Space Lab System Analysis

Advanced Solid Rocket Motor (ASRM)
Communications Networks Analysis

Contract:
NAS8-36717

Final Report

12/31/90

Frank M. Ingels
Robert J. Moorhead II
Principal Investigators

Jane N. Moorhead
C. Mark Shearin
Dale R. Thompson
Research Assistants

Department of Electrical and Computer Engineering
Mississippi State University
Mississippi State, MS 39762
601-325-3912

submitted to:
NASA/MSFC
EB32/Suttle
A synopsis of research on computer viruses and computer security is presented. A review of seven technical meetings attended is compiled. A technical discussion on the communication plans for the ASRM facility near Iuka, Mississippi, is presented, with a brief tutorial on the potential LAN media and protocols.
Space Lab System Analysis

Advanced Solid Rocket Motor (ASRM)
Communications Networks Analysis

Contract:
NAS8-36717

Final Report

12/31/90

Frank M. Ingels
Robert J. Moorhead II
Principal Investigators

Jane N. Moorhead
C. Mark Shearin
Dale R. Thompson
Research Assistants

Department of Electrical and Computer Engineering
Mississippi State University
Mississippi State, MS 39762
601-325-3912

submitted to:
NASA/MSFC
EB32/Suttle
1.0 INTRODUCTION
The Statement-of-Work (SOW) for Contract NAS8-36717, Option III was:

The contractor shall continue providing technical expertise in networking distributed computer system architectures. Participation in design review meetings are required and independent critique shall be provided the Government. In addition to various system architectures being considered for the Marshall Avionics System Testbed (MAST), the contractor shall analyze the networks planned for the Advanced Solid Rocket Motor (ASRM) facility at Yellow Creek, Mississippi. This analysis shall consider estimated “worst case” data loading in the automated manufacturing of solid rocket motors. It is very important that the real-time aspect of manufacturing processes for (ASRM) be investigated and required safing functions be included in data loading.

The ASRM portion of the SOW was the main effort in the third and final year of this contract. Soon after Option III commenced, NASA decided to implement an interim facility near the Yellow Creek site, as opposed to launching immediately into the buildup of a permanent facility on the Yellow Creek site. Getting the interim facilities operational took precedence over designing the long-term, permanent plant, for which we were contracted to analyze the communication networks. Since it would therefore be a while before there was a network design to analyze, we were requested to look into the issues of computer security and computer virus. Our endeavors in this area are summarized in Section 2. For much more information, the reader is directed to the monthly reports covering the December 1989 to May 1990 time frame.

As the planning began to firm up on the network design, we began to redesign and rebuild our tools to analyze the proposed network designs in the appropriate ways. Our efforts in this area are summarized in Sections 3–5.

The five Appendices include:

- A list of the five interim final reports which have been submitted earlier.
- A list of the seven meetings we have attended over the past 13 months, which involved 29 person–days.
- A listing of the network analysis program which has been developed and some sample program runs.
- A list, albeit incomplete, of acronyms.
2.0 COMPUTER SECURITY AND VIRUSES

A lot of time was spent in the first half of 1990 learning about the security requirements for ASRM and about viruses. A brief summary of computer viruses is in section 2.1. In section 2.2 the Internet Worm, propagated by Robert Morris, and some potential ways of protecting against such worms are described. In section 2.3 we include a bibliography of papers on computer viruses and the Internet worm. A copy of each reference can be provided on request.

2.1 COMPUTER VIRUSES

There are many types of malicious software: Trojan horses, seemingly performing benign actions while also performing covert actions; Logic Bombs, performing some pre-programmed action when given the appropriate trigger; Worms, crawling through computer networks, frequently changing their location to avoid detection, and taking over the resources of a computer, using it for their own purposes; and Viruses, attacking other system files, modifying them so that they contain a copy of the virus. All of these forms of malevolent software pose a considerable risk to computers, whether linked to a network or not. Viruses can be the most dangerous form because they often exhibit many of the attributes of Trojan Horses, Logic Bombs and Worms. Even viruses written as harmless pranks can be harmful, using more memory than their writers intended and causing unintended boot failures and system crashes. Most viruses work on an operating system dependent manner. Thus there are IBM PC DOS viruses, Macintosh viruses, and Unix viruses to name a few. There is currently a big push toward developing ways to diagnose and stop viruses before they infiltrate PCs and networks.

Several types of antiviral programs are available. Obviously, these packages can only work for known viruses so none are totally virus perfect. Integrity checkers generate a checksum for each program on your system. At boot-up time, these values are compared against the stored values for each program. This works for programs that don't use their .COM files to store configuration options set by the individual.
Monitoring programs sit on the machine interrupts and examine each for suspicious activity. Virus removers examine the hard disk for signs of viruses and alert the user if suspicious activity is recognized. Some of the programs even remove the virus. These programs can only work for those viruses that are in existence today and that the author of the software or hardware has incorporated into the code.

For stand-alone PCs, the main input avenue for a virus is through infected floppy disks. Even new software is susceptible to carry a virus. CD_ROMs have also been known to carry viruses.

Many people use backups to protect against viruses. This certainly is not a fool-proof method but does provide some protection. Suggestions for backing up material includes backing up only data files and rotating through several different backup copies, e.g. one for each day of the week. Unfortunately viruses often have triggers that allow the virus to remain dormant for long periods before becoming active. Thus backups could contain the virus unknowingly.

Other preventive measures against viruses include always putting write-protect tabs on non-data disks, and not loaning out program disks. On the hard disk, make all .COM and .EXE files read-only. This can be easily done with the ATTRIB command. Move the COMMAND.COM file out of the root directory; many viruses work specifically on this file. Don't let others use your system. This can be done by locking up the system with keys.

Perhaps the most sensible advice is to use as many preventive measures as possible but don't be fooled into thinking you can beat the threat of a possible virus.

