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INTEGRATION OF MECHANISM AND CONTROL FOR LARGE-ANGLE

SLEW MANEUVERS OF FLEXIBLE STRUCTURES

M. Chew
Dept. of Mechanlcal Englneerlng and Mechanlcs

Old Domlnlon Unlverslty
Norfolk, Vlrglnla 23529-0247

ABSTRACT

A rolling contact noncircular gear system is applied to assist a desired controller

in the slewing of a flexible space structure. The varying gear ratio in cooperation with

the controller results in lower feedback gains at the controller, as well as considerably

reduces flexural vibrations of the space structure. The noncircular gears consist of a

p_r of convex noncircular cylinders with specially designed profiles that are synthesized

in conjunction with the optimal controller gains for minimizing the flexural vibrations

of flexible structure during a slew maneuver. Convexity of the cylindrical profiles for

this noncircular gear device must be ensured to maintain roiling contact between the

two cylinders. Simulations of slewing control tasks for two kinds oi" flexible space

structures, such as a planar flexible beam and the planar articulated flexible beams,

will be presented.
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1. INTRODUCTION

Interest in orbiting very large space structures has resulted in the need to maneu-

ver and control flexible structures. This need is driving research into an integrated

approach that incorporates mechanism synthesis and control design so that maneuver-

ing characteristics of the large flexible space structures may be improved. Several large

flexible space structures such as the Mobile Satellite, the Large Deployable Reflector,

and the Freedom Space Station form the basis for much of present need for various

forms of preflight testing and analysis on the ground.

In a slewing maneuver of a flexible structure under regulator feedback control, the

dynamic behavior has been extensively investigated [1-4]. The choice of a regulator

feedback controller is precisely due to the simplicity of such an implementation. How-

ever, the resulting flexural vibrations of the flexible structure are tunable with only the

feedback gains, and are therefore not entirely satisfactory. A more direct control on

the flexural vibrations on the other hand will not result in a regulator type feedback

controller and will therefore be more complex in its implementation.

The objective of this article is to present an approach such that a regulator-type

feedback controller may be used while incorporating some capability in varying from

the regulator feedback solution. This is achieved through the incorporation of a me-

chanical element that transforms the feedback actuating torque so that a more desirable

feedback actuation is obtained. Such a device is a noncircular gear system which will

be described in the sections that follow. It may be noted that much of current controls

research has been approached from the perspective, that the mechanical system is a

given so that a controller is then synthesized to accomplish a given objective. However

such an approach generally results in rather sophisticated feedback controllers that

may not be robust. This investigation presents an approach wherein, the gains for a

simple controller as well as an aspect of the mechanical system is synthesized together

as an integrated design problem. In this way, a compromized is therefore afforded. A

simple controller may then be used in conjunction with a slightly more complex me-
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chanical system. The flexible structures that will be investigated in this article are a

planar flexible beam as well as two planar articulated flexible beams equipped with the

noncircular gear systems.

Several gearing devices such as gear trains and harmonic devices have been used in

transmitting the actuator torques for maneuvering flexible structures [5-14]. AU these

transmission devices essentially exhibit constant gear ratios during a given operation.

This is because circular gears always result in non-varying gear ratios between the

input and output shafts of the transmission, because of the constancy of the mechanical

advantage.

Based on a given desired maneuvering schedule, the gear ratio of the noncircular

gears may be specified as a hyperbolic equation within the range of the slewing angle.

Through the hyperbolic gear ratio, the initial input torque can be reduced, and the

resulting output angular velocity will be tuned in such a way as to reduce high rates of

change in a regulator type controller at the start of maneuvering. A mechanisms syn-

thesis approach is employed to derive the design equations for the convex pitch profiles

of two noncircular gears. The slewing maneuvers of two kinds of flexible space struc-

tures, i.e. a one-beam flexible structure and an articulated two-beam flexible structure,

are investigated by using the designed noncircular gears to perform both positioning

control tasks. The noncircular gears are installed at the junction of the motor and the

flexible structure. Their regulator-type control problems are first solved using optimal

control theory. Then, the resulting regulator feedback gains are applied to the system.

Furthermore, an optimizer based on a nonlinear programming approach, called GRG

[15-18], is employed to determine not only the pitch curves of the noncircular cylinders,

but also the output feedback gains so as to will minimize the flexural vibrational am-

plitude. Slewing control tasks of two different flexible structures will be implemented

and the flexural vibrations reduced by simultaneously taking into account the profile

of the noncircular cylinders as well as output feedback controller, at the design stage.

The simulation results associated with such an integrated mechanisms and control de-

3
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sign approach are then compared to a case with just circular gears and the other with

non-optimal noncircular gears.

2. EXISTING TRANSMISSION SYSTEMS

Multi-body flexible structures, generally, are maneuvered by heavy actuators in

conjunction with their associated transmission systems. The transmission systems are

employed to multiply and transmit torque to the adjoining ends of articulated struc-

tures. Several existing devices [5-14] have been used for transmitting the actuator

torques to drive flexible structures. Some of these transmission devices are discussed

below:

r

w

m

2.1 Gear Train

A gear train, which is made of a series of circular gears, amplifies the actuator's

torque at the given constant gear ratio. The gear train can be accompanied by a roller

chain or belt drive for transmitting the torque over a distance.

2.2 Harmonic Drive

This drive provides for very high gear-ratios thereby giving high drive torques but

at very low backlashes.

2.3 Direct- Drive Mechanism

Special linkage mechanisms can replace the role of the complex gear train or roller

chain drives in robot manipulators. Two kinds of direct-drive mechanisms have been

extensively used for the rigid-body robots, such as a four-bar parallel linkage and a

five-bar polygon-type linkage[ll-14]. The direct-drive linkages, which are driven by

two actuators located in parallel or in series, directly transmit the torques to the ma-

nipulators instead of through gear trains or roller chains, so that the actuator torques

are decoupled through the direct-drive mechanisms to simplify the rather complicated

coupled multi-body dynamics that mutually interacts during the control process.

4
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One common restriction found in the prior three devices is that they can only

provide non-varying gear ratios. Moreover, some performance inadequacies in using

a gear train with direct drive mechanisms have been observed in their experimental

setups. In the ease of gear trains, backlash and friction due to the improper contact and

poor surface polish of gear teeth always results in the system nonlinearity which is very

difficult to compensate. Furthermore, the excessive gear inertia will complicate system

dynamics. In the case of the direct drive mechanism, the entire mechanical linkage

occupies precious workspax:e. Greater control effort is also needed to compensate for

the inertia and gravity of the linkages.

