nonlinear and coupled in terms of the flexible
modes and the rigid-body modes.

The equations are further simplified and evaluated numerically to include the
first ten flexible modes and the SCOLE data to yield a model for designing control
systems to perform slew maneuvers.

This work was supported by NASA Grant NAG-1-535.
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1. INTRODUCTION

The primary control objective of the Spacecraft Control Laboratory Experi-
ment (SCOLE) is to direct the RF Line-Of-Sight (LOS) of the antenna-like
configuration towards a fixed target under the conditions of minimum time and
limited control authority [1]. This problem of directing the LOS of antenna- like
configuration involves both the slewing maneuver of the entire assembly and the
vibration suppression of the flexible antenna-like beam. The study of ordinary
rigid-body slew maneuvers has received considerable attention in the literature
[2,3] due to the fact that any arbitrary large-angle slew maneuver involves
kinematic nonlinearities. This is further complicated in the case of SCOLE by vir-
tue of a flexible appendage deployed from the rigid space shuttle. The dynamics of
arbitrary large-angle slew maneuvers of SCOLE model are derived in this report as
a set of coupled equations with the rigid-body motions including the nonlinear

kinematics and the vibratory equations of the flexible appendage.

The dynamical equations of slewing maneuvers of this large flexible spacecraft
are developed by writing the total kinetic and potential energy expressions for the
entire system. The energy expressions are further utilized in formulating
Lagrange's equations which are expressed in terms of non-generalized co-ordinates
using an inertial co-ordinate system and a body-fixed co-ordinate system at the
point of attachment of the flexible beam to the shuttle. The generic model used for
this analysis consists of a distributed paremeter beam with two end masses. The
three dimensional linear vibration analysis of this free-free beam model with end
masses [4] is incorporated together with rigid-slewing maneuver dynamics which
are written in terms of four Euler parameters [5] and angular rotation about an
arbitrary axis of rotation to yield the final set of highly nonlinear and coupled
equations. In the derivation of the equations, it is assumed that the vibratory
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a(z)

2. LIST OF SYMBOLS

Position vector of mass element on the beam from the point
of attachment

Damping matrix

Inertial frame to body-fixed frame transformation

Position vector from the point of attachment to the mass center
of the beam

Mass density of the beam

Displacement vector of mass element in the body-fixed frame
Modulus of Elasticity

Force applied at the orbiter mass center

Force applied at the reflector mass center

Moment applied about the orbiter mass center
Modulus of rigidity for the beam

Beam cross section moment of inertia

Beam cross section moment of inertia, roll bending
Beam cross section moment of inertia, pitch bending
Equivalent mass moment of inertia
Mass moment of inertia matrix of the shuttle
Mass moment of inertia matrix of the reflector
Mass moment of inertia matrix of the beam
Stiffness matrix

The Length of the beam

Angular velocity vector transformation

Effective moment applied at the reflector c.g.

Total mass of the flexible beam

Mass of the orbiter

Mass of the reflector 2 49
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T
U

u (z,;)
u,(z,t)
uy(z,r)
v
v,

p
A

¢xi
¢yi
Dy

e o |®

The maximum number of modes considered
The generalized force vector
Generalized coordinates

Position vector of the mass center of the orbiter in the inertial
frame

Position vector from the orbiter mass center to the point of
attachment

X co-ordinate of the reflector mass center in the body-fixed
frame

y co-ordinate of the reflector mass center in the body-fixed
frame

Total Kinetic Energy
Total Potential Energy

The beam deflection in x direction referred to the body-
fixed frame

The beam deflection in y direction referred to the body-
fixed frame

The torsional deflection about z axis in the body-
fixed frame

Velocity vector of the mass center of the orbiter in the body-
fixed frame

Velocity vector of the point of attachment in the body-
fixed frame

Mass per unit length of the flexible beam

Vector representing the axis rotation during the slew
maneuver

i th Eigenfunction corresponding to u,

i th Eigenfunction corresponding to u,

i th Eigenfunction corrsponding to u

The attitude of the orbiter in the inertial frame
Slew Angle

The angular velocity of the orbiter in the inertial

rame 2;0



The angular velocity of the reflector in the inertial
frame

Damping ratio
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. ANALYTICS
Co-ordinate Systems

The motion of SCOLE assembly when considered as a rigid body in space has
six dynamic degrees of freedom: three of these define the location of the mass
center, and three define the orientation (attitude) of the body. The motion of this
rigid body is goverened by newtonion laws of motion expressed in terms of
changes in linear momentum and angular momentum. These relationships are
valid only when the axes along which the motion is resolved are an inertial-frame
of reference [9,10]. To define the orientation of the orbiter in space, a set of orthog-
onal axes fixed in the body is utilized. Then the attitude of the orbiter is defined in
terms of the angles (6,,8,,03) between the body- fixed axes and the inertial co-
ordinate axes. The body-fixed frame origin is located at the point of attachment of

the flexible appendage with the rigid shuttle for this analysis (Fig. 1).

The transformation from the inertial frame to the body-fixed frame is given
by the matrix, C as developed in figure 2 where if i, 7, K represent the dexteral
set of orthogonal unit vectors fixed in the body- fixed frame and 6, is the rotation
about i, 0 , is the rotation about 7 and 6 ; is the rotation about k. These rotations

are carried out successively as shown in figure 1 and the matrix C is given as

cosO; sinf; Of|cosf, O —sinB,|l1 0O 0
C = |-sinf; cosby O] O 1 O 0 cosf; sinf, (1
0 0 1f|sinf; O cosO; ||0 —sinf, cos,

Thus C7 is obtained as

cosf 5cosf 5 —cosf ,sinf 5 sinf ,
CT=] sinf sinf ,cosH 3+sinfd 3cos0, —sinfh ;sinb ,sinb 3+cosh scosf; —sinb jcosh ,
—cosf ;sinf ,cosH 3+sind 3sinf;  cos sinf ,sinb 3+cosh 3sinB;  cosh jcosh ,

(2)
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In order to completely define the attitude (orientation), it is needed to relate
the rotation angles 8, 65, and 6 ; to the angular velocity components (e, ©,, ®3)
of the orbiter. One way of obtaining the required relations is via body-three angles
method [5] which was utilized in developing C matrix in equation (1) and these

relations are

6,=( w;cos0 3 — w,sinf 3)/ cosb,
0, = ( w,sind 3tw,cos0 3) (3)

63 =( —wcosh 3+®,sinb 3)tanf ,+w,

Thus, the angular velocity of the orbiter can be obtained in the inertial frame

by means of the following transformation

o=M"8 (4)

where the transformation M7 is given as

cosfl ,cos6 3 sinf; O
MT = | —cosf,sinf; cosf; O (5)
Sin9 2 0 1

Although the body-three angles method is used here for obtaining the
transformations C and M, there are three other methods which can be used to
obtain the same transformations. A detailed discussion of all the methods is given
in reference [5] and a summary of the transformations using the remaining three

methods is given in the Appendix.

Kinetic Energy
If the position vector of the mass center of the orbiter in the inertial frame

(Fig. 3), R, is given as
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R =|Ry (6)

then the velocity of the mass center in the inertial frame is

Ry
Vie)= Ry (7)
Rz
This velocity can be transformed in the body-fixed frame as
Ry
V@)= C |Ry (8)
Rz

The velocity of the point of attachment in the body-fixed frame is

V, = V+exr (9)
where r_ is the vector from orbiter mass center to the point of attachment.

Defining the position vector (Fig. 4), a, of a mass element on the beam from

the point of attachment (origin of the body-fixed frame) before deformation as

0
a=|0 (10)
z
and the displacement vector of this mass element as
u,(z,t)
dzr)= |u(z,z) (1)
0
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the position vector after deflection is given as @ +d . The kinetic energy in the beam
(6] is

Ty =1/ 2) mYIV, + (1] 2) &7 [ Jo—mVoT Elot+(1) 2) [ d7ddm

u,'

+ V7 [ dam+e" [ adam+( 2) [ |d, iy iy|ar |dy (12)
u
¥

where the vector ¢ is from the point of attachment to the mass center of the beam

and if it is assumed that the beam is a thin rod, then it is given as

CI
c=|c
CZ
0
=(/m) fadm=| 0 (13)
~L|2

and using the skew symmetric form for the vector cross product for any two vec-

tors ¢ and o (in the same reference frame) as

cxo=[clo

c=]l¢c, 0 =—c (14)

also, the moment of inertia matrix is given as

1
J =0/ 3)pL?|0 (15)
0

o - O
oNoNe

where p is the mass per unit length of the beam. The last term in the equation (12)

corresponding to torsional motion is given as
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u,’
ety iy Ja [y

Uy
1/ 2(pds )s? 0 of[%:"
iy’ U, 0 1/ 2(pds)s? 0 iy’
0 4] 0] W

The kinetic energy equation (12) can be simplified as

n
Ty= (U 2) pLYIY, +(1] 6) pL? [wf+of |-pLyZewtpL T 42

i=1

n n
+V, Tat+a? B+(1/ 4) pl X psig’+ T Psidi

i=1 i=1

where

n

U, = Z by (s )g; ()

u

M:I

y = y,(s)qi(t)

= 2 ¢5'(s)g,(z)
1=1

3

uy = 30y (s ), (2)
i=1
Uy = i‘,ob.,,,- (s)g; (z)

&,; (s dds

||
t~ o\h

f¢> (s )ds

0
Pu = fs‘lbxi(s)ds
()
L
Pai =fs¢yi(s)ds
L
Psi =fl
0
L
6i =f
0
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and

n

P14
i=1

R
~
L —
]
©
™Ma

P24 (19)
1
0

i

n
2P aidq:
i=1
n

ﬁ(f )=p pr 3qi | - (20)
i=

0

The expressions for py;, P2;, P3i» Pai» Psi» and pg, are developed as follows. Note
that

¢, (s) = A sinB,; s +B,,; cosB; s +C,, sinhB; s +D,, coshB; s

where 8;=

Since for SCOLE configuration EI, = EI, and B, = By » EI and B; are used

for both &,;(s) and &,(s). However, this may not be true for other
configurations.