2.2 THE INTERNET WORM

Although the worm that entered the Internet system on November 2, 1988, did not destroy any files, intercept private mail, reveal passwords, corrupt databases, or plant Trojan horses, it certainly opened the public's eye to how weak the computer security defenses really are. The worm, only infecting Sun 3 systems and VAX computers running variations of 4.X BSD
Unix, took advantage of some flaws in standard software installed in many Unix environments.

One flaw in the Unix system that allowed the migration of the worm is the meager password security. Users passwords are encrypted using a permuted version of the Data Encryption Standard (DES) algorithm. This algorithm is assumed to be unbreakable because the exhaustive search would require massive amounts of time. Yet new and faster technology has changed the attitude concerning the invincibility of the DES algorithm. Also many passwords are trivial and easy to guess. By using parallel checking and trying easily-guessed passwords, the worm was able to access over 50% of the accounts at some sites.

The current password utility makes only a minimal attempt to ensure new passwords are non-trivial to guess. Many of the passwords used by the worm were merely the user id or some perturbation of it. The worm also used the online dictionary as a source for possible passwords. Policies should be put in place to require a minimum number of letters, a minimum combination of numbers and letters, uppercase as well as lower case, not based on account name or in the online dictionary.

The password of each user, although encrypted, is stored in a publicly readable file. The file also stores accounting information; thus a user can utilize the file to obtain information about other users. By organizing the password with publicly available data, an attacker could have a list of possible passwords, encrypt them, and compare them with the actual passwords without any attention flag being raised. If the encrypted passwords were stored in a shadow password file only readable to system administrators, outside intrusion could be prevented. Also, the encryption technique and the command to compare encrypted words should be privileged commands. Additionally, a threshold could be set to check for repeated attempts from the same process.

The VAX/VMS System Security Guide that comes with VMS should be read by system managers. There are techniques included that might prevent break ins. Also there is a security
toolkit put out by SPAN-NSN (Space Physics Analysis Network– NASA Science Network) that should be looked into.

2.3 BIBLIOGRAPHY


3.0 LOCAL AREA NETWORKS USING OPTICAL FIBERS

Even though optical fibers are more expensive than the standard copper medium of transmission (twisted pair, coaxial, baseband), using fiber optics in a LAN offers several distinct advantages:

- Because they use light instead of electricity, fiber optic cables are free from electromagnetic interference, crosstalk, and other types of noise except that which is introduced into the system from the electronic interfaces to the network. This is especially useful for sites with high levels of EMI.

- Since they have a large bandwidth with little inherent loss, optical fibers can provide data rates up to around 100 Gbits/s over 100km [KLT87]. One reason for this is that the bandwidth is inversely proportional to the length, while with wire the bandwidth is inversely proportional to the length squared.

- Due to the fact that taps are difficult to place in the network, optical fibers are very secure from unwanted intrusion.

- Since they are physically small and lightweight, optical fibers aid installation and maintenance. An optical fiber is generally 1/6 the weight of an equivalent coaxial cable carrying the same amount of information.

- Because optical fibers currently propagate with very little attenuation – typically as low as 0.2 dB/km – repeaters are not necessary for distances under 100km [JO88].

- Since optical fibers carry no electrical current, they are ideal in situations where a spark could set off volatile substances.

3.1 TOPOLOGIES

The selection of the topology, or physical layout/wiring of the LAN is one of the most important design considerations. Each of the four basic types of LAN topologies have pros and cons that must be weighed to select the proper topology for the specific needs of the network.

3.1.1 Bus

In the bus topology, the network is connected linearly, as can be seen in Figure 3.1.1. Each node along the line has access to the channel. The message is sent with an addressing code so that only the proper node will interpret the message.
To implement the bus topology on a fiber optic medium, either a passive or active coupling interface may be used (see Figures 3.1.2 and 3.1.3). At every active network interface, the entire optical signal enters the interface, undergoes an opto–electronic (denoted as O/E in the figure) conversion, is run through the node, and then is re–inserted back into the fiber medium through an electo–optic (E/O in the drawing) converter. The disadvantage of the active network is the cost and complexity. The passive network interface sends and receives messages directly from the fiber medium without the need for a break or interruption in the fiber. The passive network is a lossy implementation, and is limited to about 13 network interfaces that may be cascaded in sequence [KLT87].

A special case of the bus configuration is the tree. This is a more complex bus form that branches off from the common communication channel. The network branches are usually optical hubs.
3.1.2 Ring

The ring topology (see Figure 3.1.4) is distinct from the bus configuration in that the nodal arrangement forms a closed, roughly circular layout. Like the bus topology, all the nodes on the ring receive the message and decide whether to interpret it or not based on the destination address. Also like the bus arrangement, there are active and passive ring systems.
In the active ring configuration, each node converts all of the optical energy to electrical signals to analyze it. This procedure serves a secondary function as a repeater. While the active ring has a relatively simple design with high-performance, they are generally costly and difficult to service, since every node failure or fiber break will crash the whole network.

In the passive ring configuration, each node derives its message from the optical fiber without interrupting the signal for opto-electronic conversion. This means that a node failure would not always crash the network like the active case, but a fiber break still will. This method brings its own set of problems, however. Because there is a continuous loop with no regeneration (opto-electric to electro-optic conversions at each node), echoes and unwanted distortions will arise in the medium. A signal that is injected into the fiber will remain there until attenuation eventually removes it.

3.1.3 Star
The star topology (see Figure 3.1.5) consists of a centralized hub that is linked to every other hub or node in the system point-to-point. The centralized hub also switches between the various nodes giving collision detection and CSMA capabilities. At its best, a star topology makes use of simple, point-to-point fiber connections without any problems of tap losses or
echoes that the other two types of topologies have. At its worst, however, it has other problems like complex medium-access protocols and extensive collision detection and switching equipment.

![Star Topology Diagram](image)

**Figure 3.1.5: Star Topology**

Like the ring and bus topologies, the star can be either passive or active. Because of the similarities to an Ethernet broadcast bus, the passive star can have CSMA/CD protocols with little modifications. However, since the passive star does not include regeneration, there may be different optical signal power levels that are received by nodes in the system that arise from collisions. To correct this problem, a separate collision sensing device may be externally coupled to the passive star coupler.

