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In this article the planetary ephemerides approximation for radar astronomy is

discussed, and, in particular, the effect of this approximation on the performance

of the programmable local oscillator (PLO) used in Goldstone Solar System Radar

is presented. Four different approaches are considered and it is shown that the

Gram polynomials outperform the commonly used technique based on Chebyshev

polynomials. These methods are used to analyze the mean square, the phase error,

and the frequency tracking error in the presence of the worst-case Doppler shift

that one may encounter within the solar system. It is shown that in the worst case

the phase error is under one degree and the frequency tracking error less than one

hertz when the frequency to the PLO is updated every millisecond.

I. Introduction

Planetary ephemerides are used in radar astronomy to

transmit a coherent beam in the direction of a planet. This

beam is reflected from the surface of a planet, and the

measured Doppler shift from the reflected beam is used

to reconstruct a two-dimensional radar image [1,2]. Both

the transmitter and the receiver frequencies may be pro-

grammed in some situations. For example, it is common to

transmit the uplink signal to cause the frequency at one

station to remain constant while correcting the frequen-

cies at the other stations to compensate for the Doppler

difference.

The Navigation Systems Section of the Jet Propulsion

Laboratory provides high precision planetary aud celestial

body ephemerides for various studies. The ephemerides

are computed by numerical integration of a model of the

solar system. ] Saving the ephemerides at every integration

step would result in prohibitively large data files, and it

is not computationally feasible to run this program in real

time to generate the ephemerides data. Thus, it is essential

to approximate the ephemerides with a set of polynomials

and use this set to generate the ephemerides in real time.

The main purpose of this article is to investigate four

different approaches for the ephemerides approximation.

It is concluded that the Gram polynomials consistently

outperform the commonly used technique based on the

Chebyshev polynomials. In fact, in some cases the mean-

1 E. M. Standish, Jr. and D. K. Yeomans, Navigation Systems
Section, Jet Propulsion Laboratory, Pasadena, California, private
communication, November 14, 1989.
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square error (MSE) is lower by a factor of one hun-
dred. Furthermore, it is shown here that using a piecewise

orthonormal expansion is superior to the classical least

square fit when the number of data points is large. The

computational complexity of using the Gram polynomials

is equivalent to that of any other polynomial approxima-
tion of the same degree. One can intuitively explain the

superior performance of the Gram polynomials by noting
that they form a complete orthogonal set on an evenly

partitioned interval (see Section IV.A).

For applications to NASA's Deep Space Network (DSN)

and the aoldstone Solar System Radar (GSSR) [1,3], the

ephemerides are converted into an integer valued frequency

control word, which is used by a digital frequency syn-

thesizer (DFS) to produce a sinusoid at an intermediate

fi'equency (IF). _ The theory and the design of the DFS
for radar astronomy are described in detail in [4]. In Sec-

tion VII, it is assumed that the reader is familiar with the

theory of operation of the DFS as described in [4].

Figure 1 shows the overall configuration of the X-band

exciter [5]. This exciter is used for the transmission of a
coherent X-band signal from the DSN station to a distant

planet. The reflected signals are used for generating radar

images of the planet [1,2].

The design of the exciter is based on using a high-
resolution programmable local oscillator (PLO) with con-

trollable phase and frequency. The output of the PLO

is ideally a single carrier with a frequency range of 10 to

20 MHz. 2 The block diagram of the PLO is given in Fig. 2.

It is composed of a DFS and digital-to-analog conversion
module, and is controlled by a host via a parallel interface.

The host software driver for the PLO controls both the

frequency and the phase of the DFS. The phase and the

frequency of the DFS are computed from the ephemerides

data and are updated at a constant rate by the host. In
approximating the ephemerides, it is important to use the

least degree polynomial which gives the satisfactory ap-

proximation. As the degree of the approximating polyno-
mial increases, the computation time also increases, and

as a result fewer updates from the host will be possible.

Furthermore, the effect of changing the frequency of the

DFS as a function of the ephemerides introduces frequency

modulation at the output of the PLO. In Section VII of
this article both of these issues are addressed: namely,

the effects of the update rate on the phase and frequency

tracking error, and on the output spectrum of the PLO.