L
P = fd’xt (s )ds
0

L
pa = [ by(s)ds
0

P = 5 le —A‘icosBiL+B,,isinai+CxicoshB,-LI
i

l +D,;sinhB, L +A, ~C,, ] (21A)

Deﬁnlng x; = Bi L
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Pu= ai;L [ —A;; cosa; +B,,; sina; +C,, coshoy; + Dy sinho; +A,; —C,; (21B)

similarly,
|
= —A,;cosB; L+B,,sinf3; L
Pau B, L 2 yi By b1 i
1
Py = v —Ay, cosa; +By; sina; +Cy, cosha; +Dy,; sinha; +Ay, —Cy, ] (22B)
L
Py = fs bz (s )ds
()}
L

Do = fs:byi(s)ds
0

and these can be given as

sinB; L LcosfB;L cosB; L LsinB;,L 1
P = Axi 2 xi 2 + h2 +
Bi Bi Bz Bi Bi
200==Te—— o0
LcoshB; L sinhfB;L LsinhB; L  coshB; L 1
Cxi B Bz +Dxi B - Bz +F (23A)
i i i i i
L3ina; L2cosq L%cosa; L3%sino; 1.2
= A - +B,, + +
P3i xi Q’iz o xi 0112 o; Ofiz
L2coshey; LZsinhe; L%inhea; L%cosha; 7.2
Cu - > 2 - > 3 (23B)
o,y o o (2] a;
Similarly,
sin; L Lcosf;L cosB;L Lsinf;L 1
Py = Ayi 2l - l +Byi ; + - "y
Bz Bi B¢ Bt Bi
LcoshB; L sinB;L Lsinhf;, L hfB; L
Cy °°Z B S’;BZ‘ +D,, S’; B —°°SB’Z3‘ +-517] (24A)
] i i i i
L3sina; LZcoso; L%osa; L2sina; 1.2
;= + +
Py = Ay p o, y a2 o, Oliz
L%cosha; L3%sinha L3inhe; L2%cosha 2
Cp i _ - i » i > iy L2 (24B)
@ o oy o f o
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L 2
pu= ] (o]

L 2
Pesi =f [S¢yi'(S) ds

0

and these can be shown to be

312L3+_1_

z 5 -l—‘cos2BiL+(——[-3i-——) in2B8; L

2 4B,
_1 23:
431 2

psi =Ag

cos23; L ~-L

483,

—A, B, 15 L gin2g, L+

+A,;Cy l B, L2{(cosB; L sinhB; L }+(sinB; L coshB; L)

—2L (cosB; L sinhB; L )—(sinB; L coshB; L)

Sth L SlnhBi L}' B,

+A, Dy | B L2} (cosB; L coshB; L )+(sinB; L sinhB; L)

=2L SmBi L COShBt L

Se———

—-BL (cosB; L coshB; L )—(sinB; L sinhB; L) ]+§—
i i

Bist_ 1
6

L o528, L +(—B—i———)sin231

2
+B,; > 28,

B, L*{(sinB; L sinhpB; L )—(cosB; L coshp; L)

cosf3; L sinhp; L}' B
i

+(sinB; L sinhf; L )]+—B—-
i

_Bxi Cxi

+2L (cosB; L coshB; L)

(sinB; L coshB; L )—(cosB; L sinhfB; L)

=B, Dy, B;L 2

+2L{cosfB; L coshB, L }—731— l(cosBi Lsinhf; L)
i

—(SmBi L COShBi L )

B 2L3
B,Lcosh2B,L+(—Biz—-+ ;3 )sinh?B; L — ‘3
¢

+C2

4B,

————

+Cxi Dx‘ l Biz COSZB; L —LSi.nhZBi +—1—’C05h261 L—— 4B
i
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B¢2L3
3

4B,

273 1.2
L
Bi() ; é 2B L+ Bl

Pet = Ay —)sin2B; L

431

L2
L L*B;
3 —=sin28; L +( 431 3

—A,; B

yi Byi

Jcos2B; L —Z;T‘

+A,,Cy,; | B, L%} (cosB, LsinhB, L )+(sinB; L coshB, L ) —2L {sinB; LsinhB,; L

__E_. (cosB; L sinhB; L )—(sinfB; L coshB; L)

+Ay; Dy, | B; L*{(cosB; L coshB; L )+(sinB; LsinhB; L ) {—2L{sinB, L coshf; L

+_

_B_ (cosB; L coshB; L )—(sinB; L sinhf; L) 3
1

i
Bi2L3 1

6 2

2
Lcos.’ZB-L+( LB, —-—l—) in28; L

+B,,?
» 2 { 2 4B,

—B,;Cy, | B;L?! (sinB, LsinhB, L }—(cosB, L coshB; L ) H+2L | cosB; L sinhfB; L

+___

.__B__ [ (cosB; L coshB; L )+(sinB; L sinhB; L) 8
!

¢

—By; Dy +2Lj cosB; L coshB; L

B; L2 { (sinB; L coshB; L }—(cosB; L sinhB; L)

(cosB; L sinhB; L )—(sinB; L coshB; L)

Bi
Cy%[% B: L cosh2B, L +( BizL 2 4Bi —)sinh?B; L ———_ ’L’
Cyi Dy, l BichoszﬁzL—%SthBiL+4; L cos28,L 4B,
Dyt % Bi L cos2B; L +( Bt2Lz 2B, —)sinh?B, L +— ” (26)

The equations (25) and (26) can alternatively be derived by replacing 8, = 2t

L

The kinetic energy of the reflector is
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T,= (1) 2) moVIV,—m,V7a (L)et+m VId (L)1 2) mye’a’ (L)a(L)e
+m,eTa (L) L)+ 2) madT (L) (L)+(1] 2) 91,0 (27)
where m , is the mass of the reflector and /, is the mass moment of inertia matrix
of the reflector. The deflection vector d (L) at the mass center of the reflector is

given as

u, (L) —ryuy(L)
da(L)= u, (L) +ruy (28)
u, '(L)r, +u, (L),

and the position vector from the point of attachment to the reflector mass center is

given by
rx
all)=|ry | . (29)
—L
Thus,

dL)=| u,(L)+ryuyL) | - (30)
u, (L), + zly ‘(L )ry
The angular velocity of the reflector in the inertial co-ordinate system ) can be

shown to be

. R
»

(31)

I
]
e
+
F

Q.
€
t~

The equation (27) can be simplified as
T, = (1] 2) maVIV,—m,V7a (L )e+m VId (L)+1] 2) m,L2 [m12+w22]

T
tmaTa (LI LI Dmyl T 8 s (L6, (L)dd;+
i=1)=1

26/




T 3 6, (L), H(U 2D ETIB+H1 Dl e (32)
{=1j=1
where
ET = ﬁx' ﬁy' li,# |
T 6, (LG (2) £, (L), E by (L )éi(z)l : (33)
1=1 i=1 i=1

The kinetic energy of the shuttle, 7, , is given as
T, =1 2) m VTV +(1/ 2) &7 [Illg (34)

where m, is the mass of the shuttle and 7, is the mass moment of inertia matrix

of the shuttle.

The total kinetic energy is given as
T =T,+T,+T, (35)

This can be simplified as

T=0U/2)mVIV+oT

n
le+(1/ 2) o7 |1, ]9+pLZd¢2+KTQ

+0T 7 o+’ B+m VT d (L )+m 07 7d (L )+

n
m T @ (L) (L1 2) my| & {oZ(L)+02(L) g,
i=1
n
+(1/ 2) PT1,P+(1] &) p Z psidt+ T peidi? (36)
=1 =1
where
m, =m;+pL +m,
H = lpL +m2r?_+mza_(L H+pl
100
I,=1,+(1/3)pL3l0 10 +Iz+12—err—erc-m2£L—m,Lcl(L)
000
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The term J , in this equation can be shown to be:

(ry2+L ) -, ry r.L
Ja=my| —rery (rP2+LY 1L

r.L ryl  (r2+r})
The total kinetic energy expression can be further simplified as

T =1/ 2) m VIV +al [H]&_/+(1/ 2) o7 [I,, l_cg+‘_/_T [Allg'_ (37)

+of IA2]i+(ll 2) g7 [A;;lg',
where

lAlIi = g+m,d (L)
[A 2]4 = FatB+m,7d (L)+mqa(L)d (L)

~_ O

IA3l= pL+m,+p s +pg; +[[¢'(L)IT12I¢'(L)” .

In this equation

6,(L) O 0
0 ¢,) O
0 0 ®14(L)
e =] _ _
b (L) 0 0
0 6, L) O
0 0 (0.} ‘p(L )

Here i=2,3,.....,n. The number n indicates the total number of flexible modes con-

sidered.

Equations of motion
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Lagrange’s equations of motion for the case of independent generalized co-

ordinates ¢, are

a4 9T _ 3T _, _ U k=12,.... 38
a5 0ee  * T dae Kk =12pmmr) 38)

where, I’ = T (g ¢ ) is the kinetic energy
U = U(g) is the potential energy, and

Qy are the generalized forces arising from nonconservative sources.

The generalized co-ordinates are:
Rx ,Ry,Rz — position of orbiter mass center relative to inertial frame origin.
61.0,.8; — roll, pitch and yaw angles of orbiter.

q1:9 2++--dn — modal deformation co-ordinates for the beam.

The previous kinetic energy expression developed in equation (37) is given in
terms of nonholonomic velocities V and w, and generalized velocities ¢. Using the
notation T(V,0.g) for this kinetic energy expression and T for kinetic energy

expression in terms of generalized velocities, the equations of motion are developed.

Thus, equation (37) is rewritten as

T=0 2mVIV +of Ile + (1) 2)a’ [10 lg+ vT [Allg', (37)
+QT[A2]i+(1/ 2)5[,43]9'_

(a) Translational Equations

From the chain rule applied to equation (37) using equation (8), one gets

oI o
aRx avl
O |=cr | 2L 1. (39)
aRy aVZ
o T
aRz av3
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Also, the generalized forces are CE (¢ ) where
F)=F,(t)+E,() (40)

F, (r) represents the force applied at the orbiter mass center and E (¢ ) represents

the force applied at the reflector mass center. From Lagrange’s equations

alarl, cer |8L]=
a | 3y + CC v E@) (41)
and from equation (37)
.g%/:. =moz——H(£+A1g‘_ (42)
Substituting equation (42) in (41),
m,V—Ho+A§ =—CCT(m,V—Ho+A d)+ E() (43)
This can be rewritten as
mV —Ho+ A g =N,+EQ@) (44)
where the nonlinear term [V, is given as
N,=—CCT(m,V—Ha+A§) (45)

= _é(mo Z—H Q+A ].g..)

