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This article tabulates continuous probability density functions and discrete prob-

ability mass functions which maximize the differential entropy or absolute entropy,

respectively, among all probability distributions with a given Lp-norm (i.e., a given

pth absolute moment when p is a finite integer) and unconstrained or constrained

value set. Expressions for the maximum entropy are evaluated as functions of the

Lp-norm. The most interesting results are obtained and plotted for unconstrained

(real-valued continuous random variables and for integer-valued discrete random

variables.

The maxJmum entropy expressions are obtained in closed form for unconstrained

continuous random variables, and in this case there is a simple straight-line relation-

ship between the maximum differential entropy and the logarithm of the Lp-norm.

Corresponding expressions for arbitrary discrete and constrained continuous ran-

dom variables are given parametrically; closed-form expressions are available only

for special cases, tlowever, simpler alternative bounds on the maximum entropy

of integer-valued discrete random variables are obtained by applying the differen-

tial entropy results to continuous random variables which approximate tile integer-

valued random variables in a natural manner.

Most of these results are not new. The purpose of this article is to present

all the results in an integrated framework that includes continuous and discrete

random variables, constraints on the permissible value set, and all possible values

of p. Understanding such as this is useful in evaluating the performance of data

compression schemes.
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I. Introduction

The differential entropy h{x} of a continuous, real-
valued random variable x with probability density f(z)

is defined as

Fh{x} = -E{log[f(z)]} = - f(x) log[f(x)]dz (1)
O<3

For any positive (or infinite) integer p = 1,2,3,...,_,

define the Lp-norm Mp{z} of the random variable x as

Mp{_} = [E{l_lq] x/p

[jbco ll/P= /(_)lxl'dx] , p= 1,2,3,...

Mco{z} = lim Mp{z} = ess suplxl
p_0 1(_)>0

(2)

The essential supremum in Eq. (2) is the smallest number

that upper bounds Ix[ almost surely.

Sometimes the real-valued random variable x is con-
strained to lie within a subset E of the real line; in this

case, the integrals in Eqs. (1) and (2) need only extend
over the subset --.

For a discrete random variable X with discrete value

set :z = {_i} and probability mass function F(_i), its (ab-

solute) entropy H{X} is defined as

H{X} = -E{Iog[F(X)]} = - E F(_i)Iog[F(_i)] (3)
i

The Lp-norm Me{X } of the discrete random variable X
is defined as

Mp{X} = [E{tXF}]a/p

1/p

, p= 1,2,3,...

Mco{X} = lira Mp{X} = sup t_,1 (4)
p--co F(_,)>0

This article tabulates continuous probability density

functions f(z) = f_(x;_) or f(z) = f;(x;_,--) and
discrete probability mass functions F(_i) = FT(_i;p,_)
which maximize the differential entropy h{x} or absolute

entropy H{X}, respectively, among all probability distri-

butions with a given Lp-norm Mp{x} or Mp{X} and un-
constrained or constrained value set E. The most interest-

ing results are obtained and plotted for unconstrained con-
tinuous random variables and for integer-valued discrete

random variables. Finally, alternative simpler bounds on

the entropy of integer-valued random variables are ob-

tained by modifying the bounds on differential entropy for
unconstrained continuous random variables.

Most of these results are not new. In fact, the maxi-

mum-entropy continuous distributions for p = 1,2 (Lapla-
clan and Gaussian distributions, respectively) have been

known since Shannon's original work [1]. The purpose of

this article is to present all the results in an integrated
framework that includes continuous and discrete random

variables, constraints on the permissible value set, and all

possible values of p.

Throughout this article, regular italic notation is used
for an ordinary function of a real variable, such as f(x) or

F(_i), while boldface notation is used for an operator ap-

plied to a random variable, such as h{x} or H{X}, Mp{x}

or Mp{X}, or the expectation operator E{.}. In order not
to interrupt the main presentation, proofs of all stated re-

sults are relegated to the Appendix.