2 F. R. Jurgens, "High Level PLO Definition," JPL Interoffice Mem-

orandum 331-90.10-009 (internal document), Jet Propulsion Lab-

oratory, Pasadena, California, February 19, 1990.

II. Effect of the Doppler Shift on the
DFS Input

Ill the application of DFS for the GSSR, frequency con-

trol word Fr is updated at the fixed rate corresponding to

the worst case Doppler shift that one may encounter. Let
R denote the distance between the Earth and the planet

that is being tracked. The rate of the change of this dis-

tance, when the planet is at position x = x(t), is

d/_ y • x

- (1)
dt R

where v denotes the velocity of the planet relative to the

Earth. Let Fo denote the output frequency, and c the

speed of light, then the Doppler shift AF is

AF- dR/dr (2)
eFo

The ephemerides provide the value of AF in tabular form,

and as explained earlier, it is essential to fit a polynomial

to the function ¢(t) = dR/dr.

III. Method of Least Squares

In approximating the ephemerides, it is assumed that

there exists a real valued function f(z) such that f(xi) rep-
resents the sampled values fi at the point xi. The problem

of approximating the sequence {fi,i = 1,... ,N}, with a

function y(x), is formulated by using the MSE measure as

a merit function [2,6]. A space of functions is fixed and a

basis • = {¢i} is supplied. Let X denote the MSE, i.e.,

x 2 = y(xi) - ak¢_(_:_)
k=l

(3)

The coefficients al,..., aM are chosen to minimize X 2. For

such ai, set

M

y(x) =EakCk(x) (4)
k=l

For example, if ¢i(z) = x i-1 with i = 1,...,M, then a

polynomial approximation to f is obtained.

If one defines the N x M matrix A and the N x M

vector b by
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A

/ _1(Xl) _2(Xl)

¢1(_). ¢_(_)

\¢I(_N) ¢2(_N)

CM(Xl) /

CM(XN)

(,1)b = " (5)

fN

then the solution a = (al,..., aM) to the above minimiza-

tion problem satisfies the equation

AT Aa : ATb (6)

This equation is also known as the normal equation of

the least squares. It is convenient to set A = ()_j) and

B = (fl_) where

N

i=1

N

_k = E fiCk(xi) (7)
i=1

Then Eq. (6) becomes

h. =B (8)

In most applications (especially when N is large), the nor-

mal equation is nearly singular, and singular value decom-

position (SVD) must be employed [7] to solve for a. SVD

requires much more extra storage and computation than

solving the normal equation. In Section IV, an alternative
solution for this minimization problem is considered.

IV. Orthonormal Expansion

In this section it is assumed that {¢i(x), i = 1, 2,...} is
a complete orthonormal set relative to a measure dll(x), in

the interval [a,b], i.e., < ¢i(x),¢j(x) > = 5ij, for al[i # j,
where the inner product < . > is given by

< u(_), z(x) > = y(x)z(_)dt, (9)

Then y(x) = E < Y,¢J > ¢j(x)in the L2-sense.

Any function f(x) E C[,_,b], where C[,_,b] denotes the
space of continuous functions on the interval [a, b], has an

approximate expansion

M

f(x) ,_ ___ aiOi(x)
=----1

(10)

where M is large. An exact solution is, in general, not

possible, and the choice of a = (al,...,aM) which mini-
nlizes

b f(x) _ (x) 2_2 =j[_ - ai¢i d#
i=1

(11)

is given by ai = < f, ¢i >. Similar considerations apply to
the discrete case. tlere the domain of the functions is the

set A = {Xl,X_,...,XN}, and/_ is a non-negative measure
on A. It is assumed that the points xi are equally spaced

in the interval [a, b]. The inner product becomes

N

< y(x),z(x) > = _--_y(x=)_(_t),(_)
i--1

(12)

When the basis functions form a complete orthonormal

set, then all the nondiagonal terms in the matrix A are

zero and the computation of a in Eq. (8) is reduced to

inverting the diagonal matrix A. Ilence, the complexity

is substantially reduced when compared to directly solv-

ing the simultaneous set of normal equations in Eq. (8),
or using the SVD method. This savings is accomplished

without any degradation in the overall average MSE. In

the following two sections, two special classes of orthogo-
nal polynomial equations that are used for computing the

interpolating polynomial for the ephemerides are specifi-
cally considered.