Here, @ = ccT.
(b) Rotational Equations :

From equation (4)

Again using the chain rule

(46)

1A
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Also

or | eyl 2’
691 391 ael
BT |- | ¥ || oT |, | 8" || oL
89, 092 || 0¥ 092 || 0
o | | av” ol
093 083 80 3
It can be shown that
T
.ﬁ__a‘g =vTcC L—% ..... i=1,2,3
i ¢
and
%ééi:dm-l ag” ..... =123,
i i
and
zTc.aﬁ wTM—IM
89, 894
g 2 A4 2 w
vT QCT TM"l_aM
- C 693 w 693

From equation (37),

- py + ]

v V+Il,0+ A
and as before

.a_- = V —

5V m, Ho+ A,q

(47)

(48A)

(48B)

(49)

(50)

(42)



Using the Lagrange’s equations

d

4|9
dt

v -9 _pmc (51)

08

where G is the net moment about the mass center of the orbiter with respect to

the body-fixed frame. It is given as

G =G, + (z+aIxE, (52)

G, is the external moment applied about the mass center. Eqation (51) can be
simpified by substituting equations (42),(49), and (50) together with the relation-
ship developed in (46) as

HY +I,6+A,d =G + N, (53)

where the nonlinear term [V, is given as

T QCT T.s—1 QM
e 09, @ M 061
T ™ N A
N, =M1 vTcC || 0L |y pr-1] | T M1 OM |_p7|| DL (54)
=2 = 80, || v e M 86, e
T QCT TM—l M
Y- ¢ 693 - 693

(¢) Vibration Equations of the Beam

Since T in equation (37) is given in terms of ¢ which is a vector of general-

ized velocities,
of _ aT
0¢ Qg
and
-g%i =Alv + Alo+A¢ (55)
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The potential energy in the beam is given by

U=(1 2)¢"Kqg (56)

where the stiffness matrix K is given as

\ 0
= k.

K i (57)
0 \
and
L L L
k, = EI B} fd&le (s)ds + fd)ﬁ (s)Mds|+ Gwﬁjif¢‘f,- (s )ds
0 0 0
1
Do? |z
G represents the modulus of rigidity of the beam and By, = G where D
"
is the mass per unit volume (mass density) of the beam. Thus,
Wk
ag
Using the Lagrangian Equations (38) and assuming that £, =0,
ATV + ATo + Ay =—Kg . (59)

d) Slewin uations

If it is considered to perform a slew maneuver about an arbitrary axis A and
the slew angle to be £, then the slew maneuver can be expressed in terms of four

Euler parameters. These four Euler parameters are defined as

€
€E=16|= Lsin-g (60)
€3
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€= cos-g- (61)

and their derivatives with respect to time are given as

( €40 + 0w (62)

fe

de _
dt

Q
m
F-S t\)lt—-

WeE . (63)

1l
|
|-

],
~

The four Euler parameters can be related to the angular velocity components

of the rigid assembly as

.el € €4 —€3 € 0
€ € € € —e€||o;
Gl  |a—ae a a0 | (64)
€4 €4 —€ —€ —€3| |W3

If a slew maneuver is considered to be purely rotational, then the transla-
tional velocity and acceleration can be shown to be negligible during the slew
maneuver and only the rotational and vibration equations are reqired for the
analysis and they are simplified by setting V=0 in both (53) and (59) and are

written as follows

Lo+ A =G@)+ Ny(w (65)
ATo+ A +Kg=Q@) . (66)

where,

G (¢) is the net moment applied about the mass center of the orbiter and is

given by the following equations (figs. 1& 2)

Gu)=Got)+ (@ +alxE; . (67)

Also, Q (¢ ) represents the generalized force vector which is given by the following
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equation

1 ™M3

(Qe, @)+ QD) +Q,, +0Q, +0Qy
1

..

M3

( Q}Iz(t )+ QJ)’z(z )) + sz + Q)‘z + Q%

1

-~
U

Q)= - (68)

Z (Qu )+ Q@) +Q, +Qu +Qy,

=1

where, the generalized force components are given as

L
Qss, = [ Fix(2.238(z =2,y (z Mz (69)

0

L
Qi = fF,, (z,£)8(z~z, )9y (z )dz (70)

0

and

Qiy)=0 . (71)

Here, F;,(z 2) is the x component of the concentrated force applied at location j

on the flexible antenna and F, is the y component of that force.

Also,

Q(t)=F, (), (L)
Qu ()= F,y(t)d, (L) (72)

Here, F, is the force applied at the reflector C. G.
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Thus,
M‘l,(t)=F2xry +F2yrx+M2‘,, . (73)

The location of reflector C. G. is given by coordinates (r;,r,) and My,

represents the external moment applied at the reflector C.G.

Thus equations (62) - (73) completely represent the dynamics of the slew
maneuver. These equations are nonlinear and coupled including both the rigid-
body dynamics and the dynamics of the flexible appendage with kinematic non-
linearities. It is important to note that the nonlinear term N ,(w) is dependent on
the rotational velocity and as a result determined by the slew maneuver rate. Thus
the basic slew maneuver stretegy has to be developed before this term can be

linearized.

(e) Vibration Equations of the Beam with Damping

If damping is included in the derivation of vibration equations of the beam,
then the damping effect can be expressed in terms of frictional forces. These are
nonconservative, retarding forces and are assumed to be proportional to the gen-
eralized velocities. In deriving the vibration equations by means of Lagrange’s

equations, the following function is introduced

n
2 bjq9; . (74)

1
Fd=_

it

i
It also has a positive definite quadratic form similar to the kinetic and poten-
tial energy expressions.
With this definition, Lagrange’s equations assume the form

d 9T _ T 8Fa _ o _ U
dt 3q,  O9x Bdx 0qx

27/

(k=12,......n) (75)




Again, as before

oT

=AY +Afo+Ay

and

Wk
= q
»
and it can be seen from (74) that
F .
a. =B g
LA

where the damping matrix B is symmetrical and is given as

by byz . . by,

by by . . by,

bnl bnz .. bnn

The vibration equations are given as

ATV + Ao+ Af +Bg =—Kg + Q@)
The slewing equations (65) and (66) would be modified as
1,0+ A =G()+ Nywg)
ATo+ Ax§ + B =—Kg +Q(1)

Nonlinear Term in the Rotational Equations

(55)

(58)

(76)

(77)

(78)

(79)
(80)

The nonlinear term N, in the rotational equations (65) and (79) during the

slewing maneuver is simplified as
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of M—10M

- 09,
N,=M"! gTM-laé” -M [1,,9+ Az_ci_] (81)

2

o' M™! M

o 09 3

where
o' M~ léeL— [0 0 o] (82)
1
o’ M1 ggll cosG I(—mlsine 260520 3+w,sinf ,sinb ;c0s6 ;) (w,sind ,sind ;cosh 5
2 2
—w,sinf ,sin?0 ;)  (w;cosf ,cos0 3—w,cosd ,sinf 3)I (83)
o M™? géw cosG l(m2c059 3) (—wcosf,) O l . (84)
3 2

Since the transformation matrix, M , is a function of 8, and 63, the time

derivative of M can be expressed by the chain rule as

M = Jgge -29—93 (85)

From equation (5)
(—sinf ,cos0 300, (sinf ,sinf 3)0, (cosf,)d ,

%”-éz = 0 0 0 (86)
2 0 0 0

(—cos ,51n0 3)6 3 (—cosh 5cos0 ;)65 0O
ggié s=| (cosB;)f5 (-sinf)f; 0 (87)
3 0 0 0

Substituting these equations (86) and (87) in (85)
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(—sinf ,cos0 3)8 ,+(—cos 0 ,sinb 3)8 ; (sinf ,sind 308 3+ (—cosB ,c0s6 ;)0 5 (cosh )0,

= (COSG 3)é 3 (—sin9 3)é 3 0
0 0 0
(88)

From equation (4), this can also be expressed as

(—sinf ,cos6 3)(w,cos0 ,sinb , (sinf ,sinf 3)(w,;cos6 5s1nf 5
+w;c0s6 5058 3)+(—cosf ,sinf 3) +w,c0s0 ,c088 3)+(—cosf ,cos0 5)
(—w,;sinf ,cosf 3+w,sinf ;sinf 3 (—w;sinf ,cos0 3+w,sinb ,sinb ,
+w;cosf ,) +w3c0s6 ;)
_ 1
~ cosf, (cos 8 3)(—w,sinf ,cosf 4 (—sinf 3)(—w,sinb ,cos9 ;
+w,sinf ,sinb 3+w;cosh ,) +w,sinf ,sinf 3+wscos ,)
0 0

cosf ,(w; cosh ,5in0 3+w,c0sH ,c0s0 3)

(89)
0
0
Also, M™! is given as
cosf; cosf ,sinf ;3 —sind ,cos0 4
M= —sinf 3 cosf ,cos0 3 sinf ,sinf 5 | . (90)

cosf ,
0 0 cosf ,

Thus, the nonlinear term N, can be rewritten as
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Ni= 440 [Lo+asd|

Where the term A ‘3 is

Ale®)=M1||o"M™!?

Ny=A3®l,0+ A's(@8)A0

= A 08) + Al (9D

where A 4 depends on the rigid-body slewing and is nonlinear in terms of @ and 6.
The second term relates the coupling between the rigid-body slewing and the flexi-
ble modes. This equation can be further simplified in terms of Euler parameters by

relationships developed in appendix II as

N,=Ag(we) +4A;(welg (92)

where ¢ is the Euler vector comprising all four Euler parameters,

From equations (65) and (66) and by defining A = A I,7V A, + Aj, the

following equations are obtained

o=1,"1A,A7IBg + A,ATIKg + {A,ATIA 1,7 + 151G (@)
+ {ASIAI, Y+ 11 Ny(w© (93)
§=A"Bd —A'Kg —ATATL TG+ ATIAT LT
+A71Q (@) . (94)
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It is assumed that control forces applied for vibration suppression has negligi-
ble effect on rotational maneuver of the spacecraft in developing equations (93)

and (94). Also, I 5 represents 3x3 identity matrix in these equations.