### 3.2 PROTOCOL TYPES

#### 3.2.1 Ethernet

The Ethernet system was designed by XEROX and uses carrier-sense multiple-access with collision detection (CSMA/CD) [IN88]. Many different stations are connected to a common bus. If the bus is silent then the station will try to transmit a packet of data and then wait for an acknowledgement (ACK) from the receiving station. Once the receiving station sends
an ACK then the transmitting station will send another packet. If two stations try to transmit at the same time then the information will collide. Then each station waits a random amount of time before trying to transmit again. If the station collides again then it waits a longer time. Each station has an exponential backup algorithm so the more collisions the longer each station will wait and the bus will quiet down. As long as the information is bursty in nature then the system will work.

The data rate for Ethernet is 10 Megabits per second (Mbps). The maximum station separation is 2.5 km. A maximum of 1024 stations can be connected to one Ethernet system. Normally, coax cable is used to interconnect the computers although fiber optical fibers can be used now. The standard topology is a bus topology.

On the data link layer, Ethernet uses CSMA/CD. The data is sent in variable size frames commonly called "packets" with a minimum spacing of 9.6 μs. The frame construction consists of:

1. 64 bit preamble
2. 48 bit destination address
3. 48 bit source address
4. 16 bit type field
5. 46 to 1500 bytes data field
6. 32 bit CRC error check field

The preamble provides synchronization and frame mark. The destination address contains the physical addresses of a particular station or a group of stations. The source address contains the physical address of the transmitting station. The type field is used by high-level network protocols. The data field contains the data being sent. The error check field consists of a Cyclic Redundancy Check which is generated by the transmitting station. The receiving station generates a CRC when it receives a packet and checks it against the received CRC. If they do not match then the transmission was garbled and the receiving station will ask for
the packet again. This continues until an ACK is received and then the transmitting station can send another packet. Ethernet allows 15 re-attempts before the station times out [IN88].

3.2.2 FDDI

FDDI, or Fiber Distributed Data Interface, is a network standard developed by the American National Standard Institute (ANSI X3T9.5) that runs at 100Mbps, or around ten times the speed of Ethernet. FDDI was started as a high-speed network for providing packet data between processors and fast storage devices. Now, FDDI can also be used as a high-speed low-error rate backbone to interconnect slower LAN’s like IEEE 802.3 (CSMA/CD), 802.4 (Token Bus), or 802.5 (Token Ring). FDDI uses optical fibers for the communication medium and a timed token media access protocol with bus topology which provides each node equal access to the network. For the transmitting devices, Light Emitting Diodes (LEDs) are generally used. By using multi-mode optical fibers, links around 2 km are standard [KLT87]. By using single-mode optical fibers with laser diode transmitters the link distance can be extended up to 60 km. FDDI has several distinct advantages:

- Up to 1000 connections.
- Total fiber path length up to 200 km.
- Bit error rate (BER) less than 2.5E-10 [JA90]

FDDI uses a form of serial baseband transmission that combines both the data and the clock transmissions on a single bit stream. Because the clock information is transferred with the data, synchronization is accomplished with the recovery of the data.

FDDI can use Manchester encoding, like Ethernet, but normally FDDI uses 4b/5b with NRZI encoding. 4b/5b means that it uses combinations of five code bits to represent a symbol of four bits. NRZI is an edge-type code that is short for ”Non-Return to Zero Invert on ones” which in optical fibers deals with polarity transitions. Every polarity change results in a logical ”0” (low) while no change in polarity results in a logical ”1” (high). Manchester encoding, on the other hand, is a level-type code where a ”zero” starts at logic low and makes a low to high transition in the middle of a clock cycle, and a ”one” starts at logic high and makes
a high to low transition in the middle of a clock cycle. The 4b/5b NRZI coding is chosen over the standard Manchester encoding system that Ethernet uses for two major reasons:

- The 4b/5b with NRZI encoding is more efficient, requiring cheaper components.
- Along with the frame formats, the 4b/5b with NRZI encoding allows easier detection and correction of errors.

The 4b/5b encoding scheme is more efficient in that it converts four data bits to five code bits, resulting in an 80% efficiency. This would require the optical components to be 125 Mbps in order to obtain the standard 100 Mbps required for FDDI. With the Manchester encoding scheme there are two pulses per data bit resulting in a 50% efficiency that would require 200 Mbps components for the system to run at the standard 100 Mbps.

The manufacturing data network proposed for the Yellow Creek site is a hybrid of FDDI and IEEE 802.3/Ethernet. The connections from building to building will be Ethernet/IEEE 802.3 based, while within the OIS building, FDDI will link the five Ethernet lines together for processing in the central VAX computer. All of the fibers installed in the system will be FDDI compatible 62.5 micron fibers to easily changeover to a full FDDI system, should the need arise.

3.3 PERFORMANCE MEASUREMENTS

The performance of a LAN network can be broken into four different parts:

1. Response time
2. Delivery time
3. Throughput rate
4. Accuracy

The response time is the amount of time that the system will respond to a command issued by the transmitting station. The delivery time is the amount of time that a message will take to arrive at the receiving station. The throughput rate is the percentage of packets that are received without errors. The accuracy is a measure of how many errors the system will introduce.
4.0 COMPUTER SIMULATION OF A LAN

The throughput of a LAN is the percentage of packets that are received without errors. To simulate the throughput of the LAN at Yellow Creek a program was written in C using a modified version of the flow chart found in *Telecommunications and Data Communications System Design with Troubleshooting* by Harold B. Killen [KIL86]. The program uses a Poisson distribution and assumes a constant service time. It does not take into account the exponential backoff of the nodes during collision detection.