II. Effects of Elementary Transformations

A scaled random variable x' = qx or X' = qX, where

q is a constant, has a correspondingly scaled Lp-norm:

Mp{x'} = IqlMp{x}

Mp{X'} = IqlMp{X) (5)

A discrete random variable X with value set -_ = {_i}
scales to a discrete random variable X' with scaled value

set q-_ -= {q_i}. The entropy of a discrete random vari-

able is unaffected by scaling, but the differential entropy
of a scaled continuous random variable either increases or

decreases:

h{z'} = h{z} + log[Iq[ ]

H{X'} = H{X} (6)

The change in the differential entropy of a scaled continu-
ous random variable exactly equals the change in the log-

arithm of its Lp-norm:

h{z'} - h{x} = log[Mp{x'}] -log[Mp{x}] = log[Iql ]

(7)
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In contrast, the Lv-norm of a discrete random variable
can be made arbitrarily small or large without affecting

its entropy, simply by scaling its value set.

A shifted random variable x" = x - A or X" -- X - A

where A is a constant, has the same differential or absolute

entropy as the unshifted random variable,

h{x"} = h{x}

H{X"} = H{X} (8)

but a different Lv-norm. A discrete random variable X
with value set S = {_i} shifts to a discrete random vari-
able X '_ with shifted value set S- A -- {(i- A}. A

random variable x or X is centered with respect to the

Lp-norm if no shifted version has a lower Lv-norm. A cell-
o or ° can be obtained from antered random variable xp X v

uncentered random variable x or X by applying an opti-
O

nmm shift A = Ap. This optimum shift equals the median
of the random variable for p = 1, the mean value of the

random variable for p = 2, and the average of the essential

infimum and essential supremum of the random variable

for p = cx). The centered Lp-norm M;{x} or M;{X} of
the random variable x or X can be defined as

Mp{x} = minMp{x - A} = M v {x - A_} = Mp{x;}
A

M;{X} = min Mp{X -A} = M v {X -A;} = Mp{X;}
A

(9)

III. Maximum Differential Entropy for
Continuous Random Variables

For any positive real number p and any positive (or

infinite) integer p = 1, 2,..., oo, let x_(p) be a continuous

random variable with probability density f_(x;/_), where

.fp(x;p) = exp(-lxlP/PPP)
2,p,/p r(+a_) ' P= 1,2,3,...

1, Ixl<
f_(x;/_) = _'_ _/z (10)

o, Izl >_

and F(.) is the gamma function. These probability densi-

ties are all properly normalized, i.e.,

J__ f_(x;p) dx = 1, p = 1,2,3,...,oo (11)
OO

The probability densities f_ (x, #) for p = 1,2, oc are the
well-known Laplacian, Gaussian, and uniform probability

densities, respectively.

The absolute moments of these random variables are

known in closed form:

',, p /

n=1,2,3,..., p=1,2,3,...

E{Iz*(z')l'} - n+ 1' n = 1,2,3,... (12)

Evaluating these expressions for n = p or n --, oo yields

the Lp-norm Mr(p) of the random variable x;(]t):

M_(p)--Mp{x;(p)}=p, p= 1,2,3 ..... ,oe (13)

The differential entropy h_(tt) of the random variable

x_(/l) is calculated a.s

h;(,) _

=log[2# F( +_vl)(pe)'/P ] ,

h*_(p) - h{x_(/_)} = log[2#]

Explicit formulas for p = 1, 2 are

(15)

Since from Eq. (13) the parameter # equals the Lp-norm

M_(/_) for any p, the differential entropy can be related
directly to the corresponding Lp-norm:

h;(p) = log[2 F(+_pX)(pe)X/v] + log[M_(/z)],

p=1,2,3,...

h_(tt) = log[2] + log [ML(tt)] (16)

The differential entropy h_(p) is plotted in Fig. 1 versus

the logarithm of the corresponding Lp-norm, log[M_ (_t)],
for various values ofp. Note that this is a simple straight-
line relationship. In fact, the straight line has unit slope,

assuming log[M_(p)] is measured to the same logarith-

mic base as h_(p). This is consistent with the previous
observation in Eq. (7), because the sealed version of the
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random variable x_(/_) is statistically equivalent to the ran-

dom variable with scaled Lv-norm, i.e.,

qx*p(_) ¢:a x;(Iql_) (17)

If x is any continuous random variable with differential

entropy h{x} and Lp-norm Mp{x} = #, then

h{x} <h;(Mp{x})=h{x_(p)}, p= 1,2,3,...,oo (18)

i.e., x_(#) is the maximum-entropy continuous random
variable with a fixed Lp-norm g. Since the bound in