A. Chebyshev Polynomial Equations

The Chebyshev polynomials have been widely used for

approximating the planetary ephemerides [3]. In this sec-
tion, this class of polynomials is described and its short-

coming for this case is outlined.

The Chebyshev polynomial of degree n is

T. (x) = cos[. cos-_ (_)] (]3)

Using elementary trigonometry, one can show the following
recursion fornmla

T_+l(X ) : 2xTn(x) --_n--l(X) (H)
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for n > 1 with the initial condition To(x) = 1. The
set of Chebyshev polynomials is a complete orthonormal

set in the interval [-1,1] relative to the measure d_(x) =

(1- x_) - 1/_dx. The orthogonality property of the Cheby-
shev polynomials is given by the formula

/ T_(x)7_(x) { 0 i ¢ jdx = r:/2 i = j T_ O
-1 _r i= j =0

(15)

Note that this orthogonality condition is only for the mea-

sure dp(x). The Chebyshev polynomials also satisfy the

discrete orthogonality relation

N {0 iCjE _(xn)_(Xn)= N/2 i=j#O
n=l N i=j=O

(16)

where xns range over the zeros of TM(x). Note that the

zeros of Tk are

_(r,- ½) (17)
X n _ COS k

In Fig. 3, tile Chebyshev polynomials of degree up to five

are shown. Since the points {xn} are not uniformly spaced
and the planetary ephemerides are computed at equally

spaced time intervals, the application of the Chebyshev

polynomials is hardly appropriate. In the next section, the

Gram polynomials are described, which are more suitable
for this application.

B. Gram Polynomial Equations

The Gram polynomial equations are most suitable for

obtaining approximations to the planetary ephemerides or

other data obtained by sampling at equally spaced time
intervals.

The Gram polynomial [8] pn(x, 2L) is defined by

pn(x,2L) = _ (-1) k+n
(j + k)Ok) ( L + x) k

k=0 (k!)_" 2L(k)
(18)

where

n-1

x C'_) = x(x - 1)(x- 2)... (x -n+ 1)= I-I(x-j)
j=0

with x(°) = 1. Grain polynomials satisfy the orthogonality
relations

k=L

E pi(k, 2L)pj(k, 2L) = 0
k=-L

for iCj

k=L

E p_(k, 2L) = (2L + i + 1)!(2L - i)
k=-L (2i + 1)[(2L)[] 2

(19)

Figure 4 gives the graphs of the polynomials Pl, • •, Ps, for
L=IO.

V. Piecewise Polynomial Approximation

In this section, the result of Section III is extended to

take into account the boundary conditions. The motiva-

tion for this extension is that the interpolated function

approximating the planetary ephemerides is used as an

update for the frequency control to the DFS, and it is nec-
essary for this function to be continuous. It is shown later

in Section VI that considerable improvement is achieved in
the MSE, when the ephemerides data are subdivided into

blocks, and each block is approximated using a different

set of polynomials. To incorporate the boundary values,
the values at the end-points are introduced as constraints

in the original minimization problem, i.e., the following

nfinimization problem is considered

M_n x2(a) = [Ya -- aiq3i(x) d_ (20)
i=l

subject to:

E ai¢i(1) =A

E ai¢i(-1) = B

Evaluating the partial derivative of X with respect to ai

and setting it equal to zero yields the following s(:t of equa-
tions:

Oaj _- 0 :=_ E Ck(_2i)¢J(2gi)]A(Xi

k

Ok

=E f(xi)¢j(xi)p(xi) (21)
i

These equations form a system of M+2 equations in M+2

unknowns, namely Ca = L where
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C ____

¢1(1) ¢_(1) ...
¢1(-1) ¢2(-1) ...

¢M(1)
¢M(--1)

--¢1(1) --¢1(--1)

-¢2(1) -¢2(-1)

:

--¢M(1) --¢M(--1)

0 0

0 0

(22)

and the vector L is given by

Lj = _ f(xi)¢j(xi)p(xi) for 1 < i < N
i

(23a)

LN+I = A and LN+2 = B (23b)

In the next section, the performance of the algorithms in-

troduced here will be evaluated by numerical simulations
for a number of cases.