4. NUMERICAL DATA

The analytics developed in the previous section are utilized together with the
basic SCOLE data [1] and the three dimensional linear vibration analysis [4] to

generate the following numerical data.

m; = 6366.46slugs.; m, = 12.42slugs.; p =0.0955slugs| ft.; L = 130ft.
G,=12E+8w| fr% (EI), = (EI), = (EI ) =4E+7b—ft?;

0.036
r = {-0.036
—0.379

0
c = 0
—65.0

905443.0 0.0 145393.0
I,= 0.0 6789100.0 0.0
145393.0 0.0 7086601.0

18000.0 -7570.0 0.0
I,=1-7570.0 9336.0 0.0
0 0.0 274070

The three dimensional vibration analysis is given in terms of the first ten

modal frequencies and mode shapes in table 1. Here,

a;s
+D - cosh——

¢xt (S) = isul +B tCOS +Cxt iﬂh L T

L L
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;S s
by (s)= Ay sm—i—+By, cos%+cyi sinh

;S

L

o; S

+Dyi cosh 2

S

¢‘l’i (S) = A¢i sinoz\b,- L

S
+B Wi COSO.’W I

1
wfpL* |7
@; = EI
1
DL} |2
Q’q,i = G

Using these data the following matrices are obtained.

1216640 —1.530307 175667.1
1, = |—31.66433 7082976 -—52474.84
175690 —52503.9 7131493
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TABLE 1

FIRST TEN FLEXIBLE MODES OF SCOLE MODEL

THREE DIMENSIONAL MODE SHAPE CHARACTERISTICS
MODE No. 1 2
FREQ. (HZ.) 0.27804240E+00 0.31357296E+00
o 0.12012084E+01 0.12756518E+01
A, 0.16282665E+00 0.38855291E-02
B, -0.196 70286E+00 -0.14998387E-01
C, -0.16983450E+00 -0.43321018E-02
D, 0.19616259E+00 0.14985820E-01
A, -0.10274618E-01 0.14219781E+00
B, 0.57579133E-02 -0.22695797E+00
G, 0.11810057E-01 -0.19283105E+00
D, -0.57220462E-02 0.22644561E+00
ay 0.19360955E-01 0.21835058E-01
A, -0.50748354E-01 0.31115282E-01
B, 0.13978018E-04 -0.75992337E-05
MODE No. 3 4
FREQ. (HZ.) 0.81300189E+00 0.11856099E+01
o 0.20540387E+01 0.24804687E+01
A, 0.40868188E-01 0.80641794E-01
B, -0.61958845E-01 -0.67233377E-01
C. -0.41309992E-01 -0.80913938E-01
D, 0.61880796E-01 0.67106316E-01
A, -0.22438404E-01 0.137286 79E+00
B, 0.36509234E-01 -0.11746932E+00
c, 0.24390447E-01 -0.14085209E+00
D, ~0.36464758E-01 0.11725057E+00
oy 0.56611842E-01 0.82557693E-01
A, 0.92698901E-01 ~-0.16158934E-03
B, -0.87320799E-05 0.10437718E-07
MODE No. 5 6
FREQ. (HZ.) 0.20536300E+01 0.49716090E+01
@ 0.32645546E+01 0.49716090E+01
A, 0.99278129E-01 0.45739784E-01
B, -0.92344553E-01 -0.46365581E-01
C, -0.99442145E-01 -0.45763106E-01
D, 0.92225801E-01 0.463296 76E-01
A, -0.57396019E-01 0.78612940E-01
B, 0.53976008E-01 -0.79952853E-01
G 0.58114853E-01 -0.78914485E-01
D, -0.53906980E-01 0.79891039E-01
oy 0.14300062E+00 0.33165303E+00
Ay -0.16588614E-02 -0.93394833E-05
By 0.61861804E-07 0.15017211E-09
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THREE DIMENSIONAL MODE SHAPE CHARACTERISTICS

MODE No. 7 8

FREQ. (HZ.) 0.55157833E+01 0.12281249E+02
a 0.53501560E+01 0.79833305E+01

A, 0.81311804E-01 0.44835061E-01

B, -0.82056569E-01 -0.44834914E-01

C. -0.81344923E-01 -0.44840508E-01

D, 0.81997259E-01 0.44813000E-01

A, -0.47145439E-01 0.77404756E-01

B, 0.47703590E-01 -0.77465629E-01

C, 0.47289807E-01 -0.77475327E-01

D, -0.47669155E-01 0.77427782E-01

oy 0.38408 110E+00 0.85518143E+00

A, -0.23855560E-02 0.15830371E-05

By 0.33122041E-07 -0.98715017E-11

MODE No. 9 10

FREQ. (HZ.) 0.12890442E+02 0.23679520E+02
o 0.81789349E+01 0.11085347E+02

Ay 0.78743585E-01 0.44348498E-01

B, -0.78755259E-01 -0.44367373E-01

C, -0.78752483E-01 -0.44350511E-01

D, 0.78717693E-01 0.44351763E-01

A, -0.45569244E-01 0.76707490E-01

B, 0.45609474E-01 -0.76762782E-01

c, 0.45607884E-01 -0.76733612E-01

D, -0.45587726E-01 0.76735779E-01

ay 0.89760145E+00 0.16488 784E+01

A, 0.94995483E-03 -0.51105957E-06

B, -0.56437766E-08 0.16528495E-11
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0.45879E+2 0.36305E—1 —0.89042E—1
0.36305E—1 0.6211E+2 0.11263E0
—0.89042E—1 0.11263E0  0.32737E+2
—0.14067E0  —0.1471E0 —0.6392E —1
~0.1457E0  —0.5518E—1 —0.14526EQ
A3= | 0.1914E—1 0.19839E—1 0.7925E—2
0.84597E—~1 0.3935E—2 —0.8369E—1
~0.6893E~2 —0.7165E—2 —0.2829E —2
~0.4269E—1 0.5969E—2 0.89767E—1
0.4204E—2 0.41227E—2 0.1866E —2
0.1914E—1 0.84597E—1 —0.6893E—2
0.19839E—1 0.3935E—2 —0.7165E—2
0.7925E—2 —0.8369E—1 —0.2829E—2
-0.4278E—1 —0.76115E—1 0.1543E—1
-0.2570E~1 —0.12912E0  0.9222E—2
0.23209E+5 0.10383E—1 —0.2089E—~2
0.10383E—1 0.55561E+5 —0.37286E—2
-0.2089E—2 —0.37286E—2 0.1342962F +8
-0.3955E~2 —0.3859E—1 0.1421E—2
0.1227E—2 0.2397E~2 —0.4427E—3
—0.2133821E0 —0.3687057E+3
0.3808921E+3 —0.3030935E +2

Ny

—0.1808478E +3
0.1423380F +3
—0.2416743E +2
—0.6802273E0
0.2784792E +2
0.7842818E +1
—0.2694455E +2

—0.9225328E -1

—0.1318596F +3
—0.1135851E +1
0.574383E+2
0.3104929E 2
0.6651585E +2
—0.1930097E +2
—0.5544252E +2
0.1594045E +2
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—0.14067E0  0.1457E0
~0.1471E0 -—0.5518E-—1
=0.6392E—-1 —0.14526E0
0.2547E +3 0.1908E0
0.1908E0 0.8103E£+3
—0.4278E~1 —0.2570E—1
—0.76115E—-1 —0.12912E0
0.1543E—-1 0.9222E-2
0.2859E—-1 0.4611E-1
—0.9067E—2 —0.5947E -2
—0.4269E —1 0.4204F -2
0.5969E -2 0.4127E -2
0.89767E —1 0.1866E —2
0.2859E—1 —0.9067E -2
0.4611E—1 —0.5947E -2
—0.3955E -2 0.1227E -2
—0.3859E —1 0.2397E -2
0.1421E -2 —0.4427E -3
0.2095672E+8 —0.9108E—3

—0.9108E—-3 0.8662547E+10

—0.7253901E -1
—0.8427658E—1
—0.125799E0
—0.2367351E -1
—0.9150328E —1
—0.3843062E —1
0.596075E —1
—0.4363533E -2
—0.4200623E —1
—0.1626004E —1




The stiffness matrix X is calculated using equation (57) and the mode shape
coefficients given in Table 1. This matrix is a diagonal matrix and is represented in

terms of the diagonal elements as

k11 = 0.2820217E0
k3, =0.3574692E0
k33 =0.2412807E 1
k44 =0.5285116F 1
kss=0.1588654E2
kg5 = 0.8573860E2
k77 =0.1146118E3
kg5 = 0.5686101E3
koo = 0.6254598E 3
[ 10,10 = 0.2114612E 4

The damping matrix B used for this analysis is a diagonal matrix and for

damping ratio { = 0.003, it is calculated to be

by, = 0.9685964E —3
b, = 0.1088608E—2
by = 0.2834016E —2
by = 0.4256808E —2
bss=0.7387177TE—2
B = b6 =0.1719014E—1
b, =0.1984237E~1
bgg = 0.4421234E—1
bgs = 0.4633434E—1
b 1010 = 0.8527647E—1
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APPENDIX 1
The following is a summary of transformations between inertial frame and

body-fixed frame. Here, s; and ¢; (i=1,2,3) denote sinf; and cosf; (i=1,2,3)

respectively.

(a) Space-three Angles

€23 €283 —S2
C = |s15,63—53C; S18253+C3C; §1C,

C183C3+838; C15383—C3S; C1Ca

1 0 -8
MT =10 ¢, s,
0 —s; cyc,
(b) Space-two Angles
€2 §253 8523
C = |51S3 —S1Ca83+C3C; 51C,C3+850,

C1§3 —CC2837C351 C1C2C37535

1 0 Csy
Mr= 0 Ci1 8§15,

0 -S1 C152

(c) Body-two Angles

€2 5152 —C153
C = S283 —S1C2S3+C3C1 C1C2S3+C3S1

§2C3 —51C2C3—53C1 C1CC3—535,

C> 0 1
MT= §32853 C3 0
§,C3 —S3 0
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APPENDIX II
The transformation that relates the orientation angles 8 to Euler parameters €

is a nonlinear transformation. This transformation is developed for body-three
angles representation in this appendix and similar transformations can be derived
for other three representations, namely space-three angles, space-two angles, and

body-two angles.