Eq. (19) must be valid for all values of p,

h{x} < minh;(Mp{x}) (19)
p

If the random variable x is not centered with respect
O O

to the Lp-norm, the centered random variable xp = x - Ap
has the same differential entropy as x but a smaller

Lp-norm. The differential entropy of x may be more
tightly upper bounded by applying the bounds in Eqs. (18)

O.

and (19) to the differential entropy of xp.

h{x} = h{x;} < h;(Mp{x;}) = h;(Mp{x}),

p = 1,2,3,... ,_ (20)

and

h{x) < min h;(M;{x}) (21)
p

If the real-valued continuous random variable x is con-

strained to lie within a subset -- of the real line, its maxi-

mum possible differential entropy is smaller than that cal-
culated above for a random variable constrained only by its

Lp-norm. Maximum-entropy distributions for constrained
continuous random variables can be obtained as simple

generalizations of the foregoing results. Let x*p(p,_) be
a continuous random variable with probability density

fT(x;#, E) equal to the conditional probability density of

x;(p) given {Xp(p) E Z}, i.e.,

exp(--l_lP/p#p)
/;(_;#,---) = ,_;(,,z) '

0,

x E -':

p = 1,2,3, .

x_-2

1
fL(x;P, x) _ a_(p,-)

O,

Ixl <pandx C

other wise

(22)

where

f
J_-_
/ 1 • " •o9(_,_ ) --- exp(-[xlP/plF) dx, p = 1 2,3,

t

a*_(P, =) = I 1 dx (23)
j= n{O:l_<u)

Tile Lp-norm Mp(#, E) of the random variable xp(/z, Z)is

given by

M_(p,E) =- Mp{x;(p,=)}

1

=" LG0,,--)J ' P= 1,2,3,...

ML(p, -=)-Moo{x_(/_,E)}= sup Ixl (24)

xfiE

where

_(lt, =) = L(IxIP/ktP ) exp(-IxlP/pl, p) dx,

p=1,2,3,... (25)

The differential e_tropy h_(/l, =) of tim raw, dora variable

x_(tt ,_) is given by

h;(,,--) = h(x;(,, z)}

= log[G (,, =)] +
p -;(,,--)

, logic] IMP(p, =)] p= log[%0,, z)] + _ - ,
P t It J

p= 1,2,3,...

The random variable x_(I_,E) is the maximum-
entropy continuous random variable with constrainc,l

value set X and fixed Lp-norm Alp(p,=), i.e., it" x is any
continuous random variable with value set Z, dith:rential

entropy h{x}, and Lp-norm Mp{x}, then

h{x} < h{x;(,_, z)}

= hp(tzp,E), p= 1,2,3,...,_o (27)

where ,up is chosen to match the L,,-norm of x:
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M_(pv,F_. ) = Mp{z}, p = 1,2,3,...,co (28)

Since the bound in Eq. (27) must be valid for all values of

P,

h{z} < min h;(ttp, E) (29)
P

If the random variable x is not centered with respect

to the Lp-norm, the differential entropy of x may be more
tightly upper bounded by applying the bounds in Eqs. (27)

and (29) to the differential entropy of the centered random
° =X--_°.variable xp p.

* o _ o

h{z} = h{z_} < h{z;(#_,E- A;)} = hv(pp," - Ap),

p = 1,2,3,...,oo (30)

and

h{x} _<minh;(p_,Z- A;) (31)
P

where p_ is chosen to match the Lp-norm of x_ (i.e., the
centered Lp-norm of x):

M_(/_;, E - A;) = Mp{x_}

=M_{z}, p= 1,2,3,...,oe (32)

Notice that the bounds on the right-hand sides of Eqs. (30)

and (31) are calculated with reference to the shifted value
o

sets E - Ap, not the actual value set E.

The integrals defining a_(/l, _) and/3_ (/l, _) are gener-
ally not obtainable in closed form for an arbitrary value set

E,. An interesting exception is when the value set equals

the positive half-line, i.e., -- = R + _= (0, oo). In this case,

M;(,u,R +) = M;(p) = p, p = 1,2,3,... ,oo (33)

and

" + (34)hv(p,R ) : h_(/J)-log[2], p= 1,2,3,...,oc

In other words, the maximum possible differential entropy

for a positive-valued continuous random variable is exactly
one bit less than the maximum differential entropy for a

real-valued random variable with the same Lv-norm.