The configuration for the LAN is loaded as a separate data file. The parameters of the particular LAN are in a separate data file and loaded by the user. The parameters are:

- \( q \) = the quitting point
- \( nn \) = number of nodes
- \( d \) = average distance between nodes in feet
- \( bp \) = bits per page
- \( ps \) = pages per second
- \( bc \) = bits per packet
- \( pf \) = propagation factor of the media
- \( ts \) = transmission speed in bits per second
- \( ls \) = speed of light in feet per second

To simplify the program all times are put in terms of slot times. At the end of the program all slot times are converted back to seconds. The program calculates the data entry rate (de) in packets per second, the slot time, and the propagation delay. Then it calculates the interarrival time assuming a Poisson distribution.

\[
\text{at} = -\text{aa} \cdot \ln(P)
\]

\( \text{aa} \) = mean arrival time

\( P \) = random number between 0 and 1

If the interarrival time is less than the propagation delay then a collision occurs. If the amount of time for a packet to arrive is less than the interarrival time then a collision occurs. The number of successful packets and collisions is counted along with the time. Then the through-
put is calculated and compared to the theoretical throughput predicted by the following formula [KIL86]:

\[
Th = \frac{G \exp(-AG)}{G(1 + 2A) + \exp(-AG)}
\]

where \( G \) = total packets per slot time

\( sl = \) slot time = number of bits being sent / the transmission speed

\( A = \) propagation delay in slots

The first LAN configuration consists of one node talking to the main computer on the CASE PREP LAN trying to send one page of text. A distance of one thousand feet was chosen because it is the largest distance between nodes in CASE PREP. The number of bits per page was chosen assuming 25 lines of 80 characters which gives 2000 characters. Assuming standard ASCII of 8 bits this gives 16000 bits per page. The number of pages per second was chosen to be 1 page per second as given in the original specifications. The largest packet consists of 1518 bytes or 12144 bits. An average index of refraction of 1.46 was used to calculate the propagation factor using \( v = c/n \). Therefore the propagation factor is \( 1/n \). The transmission speed of 10 Megabits per second was chosen since this is the speed that the Ethernet protocol uses.

The results of this configuration are shown in Appendix D. The throughput is low because throughput is defined as the average usage time without conflicts divided by the summation of average idle and busy times.

The throughput is \( S = \frac{U}{B + I} \), where

\( U = \) average usage time without conflicts

\( B = \) average busy time

\( I = \) average idle time

Since there was a large idle time, the throughput is low (.0016). The LAN efficiency factor is the throughput divided by the offered load. It tells what percentage of time the user will
find the system open for use or not busy. In this case, the channel will be open for use 99.16% of the time.

The second LAN configuration simulates the same LAN, but with 24 nodes trying to send one page of text. The throughput is still low because the LAN is lightly loaded. The LAN efficiency decreased to 96.72%.

The third LAN configuration consists of one node talking to the main computer on the CASE PREP LAN trying to send one page of graphics. A distance of one thousand feet was chosen because it is the largest distance between nodes in the CASE PREP. The number of bits per page was chosen assuming 640 by 480 pixels with 4 bits per pixel which gives 1,228,800 bits per page. The number of pages per second was chosen to be .3 pages per second which gives each node 3 seconds to transmit one graphics page as given in the original specifications. The throughput increased to .0356. The LAN efficiency dropped to 93.12%.

The fourth LAN configuration consists of 24 nodes talking to the main computer on the CASE PREP LAN trying to send one page of graphics. A distance of one thousand feet was chosen because it is the largest distance between nodes in the CASE PREP. The number of bits per page was chosen assuming 640 by 480 pixels with 4 bits per pixel which once again gives 1,228,800 bits per page. The number of pages per second was chosen to be .3 pages per second which gives each node 3 seconds to transmit one graphics page as given in the original specifications. The theoretical throughput increased to .2276 while the simulated throughput increased to .1857. The LAN efficiency dropped to 62.98%. Therefore 62.98% of the time the user will find the network open to use. This also means that 37.02% of the time the user will find the network busy.
5.0 REFERENCES

[KIL86]


[IN88]

Ingles, F. M., “Local Area Networks”, 1988

[JO88]


[KLT87]


[JA90]

## APPENDIX A

Interim Final Reports  
Contract Number NAS8–36717

<table>
<thead>
<tr>
<th>Title and Subtitle</th>
<th>Period Covered</th>
<th>Performing Organization Report Number</th>
<th>No. of Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spacelab System Analysis</td>
<td>9/86 to 9/87</td>
<td>MSU-EE-FIN-9-87</td>
<td>182</td>
</tr>
<tr>
<td>Spacelab System Analysis</td>
<td>9/87 to 9/88</td>
<td>MSU-EE-FIN-9-88</td>
<td>214</td>
</tr>
<tr>
<td>Spacelab Systems Analysis–A Study of Communications Systems for Advanced Launch Systems</td>
<td>6/87 to 10/88</td>
<td>MSU-EE-FIN-10B-88</td>
<td>209</td>
</tr>
</tbody>
</table>
APPENDIX B

Meetings attended 11/01/89 through 11/30/90

1. Nov. 6-7, 1989  Communications Working Group 3 people, at NASA/MSFC
2. Jan. 7-8, 1990  Communications Working Group 2 people, at NASA/MSFC
4. July 19, 1990 status/update meeting 2 people, at RUST International
6. September 14, 1990 Communications Working Group 3 people, at NASA/MSFC
7. November 16, 1990 Pre-review of OIS Communications Specs 1 person, at NASA/MSFC
APPENDIX C
PROGRAM LISTING
This program simulates a Local Area Network. It uses a Poisson distribution and assumes a constant service time.