VI. Numerical Simulations

The simulation results in this section are based on using

one of the two following orthogonal bases. The Chebyshev
polynomial equations of degree five or less in the interval

[-1,1] are

A= {1,y,-l+2y 2,-3y+4y 3,

1 - 8y 2 + 8y4,5y - 20y 3 + 16y 5} (24)

The Gram polynomials of degree five or less in [-120,120]
are

x 121 x 43559 x 3A = 1'120'239 + 9560' 34129-"_ x + 68258------4'

7381 12445 x2 + x 4
18881 46220688 46220688'

37639643 9679 x3 x _ ;
2272517160 x 1818013728 + 3030022880 J

(25)

In the first set of experiments, tile performance of each
one of the proposed techniques for a discrete time func-

tion is compared. The original function y(x) is a sampled

second-order Chebyshev polynomial translated into the in-

terval [0,1000]. This choice was intentionally made to show
that even for a uniformly sampled Chebyshev polynomial,

the Gram polynomial approximation outperforms the clas-

sical Chebyshev polynomial approximation. The results of

this experiment are shown in Figs. 5 and 6. In Fig. 5 the

original function is shown with 240 uniformly spaced sam-
ples between 0 and 1000. The interpolated function is not

shown, since it is very close to the original function. The

error sequence between the original sampled sequence and

the approximating function resulting for each method is

shown in Fig. 6. The corresponding MSE from Eq. (3)

and the resulting polynomials are given in Table I.

In Table 1, the MSE decreases by an order of one half

when the number of sampled points in the original function
is increased from 240 to 1000 points. The least squares

method in this case was solved by using the SVD, and

it gives a smaller MSE than the orthonormal expansion
method. Note that the MSE is lower in each case when the

Gram polynomials are used for approximating the original
function, which in this case is itself a sampled third-order

Chebyshev polynomial.

In the next two sections, these techniques are directly
applied to the cases of this study, namely, the ephemerides
data.

A. Phobos Experiment

Phobos is a Martian moon. It completes an orbit of

Mars approximately each eight hours, and its high speed
accounts for one of the highest Doppler shifts encountered

in the solar system. For this reason, Phobos' ephemerides

were chosen for this ease study. The original ephemerides

are obtained at one-half-minute intervals, resulting in 960

points, tIere, the orthonormal expansion methods, as de-
scribed in Section III, are used. The method of least

squares becomes prohibitively complex with 960 points.

In Fig. 7(a) the Doppler shift is shown. The resulting

error sequence for each technique is shown in parts (b) and

(d). The interpolated function is given in Fig. 7(c).
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Note that the error sequence in Fig. 7(c) is very close to
zero when shown in full scale. The fluctuation of the error

is within 5 percent of the full scale of the Doppler shift.
From Table 2, it is deduced that the constrained piecewise

Gram polynomial approximation is superior, in terms of
the MSE, to the orthonormal expansion.

B. Comet Experiment

Another interesting experiment is based on the data

sinmlating a celestial body (such as a comet or an asteroid)

approaching the Earth at high speed. This is referred to as

the comet experiment. The results of this test are shown

ill Fig. 8.

When the error sequences are compared, it becomes

obvious that the piecewise approximation method reduces

the end-point error by a factor of fifteen. From Table 3, it

is seen that the constrained piecewise polynomial approx-

imation outperforms the orthonormal expansion method.

It is concluded from tile numerical simulation in this

section that the constrained piecewise Gram polynomial

approximation has the least MSE.

VII. Frequency and Phase Error Due to
the Update Rate

There are four sources of error: (a) phase error between

the approximated Doppler and the actual Doppler, for the

whole period of the ephemerides, (b) phase tracking error,

which is the phase error between the PLO output phase

and the actual phase of the ephemerides, (c) frequency er-
ror between the approximated Doppler frequency and the

actual frequency, and (d) frequency tracking error, which
is the frequency error between the PLO output frequency

and the actual frequency of the ephemerides.

A key design parameter for using tile PLO is the update
rate. This update rate must be chosen such that the phase

errors over the tracking period of the celestial body do not

exceed 1.2 degrees and the frequency errors also are kept
under 2 hertz.

