ULTRASONIC CORRELATOR VERSUS SIGNAL AVERAGER AS A SIGNAL TO NOISE ENHANCEMENT INSTRUMENT

Doron Kishoni
Senior Research Scientist
Department of Physics, The College of William and Mary
NASA Langley Research Center
Mail Stop 231, Hampton, VA 23662

Benjamin E. Pietsch
Electronics Engineer
Industrial Quality Inc.
19634 Club House Rd., Suite 320
Gaithersburg, MD 20879

ABSTRACT

Ultrasonic inspection of thick and attenuating materials is hampered by the reduced amplitudes of the propagated waves to a degree that the noise is too high to enable meaningful interpretation of the data. In order to overcome the low Signal to Noise (S/N) ratio, a correlation technique has been developed. In this method, a continuous pseudo-random pattern generated digitally is transmitted and detected by piezoelectric transducers. A correlation is performed in the instrument between the received signal and a variable delayed image of the transmitted one. The result is shown to be proportional to the impulse response of the investigated material, analogous to a signal received from a pulsed system, with an improved S/N ratio. The degree of S/N enhancement depends on the sweep rate. This paper describes the correlator, and compares it to the method of enhancing S/N ratio by averaging the signals. The similarities and differences between the two are highlighted and the potential advantage of the correlator system is explained.

INTRODUCTION

Ultrasonic inspection of materials involves generation of elastic waves using a transducer. These waves are transmitted through the media, detected by a receiver and analyzed. In order to retain meaningful interpretation of the data, a sufficient Signal to Noise (S/N) ratio must be obtained. This poses a problem whenever thick and attenuating material is involved. Using high-gain amplifiers to amplify the highly attenuated waves introduces more noise to the system, and events of interest in the signals are often too small to detect. One method of enhancing the S/N ratio is by averaging several of the received signals, using a digitizer that has this capability. The source impulse signals are repeated several times, and the detected signals are digitized and averaged. The temporal resolution of the events in the received signal depends on the impulse width. The pulse maximum repetition rate is limited by the depth of the investigated area. The pulse source should not be repeated until ultrasonic waves of the previous pulse have significantly dissipated. Another limitation is that the pulse amplitude cannot exceed the breakdown voltage of the transducer. These limit the maximum input energy and determine the limit of the signal to noise enhancement by averaging. The following discussion which describes a correlator, is based on a different principle, and can overcome some of the limitations of the averaged pulse system.

THE CORRELATOR

Principle:

A block diagram of the correlator is shown in Figure 1. A pseudo-random digital pattern is repeatedly generated and used to drive a transmitting transducer after proper amplification. The ultrasonic waves which propagate through the inspected material are detected by a receiver transducer. A correlation is performed between the received signal and a reference signal generated by the second pattern generator which is identical in shape to the drive signal, but delayed by a linearly varying amount, governed by the sweep rate. The use of a digitally delayed reference has the advantage of greater accuracy and stability than complicated analog delay lines [ref. 1 for example].

Theory:

An output \(y(t) \) from a linear system can be expressed as the convolution of the system impulse response \(h(t) \) with the input \(x(t) \) (Figure 2):

\[
y(t) = h(t) \ast x(t) = \int_{-\infty}^{\infty} h(u) x(t-u) \, du
\]

(1)

Figure 1. Correlator, schematics.
Figure 2. The output as a convolution of the input and the impulse response.

The cross correlation R_{xy} of $x(t)$ and $y(t)$ can be written as:

$$R_{xy}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T}^{T} x(t) y(t+\tau) \, dt$$

(2)

and auto-correlation $R_{xx}(\tau-v)$ of $x(t)$ as:

$$R_{xx}(\tau-v) = \lim_{T \to \infty} \frac{1}{T} \int_{-T}^{T} x(t) x[t+(\tau-v)] \, dt$$

(3)

Substituting (1) and (3) into (2) we get:

$$R_{xy}(\tau) = \int_{-\infty}^{\infty} h(\nu) R_{xx}(\tau-\nu) \, d\nu$$

(4)

therefore, the cross-correlation of the input and the output is the convolution of the impulse response with the auto-correlation of the input signal:

$$R_{xy} = h * R_{xx}$$

(5)

R_{xx} for white noise is the delta-function, (up to a factor k), therefore,

$$R_{xy}(\tau) = k \, h(\tau)$$

(6)

so that if white noise is injected to the material, the correlation of the input with the detected output $y(t)$ is the impulse response $h(t)$ of the system (Figure 3).

In a single-channeled configuration, as applied in the current correlator system, τ is slowly varied according to the sweep rate (S.R.), thus, the resultant correlation represents the impulse response transformed to a frequency which is reduced by the inverse of the sweep rate.