In the following section, the development of a noncircular gearing device incor-

porating a simple control technique for manipulating slew maneuvers of two different

flexible structures, will be presented.
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3. DESCRIPTION OF SYSTEM

The problem of suppressing the flexural vibrations of flexible structures has in-

spired the development of a noncircular gear concept in conjunction with control for

tuning the slewing characteristics of a flexible structure. An investigation into its ap-

plicability is the subject that will be developed in this and subsequent sections in this

article. We shall begin with a brief description on non-circular gear design to serve

as background. System dynamics of two different flexible structures will be derived in

conjunction with their regulator-type slewing controller designs, and then the insertion

of varying gear ratios associated with the proposed noncircular gears, into the previous

two systems will also be presented in this section.

3.1 Mechanical Device: Nonclrcular Gearing Synthesis

Several noncircular gears [5-10] have been proposed in recent years and particu-

larly in the 1950s and 1960s. Most of existing noncircular gear articles emphasized

on its design for producing cyclically varying angular velocity, or for generating pre-
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cise nonlinear functions from a mechanisms viewpoint. An integrated approach that

incorporates the mechanism with the control has never been attempted. Moreover,

the incorporation of a noncircular mechanical element permits the simplification of the

control implementation and it is this objective that forms the basis of this investigation.

Figure 1 shows the configuration of a pair of noncircular gears driven by a motor to

rotate a flexible beam. Such a noncircular gearing device consists of:

(1) a pair of noncircular cylinders (Gx, G:,),

(2) two pairs of thin metal bands (Bx, B_),

(3) twopairsofclamps(cl,

and (4) a fixed arm to hold the two cylinders at a constant distance apart.

The system features a pair of noncircular cylinders, around which two pairs of thin

metal bands wrap. These two specially designed cylinders G1 and G2 with noncir-

cular profiles, meshed through the use of two pairs of thin metal bands Bt and B2 as

shown in Fig. 1. The two noncircular cylinders are wrapped in opposite directions, and

are then tightly clamped by two clamps Cx and C2 at the two ends of the metal bands.

When the profiles of the two noncircular cylinders are properly designed, pure roiling

contact exists between the two cylinders. A fixed arm, which is grounded, is used to

hold the two cylinders together such that the center distance always remains constant.

The varying gear ratio due to the noncircular profiles produces varying output-to-input

speeds. This speed vaxiation tunes the kinematic characteristics of the flexible space

structures during rapid slewing maneuvers while being controlled by a regulator-type

feedback controller. Pure rolling contact, and hence low friction between the noncircu-

lar cylinders, reduces stiction nonlinearities to the system. That shear force, normally

taken by the gear teeth, is taken by the bands (Bt and B2) in this concept.

Figure 2 demonstrates the cross section of the noncircular gears as shown in Fig.

1. Two noncircu]ar gears Ol and 02 that are kept apart at a constant center dis-

tance _ = C have the instantaneous pitch radii denoted by rl and r2 respectively.

Assume that gears O1 and 02 are driving and driven gears possessing their input and

6
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output angles, i.e. 01 and 02. Then, their synthesis can be carried out using the concept

of the varying gear ratio and has been presented in Appendix I. The pitch curves of the

two noncircular cylinders are thus determined from Eqs. (I.4) and (I.5) in Appendix I.

To simplify the specification of the varying gear ratio, a hyperbolic gear ratio is used

and is defined as:

e2 c2

N,(O_)= O_= [c_+ 0_] (I)

where cl and c2 indicate two parameters which can be determined by giving two end

points along the hyperbolic curve. As an example, the pitch curves of the noncircular

cylinders based on the hyperbolic function given by Eq. (1) above is shown in Fig. 3(a)

for the range of 0 ° - 90 ° of output rotation, and is plotted in Fig. 3(b). The synthesis

process towards achieving the pitch curves for a hyperbolic gear ratio as shown in Fig.

3 will be discussed below.

During the slewing control process, the noncircular gears characterized by a hyper-

bolic gear ratio given by Eq. (1) will transform the output angular displacement and

velocity to behave more smoothly while simultaneously suppressing the flexural vibra-

tions. The hyperbolic gear ratio in Fig. 3(a) is obtained by specifying the parameters

C = 10. The pitch radii of two noncircular cylinders can becl = _, c2 = _ and

found from Eq. (I.4):

,1- [1 _d ,_ = [i + g_(0_)]

From Eq. (I.5), the input angle 01 of the driving cylinder can be computed by:

CN_(O_) c
+ N,(e_)] ' (2)

0_= -c_i[c_°_+ _] (3)

The plotsof r] (0]) and r2 (e2) in polar coordinateswould directlyconfirm whether

the requirements of convexity are adhered to. Based on the hyperbolic gear ratio as

shown in Fig. 3(a) and Eq. (1),the pitch curves of the two noncircularcylindersare

given in Fig. 3(b). The convexitiesof the two pitch curves confirms the feasibilityof

the hyperbolic gear ratiofor generating the profilesof these noncircularcylinders.

3.2 Actuator Dynamics

7
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The actuator shown in Fig. 1 is connected to one of the noncircular gears through

an adaptor. A step-down gear box may he built-in into the actuator to proportionally

magnify the varying noneircular gear ratio. The motor may be modelled by a standard

armature circuit which is governed by the following differential equation:

KtKb_o I + KtIra01 -!- C,, + -_a ] n -- K e. (4)

where Im denotes the motor inertia, C_ viscous drag coefficient, Kt motor torque

constant, Kb back-emfconstant, R6 armature resistance, 01 output motor angle,

e_ applied voltage for the armature, and ra available torque from the motor shaft. The

available torque r, in Eq. (4) is then transformed to the driving torque r, through a

step-down gear box ratio Nv, as well as the varying gear ratio N_ of the noncircular

gears so that:

= N,N, o (5)

where Np is the constant gear ratio of the step-down gear box, and r,, is the input.

torque for the flexible-llnk structure. Since the gear ratio in Eq. (I.2) is varying, the

input-output relationship between the driving and driven cylinders is governed by a

nonlinear transformation which can be shown to be:

Substituting Eqs. (5) and (6) into Eq. (4),the output torque rj to the structure is

obtained and is expressed by:

where the time rate-of-change of the gear ratio Ne in Eq. (7) can be computed by

(7)

rd ,l

The input voltage across the actuator ea in Eq. (7), is generated according to the active

feedback controller and the varying noncircular gear ratio N 0, for driving the flexible

8
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beam and for suppressing the flexural vibrations. System dynamics of two different

flexible structures will be presented in the following section.