(a) Forsinf, =1 :

If—% <0, <§, then

8,=sin"!|2(e3¢; + €3€4)] - (A1)

If ( cosfcosf,) 20, then

6, =sin™! AC T D (A.2)
l hd . .
cos fin~! [2( €36, + €3€4 ) ”
If ( cosf,cosf,) <O, then
6,=m—sin"? ~2 (g6~ aa) (A.3)
cos%m'1 [2( €3€; + €264 ) ”
If ( cosO ,cos8 ;) 20, then
9, =sin"! ~2(a& — ) (A.4)

cosFin’l [2( €36, + €363 ) ”

If ( cosB 5cosf 3) <0, then

285



-2 (6162— €3€4)

93 =T - sin_l (A.S)

COSFHI_1 [2( €13€; + €3¢y )

(b) For sinf,= %1, 0, is a constant. For sinf,=1, 6,= -g— However, if

sinf, = —1, then 6, = —%. For this case, if ( sinf ;sinf ,sinb 3 + cosb 3cos0, ) 20,

then

0,= sin’1[2( €63+ €1€4 ) ] . (A.6)

If ( sinB ,sinf ,sinb 3 + cosb scos6; ) <0, then

0,= 17—sin"‘[2( €63+ €€ ) ] . (A7)

For this entire case, 83 =0.
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Spececraft Control Experiment (SCOLE) ZB

FIGURE 1
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Figure 3- Position Vectors in Inertial Frame
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Figure 4- Vectors in Body-fixed Frame
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Optimal Planar Slewing of the Flexible Orbiting SCOLE

P. M. Bainum and Feiyue Li
Department of Mechanical Engineering

Howard University, Washington, D.C. 20059

Abstract

The nonlinear equations for the planar motion of the
flexible SCOLE are derived by using Lagrange's equations. The
displacements of the flexible parts are assumed small as
compared with the SCOLE dimensions. The linearized version of
the motion equations is obtained. The Maximum Principle is
applied to the planar maneuver of the SCOLE to obtain the
associated optimal control. The resulting nonlinear two-point
boundary-value problem is solved by using the quasilinearization
method, in which the solution of the linearized version is used
as a starting solution. Some numerical results are presented to

show the application of this method.
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Introduction

Pontryagin's Maximum Principle has been used for the optimal

attitude maneuvers of a spacecraft in the following cases:

1) Rigid (3-D, multi-control source)
(Junkins, J.L. and Turner, J.D., 1978)
(Bainum, P.M. and Li, F., 1986~1988)

(Lin, Y.Y. and Kraige, L.G., 1987)

2) Flexible
a) Linearized Eq.(single-axis rotation, rigid-hub-2

symmetric beams; Breakwell, J.A., 1979)

b) Nonlinear Eq. (single-axis rotation, rigid-hub-4
symmetric beams, 1 control torquer;

Junkins and Turner, 1980)

c) Nonlinear Eg. (single-axis rotation, rigid-hub-4
symmetric beams, 5 control torquers;

Turner and Chun, 1984)

d) The Present Problem:
Nonlinear Eqg. (single-axis rotation, Shuttle-beam-
reflector, control torquers and

control forces)

293



The methods used in solving the two-point boundary-value

problem are:

1) For Rigid Spacecraft:

2)

a)

b)

Differential Correction (of unknown initial costates)

and Relaxation Process (to increase the participation

of the nonlinearity in the solution)

(Junkins and Turner)

Hybrid Approach (direct gradient method and the method

of particular solutions) (Lin and Kraige)

c) Quasilinearization Method (Bainum and Li)

For Flexible Spacecraft:

a)

b)

Linear Eq.

Transition Matrix Method (closed form solution of the

unknown initial costates)

Nonlinear Eq.

Differential Correction and Relaxation Process

(Junkins, Turner, and Chun)

Qpasilinearization Method (Bainum and Li)
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MAXIMUM PRINCIPLE

STATE EQUATIONS

X = f(x) + B(x)u, x(0)=xq, x(t¢)=x¢

PERFORMANCE INDICES

te
J1=(172) | (x"ax +uTRu)at
0
te
Jo= [(D)dt=t; luyl¢ upp, i=1 . n
0

NECESSARY CONDITIONS

Hy=(172)(xTax + uTRu) + AT(1(x) + Bu)
A=- (dH;73x), A (0) unknown
(3H,/2u)=0, Ru=-BTA

Hy= 1 + AT(f(x) + Bu)
A =- (aH,/ax), A (0) unknown
U= - Ujp sign(BTA y, i=t .. n

z2=9(z), z=lx, A1 =1z, 2,10
z4(0), z;(ts) known;

z5(0), z,(t;) unknown.

Z,(0) to be determined.
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Kinetic Envergy

'T'b"/’ffL )
2 [ (*+zx*)e’+ ¥ 6
) )6+ U *+ 2216 [dx

A
I

<47 (' 2
r U * 2 v y
2 r[( S+ L) O T+2L0U, + U

=24, (6+ ¢ ) (Ut L6)sing, - 64 o5@ Jf

I _ .
s Moment of imertia cf e Shattle
I — Moment of inertia of e Mféotz:‘
n Py
§ = Z )ZL w‘: — ’ZT% ) ,Z — W&‘ﬁ(ﬁé vector

=/
Y — mode shape function vector
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EauvaTions  oF  Morion

M(yl)gz F(%,%)?"B(%)U [7] []

— control wvector

My)=
I+ 7TM27 - 2" mycesp, +2MySin g, Symmetric
Myt M CSG. — Mg S M3— Mg 5in @,
F( 9// 91) =

__29‘7‘T(MZ7+ 7774“’?,,""’/75""??) + ’]'T[Nz Y (¢,-T7)Sfﬂ@- J 7

é’(M;’]‘f‘ 77?4575%, —M//?S)hﬂ)——ze'f'/a’z‘ w:Sﬁ +(7'T¢I{) /‘/,/7-7.%?”-/<7
(%)=

/ X, @39, + U, sing, T, eSP,F U snp, Ayt Uy Sin@,

0
L ¥, wsp, Y, oS, Y, cas P }
J
where Ma/ Mz, M// M}/ M y Nl /\/2) K censtant Malrcces
?772/ 7775, mo/ 7774 —_— (N STtanl ecterss
mn _—
I/ 4 constants
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QUASILINEARIZATION ALGORITHM

(A) LINEAR DIFFERENTIAL EQUATION:

Nonhomogeneous: z = Az+B, z=lz,. 2,1, (1)
z,(0), z,(tf) known, z,(0) to be determined

Homogeneous: Z= Az (12)
(a) n solns. of (12) + 1 particular soln. of (11)

(b) n +1 particular solns. of (11)

(B) NONLINEAR CASE:

Linearized equation of (10):
7k*1) (agraz) z(k* 1) + n( 2(K) ) (13)
where
z(k) is the kth approximate solution

of the nonlinear equation (10),

z=Iz,, z,1',
zl(k' )0), z‘(k+ ! )(tf), known

zz(k’ 1) (0) to be determined

298



PLANAR SLEWING OF FLEXIBLE SCOLE

LINEARIZED EQUATION OF MOTION:

1 a'|[6] [0 of

where

0 is the angle of rotation,

1 nx1 is the amplitude vector of the flexible modes,

n is the number of mode used,
I is the moment of inertia about the axis of rotation
m, M are the inertia parameter vector, matrix.
K is the stiffness matrix,

¢ (2) is the mode shape function vector,

®;=P(3), z is the coordinate along z axis,

L is the length of the beam,

u. is the control torque on the Shuttle,

5

u; are the control actuators on the beam and the

reflector.
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STATE EQUATIONS

S = As + Bu
S' (%)
s = , sl = , s2
52 ,]

o] 0]
[1] 0
s0)=|-- |, s(tp=|—
0 0
|9 10| 2(n+1)x1

where n is the number of mode shapes used.
PERFORMANCE INDEX

tr
J=(1/2) | (xTox +uTRu)dt
0

z=cz, zls.All= (z,,z2lT

A is the costate vector,
z1(0), zy(ty) known;
z,(0) to be determined.
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1)

2)

3)

4)

5)

Concluding Remarks

For the examples given here, the solutions of the

linearized equation and the nonlinear equation are close.

Use of the Maximum Principle can make the states satisfy

the boundary conditicons very well.

Due to the fact that the costates must be used in the
method, the number of equations of the system is doubled,
and more time is needed for the computation.

Further work on more complicated models (3-D) is needed.

Need to consider different cost functions and perform

parametric studies.
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EXPERIMENTAL RESULTS IN MODELING,
ANALYSIS, AND CONTROL OF FLEXIBLE
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Sponsored by:
Langley Flight Research Center, NASA
Flight Systems Research Laboratory, UCLA
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MOTIVATION

. Modeling, analysis, and control of multi-body systems
with flexible elements is of interest in many techologies
including robotics, space structures, and high speed
mechanisms.

. While the basic problem is well studied and
understood, there are some important aspects requiring further
research. These include full nonlinear coupling, prismatic joints,
controller design, and impact.

. In all the research areas cited above, there is a need for
experimental as well as analytical and numerical studies.

A. Galip Ulsoy
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BACKGROUND

Modeling:
» Song and Haug 1980
» Shabana and Wehage 1983
* Ryan 1985

Analysis and Simulation:
« ADAMS, DADS, TREETOPS, etc
+ Sunada and Dubowsky 1983
» Wang and Wei 1987
« Wehage and Haug 1982; Khulief and Shabana 1934

Control:
 Book, Maizzo-Neto and Whitney 1975
« Meckl and Seering 1983

Experiments:
« Zalucky and Hardt 1982
+ Cannon and Schmitz 1983
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RECENT RESEARCH AT MICHIGAN

. Control of a spherical coordinate robot arm with one
flexible link using only the joint actuators, but with both joint
and end-of-arm sensors. Modeling, analysis, and controller
design. Modeling of the rigid/flexible manipulator including the
non-backdrivable leadscrew transmission mechanisms.
Comparison of simulation and experimental results. Evaluation
of a rigid body motion controller and a rigid and flexible motion
controller.

. Modeling and simulation of robots with rigid and/or
flexible links and revolute and/or prismatic joints. Employs a
Lagrangian formulation with kinematic constraints and a finite
element discretization. Euler-Bernoulli beam theory is employed,
but the axial stiffening effect is included. Experimental
evaluation of the modeling approach and solution method.

. Modeling of impact in systems with flexible links.
Various impact modeling methods are compared with each other
and with the results of experiments for a radially rotating elastic
beam. The impact models employed all provide reasonably
accurate results when appropriately employed; even the
momentum balance (coefficient of restitution) method which
strictly speaking is not applicable to flexible systems.