The Signal to Noise Ratio Enhancement ($SNRE$) of a system can be defined as:

$$SNRE = \frac{SNR_{output}}{SNR_{input}}$$

(7)

where SNR is the Signal to Noise Ratio. This can be expressed in terms of bandwidth B of the appropriate signals [2-4], where the $SNRE_{power}$ is given by:

$$SNRE_{power} = \frac{B_{input}}{B_{output}}$$

(8)

while the $SNRE_{voltage}$ is given by:

$$SNRE_{voltage} = \sqrt{\frac{B_{input}}{B_{output}}}$$

(8a)

Both definitions are equivalent in terms of decibels, since the factor is 20 for voltage as opposed to a factor of 10 for power. As the single-channeled correlation transforms the bandwidth to a frequency reduced by the inverse of the sweep rate S.R., the last equation can be written as:

$$SNRE_{voltage} = \sqrt{\frac{1}{S.R.}}$$

(9)

which is fixed for any particular sweep rate. A typical value used for sweep rate is $0.1 \mu \text{sec/sec}$. The sweep rate is inversely proportional to the acquisition time T_{acq}.

As a comparison, the averaging process for a pulse-system improves the signal to noise ratio by:

$$SNRE_{voltage} = \sqrt{n}$$

(10)

where n is number of averages. Again, the acquisition time is linearly proportional to n, thus,

$$SNRE_{voltage} = \sqrt{n}$$

(11)

Power efficiency comparison:

In a pulse-system with repetition rate of f pulses per second, the total power P into the material can be approximated as:

$$P_p = V_p^2 f_p$$

(12)

where V is the peak voltage of the pulse, and t is its effective duration. (The index p denotes the pulse-system). Typical values are 300 volts and ~100 nsec duration respectively.

The repetition rate f is limited by the acoustic response in the material. The repetition rate must be low enough to avoid wrap-around of the reflections (Figure 4). The maximum obtained information τ is then not more than the time between the pulses,
The total energy input throughout \(n \) averages, \(w_p \), per unit of obtained information, \(\tau_p \), can be expressed as:

\[
\frac{w_p}{\tau_p} = P_p \frac{T_p}{\tau_p} \geq V_{c}^2 \frac{1}{f_p} n
\]

(13)

where \(T_p \) is the total acquisition time (of \(n \) averages), and \(P_p \) is the input power during this time.

An 11.5 cm thick wood was used as an example of thick highly attenuating material. Two 2.25 MHz half inch transducer were used in a pulse-echo configuration. A single pulse, with the pulse-system configured for maximum safe voltage into the transmitter, resulted in a signal to noise in the received signal which was less than 1, as can be seen in Figure 5.

Therefore, averaging was required with the pulse-system to be able to detect the signal. A signal obtained after 4096 averages is shown in Figure 6. The excitation is seen on the left side (at relative time 0), and the first arrival through the wood occurs around 57 \(\mu \)sec. Significant noise still exists even in the 4096 averages case, as evident in the time interval 0 to –57 \(\mu \)sec, before arrival of the first acoustic response of the wood.

In such a case, the ratio between the quantities 'total input energy -\(w \), per unit of obtained information -\(\tau \)' of the two systems would be:

\[
\frac{w_p/\tau_p}{w_c/\tau_c} \geq \frac{n}{k [S.R.]} \tag{18}
\]

where \(k \) is the number of parallel channels that perform the correlation in the correlator. The total energy input, \(w \), per unit of obtained information, \(\tau \), would be:

\[
\frac{w_c}{\tau_c} = \frac{1}{2} V_{c}^2 \frac{1}{k [S.R.]} \tag{16}
\]

For comparison purposes, if we limit the input power in the correlator system so that both systems input equivalent amounts of power, the ratio of the voltages would have to be:

\[
\frac{V_c}{V_p} = \sqrt{2 T_p f_p} \tag{17}
\]
The received signal from a single channel correlator for a sweep rate of 0.1 µsec/sec is shown in Figure 7. The acquisition time was approximately equal to the time required for 4096 averages (hardware dependent of course), although it could be skipped until the expected first acoustic response, thus reduced significantly. The first arrival could be identified again, at ~57 µsec, with a lower noise before first arrival than the noise in the 4096 averages case. (To decrease the noise to the same level, the averaging system required close to 32000 averages). Furthermore, this noise is above the detection frequency of the transducer, thus, further low-pass filtering is possible without deleting actual information.

A second set of tests were performed measuring ~10 cm thick Teflon. S/N results are shown in Figure 9. Since the attenuation of the material is less than that of the wood sample, the overall S/N figures were better. Yet, the relative behavior of the two systems remain the same. The effect of increasing the number of the channels from a single channel to 1024 channels in a multi-channel correlator is extrapolated in this figure.

DISCUSSION

Both the correlator system and the averaging pulse-system can enhance the signal to noise ratio, improving it linearly with square root of the acquisition time. The correlator, through its sweep rate S.R., and the averager through the number of averages n. The ratio of total input energy per unit of obtained information also have equivalent forms for the two systems.

There are however some important differences between them. While the voltage into the transducer in the pulse-system is limited by the breakdown voltage of the transducer, the correlator system is based on a continuous excitation of the transducer, where the limiting parameter is mainly the maximum power that can be dissipated. The total power can be much higher than in the pulse-system, thus, obtaining stronger signals.