IV. Maximum Entropy for Discrete
Random Variables

Discrete versions F;(_i;p, =) of the probability densi-

ties f;(x;p) can be defined in a natural manner for dis-
crete random variables X;(p,--) with discrete value set

= {_i}:

F; (_; t_,--) -

_ exp(-I_i [P/P_ p )

A; (/_, E)
, P = 1,2,3,... (35)

1

f_({i;p) A_(#,--)' I_,1 _

F&({i;/_,E)- y_f&({j;p) -

i 0, I¢;1 >

where

A;(p, Z) = _ exp(-l_,[P/p#V), P = 1, 2, 3,...
i

A_(p,Z) = Z 1 (36)

l_d_<.

The discrete probability mass function F;(_i;p,'=) equals
the conditional probability mass function for the maxi-

Inure-entropy continuous random variable x_(p), given
{_;(_) e z}.

The Lp-norm M;(/z,--) of the discrete random variable
X;(/t, "z) is given by

M;(p,E) - Mv{X;(#, E)}

=p

1

Bp(_,

A;(#, ' p = 1,2,3,

Moo(#,= )=Moo{Xoo(p,-)} = sup ]_i
I_,l_<u

(37)

where

B;(_, =) = _--](1¢,17_p) exp(-l_,lV/vpp),
i

p= 1,2,3, .. (38)
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The entropy H_(,u,':) of the discrete random variable

X;(p,Z) is given by

H;,(p, "=) =_ H{X;(/I,=)}

= log[A;(#, _)] +
log[e] B_ (p, 7-)

p A;(,, Z)

• l°g[e][M;_'7-)] p= log[Ap(/*, E)] + _
P

p=1,2,3,...

Hoo(p,-) =_ H{X_o(p,7-)} = log[Aoo(p ,_)] (39)

The random variable X_(/t,7-) is ttle maximum-
entropy discrete random variable with value set 7- and

fixed Lp-norm M;(/t,7-); i.e., if X is any discrete random
variable with value set --, entropy H{X}, and Lp-norm

My{X}, then

H{X} < H{X_(pp,E)}

= H_(l._p,7-), p = 1,2,3,...,oo (40)

where/_p is chosen to match the Lp-norm of X:

M;(pv,-- ) = Mp{X}, p = 1,2,3,... ,oo (41)

Since the bound in Eq. (40) must be valid for all values of

P,

H{X} <_ min H_(pp,E) (42)
P

If the random variable X is not centered with respect to

the Lp-norm, the centered random variable X; = X - A_
has the same entropy as X but a smaller Lp-norm. The

entropy of X may be more tightly upper bounded by ap-

plying the bounds in Eqs. (40) and (42) to the entropy of

x;.

H{X} = H{X;}

< H{X;(#_, 7- - A;)}

= H_(p_,E-A_), p= 1,2,3,...,oo (43)

and

H{X} _ rain H;,(p_, 7- - A_) (44)
P

where/_ is chosen to match tile Lv-norm of X_ (i.e., the

centered Lp-norm of X):

M;(#_, 7- - A_) = Mp{X;}

=M_{X}, p= 1,2,3,...,o_ (45)

Notice again that the bounds based on centered random
variables are calculated with reference to the shifted value

o
sets 7- - Ap, not the actual value set 7.. An exception
for which the centering operation leaves tile value set un-

changed (i.e., 7- - A_ = 7-) occurs for tile value set 7- = I
(defined below) or, more generally, for any scaled version
of it, 7- = qI , as long as the allowable centering shifts A_,
are constrained to multiples of the scale quantum q.

For many applications, the most interesting discrete

value sets are the set of all integers I _ {0,+1,±2,+3,...}

and the set of positive integers I + -= {1,2,3,...}. The

maximum entropy for integer-valued random variables,

H;(p, I), is plotted in Fig. 2 versus the logarithm of the
corresponding Lp-norm, log[M;(p, I)], for various values
of p. Notice that the nonlinear relationship for integer-
valued random variables becomes essentially linear when

the Lp-norm is large compared to the (unit) interval be-
tween successive values in the value set I. In fact, all of

the curves in Fig. 2 converge to the corresponding straight-
line curves in Fig. 1 in the limit of large Lr-norm. Notice

also how the continuous curves for large values of p < oc

approach the limiting staircase curve for p = oo. The max-

imum entropy curve for p = oo takes quantum jumps at

integer values of the Loo-norm.