3.3 Dynamics of Flexible Systems Incorporatlnl$ Noncircular Gearinl$ and

Actuators

The synthesis of the noncircuar gears and actuator dynamics can be integrated

by using Eqs. (6) and (7), where the output torque r0 couples the actuator charac-

teristics to the structural dynamics, so that a closed-loop control system may then be

implemented. In this article, the dynamics of two different flexible space structures,

i.e. a planar single beam structure (see Fig. 4) and a planar articulated two-beam

structure (see Fig. 5), in conjunction with cylinder-type noncircular gear designs will

be investigated. A description of introducing a closed-loop regulation control system

for both flexible structures win be described in Section 3.4.

3.3.1 Planar Flexible Beam

In this subsection, a derivation of the dynamic equation of a planar flexible beam

driven by a motor via a built-in gear train (see Fig. 4). The flexible beam is modeled

as a cantilever beam with the fixed end located at the noncircular gears while the

tip of the free end is given by zl = L. Flexural vibrations are permitted during the

slewing motion of the arm. We begin with expanding the deflection of the flexible

beam in modal form. Lagrange's equations [19] are then applied to derive the dynamic

equations of motion. Let the state vector _ be defined as:

-- ; -- [ql, q2,'", qm ] (9)

where 6b is the root angle of the flexible beam and qi (i = 1,..., m) are the general

coordinates corresponding to the shape functions ¢i (i = 1,..., m) for discretizing the

bending deflection of the flexible beam [20].

Assume that the damping of the flexible beam is negligible. The Lagrange's equa-

9



w

===a

tions of motion [19] for one-beam structure is then governed by

M_ + K_ = r

where the inertia matrix:

(I0)

(_x - T3 (11)M = pLI ) '

where p is the mass density of beam per unit length, L, the length of the beam, I, the

moment of inertia of the beam, i, a m x m identity matrix, and i5 = f: pzl¢(zl)dzl.

The stiffness matrix is:

K = Diag[O, pLw 2] , (12)

where w = Diag[wl,...,w,,] and wi (i = 1,.-.,m) are the modal frequencies of

¢i (xl) i = 1,..., m. Furthermore, the control torque vector is:

(13)

(7). Equation (10) governs

,-= [,.,o. .o]"

Note that ro in Eq. (13) is identical to r° derived in Eq.

the dynamics of a linear flexible structure.

The actuator dynamics and sensor characteristics play very important roles in the

controller design. The actuator for the feedback control is a dc electric motor. Since the

relationship including actuator characteristics and noncircular gearing mechanisms has

been established in Eq. (7), the applied beam torque r° in Eq. (13) can be replaced

by Eq. (7) so that:

where e, is the voltage applied into the armature. The passive damping of the entire

system results from the second term of the right-hand side of Eq. (14). Instead of the

conventional motor's back-emf with a constant gear ratio, the back-emf in Eq. (14) can

be tuned through the varying gear ratio N e. The angular velocity and acceleration of

the motor's shaft can then be obtained by using Eq. (7).

Referring to the sensors, the rotational angle is measured by a ten-turn rotary

potentiometer, whereas the angular velocity is calibrated by a taz.hometer. Strain

10
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gages are used to sense the bending moments along the flexible beam. Denote cv as

a conversion factor between the beam root angle Ob and the output voltage ep of the

potentiometer; ct, between the beam angular velocity and the output voltage et; c,,

between the strain and the strain output voltage e0. Suppose three strain gages are

placed along the flexible beam respectively at positions z,, zb, and xc. An output

measurement equation can be written in the following matrix form:

[,,.,o =
where

with

C! = Diag[cp, C,,ct,_

02¢1 02¢._
c, = c.h[ox,o_l (_,),..., o_,0x, (_')]

Each element of the matrix C, is a product of the conversion factor c°, h the half

thickness of the flexible beam, and the second derivative of the corresponding mode

shape to a generalized coordinate evaluated at the corresponding sensor location. The

reader is directed to references [2-4] for detailed information on Eq. (15). Equation

(15) therefore relates the output voltage _ to the state variables 8b and _ through the

conversion factors of the sensors.

t :

Substituting Eqs. (14) and (15) into Eq. (10) provides:

19I_ + C_ + K_ = BE,,(t)

where

['- ]lf/I = M + Diag (NgNp)2, O, O, 0 ,

(2, = Diag (NaNp)2 k _ + C.- I..-_o ,

[ ]B = Diag (R_-_eNp), 0, 0, 0 , and
E.(0 = [e. ]r

(16)

where e, within the vector Ea(t) is the applied voltage for the motor of the flexible

beam. Equation (16) thus demonstrates a closed-loop system of a flexible one-beam

11



structure in conjunction with a pair of noncircular gears. Recall that the time rate-

of-change of the gear ratio in damping matrix (_ of Eq. (16) can be found from Eq.

(8).
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3.3.2 Planar Articulated Flexible Beams

The noncircular gears can also be incorporated into multibody flexible structures.

An articulated two-beam structure has been designed to study the feasibility of two

pairs of noncircular gears for two flexible beams. One flexible beam is articulated on

the tip of the previous beam to result in an articulated flexible two-beam structure as

shown in Fig. 5. Such an additional beam is also treated as a cantilevered beam. An

extra actuator is required, which is concatenated axially of that for the first beam as

shown in Fig. 5. The fore-beam is manipulated by this additional motor through a

wire or tendon configuration. In Fig. 5, denote 861 as the root angle of the first flexible

beam and 862 as the root angle of the second beam, measured relative to the previous

local coordinates. The state vector similar to Eq. (9) becomes:

= [ Oh1, Oh2, q_, qT ]T ; { qTqT== [qsl,'[qn'"", qs,,,ql"']l , and (17)

_here qli (i = 1,..., ml) are the general coordinates corresponding to the shape
nctions ¢1i (i = 1,..., ml) for discretization of the bending deflection of the first_

/'_'flexible beam. The quantities q2i (i = 1,...,ms) and ¢2i (i = 1,.-., ms) are definecl_
imilarly for the fore-beam [19]. The input matrix for the articulated flexible beams is:_-

r -" [Tel, r,2, 0,''',0 ]T (18)

rnl+m=

where Tin1 and rss represent the applied torques for the two flexible beams repectively.