Another major difference is the way the systems collect and enhance the data: A conventional pulse echo averaging system prescribes a fixed minimal time window, according to the thickness of the sample that control the maximum repetition rate. The S/N improves as acquisition time increases (as square root of it). The correlator system, on the other hand, gives prescribed S/N enhancement, according to the chosen sweep rate while the obtained time window increases with the acquisition time. The condition on the correlator corresponding to the maximum repetition rate is the length of the unique pattern in the pseudo-random signal. It should be the inverse of the repetition rate, a condition which is easily obtained.

Furthermore, if the investigated material calls for inspection at a localized suspected region, the correlator system can be configured to skip the early time trace, and start the process of the correlation only at the requested window of time, thus reducing the acquisition time significantly, at any prescribed S/N value. This could not be applied in a conventional pulse echo system, where the minimal time window is fixed.
SUMMARY

The system of choice depends on the relevant problem: The averaging pulse-system is appropriate when the required Signal to Noise Enhancement (SNRE) is low and when the full thickness of the material has to be inspected. In this case, fast measurement is possible, where the S/N improves as the averaging continues until adequate signal shows on the screen. The correlator system has the advantage when high SNRE is required, particularly when a specific region has to be inspected. The sweep rate will be chosen according to the required SNRE and the delay would be set up, and the enhanced trace would almost immediately be obtained. A multi-channel correlator would increase this advantage even more.

REFERENCES

Nondestructive Evaluation of Composite Space Structures

by

B. M. Lempriere
Boeing Aerospace and Electronics

presented to

NDE for Aerospace Requirements
University of Alabama in Huntsville
August 22-24, 1989

Performed under AFAI Contract F04611-88-C-0066
Monitor: Joe Sciabicca
NDE OF COMPOSITE SPACE STRUCTURES

OBJECTIVES:

Identify promising NDI technologies

- In-space inspection of composites structures
- Technology challenges in design, manufacture, and use

 Recommend cost-effective technology developments
SPACE SYSTEMS TO BE CONSIDERED

- Space-Assembled Structures
- Deployed Structures
- Manned Systems
NDE OF COMPOSITE SPACE STRUCTURES

APPROACH:

Review existing spacecraft missions and designs

Result:
- No common problems or requirements identified
- Spacecraft are large, complex
- Cannot be shut down, disassembled

Recommendation:
- 3-level monitoring system
- Technologies selected:
 - Acoustic Emission
 - Spectrophotometry
 - Eddy Current
 - Deflectometry
 - Actinometer
Figure 1. Monitoring Sequence
NDE of Composite Space Structures

GEOMETRY MONITORING

Global:
- Interferometers (laser, microwave)
- Extensometers (optical, electrical)
- Goniometers (optical, electrical)

Local:
- Strain gages
- Ultrasonics
- Eddy current
- X-rays/backscatter
NDE of Composite Space Structures

DYNAMICS MONITORING

Natural or localized excitation

- Mode shape, frequency, amplitude
 - Accelerometers
 - Strain gages
 - AE sensors
 - Interferometers
SUBSYSTEM LEVEL OF MONITORING

- Subsystem:

 Thermal coatings
 Support structure
 Mirror structure
 Pressure vessels
 Smart structure

- Parameters:

 Dimensional Precision
 Stiffness
 Strength
 Thermal Control
 Leakage (pressure vessels)
CRITICAL COMPONENT LEVEL OF MONITORING

- Critical Components:
 - Truss members
 - Joints
 - Beams and structural support
 - Adhesives

- Parameters:
 - Cracks and Delaminations
 - Stiffness
 - Strain
 - Stress
 - Coating degradation
 - Coefficient of Thermal Expansion (CTE)
 - Surface Damage
NDE of Composite Space Structures

DAMAGE MONITORING

Cracks:
- UT, CT, EC, resistance wires

Deformation
- Lasers, UT, etc

Impacts
- Visual, UT, EC, etc

Residual stress
- Strain gages

Repairs/maintenance, before and after
- X-rays, ultrasonics, eddy currents

Externally-Induced damage (hostility, impact, AO)
- Visual
 - Inference from frequency, stiffness, temperature
 - Thickness measurement

Thermal Coatings
- Thermometry, spectrometry

Internally-induced damage (fatigue, creep)
- Inference from frequency, stiffness, temperature
NDE of Composite Space Structures

SPACE ENVIRONMENT MONITORING

- Debris/meteorites
 - AE sensors
 - Piezofilm sensors

- Atomic oxygen (AO)
 - Silver actinometer
 - Tapered-element oscillating microbalance

- Solar radiation
 - Protons/electrons: Charge devices (Faraday cup, electrometer)
 - Ultraviolet: Spectrophotometer
 - Gammas/x-rays: Dosimeters
 - Flares: Optical, photocells
 - Trapped particles (Van Allen)