Closed-form maximum-entropy expressions as a func-

tion of Lp-norm can be obtained for discrete random vari-
ables in only a few special cases. Interesting cases include

p = 1,oo, for value sets 7- = I,I+:

H_(p,I) = log [M_(p,I) + _/1+ [M_(p,I)] 2]

+ MI(/_ , I)log
M:(,, 1)

X/1 + [Mi'(_, 1)] 2 - 1
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=M 1(#,I) x=X+u (49)

[_[, 1 + M_" (/,, I) - x/1 + [M_ (/J, i)]2 ]x
- _7_TbT,_) J

+
1 + M;(#, [) + x/1 + [M_ (/_, 1)] 2

× H_ [_/1+ [M_(., 5]_ - M;(., 5]

HL(u, I) = log(2LML(u,I)J + 1) (46)

an d

. . [1]H 1 (#, I +) = M1 (/*, I+)H2 M;(fi, I +)

,* * +Hoo(., I+) = log(Lifo(., : )J) (47)

where [aJ is the integer part of a and H.,[a] is the binary
entropy function,

H2[a] =
-alog[a] - (1-a)log[1-a], O<a< 1
0, a=0ora=l

(48)

V. Alternative Entropy Bounds for

Integer-Valued Random Variables

The maximum-entropy discrete distributions are not as

useful as the maximum-entropy continuous distributions
for unconstrained value sets, because closed-form results

determining the maximum entropy for a given Lp-norm are
available only in special cases. Alternative bounds on the

entropy of discrete random variables can be obtained by

approximating their discrete probability distributions with

continuous probability densities and applying the simpler
bounds on the differential entropy of continuous random

variables. In this section, entropy bounds of this kind are

obtained for integer-valued random variables (F. = I).

Associate with any integer-valued random variable X a
corresponding continuous random variable x defined by

where u is a uniform (continuous) random variable over

[-1/2, 1/2] which is independent of X. The probability
density function f(x) of the continuous random variable
x is related to the probability mass function F(X) of the
discrete random variable X as:

f(x) = F(Lx + 1/2J) (50)

where Lx + 1/2J maps x to the nearest integer. The dif-

ferential entropy of x equals the absolute entropy of X,

i.e, 1

h{x} = H{X} (51)

and their Lv-norms are related as follows:

'-' (_) 2-_E [Mp-_{X }]p-_ r71

2-p

+p---_r(0), p = 1,3,5,...

[Mp{x}] p

2-p

+ 7--_7' p= 2,4,6,

1

M_{x} = Moo{X} + _ (52)

Explicit formulas for p = 1, 2, 3,4, are:

MI{x} = MI{X} + _F(0)

1

[M_,{x}]" = [M2{X}] 2 + 1--2

[Ma{x}] a = {Ma{X}] a + _M,{X} + 1F(0)

[M4{x}] 4 = [M4{X}] 4 + [M2{X}] _ + _ (53)
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The entropy of the integer-valued random variable X

is upper bounded by

H{X} = h{x} < h;(Mp{x}), p = 1,2,3,...,oo (54)

Explicit bounds for p = 1,2, 0% are:

H(X} __ log[2 ]+log [M,{X}+

H{X}_< log[ 2v_]+_log [M2{X}] 2+

_<logE2]+log +

Since tile bound in Eq. (54) is valid for all values of p,

H{X} _< min h;(Mp{x}) (56)
p

The bound in Eq. (54) is not quite as tight as the achiev-

able bound given earlier in Eq. (40), because the step-

wise constant probability density of x = X + u given by

Eq. (50) cannot exactly equal the maximum-entropy con-
tinuous probability density specified by Eq. (10). Itowever,

a stepwise-constant approximation can be very accurate

when the probability distribution is much wider than the

unit step width.