Application of Lagrange's equations of motion [20] to such an articulated structure

leads to the following dynamic equations:

where f (_,_) represents

/ -\

M_ (19)

a nonlinearforcevectorin addition to the matrices as defined

12



r.

V

in Eq. (16) and can be written as:

where h2 = f: p¢2(x2)dx2 and 30b2 -- sin(0b2). The symmetrical inertia matrix M in

Eq. (19) becomes:

M

4r, ½pL2_o,2 -pL_¢T(L)- vT -LhT_0_2\
½pL_0,2 X_ -½pL_¢T(L)c0,2 -v T )-pL2¢I(L)- w -½pZ2¢l(l:)_Ob_P¢I(L)¢_r(z)+ pZil h2¢T(z)_0_2
- Lh2 C0b2 --P2 h2 ¢1 (L)cOb 2 pLI2

(21)

where Ii (i = 1,2) are the moments of inertia of beams _1 and _2, Pl =

f: p_l¢l(z1)dXl, _2 = f: P2;'2¢l(_T2)d_2, and C_b2 = c0s(_2). As defined in Eq.

(11), I1 and I2 are ml x ml and rn2 x m2 identity matrices respectively for discretizing

bending deflections of beam [_1 and _2. For the flexibility of two beams, the stiffness

matrix is described by

K = Diag [ O, O, pLw_, pLw_ ] ," {Wlw2 == DiagDiag[[w21,'",w11"'"w2m,wl"t11' and (22)

There are two motors which produce the torques for the independent slewing motions

of the two beams. The applied beam torque r,1 for the first beam in Eq. (18) is

identical to that in Eq. (14). An idler gear box (constant gear ratio Nv2 ) and a pair

of noncircular gears (varying gear ratio Ng2) are set up for the torque transmission of

the second beam. Therefore, the applied beam torque re2 is generated by

r.2 = [R,.2N,2Np2" e,,2 - [ (N,2Np2) 2 062 + (N-_v2)a

(23)

where the motor parameters for fore-beam (beam ]2) are defined in the same way as

those in Eq. (14). Equation (23) gives the relationship for the torque to2 for the

second beam, slewing through the applied voltage e,2. Then, the output measurement

equation becomes:

13
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"- [epO,epl,ep2,_ol (z.),eol (Xb),e02(za),e02(Zb),efl,ft2,0(l×(mt+m.))] T

=
mr+m2

where

02

The dynamic equations in Eq. (19) can thus be rewritten as:

fori= 1,2

where

1VI = M + Diag

(2 = Diag

(R, 1N11 Npt)

B = 0 K,_ and E.(t) = e.l
(R. 2Ns_NP2) _ %2

0((-t+-2)×2)

Such a form facilicates the incorporation of output feedback control, which will be the

subject of discussion in the next subsection.

(24)

(25)

3.4 Regulator Feedback Controller For a Slewin$ Maneuver

Regulator feedback controller is a linear optimal control law to perform an asymp-

totically stable closed-loop system in which each state will be driven toward its equilib-

rium region under the control process. A simple conventional regulator-type controller

in conjunction with a nonvarying gear ratio of transmission will be investigated in this

subsection to implement the slewing maneuvers of two different flexible structures dis-

cussed earlier. To be applicable to the algorithm of the linear regulation control, the

dynamics shown in Eq. (25) will be linearized by neglecting the nonlinear force vector

14



f(_, _) _ 0 along with approximating cos(02) _ 1. Then both the linear dynamic equa-

tions (16) and (25) along with their output measurement equations (15) and (24) will

be transformed into a system of first order state equations so that:

{E. = a.d (26)
• = CI_

where

= = andf3= (MOIB)

The control input voltage vector Ea in Eq. (26) will be fed back into the dosed loop

system dynamics in Eqs. (15) and (25), where the otitput feedback gain matrix (_ is

determined by the following control analysis. The control criteria for linear regulation

problem is to minimize a quadratic performance index which can be written as:

J = [_TQe + E_REa] dt (27/

where the output measurement weighting matrix is indicated by Q >_ 0, and the input

weighting matix R > 0. The output feedback gains can be determined by:

0 = R-II)TP (28)

where the positive definite matrix P satisfies the following algebraic Riccati equation:

=_

_Tp + p_ + C_'QC/ - 2PI3R-1171TP T = 0 (29)

In general, a successful slewing implementation must entirely fullfill two dynamic as-

pects: system stability and smooth continuous behavior. The output feedback gain

matix (_ given by Eq. (28) can ensure the asymptotical stability of poles in the closed

loop system [A-13(_CI]. As it was discussed in Section 3.1, the cylinder type noncircu-

lax gears are capable of varying the actuating torque to tune the slewing characteristics

so that the control effort may be reduced. Hence, the incorporation of the noncircular

gears and the feedback controller must be considered together from the perspective

of an integrated design process. In the other words, in the slewing control of flexi-

ble structures the flexural vibrations of the beam are reduced by taking into account

15
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the profile design of the noncircular cylinders as well as the output feedback controller

gains, together at the design stage. An optimizer is employed to determine not only the

pitch curves of the noncireular cylinders, but also the output feedback gains that will

minimize the vibrational amplitudes. This incorporation of noncircular gears results

in a controller design that is much simpler and more robust, for implementing a slew

maneuver of flexible links in robot manipulators or of flexible structures in space. Such

an integrated design approach will be presented in the following section.

4. INTEGRATION OF FEEDBACK CONTROLLER DESIGN WITH

NONCIRCULAR GEAR DESIGN

For an integrated mechanisms and control design, the Generalized Reduced Gra-

dient (GRG) method [15] is employed to determine the optimal designs of noncircular

gear ratios together with control gains for suppressing flexural vibrations in a slew ma-

neuver. This nonlinear programming approach will iterate a vector of design variables

that will extrernize a given function, subject to some equality and inequality constraints.

where

Minimize : F(£); £ "- [Z1, at2, Z3,''' , :rN] T E R N (30)

{ffk(_') > O; k = 1,2,3,.-.,K (31)Subject to: _t(_) = 0; £ = 1,2,3,.-.,L

N

F(_)

: a column vector of design variables,

: total number of design variables,

: design criteria or objective function,

: K inequality constraint functions,

: L equality constraint functions.