- Cosmic Rays (galactic/solar)
 - Emulsions
NDE of Composite Space Structures

OPERATIONAL ENVIRONMENTS

Manoeuvres, internal conditioning

- Accelerometers
- Strain gauges
- Temperature/pressure/humidity gages
- Outgassing/effluents
- System radiation (power source, output beam)
Table I. LOCAL DAMAGE/DEGRADATIONS WITH PRIORITIES

<table>
<thead>
<tr>
<th>Damage Type</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Alphabetical)</td>
<td></td>
</tr>
<tr>
<td>1 Absorp/Emiss</td>
<td>(AB)</td>
</tr>
<tr>
<td>2 Aging</td>
<td>(AG)</td>
</tr>
<tr>
<td>3 Bacteria/Fungi</td>
<td>(BF)</td>
</tr>
<tr>
<td>4 Cracks, Delams</td>
<td>(CD)</td>
</tr>
<tr>
<td>5 Contamination</td>
<td>(CO)</td>
</tr>
<tr>
<td>6 Crushing</td>
<td>(CR)</td>
</tr>
<tr>
<td>7 Distortion</td>
<td>(D)</td>
</tr>
<tr>
<td>8 Electric Currents</td>
<td>(E)</td>
</tr>
<tr>
<td>9 Fatigue</td>
<td>(F)</td>
</tr>
<tr>
<td>10 Major Damage</td>
<td>(MD)</td>
</tr>
<tr>
<td>11 Residl Stress</td>
<td>(RS)</td>
</tr>
<tr>
<td>12 Thinning</td>
<td>(TH)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Priority By</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Alphabetical)</td>
<td></td>
</tr>
<tr>
<td>1 Aging</td>
<td></td>
</tr>
<tr>
<td>2 Absorp/Emiss</td>
<td></td>
</tr>
<tr>
<td>3 Contamination</td>
<td></td>
</tr>
<tr>
<td>4 Cracks, Delams</td>
<td></td>
</tr>
<tr>
<td>5 Fatigue</td>
<td></td>
</tr>
<tr>
<td>6 Major Damage</td>
<td></td>
</tr>
<tr>
<td>7 Crushing</td>
<td></td>
</tr>
<tr>
<td>8 Distortion</td>
<td></td>
</tr>
<tr>
<td>9 Bacteria/Fungi</td>
<td></td>
</tr>
<tr>
<td>10 Thinning</td>
<td></td>
</tr>
<tr>
<td>11 Electric Currents</td>
<td></td>
</tr>
<tr>
<td>12 Residual Stress</td>
<td></td>
</tr>
</tbody>
</table>

Note: Low numbers mean high priority or difficulty
Table II. Significant Environments and Their Importance

<table>
<thead>
<tr>
<th>Environment (Alphabetical)</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Atomic Oxygen (AO)</td>
<td>7</td>
</tr>
<tr>
<td>2 Hostility (H)</td>
<td>4</td>
</tr>
<tr>
<td>3 Internal Environment (IE)</td>
<td>8</td>
</tr>
<tr>
<td>4 Magnetic Fields (MF)</td>
<td>11</td>
</tr>
<tr>
<td>5 Maint/Repair (MR)</td>
<td>1</td>
</tr>
<tr>
<td>6 Maneuvering/Reboost (MV)</td>
<td>2</td>
</tr>
<tr>
<td>7 Micro/Artif Gravity (MG)</td>
<td>12</td>
</tr>
<tr>
<td>8 Outgassing/Effluents (OE)</td>
<td>5</td>
</tr>
<tr>
<td>9 Space Assembly (SA)</td>
<td>3</td>
</tr>
<tr>
<td>10 Sp Debris/Meteorites (SD)</td>
<td>6</td>
</tr>
<tr>
<td>11 System Energy (SE)</td>
<td>9</td>
</tr>
<tr>
<td>12 Space Radiation (SR)</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Priority by Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Maintenance and Repair</td>
</tr>
<tr>
<td>2 Maneuvering</td>
</tr>
<tr>
<td>3 Space Assembly</td>
</tr>
<tr>
<td>4 Hostility</td>
</tr>
<tr>
<td>5 Outgassing/Effluents</td>
</tr>
<tr>
<td>6 Space Debris/Meteorites</td>
</tr>
<tr>
<td>7 Atomic Oxygen</td>
</tr>
<tr>
<td>8 Internal Environment</td>
</tr>
<tr>
<td>9 System Energy</td>
</tr>
<tr>
<td>10 Solar Radiation</td>
</tr>
<tr>
<td>11 Magnetic Fields</td>
</tr>
<tr>
<td>12 Micro/Artif Gravity</td>
</tr>
</tbody>
</table>
NDE of Composite Space Structure

Factors in instrumentation

- Costs of development, installation, operation
- Weight, size, power
- Accompanying software
- Inspection coverage
- Impact of space environment
- Need for human intervention
- Reliability
Table VIII. FACTORS IN MONITORING TECHNIQUES