VI. Summary and Potential Applications

This article has tabulated continuous probability den-

sity functions f(x) = g(x;p) or f(x) = g(x;iL,E) and

discrete probability mass functions F(_i) = F_(_i;/L,F-)
which maximize the differential entropy h{x} or absolute

entropy H{X}, respectively, among all probability distri-

butions with a given np-norm Mp{x} or Mp{X} and un-
constrained or constrained value set _. Expressions for

the maximum entropy are evaluated as functions of the

Lp-norm. These expressions are obtained in closed form
for the case of unconstrained continuous random variables,

and in this case there is a simple straight-line relation-

ship between the maximuna differential entropy and the

logarithm of tim Lp-norm. Corresponding expressions for
discrete and constrained continuous random variables are

given parametrically; closed-form expressions are available
only for special cases, llowever, simpler alternative bounds

on the maximum entropy of integer-valued random vari-

ables are obtained by applying the differential entropy re-
sults to continuous raudom variables which approximate

the integer-valued random variables in a natural manner.

The results tabulated here have at least two potentially

useful applications. First, they can lend a theoretical un-

derpinning to source coding distortion measures based on

Lp-norms. Second, they can be used to perform estimates
of the local entropy of a data.set, for which the available
local data are sufficient for obtaining good estimates of the

dataset's Lp-norm but not for a good estimate of its his-
togram. Follow-up articles on these two applications will

appear in future issues.
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(p = 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, oo) for unconstrained continuous

random variables.
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Fig. 2. Maximum entropy as a function of Lp-norm (p = 1, 2, 3,

4, 5, 6, 8, 10, 12, 16, _) for Integer-valued random variables.
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Appendix

This appendix contains proofs or derivations omitted in the main text. Equations (1), (2), (3), (4), (9), (10), (22),

(23), (25), (28), (32), (35), (36), (38), (41), (45), (48), and (49) are definitions and require no proof. Equations (7), (16),

(17), (19), (20), (21), (24), (29), (30), (31), (37), (42), (43), (44), (53), (54), (55), and (56) are trivial or straightforward
applications of preceding results. This leaves Eqs. (5), (6), (8), (11), (12), (13), (14), (15), (18), (26), (27), (33), (34),

(39), (40), (46), (47), (50), (51), and (52) requiring further justification.

Equation (5) follows from the linearity of the expectation operator. Equations (11) and (12) come from standard

integral tables [2]. Equations (13) and (15) require two elementary properties [2] of the gamma function: F(1 + 1/p) =

F(1/p)/p and F(1/2) = v:_. Equations (6) and (8) result from applying the definitions in Eqs. (1) and (3) to the
probability distributions of scaled and shifted random variables, obtained from standard texts [3] as:

ff(x')= f(x'/q)/lql if(x")= f(x" + A)

F'(X') = F(X'/q) F"(X") = F(X" + A) (A-l)

where f'(x'), F'(X'), f"(x"), and F"(X") are probability density or probability mass functions for the scaled and
shifted random variables x _, X I, x', and X'.

Equations (14), (26), and (39) follow after observing that the logarithms of the probability distributions in Eqs. (10),

(22), and (35) all consist of two terms, one term a constant, and the second term proportional to txf or IXf. The
expected value of the second term can thus be calculated directly from the preceding formulas, Eqs. (13), (24), and (37),

for the Lv-norm.

Equations (18), (27), and (40) are the central results of this article and are proved by generalizing a technique used in

[4] to show that maximum differential entropy with constrained second moment is achieved by a Gaussian distribution.

If x and x_(#,E) both have Lv-norm Mp{x}, then for p < c_,

* £ = _ = ,h{_(.,--)} =- /:,(_;.,=)log[G(_,.,--)] d_

= f; (x; ,, E)log[ap(/_, E)] + dx
P /:

= f(_) log[_;0,,z)]+ &
p pv j

* • (A-2)= - f(x)log[f:(x,p,=)] dx

The third equality in Eq. (A-2) follows from the assumption that x and x_(p, =) have identical Lv-norms, hence [x[p

has the same expectation whether it is averaged over f;(x;p,E) or f(x). Ifp = oo, the same result holds: the second
term in the second and third lines of Eq. (A-2) is absent, and the integration over -= is replaced by an integration over

- n {Izl _< M. Continuing,

" Jz " _ f(x)log[f(x)] dxh{xv(#, E)} - h{x} = - f(x) log[f; (x, t', E)] dx + f"l{f(x)>0}

= fzn{:(,)>0} f(x)log [g (_;P-,--)Jr(x) ]dx

Z {> f(x)log[e] 1 dx = 0 (A-3)
- n{:(.)>o} f(x)
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Tile inequality in Eq. (A-3) results from the general inequality log[a] _> logic](1 - i/a) for all a > 0, and the last equality

arises becauses f_,(x;/2, E) and f(x) both integrate to one.