Basically, the GRG algorithm is used to seek the optimal solution of the design

variable vector _ to minimize a cost function F(_) in a local domain which is bounded

through the given upper and lower bounds of the design variables. First, a starting

point :_0 of design variables must be provided for GRG algorithm to search a feasible

point. The reduced gradient is then evaluated by equating a projected reduced gradi-

ent formed through Eqs. (30) to (31). The L2 norm of the projected reduced gradient
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is then checked to determine if it is within some tolerance for convergence. If so, a

constrained relative minimum of the cost function has been obtained. If not, a line

search provides a search direction to locate a local minimum of F(_). The line search is

performed by initially taking a step in the direction calculated for the design variables.

The design variables are adjusted by using Newton's method until the constraint func-

tions given by Eqs. (31) are satisified. The cost function is thus minimized according

to such a reduced gradient algorithm.

The hyperbolic parameters of noncircular gear ratio along with regulator control

gains, which are assigned as design variables, will be determined by the GRG algorithm

to minimize the specified cost function. A quadratic cost function is developed for the

minimization of modal vibrational amplitudes. The dynamics of the flexible structures

may be expressed as a system of the first-order state equations. These first-order state

equations thus indicate the equality constraint functions which must be satisfied in

terms of dynamic response as the optimal design variables are being searched. Inequal-

ity constraint functions are specified to bound the gear ratios or the control torques.

The GRG algorithm then numerically determines the design variables, which consist

of the parameters of noncircular gear ratio and the control gains, so the flexural vi-

brations of the structures are minimized during the slew maneuver. In addition to the

parameters for the noncircular gears and the control gains, the design variables of this

integration problem will include the states of vibrational modes for the flexible struc-

tures. Assume that n multiple structures are connected through n noncircular gear

pairs with rn flexible modes specified for the vibrational motion of each structure in a

slew maneuver. Then the design variable vector is written as:

_- = [ c, _, _(k), _(k + 1)] T (32)

where c is a 1 × 2n vector of parameters for noncircular gears, _ =

[[(_(i,j), j -- 1,...,2n(m + 1)], i= 1,.-.,n] isa 1×2n(rn+l)vector of control gains,

and e(k), e(k + 1) at two different times t = k, k + 1 are 1 × 2n state vectors in

the first-order state equation at two sequential times. Number of design variables,

i.e. N = 8n -t- 2m, is obtained by summing the number of elements in Eq. (32). Design
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variables in Eq. (32) will be determined to minimize the cost function which is defined

8S:

N . 2 N m

i=I i-----] j=l

where Obi(k) and 06i(k) (i -- I, 2,-.., n) are the slewing angles and angular velocities

at time k; Obit and 0bit are the desired states, and qij(k) are the magnitudes of the

vibrational modes at time k. The weighting factor for each slewing state is wi (i =

1,2,-.. ,2n), and those for the magnitudes of the j-th vibrational mode of the i-th

structure are denoted by wij (i = 1,2,...,n; j - 1,2,...,m). The cost function

attempts to control the slewing states, such as angle and angular velocity, at a given

time k to some specified magnitude, while minimizing the amplitudes of vibrational

modes of flexible structures. Two different types of constraints are needed: equality

and inequality constraints. The equality constraint functions are provided by

_i(_)=e(k+l)-g(k+l), for i=1,2,...,2n (34)

The state vector g at time k + 1 is governed by:

where

e(k + 1) = _,_(k) +E.(k) dCI,(k)
fiE.(k) + 1;

( 0 I ) iT! = ( 0 ) ( 0(_))= _1_I_1K _lf/l_l_ , I_I_IB , and ] = l_,I-lf _,

Equation (34) shows the first-order dynamic equations of multiple structures, which

must be satisfied by the feasible design variables. Several inequality constraint func-

tions Ct(_) defined in Eq. (31) are specified to bound the range of each varying gear ra-

tio and torque limitation of each motor. Furthermore, the design variables are bounded

by the upper bound and lower bound vectors which are delicately selected and shown

as follows.

_._. = [ c._., 6._., e.g.(k), e._.(k + 1)1r

(35)

(36)
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The approach described in this section can therefore bring about an integrated design

of noncircular gears as well as the control gains so as to coordinate the actuating torque

during the slewing maneuver for minimum flexural vibrations. In the following section,

three different simulations will be implemented by using different mechanisms or control

techniques for stabilizing and tuning 90°-slew tasks of two flexible structures using this

integrated mechanisms and control design approach.

5. SIMULATIONS OF TWO DIFFERENT FLEXIBLE STRUCTURES

This section includes two simulations of 90°-slew maneuvers implemented for two

different planar flexible beams, whose slewing characteristics will be tuned in conjunc-

tion with the noncircular gear device. The flexural vibration of a planar flexible beam

is characterized by using three vibrational modes, while two vibrational modes are ap-

plied to each beam of an articulated flexible structure. The output feedback gains,

which are needed to accomplish the position control task while simultaneously sup-

pressing the flexural vibrations, will be implemented together with a pair of specially

designed noncircular gears. An optimum hyperbolic curve is also obtained to generate

the varying gear ratio, while the convexity of cylindrical profiles of the noncircular gears

is maintained. For each flexible structure, three different cases will be considered for

comparison. The first is with the 1:1 circular gears, the second with the noncircular

gears associated with a given hyperbolic gear ratio as expressed in Section 3.1, and the

third with the integration of mechanism and control design.

The parameters of such two dynamic systems, which will be used for simulations,

are shown in Tables 1 and 4 in the Appendix. Their weighting matrices and resulting

regulator-type control gain matrices derived in Section 3.4 are summarized in Tables 2

and 5 for the first two cases. Moreover, their parameters of noncircular gear ratio as

shown in Eq. (3) are given in Tables 1 and 4 for the second case. The feasible starting

values of design variables will be assigned as shown in Tables 1, 2, 4, and 5. Based on

Eqs. (32) to (36), Tables 3 and 6 provide a summary of the integrated approach as
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well as to the feasible parameter values for the noncircular gears and the control gains

to begin the optimization process. We begin with the simulations for a single flexible

beam under the three different cases discussed in the previous paragraph.