#define q quitting point
#define nn number of nodes
#define d distance between nodes in feet
#define bp bits per page
#define ps pages per second
#define bc bits per packet
#define pf propagation factor
#define ts transmission speed in bits per second
#define ls speed of light in feet per second
#define de data entry rate in packets per second
#define sl slot time in seconds (unit used in program)
#define pd propagation delay in slots
#define aa average arrival time in slots
#define at arrival time in slots
#define u channel usage without conflicts in slots
#define tu total channel usage w/o conflicts in slots
#define s sl + pd total number of slots for message
#define b busy channel time in slots
#define tb total busy channel time in slots
#define i idle time in slots
#define ti total idle time in slots
#define to total channel usage in slots
#define ol[] offered load in slots
#define ab average bus busy time in slots
#define au average channel usage without conflicts in slots
#define ai average idle time in slots
#define ss[] simulated throughput
#define st[] theoretical throughput
#define ot operating time in slots
#define top temporary variable
#define bot temporary variable
#define x counter for number of nodes talking
#define z counter
#define c cycle counter
#define co number of collisions
#define a number of successful packets
#define tc total number of collisions
#define ss[] simulated throughput
#define st[] theoretical throughput
#define ot operating time in slots
#define top temporary variable
#define bot temporary variable
FILE *datafile, *outputfile;

/* Declare variables */
int q,nn,x,z,c,co,nb,a,tc[1000],cl[1000];

float d,bp,ps,de,bc,pf,ts,ls,sl,pd,aa,at,u,tu,s,b,tb,i,ti,to,ol[1000],ab,au,ai,ss[];

/****************************
/* The main computes the slot time and propagation delay */
/* It also calculates the arrival time using Poisson */
/* distribution. A random number between 0 and 1 is */
/* generated using rand(). It then checks for a collision*/
/****************************

main ()
{
  char in[80];
  char out[80];
  double templ, temp2;
  / Input lan configuration */
  printf ("\n");
  printf("What file next? ");
  scanf("%s", in);
  getchar();
  datafile = fopen(in,"r");
  strcpy(out,in);
  strcat(out,.out);
  outputfile = fopen(out,"w");

  / Load in data file of the LAN network */
  fscanf(datafile,"%d",&q);
  fscanf(datafile,"%d",&nn);
  fscanf(datafile,"%e",&d);
  fscanf(datafile,"%e",&bp);
  fscanf(datafile,"%e",&ps);
  fscanf(datafile,"%e",&bc);
  fscanf(datafile,"%e",&pf);
  fscanf(datafile,"%e",&ts);
  fscanf(datafile,"%e",&ls);
  close(in);

  / Start calculating */
  de = bp*ps/bc;
  sl = bc/ts;
  pd = d/sl/(pf*ls);
  for (x = i; x <= nn; x = x +1 )
  {
    at=co=c=ti=tu=a=b=tb=to=0;
    for (z = i; z <= q; ++z)
    {
      c = c + 1;
      aa = 1.0/(de*(float)x)/sl;
      templ = rand();
      temp2 = templ/2147483647;
      at = -aa*log(temp2);
      csma();
    }
    statistics();
  }
  initial();
  output();
  printout();

  /****************************
  / Collision sense multiple access. Checks for collision */
  /****************************
void csma ()
{
    u = l;
    s = l + pd;
    /*******************************************************************************/
   /* Check if arrival time less than propagation delay */
   /*******************************************************************************/
    if (at<=pd)
    {
        co = co +1;
        u = at;
        b = u + 1 + pd;
    }
    /*******************************************************************************/
   /* Check if amount of time for packet to arrive is less */
   /* than the arrival time predicted by Poisson. */
   /*******************************************************************************/
    if (s<=at)
    {
        b = s + u;
        tb = tb + b;
        i = at - s;
        ti = ti + i;
        a = a + 1;
        tu = tu + u;
        to = to + b + i;
    }
}
void statistics ()
{
    nb = nb + 1;
    cl[nb] = co;
    statscsma ();
    tc[nb] = c - a;
    ol[nb] = de*(float)x*sl;
    theory ();
}
void statscsma ()
{
    if (a!=0)
    {
        ab = tb/a;
        au = tu/a;
        ai = ti/a;
        ss[nb] = au/(ab+ai);
    }
    /*******************************************************************************/
   /* Calculates the theoretical throughput */
   /*******************************************************************************/
    void theory ()
    {
        float top;
        float bot;
        top = ol[nb]*exp(-(pd*ol[nb]));
        bot = ol[nb]*(l+2*pd) + exp(-(pd*ol[nb]));
        st[nb] = top/bot;
    }
    /*******************************************************************************/
   /* Output the results */
   /*******************************************************************************/
    void output ()
    {
        /*convert slots back to seconds*/
        x = x-1;
    }
ot = (float)q/((float)x*de);
to = to*sl;
ai = ai*sl;
ab = ab*sl;
au = au*sl;
ti = ti*sl;
tb = tb*sl;
tu = tu*sl;
printf("\n");
/*print out stats for number of nodes trying to talk*/
printf("TIME COMPONENTS OF SIMULATION \n");
printf("Number of Nodes = %d \n",x);
printf("Total operating time (seconds) %12.8f \n",ot);
printf("Total channel usage (seconds) %12.8f \n",to);
printf("Average idle time (seconds) %12.8f \n",ai);
printf("Average busy time (seconds) %12.8f \n",ab);
printf("Average usage time w/o conflicts (sec) %12.8f \n",au);
printf("Total idle time (seconds) %12.8f \n",ti);
printf("Total busy channel time (seconds) %12.8f \n",tb);
printf("Total channel usage time w/o conflicts %12.8f \n",tu);
printf(" \n");
printf(" \n");
}
void initial ()
{

/***************************************************************
/* printout initial conditions */
/***************************************************************
printf("\n");
printf(" LAN SIMULATION \n");
printf("***************************************** \n");
printf("kn
INITIAL CONDITIONS \n");
printf("Quitting point %12d \n",q);
printf("Number of nodes %12d \n",nn);
printf("Distance between nodes in feet = %12.0f \n",d);
printf("Bits per page = %12.0f \n",bp);
printf("Pages per second = %12.2f \n",ps);
printf("Bits per packet = %12.0f \n",bc);
printf("Propagation factor = %12.2f \n",pf);
printf("Transmission speed in bits per second %e \n",ts);
printf("Speed of light in feet per second %e \n",ls);
printf("\n");
printf("CALCULATED CONDITIONS \n");
printf("Data in packets per second = %12.8f \n",de);
printf("Slot time in seconds = %12.8f \n",sl);
printf("Propagation delay in seconds = %12.8f \n",pd);
printf(" \n");
}
void printout ()
{
float ef = 0;
int j =0;
float sps;
/*convert slots back to seconds*/
pd = pd*sl;