<table>
<thead>
<tr>
<th>Alphabetical General Instruments</th>
<th>By Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerometer</td>
<td>1</td>
</tr>
<tr>
<td>Aco Emission</td>
<td>2</td>
</tr>
<tr>
<td>Bacteriology</td>
<td>3</td>
</tr>
<tr>
<td>Break Wires</td>
<td>4</td>
</tr>
<tr>
<td>Compton Bksctr</td>
<td>5</td>
</tr>
<tr>
<td>Computed Tomo</td>
<td>6</td>
</tr>
<tr>
<td>Deflct/Goniom</td>
<td>7</td>
</tr>
<tr>
<td>Eddy Current</td>
<td>8</td>
</tr>
<tr>
<td>Fiber Optics</td>
<td>9</td>
</tr>
<tr>
<td>Laser/M’wve Intf</td>
<td>10</td>
</tr>
<tr>
<td>M’wave Refl</td>
<td>11</td>
</tr>
<tr>
<td>Spect/Refltry</td>
<td>12</td>
</tr>
<tr>
<td>Strain Gage</td>
<td>13</td>
</tr>
<tr>
<td>Temperature</td>
<td>14</td>
</tr>
<tr>
<td>Thermography</td>
<td>15</td>
</tr>
<tr>
<td>Ultrasonics</td>
<td>16</td>
</tr>
<tr>
<td>Visual</td>
<td>17</td>
</tr>
<tr>
<td>X-Radiography</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specialized Instruments</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Actinometer</td>
<td>1</td>
</tr>
<tr>
<td>Calorimeter</td>
<td>2</td>
</tr>
<tr>
<td>Charge Device</td>
<td>3</td>
</tr>
<tr>
<td>Debris Flux</td>
<td>4</td>
</tr>
<tr>
<td>Dosimeter</td>
<td>5</td>
</tr>
<tr>
<td>Hygrometer</td>
<td>6</td>
</tr>
<tr>
<td>Gravitometer</td>
<td>7</td>
</tr>
<tr>
<td>Magnetometer</td>
<td>8</td>
</tr>
<tr>
<td>TEOM</td>
<td>9</td>
</tr>
</tbody>
</table>
Recommended technologies

- Acoustic emission:
 - Cracking, crushing, fatigue, major damage
 - Hostility, maintenance/repair, maneuvering, outgassing/effluents, space assembly, debris/meteorites

- Spectrophotometry:
 - Absorptivity and emissivity

- Eddy current:
 - Aging, cracks, distortion, damage, thinning
 - Maintenance/repair, maneuvering, space assembly

- Deflectometry

- Actinometry
 - Atomic oxygen
Develop sensors:

- Piezo film
- Integral amplifier, processor
- Packaging/mounting

Evaluate signatures:

- Defects
- Events
- Algorithms
Requirements:

- Spectral resolution
- Angular resolution

Develop:

- Multi-band retractable light source
- Wide-angle retractable detector array
- Spectral analysis microprocessor
Figure 4. Deployable Spectrophotometer
Aerospace Systems Technologies

Eddy Current

Develop:

- Multi-frequency tri-axial probes
- Excitation source, detector
- Correlation algorithms

Calibrate:

- Impedance vs. lift-off
- Impedance vs. conductivity
Develop

- Mirror system with CCD detectors
- Encoders
- Differential transformers
- Capacitive sensors
- Fiber optic reflectometer
Develop:

- Film with silver strips, dispenser
- Aperture shutter
- Electrical contacts, resistance measurement
Face View of Aperture

Film carrying silver strips

Sections AA: Spring-loaded contacts at both edges of film

Section BB: Slit Aperture

Figure 3. Multi-use Actinometer
Figure 10. X-Ray Backscatter Gage Concept
Data Handling for SPIP Workstation

by

Richard White, Misa Gage, Brian Lempriere
Boeing Aerospace and Electronics

Presented to

NDE for Aerospace Requirements
University of Alabama in Huntsville
August 22-24, 1989

Performed under

Hercules Contract B-I-7-ER-23321
NASA Contract NAS8-37801
Technical Objective of Solid Propulsion Integrity Program (SPIP) for Nozzles

Improve overall success rate of solid rocket motor nozzles

- Through improved understanding and capabilities

3.1 Materials characteristics and design analysis capabilities

3.2 Process understanding optimization and control

Improve nozzle reliability

3.3 Product evaluation and verification
Technical Objective (Continued)

3.3 Product evaluation and verification

- Develop automated image data analysis techniques and system
- Evaluate test beds and define optimum
- Develop advanced instrumentation
Overall System Uses

Aerospace Systems Technologies

NDE data

Integrated Non-Destructive Evaluation Data Reduction System (INDERS)

Image data analysis workstation

Possible uses
- Problem resolution NDE or design engineering
- Accept/reject quality control engineering
- Process control manufacturing engineering

Target
Program Overview

- Provide tools for nozzle manufacturer
 - To review production of NDE data
 - To review process parameters
 - To relate these to the fabrication process