A. Galip Ulsoy

Mechanical Engineering and Applied Mechanics
University of Michigan, Ann Arbor, Michigan
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FLEXIBLE MANIPULATOR CONTROL

Lead Screw
. DC Motor Optical
Optical \ : Third Link Accelerometers
N /
vy S v /
4-[.3‘_/_49 O ’
Lead Scm{ nad k
DC Second Link
\\A Motor y
Coupler
Rotating Base

e

'\-DL /

— Optical Encoder

N $ DC Motor
Analog Doubie
r 1 [ntegrator
Y 0P l
D A
IBM PC/XT
- é Microcomputer D | Filter
C

Schematic of the experimental setup.
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FLEXIBLE MANIPULATOR CONTROL

. The laboratory robot is used to compare
the performance of a rigid body motion
controller with that of a rigid and flexible
motion controller.

. The rigid body motion controller uses
only the joint motion measurements and joint
actuators. The rigid and flexible motion
controller also uses the end of arm motion
measurements, but no additional actuators.

U The leadscrew transmission
characteristics as well as observation and
control spillover are considered.

o The numerical and experimental results
show good agreement, and indicate that
significant reductions in arm vibration are
possible through use of the rigid and flexible
motion controller.
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FLEXIBLE MANIPULATOR CONTROL
Equations of motion:

Mxy% + Fex 2y = F(T)

-
Z:[r)&,qs) F11 5 %z ) ?u;?zzj
T

z—:[.T;,TZJT37

Linearized equations:
§=Ay +Bu
¥=[dx7 $27] ; u=4T
$27= [dr, 40, 84, 89,0, 89, ]

Integral plus state feedback controller: .
o
é’n{ﬁ‘?:-ﬁu)a't 5 Ypa @ foct«j,-n,ui- ; gn-'-j(y,-f?,)dt‘

U=-K 4
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FLEXIBLE MANIPULATOR CONTROL

|
‘ v ) f‘ L)
KO @* it 1 <
!

Block diagram of the integral plus state feedback controller.
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FLEXIBLE MANIPULATOR CONTROL

Standard Set of Physlcal System VALUE
Parameters
Mass of the first beam (m ) 0.454 K¢
Mass of the second beam {m,) 0.816 Kg
Mass of the Payload (m, ) 0.07 Kg
Cross sectional area of the second

beam (A,) 0.000151 m?
Length of the first beam (L) 0.233 m
Length of the second beam (L,) 2m

Gravitational acceleration (g )
Aluminum density (p)

9.81 m/sec?
2707 Kg/m?

Flexural rigidity (E7) 770.87 Pa
Reference position for r 185m
Reference position for § 0 rad
Reference position for ¢ 0rnd
Desired refetence position for r 2m
Desired refereace positioa for ¢ 0.5 rad
Desired refereace positioa for ¢ 0.5 rad
Servo natural frequescy for r (w,, ) 4 rad/sec
Servo sataral frequeacy for # (i, ,) 4 rad/vec
Servo natural frequency for ¢ (w,,) 8 rad/sec
Flexible metion gain, X'/, <0.000178
Flexible metion gaia, X' 5 -0.084
Flexible metioa gain, K {,o 1.568

A. Galip Ulsoy

Mechanical Engineering and Applied Mechanics
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FLEXIBLE MANIPULATOR CONTROL
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FLEXIBLE MANIPULATOR CONTROL
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FLEXIBLE MANIPULATOR CONTROL

V() daplacement
(mm)
120

e

4.0

Tioa.t inecorcd

Total vertical deflection In response to the rigid and
flexible motion controller In the experimental work.

settling time maximum deflectioa
(seconds) (peak to peak)
rigid body controller 11.0 7.5mm
rigid and fexible
motion controller 3.0 2.7mm
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FLEXISLE MANIPULATOR CONTROL
Simulation

* Control spillover effect can be observed, but
does not cause significant deterioration.

* Control and observation spillover can
destabilize the residual mode. However, a

small amount of damping (0.0145) eliminates
the problem.

* Settling time is reduced from 3.9t0 1.07
seconds, and maximum vibration amplitude is
reduced by 50%.

Experiment
* With low pass filtering and light structural
damping, no detrimental spillover effects were
observed.

* Settling time is reduced from 11 to' 3 _
seconds, and maximum vibration amplitude is
reduced by 75%.

A. Galip Ulsoy
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FLEXIBLE SYSTEMS WITH PRISMATIC JOINTS

. Robots with both rigid and flexible
links attached with revolute and/or
prismatic joints can be modeled and
analyzed.

. The equations of motion are derived
using Lagrange's equations. The prescribed
motion, and prescribed torque/force cases
can both be handled.

. Flexible elements are represented as
Euler-Bernoulli beams, and the axial
shortening effect is also included.

. Finite element analysis is used for
the discretization of the resulting hybrid
equations of motion.

. Constraints are handled using
Lagrange multipliers.
. The resulting algebraic-differential

equations are solved numerically using
constraint stabilization methods.

A. Galip Ulsoy
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FLEXIBLE SYSTEMS WITH PRISMATIC JOINTS

B Nominal configuration

M Actal configuration

Schematic of a two-link robot.
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FLEXIBLE SYSTEMS WITH PRISMATIC JOINTS
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Axial shortening of a beam under plane ransverse deflecunon.

Schematic of revolute joint i.
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FLEXIBLE SYSTEMS WITH PRISMATIC JOINTS

link i-1
link 1

D'
H—% unkl'

Schematc of prismatic joint 1.

Schematic of prismatic joint i.
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FLEXIBLE SYSTEMS WITH PRISMATIC JOINTS

? Y Beam moving over bilateral supports.

L
il >
0.02
—— Buffinton and Kane [29].
- - - present method.
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£ \ |
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0.0 0.5 1.0 1.5 20 2.5 3.0 3.5
Time (sec.)

Tip displacement in "slow push” case with
C;=0725m,C;=07m and T = 3.5 sec.
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FLEXIBLE SYSTEMS WITH PRISMATIC JOINTS
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Tip displacement in "fast pull” case with
C;=0025m,C;=-0.7mand T =0.7 sec.
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FLEXIBLE SYSTEMS WITH PRISMATIC JOINTS

e L
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Vertical elastic tip displacement of the last link in the two-dimensional
maneuver.
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FLEXIBLE SYSTEMS WITH PRISMATIC JOINTS

Llastic up displacement ()

Elastic tip displacement (m.)

.025 4 prescribed motions |

i LA
: T

-.015 4
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02 prescribed torque/force.
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FLEXIBLE SYSTEMS WITH PRISMATIC JOINTS

. A general modeling procedure for robot
arms consis ting of rigid and flexible links
connected by revolute and/or prismatic joints
has been developed and experimentally
validated.

. The significance of full coupling (effect
of flexible motion on rigid body motion) has
been demonstrated.

- The axial shortening effect is shown to be
significant for high speed operation of
lightweight manipulators.
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FLEXIBLE SYSTEMS WITH IMPACT

The effect of impact on mechanical systems
Impact

e gives rise to impulsive forces

These impulsive forces in turn

e Induce high stress levels at different joints

damage to the mechanical components of the system

o Cause higher modes of vibration to be excited
deviation from a desired performance

A. Galip Ulsoy
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FLEXIBLE SYSTEMS WITH IMPACT

Spring-Dashpot Models

Dubowsky and Freudenstein (1971) Impact pair model
Crossley and Hunt (1975) Viscous damping model

Lee and Wang (1982) Damping functions
Dubowsky and Gardner (1975) Impact beam model

¢ Based on a force-displacement law, and a form of damping
¢ Does not neglect the contact duration

e It is possible to predict the contact forces directly

¢ Requires the determination of stiffness and damping

e Computationally expensive

A. Galip Ulsoy

Mechanical Engineering and Applied Mechanics
University of Michigan, Ann Arbor, Michigan
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FLEXIBLE SYSTEMS WITH IMPACT

Methods based on Momentum Balance
(Coefficient of Restitution Model)

Haug and Wehage (1981) For rigid body impact

IKhulief and Shabana (1984) Extension to flexible bodies

¢ Simplest model for impact
e Computationally efficient
e It is possible to predict the contact forces directly

e Does not require determination of stiffness and damping pa-
rameters

e Neglects the period of contact

e A direct prediction of stresses and frequency content of impulse
during contact is not possible

e Mathematically discontinuous

A. Galip Ulsoy

Mechanical Engineering and Applied Mechanics
University of Michigan, Ann Arbor, Michigan
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FLEXIBLE SYSTEMS WITH IMPACT

Procedure for Momentum Balance Method:

1- Natural frequencies and mode shapes are determoned for
each flexible body in the system; analytically, experimentally,
or by using a finite element approximation.

2- Discretized equations of motion are generated and integrated
forward in time using this modal information.

3- Impact conditions are checked. if an impact is detected to
occur. integration is stopped, and the equations of momentum
balance are generated using the coefficient of restitution and
solved for jump discontinuities in velocities.

4- The velocity vector is updated

5- Integration is started once again with the new initial condi-
tions found from above.

(It is assumed that the system configuration does not change
with impact.)

A. Galip Ulsoy
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FLEXIBLE SYSTEMS WITH IMPACT

Coefficient of Restitution, e

Newtonian Concept:
e = { (material pair)

Modern Concept:
e = f (severity of the impact)

for rigid bodies
severity of impact = impact velocity

e = f (material pair.impact vel.)
experimental data or analytical/emprical formulas

for flexible systems
the severity of impact = f (impact vel. flexibility, configuration)

No experimental data or analytical formula available
for e

A. Galip Ulsoy
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FLEXIBLE SYSTEMS WITH IMPACT
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FLEXIBLE SYSTEMS WITH IMPACT

Equations of Motion

— Euler-Bernoulli Beam Theory

— Hamilton’s Principle

— Neglect higher order elastic terms
— Galerkin’s Method

w(z,t) = }"_flso'(j)q(t)

— Neglect higher order elastic terms

. N
(Ir+ )0 + 5 Sid; = M(1)

J

. N ) .
S0 +j§1[m,~jqj + 92q]~(c‘,~j — mr]‘) + krjq]'] = (
r=1,2,....N

where

Ig : Inertia of the Rigid Shaft
J : Inertia of the Flexible Beam

A. Galip Ulsoy

Mechanical Engineering and Applied Mechanics
University of Michigan, Ann Arbor, Michigan

345




FLEXIBLE SYSTEMS WITH IMPACT

Simulations
- A variable order variable time step integrator

- A velocity dependent coefficient of restitution
e = f(v) (experimental data) for low velocities

e = av(='/4 (analytical data) for high velocities

Contact algorithm

based on the distance between impact point and the impact
surface

— define a clearance zone
— monitor the location and the velocity of the impact point

— first penetration into the clearance zone — back up one time
step and reduce the time step.