/* Printout results and throughput */
printf("RESULTS OF SIMULATION \n");
/*
for (j = 1; j <= nb; j++) */
*/
/* Only printout largest number of nodes talking */
j = nb;
    ef = ss[j]/ol[j];
printf("Number of nodes talking %d \n", j);
printf("Theoretical throughput (ST) %3.4f \n", st[j]);
printf("Simulated throughput (SS) %3.4f \n", ss[j]);
printf("Total number of collisions %d \n", tc[j]);
printf("Offered load in packets/slot (G) %3.4f \n", ol[j]);
printf("LAN efficiency factor (SS/G) %3.4f \n", ef);
printf(" \n");
printf("\n");
} */
APPENDIX D
SAMPLE PROGRAM OUTPUTS
INITIAL CONDITIONS
Quitting point = 2000
Number of nodes = 1
Distance between nodes in feet = 1000
Bits per page = 16000
Pages per second = 1.00
Bits per packet = 12144
Propagation factor = 0.68
Transmission speed in bits per second = 1.0000000e+07
Speed of light in feet per second = 9.833894e+08

CALCULATED CONDITIONS
Data in packets per second = 1.31752300
Slot time in seconds = 0.00121440
Propagation delay in seconds = 0.00123141

TIME COMPONENTS OF SIMULATION
Number of Nodes = 1
Total operating time (seconds) = 1518.00012207
Total channel usage (seconds) = 1526.28759766
Average idle time (seconds) = 0.76300961
Average busy time (seconds) = 0.00243028
Average usage time w/o conflicts (sec) = 0.00121440
Total idle time (seconds) = 1521.44116211
Total busy channel time (seconds) = 4.84598541
Total channel usage time w/o conflicts = 2.42151380

RESULTS OF SIMULATION
Number of nodes talking 1
Theoritical throughput (ST) = 0.0016
Simulated throughput (SS) = 0.0016
Total number of collisions = 6
Offered load in packets/slot (G) = 0.0016
LAN efficiency factor (SS/G) = 0.9916
INITIAL CONDITIONS
Quitting point 2000
Number of nodes 24
Distance between nodes in feet = 1000
Bits per page = 16000
Pages per second = 0.30
Bits per packet = 12144
Propagation factor = 0.68
Transmission speed in bits per second 1.000000e+07
Speed of light in feet per second 9.833894e+08

CALCULATED CONDITIONS
Data in packets per second = 0.39525694
Slot time in seconds = 0.00121440
Propagation delay in seconds = 0.00123141

TIME COMPONENTS OF SIMULATION
Number of Nodes = 24
Total operating time (seconds) 210.83332825
Total channel usage (seconds) 215.04675293
Average idle time (seconds) 0.10656445
Average busy time (seconds) 0.00243028
Average usage time w/o conflicts (sec) 0.00121440
Total idle time (seconds) 210.25166321
Total busy channel time (seconds) 4.79494953
Total channel usage time w/o conflicts 2.39601135

RESULTS OF SIMULATION
Number of nodes talking 24
Theoretical throughput (ST) 0.0114
Simulated throughput (SS) 0.0111
Total number of collisions 27
Offered load in packets/slot (G) 0.0115
LAN efficiency factor (SS/G) 0.9672
INITIAL CONDITIONS
Quitting point 2000
Number of nodes 1
Distance between nodes in feet = 1000
Bits per page = 1228800
Pages per second = 0.30
Bits per packet = 12144
Propagation factor = 0.68
Transmission speed in bits per second = 1.000000e+07
Speed of light in feet per second = 9.833894e+08

CALCULATED CONDITIONS
Data in packets per second = 30.35573196
Slot time in seconds = 0.00121440
Propagation delay in seconds = 0.00123141

TIME COMPONENTS OF SIMULATION
Number of Nodes = 1
Total operating time (seconds) = 65.88541412
Total channel usage (seconds) = 68.45488739
Average idle time (seconds) = 0.03294696
Average busy time (seconds) = 0.00243028
Average usage time w/o conflicts (sec) = 0.00121440
Total idle time (seconds) = 63.75236893
Total busy channel time (seconds) = 4.70259857
Total channel usage time w/o conflicts = 2.34986401

RESULTS OF SIMULATION
Number of nodes talking 1
Theoretical throughput (ST) = 0.0356
Simulated throughput (SS) = 0.0343
Total number of collisions = 65
Offered load in packets/slot (G) = 0.0369
LAN efficiency factor (SS/G) = 0.9312
What file next?
LAN SIMULATION
**************************************************************************

INITIAL CONDITIONS
Quitting point 2000
Number of nodes 24
Distance between nodes in feet = 1000
Bits per page = 1228800
Pages per second = 0.10
Bits per packet = 12144
Propagation factor = 0.68
Transmission speed in bits per second 1.000000e+07
Speed of light in feet per second 9.833894e+08

CALCULATED CONDITIONS
Data in packets per second = 10.11857700
Slot time in seconds = 0.00121440
Propagation delay in seconds = 0.00123141

TIME COMPONENTS OF SIMULATION
Number of Nodes = 24
Total operating time (seconds) 8.23567677
Total channel usage (seconds) 9.85358238
Average idle time (seconds) 0.00410825
Average busy time (seconds) 0.00243028
Average usage time w/o conflicts (sec) 0.00121440
Total idle time (seconds) 6.19113016
Total busy channel time (seconds) 3.66243792
Total channel usage time w/o conflicts 1.83010089