The derivation in Eqs. (A-2) and (A-3) proves Eq. (27). Equation (18) is a special case of Eq. (27) obtained by
setting _, equal to the set of all real numbers. Equation (40) is derived in a similar manner by replacing the integrals

in Eqs. (A-2) and (A-3) with summations and continuous probability density functions with discrete probability mass
functions.

Equation (33) results from noting that * + * *1%(/2,R )t ¢> Ix;(/2)h so the Lv-norms of xv(/2, R +) and xv(#) nmst be

identical. Equation (34) comes from the fact that the constant scale factor c_(/2, R +) for g(x; i,, 22+) in Eq. (22) with

--= 22+ is exactly half the corresponding scale factor for g(x;#) in Eq. (10). This accounts for a difference of log[2] in
the first terms in their respective expressions for differential entropy. The second terms must be equal by the previous

observation linking them to their respective Lv-norms.

To derive Eqs. (46) and (47), let a = e -1/" and replace -_ with I or I + in Eqs. (36), (37), and (38) to obtain

_ 2 -1- l+aA_(/2, I) = e -til/u = 2 a i - 1 = l_-a 1 - a
i=- c-_ i=0

2a
_Br(/2, I) = lile-lil/" = 2 ia_ - (1 - a) 2

i=- c,o i=0

A_(p, I) = _ 1 = 2DJ + 1
lil_<,

ML(#, I)= sup Iil= buJ (A-4)
1i1_<,

and

, + p 1 aAa(p,I ) = e -lil/_' = a i -- 1 --
i -a 1 -a

i=1 i=1

k k/2B_(/2, I +) = ]ile_fil/,, = ia i _ a
i=i i=1 (1 --a) 2

A=(/2'I+)= Z 1= _j
1Si_<U

M*(/2, I +) = sup Iil = L/2J (A-5)
l_<i_<u

where k/2Jis the integer part of/2. The entropy expressions in Eqs. (46) and (47) follow algebraically upon substitution

of gqs. (A-4) and (A-5) into Eqs. (37) and (39) and solving for the entropy in terms of the corresponding Lr-norm.

Equation (50) results from calculating the conditional probability density f(xlX) of x given X, then averaging over X:
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1, if [x - Xl < 1/2 [1, ifX = [x+l/2J
f(xlX) = =

0, if Ix - X I > 112 0, if x # L_+ l/2J

oo

f(x) = _ F(i)f(xlX = i) = F(Lz + :/21)
i= -c_

(A-6)

Equation (51) results from breaking up the defining integral in Eq. (1) for the differential entropy into a sum of integrals

over unit intervals,

oo £ [i+1/2
h{x} = -/_ f(x)log[f (x)] dx = - f(x) log[/(x)] dx

o_ i=-oa di-1]2

£f'+'" £= - F(i) log[F(/)] dx = - F(i) log[F(/)] = H{X}
i=-oo di-l[2 i=-oa

(A-7)

Equation (52) is derived by considering the cases of even and odd values ofp separately. Ill the first, case, when p is even,

p

r=0

,(,.)= _ n{x,'-"}_ (A-s)r+l
r-_O

r even

because

2_ r

r+l'

E{,_"} =

O,

if r is even

if r is odd

(A-9)

Thus, since X p-r = IX]p-r when p and r are both even,

2_ p p-2

EIlX+_'I_}- v+X + _
(A-10)

In the second case, when p is odd, tile derivation begins by writing

IX+ul = IXl+ w (A-11)

where
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+u, X>_I
.o = M, x o

-u, X < 1

(A-12)

This decomposition is valid because X is integer valued, The conditional moments of w are

2_ r

n{,,,rix } = /¥1'

O,

if r is even or if r is odd and X = 0

if r is odd and X ¢ 0

(A-13)

Thus,

P

=E _(')E(_)I,l"-_l _: _+_¢0/_lx: 0_
i_0 r=0

"(_) _-_ __.= E F(i) E [ilP-_ r +'----_+ F(O)--
i¢o _=0 P + 1

r even

v-_ 2_,
= E (_)_ E _(,)_,l_-_+_(o)_-_

r=o i#o P + 1
r even

p--1 --r

Z (_)_(I-_l _-_)+_(o)_-_
r=o P + 1

r even

(A-14)
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