— second penetration with the smaller time step — impact if
the velocity is toward the surface

— keep the smaller time step size as long as the impact point
is within the clearance zone

A. Galip Ulsoy

Mechanical Engineering and Applied Mechanics
University of Michigan, Ann Arbor, Michigan
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FLEXIBLE SYSTEMS WITH IMPACT
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FLEXIBLE SYSTEMS WITH IMPACT

The momentum balance (coefficient of restitution) method
has been demonstrated, through experiments on a specific sys-

tem, to be capable of adequately predicting the dynamic be-
havior, with impact, of systems which consist of both rigid and

elastic links.

It has been demonstrated experimentally that using a con-
stant coefficient of restitution value (chosen for a particular
initial impact velocity) throughout the simulation does not sig-
nificantly affect the accuracy of the model, even in the presencof

multiple impacts.

Sensitivity studies were used to show that the momentum
balance (coefficient of restitution) model will also work reason-
ably well for a wide range of system parameters.

Employing high speed video techniques the existence of mul-
tiple impacts which appear to the naked eye as a single contact
were demonstrated. Contact algorithms have been developed
which captures these multiple impacts in the simulation.
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SUMMARY AND CONCLUSIONS

» This presentation has reviewed the results of some recent
studies, experimental and theoretical, in the modeling, analysis,
and control of flexible multi-body systems. The control of a
leadscrew driven robot with a flexible link was considered. The
modeling of robots with rigid and/or flexible links connected by
revolute and/or prismatic joints was developed. Studies were
conducted to evaluate various competing impact models for use
in simulations of flexible systems.

« The major conclusions to be drawn from these studies are:

For robots with sufficient actuator bandwidth, the use of end-
of-arm sensors can enable effective control of the joint motions
as well as active damping of the end-of-arm vibration.

A general modeling and simulation approach for robots
consisting of rigid and/or flexible elements connected by
revolute and/or prismatic joints has been developed and
experimentally validated.

Impact models for systems with flexible elements have various
problem dependent characteristics, however, even the simplest
of these can give good results in many problems of engineering
interest.
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MINIMUM ATTAINABLE RMS ATTITUDE ERROR
USING CO-LOCATED RATE SENSORS

A. V. Balakrishnant

Abstract

In this paper we announce a closed form analytical expression for the minimum attain-
able attitude error (as well as the error rate) in a flexible beam by feedback control using
co-located rate sensors. For simplicity, we consider a beam clamped at one end with an
offset mass (antenna) at the other end where the controls and sensors are located. Both
control moment generators and force actuators are provided. The results apply to any beam-
like lattice-type truss, and provide the kind of performance criteria needed under CSI —

Controls-Structures-Integrated optimization.

1 Research Supported in part under NAS1-18585 Task Assignment 49.

Paper presented at the 3rd Annual Conference on Aerospace Computational Control, Oxnard,
August 1989.
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1. Introduction

One of the challenges in the Design Challenge For Flexible Flight Structure Control
System Design formulated in the inaugural paper on SCOLE [1] was to hold the antenna
pointing error within £0.02 degrees after slewing by appropriate feedback control. In this
paper we derive a closed form expression for the minimal achievable mean square pointing
error using co-located rate sensors. A slightly simplified form of the SCOLE article (which
eliminates rigid-body modes) is used: a cantilevered beam with an offset mass where the
controls — both ¢.m.g.'s and force actuators — and the rate sensors are located. Our results
are in terms of continuum model parameters — the uniform Bernoulli version is used. The
beam dynamics are given in Section 2. The main results are in Section 3. We note that a
technique for deriving equivalent Bernoulli beam parameters for various types of trusses is
described by Noor and Anderson in [4]. Recently Noor and Russell [S] presented equivalent
anisotropic Timoshenko beam models for beam-like lattice trusses with an arbitrary degree of
modal coupling, which appear to yield excellent agreement with modal frequencies derived
from finite element models. Our theory is able to handle these Timoshenko models, and
moreover we can also use it for rigid-body modes, although they are not included here. Thus

our results can be used for any beam-like lattice truss structure.
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2. The Model

We consider a uniform Bernoulli beam clamped at one end with an offset mass (antenna)
at the other end which also houses the sensors and actuators. See Figure 1. We allow for both
force actuators and moment actuators. The sensors are rate gyros. Because of the clamping at
one end, no rigid-body modes are involved and hence no attitude sensors are needed.

We allow bending in two mutually perpendicular planes containing the beam axis, as
well as torsion in the plane perpendicular to the beam axis, all uncoupled. The continuum
model (uniform Beroulli beam) dynamics can then be described by the following partial differ-
ential equations (similar to those in [2, 3]). Let the beam extend along the z-axis, 0 < s < L,
and let uy(s, 1), ug(s, 1), denote the bending displacements and uy (s, ) the torsion angle
about the beam axis. Let in the usual notation (cf. [1]), El,, Ely denote the flexural stiffness
and G/, the torsional rigidity. Let p denote the mass per unit area and A the cross-sectional

area. Then we have:

u, (s, 1) u, (s, 1)
—37— + Ely—5a— =0, O<s<L; 0<t
ug(s, t) tug (s, )
—57 +E’9_as4 =0, O<s<L; O<t
Fu, (s, 1)

p[w—‘g—tz——leu“';(s,r)=0, O<s<L; 0«1t

with the clamped boundary conditions at s = 0:
uy (0, 1) = ug(0, 1) = uy (0,0 = 0
ug (0, 1) = ug(0,5) = 0.
The antenna center of gravity is located at
(res Tys L).

The distance from the beam tip to antenna center of gravity is denoted by

Il = N2+
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Figure 1: Shuttle/Antenna Configuration
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The force balance equation at s = L yields

i1¢ (L,
l 1 0 r, . fH(® EI¢ ué"(L, 1) ‘
m itg (L, 9) .
0 1 ry ﬁw (L’ t) fz(‘) E[e ue (L, t)

where m is the antenna mass and f(*), f2(*) are the applied control forces. The torque

balance equations yield

Elyuy' (L, ) fH(®)
0 = | ElqugL,t) | + [,0 + M@ +r® | f(n)
Gl ug (L, 1) 0

ity (L, 1) + reity (L, 7)
itg (L, ) + 1yl (L, 1)

where the superdots indicate time derivatives and the primes the derivatives with respect to
the spatial variable s; ® denotes the vector cross-product and ® the angular rate vector
ity (L, 1)
o= ||,
ity (L, 1)

ia denotes the moment of inertia of the antenna about the beam tip (s = L) and finally, M()
denotes the applied control moment.

It is convenient to denote by b(#) the boundary vector:

U, (L,
ug(L, )
b() = | ug(L,D)
ug (L, 1)
uy (L, 1)

The boundary rate vector would thus be b(#). Hence our sensor model is:
v(t) = b(t) + N,(®)

where we assume that N, (¢) is white Gaussian noise with spectral density matrix d,/, where

I is the identity (5%5) matrix. Similarly we assume that the control actuators are also
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characterized by additive white Gaussian noise. Denoting the applied control vector by u(t):

(L, 1)
u(L, 1)
u(® = | uz(L, 0
us(L, 1)
us(L, 1)
we have
19
f20 | = uw@® + Ny»
M()

where N (¢) is white Gaussian with spectral density d;. We shall also use M, to denote the

actuator mass/inertia matrix

M, = 0 0 a
0 0 I,
mr, mr,
where
r§ =TTy 0
ia =1, + —TTy rf 0
0 0 r24rl

where /, is the antenna moment of inertia about its center of gravity. For any control input
u(*) (which must perforce be a “feedback” control, based on the sensor data v(*)) the mean

square pointing error is then expressed by:

T T T
.1
}lf T{of ug(L, 1) dt + Ofue(L, 0% dr + | oj u, (L, 07 d:}

and the mean square pointing rate is given by
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T T T
nm%u%w&m+f%wmm+wgwmym}

T 0

From the results in [6] it follows that the minimal attainable mean square pointing error is

given by
aM;la*
where
a = row vector (1, 1,0, 0, |r])
a* = transpose of a

3. Main Results

We need some notation first. The mean square attitude response, whatever the feed-
back control used is defined by
1 T T T
ymfj%@Wm+fMQWm+wf%me. 3.1)
de 0 0 0
This is recognized as the mean square displacement of the center of gravity of the antenna
which is then also proportional to the mean square “pointing” error — see [1] for the
relationships.

Next let u denote any (vector) of control inputs — a constant “step” input:

Uy
Uy
u = U3 . (31)
Uy
us
Solve the equations
Elyuy"(s) = 0
Elgug'(s) = 0 O<s<L, 3.2)
Glyuy(s) = 0
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subject to the end conditions
Elyuy'(L) = w )
Elqui(L) = u,
Elquj(L) + uy = 0 }. (3.3)

Elgug(L) + uy = 0

Glyuy(L) + us = 0

Note that the solution can be recognized as the steady-state response of the system to the
step-input u, assuming that there is some damping. We only need to calculate the response to
three specialized inputs:

Calculate the response to u,(L) to the special case, Case 1, where:
u = 1
u =0, 2<i<5.

Calculate the response ug(L) to the special case, Case 2, where:

u,=0
u2=l
Uy = uy = us = 0.

Calculate the response uy (L) to the special case, Case 3, where
u1=u2=u3=u4=0
g = 1.