- Review current production and NDE processes

- Select analysis techniques
 - Data display/management
 - Data prioritization
 - Data classification

- Determine hardware and software requirements

- Implement workstation design
Aerospace Systems Technologies

Factory Interviews

- Nozzle manufacturers and users:
 - Aerojet
 - Hercules
 - Hitco
 - Kaiser Pueblo and San Leandro
 - Thiokol
 - UTC/CSD

- What in-process material properties or features need to be monitored? (mostly from production personnel)

- What NDE derived material properties or features are applicable to the production environment? (mostly from NDE technologists)

- What are the requirements for a user interface with the NDE derived material properties or features? (jointly production personnel and NDE technologists)
Aerospace Systems Technologies

Inspection/QC Process

- NDE usually after cure and machining, before bonding

- Present techniques: Tag end test, weight, compression, radiography, alcohol wipe, tap testing

- Advanced techniques: RTR, CT, UT, ET

- Typical floor paper:
 1. Inspect material
 2. Record flow and volume test for each roll
 3. Verify rolls from different batches are not mixed
 4. Verify tape wrap to specs
 5. Verify bagging to specs
 6. Check vacuum and timing
 7. Verify autoclave or hydroclave procedures
 8. Record weight after cure and inspect for wrinkles
 9. Record thicknesses at 0, 90, 180, and 270 degrees
 10. Check machining
 11. Check radiography inspection
 12. Record thicknesses again
PRO Types of Data

- Time
- Temperature
- Pressure
- Chemistry
- Dimensions
- Weight
- Volume
- Photo
- Photo-micrographs
- Certifications
- Inspectors Name/Number
- Operators Name/Number
- ETC.
Aerospace Systems Technologies

Inspection Considerations

- Based on customer requirements
- Sometimes drive design
- MRB is largest user
- Presently no NDE until after machining
Aerospace Systems Technologies

Inspection Recommendations

- Catch defect as early as possible
- Report near-tolerance conditions (Presently only pass/no pass)
- Provide NDE data before and after cure
- Provide comparison of pre to post fire
- CAD may be helpful in data analysis
- Computerize routing order/inspection data
- CT workstation critiques received
 Reduce CT scan data
Aerospace Systems Technologies

Cause & Effect

Problem Area

Mission Failures

Defined By

Mission Modeling and Actual Cases

Example

Failure Modes
- Explosions
- Lack of Thrust
- Misdirected Thrust
- Etc.

Failure Initiator
- Burn Thru
- Lead Paths
- Ply Lift
- Etc.

Defect Type
- Voids
- Delams
- Porosity
- Etc.

Improper Process Variables
- Heat, Temp., Pressure, Time, Etc.

Cause of Failure Mode

Finite Element Analysis

Cause of Failure Initiator

NDE Data

Cause of Defect

Process Sensors
Aerospace Systems Technologies

SPIP Workstation Interfaces

- PRO data
- X-ray data
- CT & UT data
- Future data

DATA
- classified images
- annotated images
- identified defects
- classified mfg data

SPIP Workstation
Aerospace Systems Technologies

SPIP Workstation Use

INPUTS

- Human judgement
- Classifier
- Process Data Points Database

OUTPUTS

Defect Identified

Prioritization / Knowledge Base

- possible property deficiencies
- possible process steps where anomaly was caused
- possible reasons why it was caused
- suggestion for corrective measures
- prompt for corrective measure taken and result
- tailored reports, graphs, & images
Quality of Data

Aerospace Systems Technologies

<table>
<thead>
<tr>
<th></th>
<th>Qualitative</th>
<th>Statistical</th>
<th>Quantitative</th>
<th>Physical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distinguishing</td>
<td>Human</td>
<td>Relative to</td>
<td>Values independent of equipment</td>
<td>Expressed in engineering units</td>
</tr>
<tr>
<td>features</td>
<td>judgement</td>
<td>nominal or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>average</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examples:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiography</td>
<td>Radiograph</td>
<td>Low density</td>
<td>CT image (Hounsfield units)</td>
<td>Density in kg/m³</td>
</tr>
<tr>
<td></td>
<td>density</td>
<td>indications</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(LDIs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultrasonics</td>
<td>Amplitude</td>
<td>Gated low</td>
<td>Attenuation and wavespeeds (corrected for test factors)</td>
<td>Interlaminar shear strength (PSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>amplitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>indications</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Worse | Better
CT images alone may not contain sufficient information to distinguish between an acceptable dry ply and an unacceptable delamination.
Data Transfer

The Boeing INDEERS approach to managing NDE data is both systematic and flexible.
The Boeing approach to NDE feature mapping demonstrates the ability to superimpose multiple features on a common surface (RFS nozzle in this case) with outputs in engineering units.
SPIP Workstation

HW/SW Current Options

1. Dupont - Sun Workstation
 - INDERS hosted on Dupont
 - Add Sun WS for SPIP
 - Image Enhancement & Data Handling
 - Proven technology