5.1 Simulations of a Planar Flexible Beam

Tables 1 and 2 in the Appendix A give summaries of the model parameters and

control gain matrix of a planar flexible beam. Based on Eqs. (32) to (36), Table 3

displays an integrated optimal design for the 90°-slew maneuver of a flexible one-beam

structure. The results of Figs. 6(d)-6(f), which have demonstrated the severe vibrations

of the beam at 0.6 second, therefore, the state vector e and time-rate state vector g at

that time are selected as the design variables, along with the two parameters cl and cu of

noncircular gear ratio, and the control gain matrix (_(1 xs), whose initial values are used

to inplement the second case associated with the general noncircular gears. Therefore,

there is a total of twenty-six design variables for this optimization problem. The cost

function is developed to suppress the dynamic characteristics of the vibrational modes

qi and qi (i = 1, 2, 3), while simultaneously keeping the slewing angle 0 and the angu-

lar velocity 0 at 0.18279 rad and 0.4529 rad/sec respectively. The equality constraint

functions _,(£) (i = 1, 2,--., 8) axe provided by eight first-order state equations which

must always be satisfied during optimization process. An inequality constraint func-

tion _b1(£) is assigned to bound the gear ratio to be greater than 0.1. Two hyperbolic

parameters are bounded from 0.1 to 6.0, and the sixteen states from -10.0 to 10.0.

Two more inequality constraint functions _b2(£) and _s(£) are specified to bound the

control torque to be between 0.5 and 1.0 Nm. The upper/lower bounds of the design

variables are also given in this table. Based on these initial values of the design vari-

ables, the starting value of cost function, F(£°), equals 42.6998 while the final cost is

0.0068555 at the minimum of F(£). The optimal design of noncircular gears is obtained

by cloy, = 0.14 and c2ovt - 1.81692 which produce a hyperbolic gear ratio. The final

solution of control gains that minimizes the cost function F(£) is:

(2or, = [-0.8942,-25,-349.8,-1413.7,-1.4153,-7.79999,-0.799995, 1.69999] (37)
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which, in conjunction with optimally designed noncircular gears, could suppress the

beam vibration to an even higher degree.

Three simulation results for such a 90°-slew maneuver are thus summarized and

characterized by lines _1, _2, and _3 in Figs. 6(a)-6(f). The results with the 1:1 circular

gears are indicated by a thin solid line _1, the results for the general noncircular gears

by a dashed line _2, and the results for the integrated mechanisms and control design

by a thick solid line _3. The flexible steel beam slews 90.0 degrees in 6.0 seconds as

shown in Fig. 6(a). Apparently, the uoncircular gears for optimal integrated design,

slow down the beam slewing during the first 7-degrees of rotation, thereby providing a

smoother actuation to the desired final angle than that in the presence of the circular

gears. In Fig. 6(b), three different results for the beam angular velocities damp out

in approximately 6.0 seconds. The higher frequency modes are clearly observed in the

results using circular gears while nearly absent in the other two results for noncircular

gears (lines t_2 and _3). That indicates the efficient suppression of structural vibra-

tion in the presences of noncircular gears, especiaUy the ones for optimal integrated

design. Both slewing angular velocity (lines _2 and _3) with noncircular gears iUus-

trates a smoother trajectory after 0.8 seconds which implies that the beam slewing and

vibrational motion have been tuned through the use of the noncircular gears. More-

over, the peak magnitude of the angular velocity is also significantly reduced by the

optimal integrated design approach. The control torques begin at 1.0 Nm and vanish

quite rapidly as shown in Fig. 6(c). It can therefore be implied that the control torque

in the presence of noncircular gears for the optimal integrated design (line _3) damps

out the flexural vibrations faster than those with circular gears (line _1) and general

noncircular gears (line _2). Also, the vibrational modes (line _3) behave siguiflcantly

lower as shown in Fig. 6(c). The behavior of the first three modes are demonstrated in

Figs. 6(d)-6(f). These vibrational modes can be suppressed by output feedback dontrol

in the cases with circular gears and with general noncircular gears, and are further sup-

pressed through optimal noncircular gears in conjunction with the feedback control. As

it can be seen in Fig. 6(d), the noncircular gears for optimal integrated design (line _3)
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suppressthe first mode more than those with circular gears (line _1) or with general

noncircular gears (line _2). At 0.3 second, the first mode with circular gears produces

a peak amplitude of 0.1 units compared to 0.028 units with noncircular gears for the

optimal integrated design. Figure 6(e) shows the three time-hlstories for the second

mode. The peak amplitude of each mode is considerably reduced, particularly, based

on the optimal integrated design approach. A similar situation happens in the behav-

ior of the third mode as shown in Fig. 6(f). The simulation results in Figs. 6(a)-6(f)

thus provide some insights into the slewing maneuvers of a planar flexible beam in the

presence of mechanical devices such as noncircular gears.

5.2 Simulations of an Articulated Flexible Beam

In a similar way, the optimal design of noncircular gears for the flexible two-beam

structure can be determined in the same way as that described in Table 3. Table

6 provides a statement of the optimization problem of noncircular gears and control

gain matrix for the 90°-slew maneuver of the articulated two-beam structure. Four

parameters of two noncircular gears, i.e. c11, c12, c21 and c22, are the design variables

which generate two hyperbolic gear ratios. Since the results of Figs. 7(g)-7(j), which

are associated with 1:1 circular gears, have shown the severe oscillations of the two

beams at the 0.64 second, the state vector • and time-rate state vector _ at that time

are selected to provide an additional twenty-four design variables. The elements of

control gain matrix (_(2×12) contribute twenty-four design variables. Hence, the num:

ber N of overall design variables is now fifty-two for this optimization problem. The

quadratic cost function is derived to suppress vibrational modes of two flexible beams

while simultaneously keeping the two slewing angles 01, 02 at 0.18117 rad and 0.090778

tad respectively, and two angular velocities 01,02 at 0.19956 rad/sec and 0.20797

rad/sec respectively. Twelve first-order state equations @_(._) (i - 1,2,... ,12) pro-

duce the equality constraint functions. Two inequality constraint functions @1 (_)

and @2 (z) are given to make two gear ratios greater than 0.1. Four other inequal-

ity constraint functions _ (_) (i = 3,4,5, 6) are specified to bound the two control
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torques to be between 0.2 and 1.5 Nm. The four hyperbolic parameters are bounded

by _ ,'_ s,r11' S,r4 '_ _11' _20 " _S and _ ,_ _ respectively, while the 24 states are

bounded by 10.0-,, -10.0. The initial value of cost function, F(_°), equals 21.772,

which yields 0.0157333 at the minimum. The optimal solution to the parameters for

the noncircular gears of the first beam are cl]opt-0.29 and c]2opt-1.9, and that for

the noncircular gears of the second beam are: c_Iopt--0.134177 and cu2opt- 1.69386.