Then the minimal achievable mean-square response whatever the choice of the feedback and

whatever the mean-square control effort, is given by
Ndd, (ug(LY + ug (L + rPu, (L)) . (3.4)

This is our main result. Unfortunately the derivation is beyond the scope of this report and
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will be published elsewhere. To proceed further with (3.4) we calculate the solution of (3.2),

(3.3) explicitly. Thus for any u, the solution is of the form

U(s) = @8 + as?, O<s<L
ue(s)=b3s3+bzs2, O<s<L
uy(s) = as, O<s<L
where
=
B = T§El,
o _u
b = - &l

_o 1w | wk
2 = 251,,"51,,]

_ 1w | wl
by = 2[1519 * E19]
M5
¢ = .
le
Thus for Case 1 we have
L3
2 _ =
up (LY = 3E7,
and for Case 2 we have
3
2 _ L7
uO(L) = 3E19
and for Case 3:
2 _ _L_
W@ = G,

Hence the mean-square attitude error

L L3 |r12L]
= Vaid, [3514, * 361, * Gl )

Note the appearance of the noise parameters in (3.5) in product form.

@3.5)

The technique for calculating the minimal mean square atttiude error in more complex

models than that illustrated is the same: calculate the mean square step response (assuming
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some damping) to unit step inputs.

In conclusion we suggest this result (3.5) can be the basis for combined structures-
controls optimization — CSI, since the required structural parameters can be calculated for a
lattice truss from the material gage and physical dimensions as in [4, 5]. We omit the details

of these calculations.
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A WAVE EQUATION FORMULATION FOR THE SCOLE

Roberto Araya
AutoMind
Frovidencia 991 D.S51

Santiago Chile.

Thie paper review the modeling and control strategy proposed by
the author [11[2]1 for the slewing and stabilization problem of the
Space Shuttle Orbiter with a large Antenna attached to it

through a long flexible mast.

The main distinguished feature of the problem treated here as com-
pared with the standard problems studied in this area is the reguire-
ment to find optimal soluticons for a nonrigid spacecraft configu-

Fation which is subject to nonlinear kinematic forces.

4 distributed parameter model of the Space Shuttle/Antenna Confi-
guration is derived from first principles of rigid body dynamics and
elementary beam theory. The model is then put in thevform of a compact
cemilinear abstract wave equation. Within this framework, the slewing
and stabilirzation problem is then formulated as a nonlinear infinite-

dimensicnal control problem.

A linear feedback control law is proposed to simultanecusly solve
the slewing and stabilization problem. This control law is a generali-
sation of standard position—-plus—rate feedback controls used for simi-
lar purposes in rigid spacecrafts and is also an extension of linear
feedback controls used in stabilization theory of linear infinite di-

mensional systems.
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STATEMENT OF THE PROBLEM

Difficulties in controlling lightly damped Large Space Structures
has mutivated NASA to offer a design challenge called Spacecraft
Control Laboratory Experiment (SCOLE) [S] . The aim of this "design

challenge" is to evaluate control laws for flexible spacecraft.

The SCOLE configuration consists of a flexible beam with two rigid
bodies at either end. One body represents the Space Shuttle orbiter,

the other is the Antenna ré%lector.

There are two types of control 1 control moments and the control
torce. Control moments denoted by M, , M, are applied to the Shuttle
orbiter and the reflector, respectively. The components of these mo-
mznts for each avis are limited to 10,000 ft-1b. Control force F is
applied &t the center of the reflector in two perpendicular directions
along the plane of the reflector. The control force in a particul ar

direction is limited to 8O0 lbs.

Measurements consist of the inertial attitude direction cosine
matrices for the Shuttle body and the Antenna, angular velocities e ,
w, for the Shulttle and the reflector body respectively and accelera-—
tions measured by three artis accelerometers located on the Shuttle and

the center of the reflector.

A certain ray is emitted towards the center of the reflector from
the fteed located on the Shuttle. The direction of reflection of this
ray ite called the linc-ocf-sight. Initially the error betweeﬁ the
line-of-sight ard the target is 20 degrees and the SCOLE configuration

ie at rest.

The problem is to minimize the time required to slew or change the
line~of-sight towards a fixed target and to settle or stabilize the

induced structural vibrations of the Shuttle/Antenna configuwration to
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{he degree required for precise pointing.

THE EGUATIONS OF MOTION AND THE CONTROL SATRATEGY

The derivation of the equations of motion is based on basic principles

of rigid body dynamics and elementary beam theory.

Under the assumption that the flexible beam is subject to only
emzll deformations, & linear Eul er/Bernoulli beam model is utilised.
Morlinearities are due only to kinematic effects raused by the large
angular velocities that the whole configuration can reach in a time

cphtimal Mmaneuver.

Since inherent structural damping is very wealk and the phenomenon
is not well known, no damping iz assumed in the model. Therefore energy

diszipation is caused only by the control action.

Given that the main concetrn is spacecraft orientation,

only rotational dynamics is considered.

6 coupled system of hyperbolic partial differential equations and
ordinary differential equations is obtained. The variables considered
are the elastic deformations ud and ut , the torsion ut and the

longi tudinal deformation uf along the beam aKis.

Te phtain these equations, the angular momentum P, of the whole
configuration about the center of gravity of the Shuttle and the
momentum P, { p‘) and the angular momentum P, (ps) of each element of

the beam ( Antenna ) are computed.

ffter deriving the equations of motion, the following Lyapunoav

enqnation can be obtained:

371



$

d_[DE)+T(EH)+V (L)1 = 0.(w'_§- A;D;8R;) +w, M, +v, IF
dt =

where

T is the kinetic energy,

V is the potential energy

D is a peasure of the distance to the target orientation
D=2L15% »DjeD

Lo T A
Rt

D;=R;-8, i=1,..,3

(8, » i=14,..43}) is an orthonormal triplet in the inertial frame
{R; 4 i=1,..,3) is an orthonormal triplet fixed to the Shuttle
w angular velocity of the shuttle

@, 135 the angular velocity of the antenna

v, is the linear velocity of the mass center of the antenna

¥

This equation provides a clear insight into our problem . It
sungests a straightfoward and implementable feedback control law :
ctinose M, ,M, and F so that the right hand side in becomes strictly

negative .
Thus, the problem is broken down into two parts
1) Orientation of the whole configuration as a rigid spacecraft.

3
This is achieved by choosing W, to make no(m,—E- AiD;8R;) negative.

1=1

11) Stabilization of the induced structural deformations

Choosing M, and F to make e, M, +v, +F negative

The first control strategy is well known for rigid spacecreaft
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stabilization and slewing. The second one, is the classical

ctabilization control for rigid and flexible structures.

THE ARSTRACT WAVE EQUATION SET UP

The equations of motion can be written as an abstract semilinear

wave equation:

-~
it
>

+ ki) + By (e ()) + Bu(t)
w (0) =

in & Hilbert space M. Here, A is an infinitesimal generator of a group
with compact resolvent, B is a linear operator with finite dimensional

range, K, and k¥, are nonlinear but continous operators @

B, with finite dimensional range and representing the orientation of

the configuration as a rigid spacecraftti;
b, represents the nonlinear kinematics and satisfies
[ E,{d) ] = 0 Ve R,
More specifically,

Bo= DA 2y xD(A®)
] 1)

with the inner proeoduct



D(AS) = R®x{ L, -L , O ) } xR*

I»| klu»l
DZ xI’.nDl
w8 gra_u®
3§
A graut
28"
e ~EAQ1UZ
282
ut -Blﬁiu*
287
AL . = pralule-L
D 1 ae’s
- graiut oL
4 3&’
r ~EA2UT (-L)
3 2t
T EIQiU’("‘L)
i agl
« —gr2iub (-1
z 2e 1
a ~praut -0
3 ag
and the domain cof A, is
D(a,) = {(D.,Dz,ue,u’,uz,u’,r,,rz,r,,a',ml,(,)sD(A:)

uloutent(—L,0) , uE,uteRz(-L,0)

ue(O)=u’(0)=u3(D)=u*(0)=%%s(0)=3U’(D)=0
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wd (—Ly=r ,u’(—L)=r‘z gUE (=L =r o

ub-Lr=g,
g

—%%’(“L)=m, sut (-Ly=a; ?

s j»

M is the mass moment operator, defined from D(AJ) into itself by:

M, o o 0 oo o o

o I jpa(o)PAda JPI¢(-)£d€ m (Bt B(s) 1 +m B, B((4) 8P
O FACH B Lk Bl 0 o

0 F12% o FI, o o

0 myC)BCp +p) O 8 m, m,(e) BP

O 1,+m, PO 8Y,) o o m PBCE) 1,

In this abstract set up, the norm induced by the inner product is:

(1/72) 0 () Hé = D(E) +T (L) + V(D)
and therefore the slewing and stabilization problem can be viewed as

driving the initial state ¥, towards the origin.

This compact and geometric formulation of the problem is very
fruitful. It allows a detailed mathematical analysis of the evolution
equation and the control strategy. This gives existence results

of mild and strong solutions under suitable conditions. It gives also

the correct framework to do modal analysis:

A

ot = PP
This compact formulation gives also the insight to understand the

proposed control laws as & natural generalisation from a finite
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thimensional to an infinite dimensional set up.
The proposed control stategy can be expressed as:
i) Rw ! a standard linear feedback control used for slewing of
rigid spacecraft.
ii) =B : a2 standard feedback stabilization control used in in-—
tfinite dimensional control theory and widely known

for stabilizatiorn of flexible beams.

Both components have simple physical interpretation and can

brer computed directly from the sensor data.

The Lyapunov equation and the proposed control law, is expressed

dixtye? o _

oh BOR C R0, VW, W

Thus, 1x() 1 is decreasing. The original evolution eguation is

converted to the autonomous system:

o, the integral equation version:

t
vty = efity o+ J ef(t-8)y i (s))ds

0

The major result obtained with this approach is the ability to
show that if the system is initially at rest and the line-of-sight erro
coowhithin 20 degrees, then the linear feedback position-plus—-rate

control law s
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u = -B™x + Rx

oy equivalently

3
H, = = ﬂ+§ X,D.OR‘
i=.
H, = - e,
F = - w,
will drive Ix{t)i to zero as t goes to infinity. Thus, in finite time

the line-of-sight will be pointed to the target up to an error § and
simultanecusly the oscillations of the flexible configuration will be

settled down, in the strong sense, to the degree required to precise

pointing.

To achieve this result is necessary to prove the controllability
ot the flesible modes. 1hat is, when linearising and considering
only flexible modes, the obtained linear model has to be controllable.
This abstract wave equation formulation i1s a basic framework for
the complete problem analysis. It also offers a correct and compact set
up to study the different control strategies. In particular, non linear

{zedback cantrols on the angular and linear velocities [3][41[6] .
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