2. Stand-alone Workstation
 - End-item inspection data
 - INDERS may be on WS
 - Low cost

3. NDE and Mfg Workstations Co-located
 - High speed bus between systems for images
 - Cost out INDERS WS also
 - X-ray digitizing developed in-house

4. NDE and MFG Workstations Separated
 - NDE and Mfg in separate locations
 - Local area network comm.
 - X-ray digitizing developed in-house
Required Software Packages for Workstation

1. Man Machine Interface/Data Display
 - 3-D color graphics
 - Text display
 - Mac style menu interface
 - 3-D manipulation of objects
 (rotation, translation, magnify, etc)
 - Image enhancement
 - Data base techniques

2. Data Management
 - Spreadsheet type relational database
 - INDERS formatted data files
 - Graphics display files
 - Archival, retrieval, logging
 - Interface to computertized production data

3. Classifying Images
 - Groups anomalies for display
 and analysis via statistical methods
 - Normal
 - Questionable
 - Anomalous

4. Knowledge Based Analysis and
 Prioritization Based on
 Production Contraints
 - Knowledge base-expert system
 - Dynamic - add, delete
 - Trend analysis
 - Autocorrelation
 - Blob analysis
 - Pattern recognition
 - Edge following
 - Region growth
NDE DATA APPLICATION
PRESENTED AT
SECOND CONFERENCE ON
NONDESTRUCTIVE EVALUATION FOR
AEROSPACE REQUIREMENTS
PRESENTED BY
JOSEPH H. HILDRETH
ASTRONAUTICS LABORATORY
EDWARDS AFB, CA

241
INTRODUCTION
OBJECTIVE OF NDE DRIVEN ANALYSIS
CONCEPTUAL PROCEDURE
REALITIES
SUMMARY
INTRODUCTION

NDE DATA USED SUBJECTIVELY TO DETERMINE ACCEPTABILITY

RADIOGRAPHY
ULTRASONICS

NEWER TECHNOLOGY ALLOWS COLLECTION OF QUANTITATIVE DATA

COMPUTED TOMOGRAPHY

HISTORICALLY, ANALYSIS PERFORMED ON AS-DESIGNED PART WITH MODIFICATIONS
OBJECTIVE OF NDE DRIVEN ANALYSIS

PERFORM COMPUTERIZED ASSESSMENT OF ACCEPTABILITY ON AS-BUILT PART

MOVE THE ACCEPT\REJECT DECISION PROCESS FROM SUBJECTIVE METHODS TO OBJECTIVE METHODS
NDE DRIVEN ANALYSIS METHODOLOGY

NDE parameters database

- CT density
- UT attenuation
- UT wave speed
- Location
- Voxel geometry

Finite element mesh

NDE PREPROCESSOR

Finite element model

NDE-material properties correlations

UTS

CT Density

Material model at each integration point
FINITE ELEMENT MESH OF CYLINDER
STIFFNESS MATRIX FOR FINITE ELEMENT

\[K = \int_{\text{vol}} B^T C B \, dv \]
SINGLE FINITE ELEMENT
WRINKLED CYLINDER SPECIMEN GEOMETRY

Anomaly: Wrinkle/wave (2)
Generated by: Dimpled and machined
Size: 0.1–0.35 Amplitude x 0.8 length
 0.0–0.25 Amplitude x 0.0 length
Location: 135° and 315° (approximate)
CT Inspection Geometry

SLICE 58
1.5mm Thick

1.1

UT Inspection Geometry

LOW RES
41 RES

ROW 21, COLUMN 1

ROW 4, COLUMN 1

ROW 1, COLUMN 1

DIRECTION OF ROTATION
OF TURNTABLE
IMAGES OF NDE DATA

CT DENSITY (G/CC)

ULTRASONIC ATTENUATION (DB)
PROCEDURE

DETERMINE VALUES OF NDE DATA AT INTEGRATION POINTS

DETERMINE VALUES OF MATERIAL PROPERTIES BASED ON NDE INDICATIONS

IF MULTIMODE NDE DATA IS BEING CONSIDERED THEN DETERMINE COMPOSITE AVERAGE OF EACH MATERIAL PROPERTY

TRANSFER MATERIAL PROPERTIES TO ANALYSIS CODE
REALITIES

MUST MATCH GEOMETRY OF PART TO GEOMETRY OF ANALYSIS MODEL

CARE MUST BE TAKEN WITH HOW NDE VOXELS ARE USED TO INTERPOLATE VALUES AT INTEGRATION POINTS

A SUBSTANTIAL EFFORT WILL BE REQUIRED TO DETERMINE CORRELATIONS BETWEEN NDE INDICATIONS AND ANALYSIS INPUT

IF MULTIMODE NDE DATA IS REQUIRED THEN WEIGHTING OF EACH TYPE OF DATA MUST BE DETERMINED
MATCH GEOMETRIES OF PART AND MODEL
NDE VOXELS - FINITE ELEMENT MESH OVERLAY