RESULTS OF SIMULATION
Number of nodes talking 24
Theoretical throughput (ST) 0.2276
Simulated throughput (SS) 0.1857
Total number of collisions 493
Offered load in packets/slot (G) 0.2949
LAN efficiency factor (SS/G) 0.6298
### APPENDIX E

#### ASRM ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIMS</td>
<td>Automated Information Management System</td>
</tr>
<tr>
<td>AMS</td>
<td>Automated Manufacturing System</td>
</tr>
<tr>
<td>API</td>
<td>Automated Process Instructions</td>
</tr>
<tr>
<td>ARPA</td>
<td>Advanced Research Project Agency</td>
</tr>
<tr>
<td>ARTS</td>
<td>Automated Requirements Traceability System</td>
</tr>
<tr>
<td>ASB</td>
<td>AeroJet Space Boosters</td>
</tr>
<tr>
<td>ASC</td>
<td>Area Supervisory Computer</td>
</tr>
<tr>
<td>ASE</td>
<td>Application Service Element</td>
</tr>
<tr>
<td>ASPC</td>
<td>AeroJet Solid Propulsion Company</td>
</tr>
<tr>
<td>ASRM</td>
<td>Advanced Solid Rocket Motor</td>
</tr>
<tr>
<td>ATP</td>
<td>Acceptance Test Procedure</td>
</tr>
<tr>
<td>AU</td>
<td>Attachment Unit</td>
</tr>
<tr>
<td>BAS</td>
<td>Building Automation System</td>
</tr>
<tr>
<td>BIS</td>
<td>Business Information System</td>
</tr>
<tr>
<td>BOM</td>
<td>Bill of Materials</td>
</tr>
<tr>
<td>CA</td>
<td>Certification Authority</td>
</tr>
<tr>
<td>CCB</td>
<td>Configuration Control Board</td>
</tr>
<tr>
<td>CI</td>
<td>Calibration Instructions</td>
</tr>
<tr>
<td>CLNP</td>
<td>Connectionless-mode Network Protocol</td>
</tr>
<tr>
<td>CMIS</td>
<td>Contract Management Information System</td>
</tr>
<tr>
<td>CMS</td>
<td>Configuration Management System</td>
</tr>
<tr>
<td>CNC</td>
<td>Computer Numerical Control</td>
</tr>
<tr>
<td>COS</td>
<td>Corporation for Open Systems</td>
</tr>
<tr>
<td>COTS</td>
<td>Commercial Off-the-Shelf</td>
</tr>
<tr>
<td>CRP</td>
<td>Capacity Requirements Planning</td>
</tr>
<tr>
<td>CUI</td>
<td>Common User Interface</td>
</tr>
<tr>
<td>CVIA</td>
<td>Computer Virus Industry Association</td>
</tr>
<tr>
<td>DA</td>
<td>Destination Address</td>
</tr>
<tr>
<td>DAC</td>
<td>Discretionary Access Control</td>
</tr>
<tr>
<td>DCA</td>
<td>Defense Communications Agency</td>
</tr>
<tr>
<td>DCS</td>
<td>Distributed Control System</td>
</tr>
<tr>
<td>DM</td>
<td>Document Management</td>
</tr>
<tr>
<td>DMANDS</td>
<td>Documentation Management &amp; Distribution System</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>DR</td>
<td>Discrepancy Report</td>
</tr>
<tr>
<td>DWG</td>
<td>Design Working Group</td>
</tr>
<tr>
<td>ECMA</td>
<td>European Computer Manufacturers Association</td>
</tr>
<tr>
<td>ECRA</td>
<td>Engineering Change Request Approval</td>
</tr>
<tr>
<td>EP</td>
<td>Explosion Proof</td>
</tr>
<tr>
<td>EV</td>
<td>Enforcement Vector</td>
</tr>
<tr>
<td>FA</td>
<td>Final Assembly</td>
</tr>
<tr>
<td>FIMS</td>
<td>Facility Information Management System</td>
</tr>
<tr>
<td>FIPS</td>
<td>Federal Information Processing Standards</td>
</tr>
<tr>
<td>FNB</td>
<td>Forward Nozzle Bonding</td>
</tr>
<tr>
<td>FSN</td>
<td>Final Sequence Number</td>
</tr>
<tr>
<td>FTAM</td>
<td>File Transfer and Access Management</td>
</tr>
<tr>
<td>FTP</td>
<td>File Transfer Protocol</td>
</tr>
<tr>
<td>GOSIP</td>
<td>Government OSI Profile</td>
</tr>
<tr>
<td>IAN</td>
<td>Institutional Area Network</td>
</tr>
<tr>
<td>ICD</td>
<td>Interface Control Document</td>
</tr>
<tr>
<td>ICV</td>
<td>Integrity Check Value</td>
</tr>
<tr>
<td>IESS</td>
<td>Integrated Engineering Support System</td>
</tr>
<tr>
<td>IGDS</td>
<td>Interactive Graphics Design System (Intergraph protocol)</td>
</tr>
<tr>
<td>IGES</td>
<td>Initial Graphics Exchange Specification</td>
</tr>
<tr>
<td>IH</td>
<td>Industrially Hardened</td>
</tr>
<tr>
<td>IPI</td>
<td>Integrated Process Instruction(s)</td>
</tr>
<tr>
<td>IPMS</td>
<td>Integrated Project Management System</td>
</tr>
<tr>
<td>ITE</td>
<td>Integrated Telephone Equipment</td>
</tr>
<tr>
<td>ITI</td>
<td>Integrated Test Instruction(s)</td>
</tr>
<tr>
<td>KBS</td>
<td>Knowledge Based System</td>
</tr>
<tr>
<td>KMC</td>
<td>Key Management Center</td>
</tr>
<tr>
<td>KMP</td>
<td>Key Management Protocol</td>
</tr>
<tr>
<td>KMAE</td>
<td>Key Management Application Entity Protocol</td>
</tr>
<tr>
<td>LAD</td>
<td>Lockheed Austin Division</td>
</tr>
<tr>
<td>LAI</td>
<td>Laboratory Analysis Instruction</td>
</tr>
<tr>
<td>LAVA</td>
<td>Los Alamos Vulnerability Analysis</td>
</tr>
<tr>