For the two motors, the optimal solution of the control gain obtained through GRG

subroutine yields:

(-0.694 -0.084 -7.6 -132.3 -0.288 -26.2 -1.533
(_opt = k0.1332 -0.439 4.70607 -18.799 -17.875 -236.191 -0.043

-0.355 -1.990 -1.899 0.3 -0.399% (38)
-0.741 0.01 -0.606 -3.4 -0.399)

Figures 7(a)-7(j) display three simulation results for such a 90°-slew maneuver. Two

90 ° slewing simulations of two flexible steel beams are shown for a period of eight

seconds in Fig. 7(a) and 7(5) respectively. In Figs. 7(c) and 7(d), the three results

show that the beam angular velocities damp out in approximately 8.0 seconds. The

slewing angular velocity (line _3) illustrates the smoothest trajectory after 1.0 second

which implies that the beam slewing and vibrational motion have been tuned through

the use of the optimal integrated design. Moreover, the peak angular velocity magnitude

is also significantly reduced by this integrated approach. Figures 7(e) and 7(f) show

two control torques for beam _1 and beam _2 respectively. The optimal integrated

design reduces the amplitudes of the first and second modes associated with beam _1

by 21% compared to the general noncircular gears (line _2) in Figs. 7(g) and 7(i).

However, compared to the results associated with the circular gears in Figs. 7(g) and

7(i), the amplitudes of the first and second modes for beam _1 are considerably reduced

by 64%. In Figs. 7(h) and 7(j), the reduction of the amplitudes of beam _2 for the first

and second modes is about 38% when comparing the results for the general noncircular

gears (line _2). The reduction is as high as 52%, when compared to the results associated

with the circular gears (line _1). These simulation results therefore show the feasibility

of the integrated mechanisms and control design approach for the multi-body slewing
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maneuvers of space structures.
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6. CONCLUSION

Severe flexural vibration is almost always the result of rapid and large slew-angle

maneuvers of flexible space structures. An investigation of an integrated mechanisms

and control approach has been conducted for tuning slewing characteristics of the flex-

ible space structures such that the flexural vibrations can be considerably suppressed

through the incorporation of a nonlinear mechanical dement. A pair of noncircu-

lar gears are designed to generate a hyperbolic gear ratio by wrapping two specially

shaped convex cylinders which are to mesh and roll while being constrained by two

pairs of thin metal bands such that slipping and backlash are prevented. The design

of the noncircular gear profiles is carried out for the slewing maneuvers of two kinds of

planar flexible beam-like structures; a one-beam structure and a two-beam articulated

structure. The slewing response is shown to be tuned well, and the flexural vibration is

suppressed during the controlled slewing process. These simulation results indicate the

crucial role of integrating mechanisms and control in the design procedure for slewing

maneuvers of flexible structures.

The comparison of simulation results with the noncircular gears and the circular

gears implies that the hyperbolic gear ratio has been useful for tuning slewing and for

sufficiently suppressing the vibrational motion. Therefore, this synthesis investigation

paves the way for integrating mechanisms design with control for rapid and large angle

slew maneuvers of the flexible space structures. Such simulation results provide very

useful insights for building an experimental setup in NASA-Langley.
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Table 1: Model parameters of one flexible beam

a. ]_eam motor:

Ktl = 9.3x10 -3 Nm/Amp Kbl ffi 9.2x10 -3

R,I = 1.1 Ohm I,,i = 2.3 x 10 -6

b. Steel beam:

Length L = 1.0 m

Rigidity EI = 0.71 Nm 2
Density p = 0.47916 kg/m
Thickness h = 0.041x 10 -2 m

c. Parameters of noncircular _ear ratio:

Cl = 1"_
3_

C2=-'_-

Table 2: Weighting and feedback gain matrices of
one flexible beam

Nm/Arnp

kgm 2

w

r
w

= :

a. Weighting matrices:
State weighting matrix:

Q = Diag [ 80.0 0.001 0.001 0.001 100.0 0.001 0.001 0.001 ] ;

Input weighting matrix:

rt = [lOO.Ol;

b. Output feedback I_ain matrix:

(_ = [ -0.8944 0.0933 0.0153 0.0054 - 1.1315 0.2245 0.0365 0.0130 ].
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Table 3: Optimization problem of noncircular gears and
control gain for one flexible beam

u

u

u

L.

Minimize:

F(x) = (_ × {_ x [8b(k) - 0.18279] 2 +(I- _) x 8b(k)- 0.4529

3

i=l

where the weighting numbers Q = 10000.00 and m = 0.55.
Design variables:

where integers k, k+l indicate time sequences and

e(k) [Ob(k),ql(k),q2(k),qn(k),#b(k),(ll(k),(12(k),_z(k)] T=

_(k+ 1) =

Subject to:
(1) Equality constraint functions:

@i(_) = e(k+l) - g(k+l), for i=1,2,3,..-,8g(k+l) = k_(k) + Bu(k), and u(k) = G(l×s)e(k)

where the formats of A and I_ have been defined in Eq.

have been shown in Eqs. (12) and (16).

(2) Inequality constraint functions:

.) = c_ - o.1x [c, + ,o.4o,,.] > o180 -- '

¢2(_) -u(k) + 1.o _>0, and ¢3(_) = _(k) - 0.5
Starting point:

[_b(k+ 1),4,(k + 1),42(k+ 1),6(k + 1),Sb(k+ 1),_,(k + 1),42(k+ 1),¢_(k+ 1)1r

(34) and matrices 1VI, K, and (_

>0.

_0 = [0.153083, 1.81478, -0.8944, -19.0884, -160.9831, -449.1275, -1.5449, -4.7363, 0.2093,

0.5421,0.18159,0.050333, -0.0004777, -0.0000778, 0.53284,-0.01669, -0.00444,

0.00049,0.53376, -0.017172, -0.00398, 0.000986,0.84918, -0.43872, 0.42355, 0.45771]T

Bounds on design variables:
(1) Upper bounds:

_m,, = [0.16, 1.82, -0.8942,-25,-349.2,-1413.1,-1.4,-7.2,-0.2, 1.7, 16 x [10] T ];

(2) Lower bounds:

• ,,,_, -- [0.14, 1.8,-0.8946, -25.6, -349.8,-143.7, -2,-7.8, -0.8, 1.1, 16 x [-10]] T ].

r
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Table 4: Model parameters of an articulated flexible beam

i

a. Beam motors:

(1)Beam _1 motor:

Ktl = 0.0346 Nm/Amp

Kbl = 0.0342 Volt-sec/rad
R,I = 4 Ohm
I,_, = 4.7x 10 -° kgm'

= 1

(2)Beam _2 motor:

Kt2 = 9.3 x 10 -s

Kb2 = 9.2 x 10 -s

R.2 = 1.1
I 2 = 2.3x10 -6
_2=1

b. Steel beam:

Length L = 1.0 m

Rigidity EI = 0.71 Nm 2
Density p = 0.47916 kg/m
Thickness h - 0.041x 10 -2 m

c. Parameters of nonclrcular _ear ratio:

(1)Beam _1 gears: (2)Beam _2 gears:

-- C21 --"
Cll _0
C12 -" 5"- C22 --" II

Nm/Amp

Volt-sec/rad
Ohm

kgm 2

w

_ ÷

w

Table 5: Weighting and feedback gain matrices of an
articulated flexible beam

a. Weighting matrices:
State weighting matrix:

Q = Diag[ 250 100 10 10 10 10 250 100 10 10 10 10 ];

Input weighting matrix:

R = [500, 5001;

b. Output feedback _ain matrix:

/-0.7018 -0.0547 0.5633 2.4793 -0.2597 1.3766
(_ = _, 0.0864 -0.4439 0.0345 4.9427 -0.2104 -2.9872

-1.1214 -0.2117 0.8029 -0.6719 0.3141 0.0668_

-0.0844 -0.5758 0.2477 -0.3145 0.2148 0.0165]

i
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Minimize:

Table 6: Optimization problem of noncircular gears and
control gain for an articulated flexible beam

P(:r) = Q x {wl x [Obl(k) - 0.18117] 2 + (1 - ":'1) x [0b2(k) - 0.090778] 2 +

2 2 2

i----I

where the weighting numbers Q - 10000.00, wx = 0.55 and w2 = 0.5.
Design variables:

- [ _,, _, _, _, 0o_,), _(k), _(t + 1)]T
where integers k, k+l indicate time sequences and

_(k) = [_b'(k)_b_(k)_qn(k)_q'_(k)_q2'(k)_q_(k)_0b'(k)_b_(k)_`h'(_)_q_2(k)_q_](k)_q_]_;

_(k + 1) = [Obl(k + 1),Ob2(k + 1),_l,(k + 1),_12(k + 1),_21(k + 1),_22(k + 1),Obl(k + 1),

0b,_(k + 1), _,,(k + 1), _,2(k + 1), _2, (k + 1), _22(k + 1)] T,

Subject to:

(1) Equality constraint functions:

_I'i(_) = e(k+l) - g(k+l), for i=1,2,3,...,12

where the formats of A, I] and ] have been defined in Eq. (34) and matrices 1VI, K, C, B,

and f have been shown in Eqs. (22) and (25).

(2) Inequality constraint functions:

{ = - o.1x [ 11+
¢2(2") --" C22 -- 0.1 X rtC2_ +

¢_(_) = -u_(k) + 1.5 > 0,

¢_(_) -_2(_) + 1.5 > 0,
Starting point:

I0.38044_r" _> O,
180 ,

5.201172_" ; O,
180

¢,(_) =-_,(_)- 0.2 > 0,
¢_(_) = _2(_) - 0.2 > 0

eo = [10' 3r5' 22'llTr 6_r, -0.702, 0.086, -0.055, -0.444, -7.845, 4.965, -132.538,

-18.617, -0.193, -17.848, -26.478, -236.05, -1.121, -0.084, -0.212, -0.576, -1.867, 0.219,

-1.798, -0.888, 0.588, -3.278, -0.221, -0.218, 0.1812, 0.09078, 0.063, -0.0012, 0.016,

0.000264, 0.2, 0.208, -0.0062, 0.0039, -0.0051, 0.0016, 0.2, 0.208, -0.0064, 0.0039,

-0.0049, 0.0015, -0.088, 0.914, -0.281, -0.03, 0.3, -0.071] T.

Bounds on design variables:

(1) Upper bounds:

_,_t - [0.3,1.9, 0.16, 1.73, -0.69, 0.13, -0.08, -0.44, -7.6, 5.1, -132.3, -18.4, -0.08, -17.6, -26.Z

-235.8, -1.53, -0.04, -0.36, -0.74, -1.6, 0.4, -1.5, -0.6, 0.7, -3.0, -0:02, -0.01,24 × [10]] T

(2) Lower bounds:

_,_, = [0.29, 1.86, 0.12,1.69, -0.69, 0.13, -0.08, -0.44, -8.0,4.7, -132.7, -18.8, -0.3, -18.0, -26.6

-236.2, -1.53, -0.04, -0.36, -0.74, -2.0, 0.01, -1.9, -1.0, 0.3, -3.4, -0.4, -0.4, 24 × [-10]] T.
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APPENDIX I: NONCIRCULAR GEARING SYNTHESIS

w

L
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w

w
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The profiles of a pair of noncircular cylinders as shown in Fig. 1 can he devel-

oped using the following gearing synthesis. Figure 2 shows the cross section of two

noncircular gears centered at O1 and 02 with the pitch radii rl and r2 respectively.

Their angular displacements are indicated by 01 and 02, angular velocities 01 and 02,

and angular acceleration 01 and 02 respectively. The center distance _ is denoted

by C and the pressure angle by ¢. The necessary conditions for rolling contact between

two gears O1 and 02 as shown in Fig. 2 are:

(1) Contact point is aligned along their center-to-center line 9102,

(2) The equivalent tracking arc length must satisfy the relationship:

da = db =_ rl dO1 = r2 d02 (I.1)

where dO1 and dO2 are the small angular displacements of gears O1 and O2 respectively.

Suppose that the varying gear ratio N o (02) is defined as the ratio of the output to

input angular velocities, then:

02 rl
N,(02) = -,- = -- (I.2)

01 r2

where rl and r2 are the instantaneous pitch radii of driving and driven gears respec-

tively. The center distance C between the cylinders is a constant and must satisfy:

rl + r2 = C (I.3)

From this, the pitch radii rl and r2 of the two noncircular cylinders can be shown to

be:
CNo(02 ) C

rl = r2 = (/.4)
[1 + g,(o2)]' [1 + g,(o2)]

The input angle 01 of the driving cylinder O1 can be computed by integrating Eq.

(I.2) as given by:

fo°' [ 1 ]dO2 (I.5)

3O
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Figure 1: A pair of noncircular gears wrapped via thin bands
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