CT ZONE 1
PIXEL DIA = 0.49 MM

CT ZONE 2
PIXEL DIA = 0.68 MM

CT ZONE 3
PIXEL DIA = 0.94 MM
SUMMARY

DEMONSTRATED A METHODOLOGY FOR INCORPORATING QUANTITATIVE NDE DATA IN FINITE ELEMENT ANALYSIS

CORE OF REMAINING PROBLEM IS THE DEVELOPMENT OF CORRELATIONS BETWEEN NDE INDICATIONS AND MATERIAL PROPERTIES

IF PROBLEM REQUIRES MULTIMODE NDE DATA, THE RELATIVE IMPORTANCE OF EACH DATA TYPE MUST BE ESTABLISHED
ADVANCED TECHNIQUES FOR EXAMINATION OF COATINGS

Robert W. McClung, Consultant
C. V. Dodd and W. A. Simpson, Jr.
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831

Proceedings for
NDE for Aerospace Requirements Conference
Huntsville, Alabama

257
COATINGS OF ONE MATERIAL ON ANOTHER TO PROVIDE DESIRED SURFACE PROPERTIES ARE A VITAL PART OF INDUSTRY

- Especially important for critical components
- Allows less expensive materials for structure
- Coatings provide resistance to corrosion, abrasion, erosion, contact stresses, and other environmental attack (e.g., temperature or chemical)
- Protection may not be attainable through other fabrication methods
- Applications include textile, paper, petrochemical, and metal-processing, as well as aerospace industries
ALTHOUGH COATINGS ARE WIDELY USED, USE WOULD INCREASE WITH BETTER ABILITIES TO ASSURE INTEGRITY AND PROPERTIES

- A major problem for many coatings is poor or uncertain adherence of coating to substrate with thermal cycles (or other stress)

- Other properties of concern include thickness, lack of bond, delamination, flaws (porosity, cracks, etc.) microstructure, and homogeneity

- Relative importance of above properties can vary with type of coating and the service environment

- Nondestructive testing (NDT) techniques are beneficially used to evaluate many of these properties of coatings after fabrication and service; advances are needed for improved quantitative data
A wide variety of NDT techniques are currently used for examination of coatings; a non-exhaustive listing includes:

- **Thickness:** electromagnetic (eddy-current and magnetic methods), ultrasonic, optical (for transparent coatings), penetrating radiation (e.g., x-ray fluorescence, beta backscatter), thermal

- **Lack-of-bond:** thermal, ultrasonic, acoustic, optical holography

- **Flaws:** electrical continuity, fluid penetrant, ultrasonics, optical holography, thermal
PROBLEMS AFFECTING CURRENT NDT PRACTICE FOR SOME APPLICATIONS INCLUDE:

- **Thickness**
 - variations in electrical or magnetic properties of coating or substrate affect eddy-current and magnetic techniques
 - inhomogeneities in coating or substrate can affect penetrating-radiation techniques
 - ultrasonic technique requires adequate thickness for resolution and acoustic mismatch between coating and substrate
 - IR thermal techniques can be affected by relative emissivity

- **Lack of bond**
 - IR thermal techniques can be affected by emissivity
 - bond must be stressed for optical holography
 - ultrasonic techniques require adequate thickness for resolution

- **Flaws**
 - electrical continuity requires electrical contact with substrate and completely-through flaw
 - ultrasonics and holography may be useful for cracks or other linear flaws; probably not for porosity
 - fluid penetrant affected by natural background of acceptable porosity
 - optical holography requires application of stress

- **Adherence**
 - with few exceptions, techniques are unavailable for quantitative nondestructive evaluation of coating adherence
RECENT ADVANCES IN NDT TECHNOLOGY OFFER IMPROVED CAPABILITY OR POTENTIAL TO OVERCOME SOME OF THE PROBLEMS FOR COATING EVALUATION

- Multi-frequency and pulsed multiple-parameter eddy-current technology provides the capability to correct for variations in electrical and magnetic properties of coating and substrate
 - two- and three-frequency instruments that simultaneously measure phase and magnitude of all frequencies and process in nonlinear algorithms to correct for variables and solve for 4–6 unknowns (e.g., thickness, conductivity, permeability, etc.)
 - pulsed (and magnetic-saturation) instruments as another approach for ferromagnetic materials for multiparameter analysis

- High-temperature probes offer potential for application to process control

- Ultrasonic guided boundary waves (interface waves) are being investigated by ORNL and others for evaluation of interfaces in bonded structures
 - models developed at ORNL for three-layer interfaces for ceramic joints
 - transmission along interface offers potential for evaluation and analysis of interface properties (e.g., bond strength)
COATINGS ARE EXPECTED TO BE INCREASINGLY USED TO INCREASE COMPONENT LIFE

- Nondestructive testing will play a vital role for process control, fabrication acceptance, and in-service inspection

- Improved NDT technology will increase the role for both NDT and coatings