<td>LI</td>
<td>Length Indicator</td>
</tr>
<tr>
<td>LIMS</td>
<td>Laboratory Information Management System</td>
</tr>
<tr>
<td>LLCSS</td>
<td>Logical Link Control Security Sublayer</td>
</tr>
<tr>
<td>LMSC</td>
<td>Lockheed Missiles &amp; Space Company, Inc.</td>
</tr>
<tr>
<td>MAC</td>
<td>Media (or Mandatory) Access Control</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>MAP</td>
<td>Manufacturing Area Protocol</td>
</tr>
<tr>
<td>MBOM</td>
<td>Manufacturing BOM</td>
</tr>
<tr>
<td>MCMS</td>
<td>Manufacturing Configuration Management System</td>
</tr>
<tr>
<td>ME</td>
<td>Manufacturing Engineer</td>
</tr>
<tr>
<td>MHS</td>
<td>Message Handling System (office) – X400</td>
</tr>
<tr>
<td>MIB</td>
<td>Management Information Base</td>
</tr>
<tr>
<td>MIS</td>
<td>Management Information System</td>
</tr>
<tr>
<td>MNA</td>
<td>Marshall (MSFC) Network Architecture</td>
</tr>
<tr>
<td>MPS</td>
<td>Master Production Schedule</td>
</tr>
<tr>
<td>MRB</td>
<td>Material Review Board (or) Material Requirements Planning</td>
</tr>
<tr>
<td>MRP</td>
<td>Manufacturing Resource Planning</td>
</tr>
<tr>
<td>MSDS</td>
<td>Material Safety Data Sheet</td>
</tr>
<tr>
<td>MTA</td>
<td>Mail Transfer Agent</td>
</tr>
<tr>
<td>MTI</td>
<td>Morton Thiokol, Inc.</td>
</tr>
<tr>
<td>NCSC</td>
<td>National Computer Security Center</td>
</tr>
<tr>
<td>NDE</td>
<td>Non-Destructive Evaluation</td>
</tr>
<tr>
<td>NFM</td>
<td>Network File Management</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards &amp; Technology (formerly NBS)</td>
</tr>
<tr>
<td>NR</td>
<td>Non-conformance Reports</td>
</tr>
<tr>
<td>NS</td>
<td>Network Service</td>
</tr>
<tr>
<td>NSA</td>
<td>National Security Agency</td>
</tr>
<tr>
<td>NSAP</td>
<td>Network Service Access Point</td>
</tr>
<tr>
<td>NSDU</td>
<td>Network Service Data Unit</td>
</tr>
<tr>
<td>ODA</td>
<td>Office Document Architecture</td>
</tr>
<tr>
<td>ODIF</td>
<td>Office Document Interchange Format</td>
</tr>
<tr>
<td>ODP</td>
<td>Office Data Protocol</td>
</tr>
<tr>
<td>OIS</td>
<td>Operations Information System</td>
</tr>
<tr>
<td>OSI</td>
<td>Open Systems Interconnect</td>
</tr>
<tr>
<td>OSS</td>
<td>Operations Support System</td>
</tr>
<tr>
<td>PAA</td>
<td>Peer Access Authorization</td>
</tr>
<tr>
<td>PAE</td>
<td>Peer Access Enforcement</td>
</tr>
<tr>
<td>PCS</td>
<td>Process Control Subsystem</td>
</tr>
<tr>
<td>PDU</td>
<td>Protocol Data Unit</td>
</tr>
<tr>
<td>PIPL</td>
<td>Program Indentured Parts List</td>
</tr>
<tr>
<td>PKCS</td>
<td>Public Key Crypto System</td>
</tr>
<tr>
<td>PLC</td>
<td>Programmable Logic Controller</td>
</tr>
<tr>
<td>PMMS</td>
<td>Performance Measurement Management System</td>
</tr>
</tbody>
</table>
PMS       Project Management System
PSCN      Program Support Communications Network (NASA Wide Network)
PSCN-I    PSCN Internet
QA        Quality Assurance
QASL      Quality Approval Supplier List
QOS       Quality of Service
RAR       Receiving Acceptance Reports
RID       Review Item Discrepancy
RII       Receiving Inspection Instruments
SA        Source Address
SDAR      Supplier's Discrepancy Action Request
SDNS      Secure Data Network(s) System
SE        Secure Entity
SE&I      System Engineering & Integration
SFC       Shop Floor Control
SILS      Standard for Inter-operable LAN Security
SMAE      Security Management Application Entity
SMIB      Security Management Information Base
SMTP      Simple Mail Transfer Protocol
SN        Subnetwork
SNICP     Subnetwork Independent Convergence
SOW       Statement of Work
SP        Security Protocol
SP3       Security Protocol 3
SP4       Security Protocol 4
SPC       Statistical Process Control
SQE       Supplier Quality Engineer
SQR       Supplier Quality Representative
SRM&QA    Safety, Reliability, Maintainability, and Quality Assurance
SRS       Software Requirements Specification
SSI       Source Surveillance Instruction
STE       Standard Telephone Equipment
TCSEC     Trusted Computer System Evaluation Criteria
TDC       Test Data Center
TEK       Traffic Encryption Key
TIS       Trusted Information Systems, Inc. (bought IBM's Secure Xenix)
TNI       Trusted Network Interpretation
TOP  Business
TSAP  Transport Service Access Point
UA    User Agent
UT    Ultrasonic Test
WBS   Work Breakdown Structure
YCCC  Yellow Creek Cad Coordinator
802.2 Logical Link Control (LLC)
802.3 CSMA/CD
802.4 Token Bus
802.5 Token Ring