The ephemerides phase and the frequency error are as-

sessed by using the polynomials from the piecewise Gram

polynomial approximation method, shown in Tables 2 and
3. Each polynomial is computed at the rate of once for

each update period. The phase error between interpolated

ephemerides and the actual ephemerides is evaluated by

hard quantizing the interpolated function and tile original

function and computing the phase difference between each
waveform. The frequency error is found by evaluating the

largest deviation between the interpolated function (com-

puted at the update rate) and tile original function, i.e.,

Af = Sup If(t)- ](t) ] (26)
t

The results are shown in Fig. 9 for the Phobos and the

comet experiments.

It follows from Fig. 9(a) that to maintain tile phase

errors under 1 degree during the whole tracking period,
and the frequency errors under 2 hertz, the update period
nmst be chosen to be less than 50 milliseconds.

Tile effects of the update rate on tile frequency tracking

error for the output spectrum of the PLO can be analyzed

by considering a snmll segment (e.g., 1 minute) of the fre-

quency error variation between the synthesized and the

original function. During this period, this variation can
be modeled as a ramp shown in Fig. 10(a). It should be

noted that this is a valid approximation since the period

of the ephemerides (>_ 5 hours) is much larger than the

update rate, which ranges between 50 milliseconds and
2 seconds (slowly moving celestial bodies). During each

update rate, the frequency is either increased or decreased

for a long period (usually in minutes).

The output frequency of the DFS (ranging between 10

to 20 MHz) is approximated by the linear function whose

slope is

dr. ,_ ](t) - ](t - T) (27)
dt T

and at the midpoint of the update period is equal to tile

value of the interpolating function. The resulting phase

error is simply the integral of the frequency error, as shown

in Fig. 10(a)

o_0 t
A¢(t) = 27r Af(r)dr (28)

In Fig. 10(b), the periodic phase error (in degrees) is shown
as a function of the update period T. For example, ill the

case of the planets and their moons, one can roughly ap-

proximate their orbits as sinusoids [see Fig. 10(c)] and the
resulting phase error is given in Fig. 10(d). Note that

when tile update period is very small compared to the

ephemerides period, one can locally approximate the sinu-

sold by the ramp function. Then tile phase error becomes

approximately A¢ = 27r(df/dt)T2/8, see Fig. 10(b).
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The effect of frequency tracking error can be approxi-

mated by using classical results from frequency modulation

(FM) theory. Let p(t) be

[(;-)
[_ _r - 0 < t _< Tp(t)

(
0 otherwise

(29)

The output spectrum of the PLO is found by evaluating

the spectrum of the signal o(t), which is

o(t) =sin( w°t + /3 Ek p(t - kT))
(30)

In FM modulation, the modulation index controls the

spectral characteristics of the signal. In this case, the mod-

ulation index/3 = 27r(df/dt)T2/8, where df/dt is the slope

of the frequency ramp.

The pulse sequence in the phase term of Eq. (3) has the

Fourier series expansion as

E p(t-kT) =-_+-Tr
k k=l

"cos( 2rr kt /T) "

k2
(31)

Therefore, o(t) is a nmlti-tone FM signal for k ranging
over a finite set. It can be shown, as in [10], that the

spectrum of this signal can be approximated by certain

sums of products of Bessel functions of the following form

E E E II Jo, cos
nt rta nL i=1

L

k=l \ /

(32/

The series in Eq. (32) is composed of line spectrmns in
frequency domain, with a carrier component of amplitude

Jo(/31,..., Jo_/(L- 1121, Jo(/3/L2). The analytical eval-

uation of the magnitude of each term in Eq. (32) is dif-
ficult, due to the intermodulation products. IIowever, if

the magnitudes of the harmonics of fo - 2rr/T and the in-

termodulation products are below -98 dBc, then they are
masked in the output spectrum by the quantization noise

induced internally in the DFS (the spectral purity of the

DFS is -98 dBc [4]).

The authors have developed a program for the numer-

ical computation of each term in Eq. (32). Ilere, an ex-

ample for Phobos is presented, which represents the worst

case in terms of the rate of change of the frequency. Let

df/dt = 30 Ilz/sec, and T = 3 msec, then/3 = 3.75 x 10 -4 .

In Fig. 10, the line spectra of two cases with/3 = 1/,-r and
/3 = a.75 x 10 -4 are shown. In Figs. ll(a) and ll(b), the

integer n represents the frequency fo - 27_,"r/T. Note that

for the update period of 3 msec (/3 = 3.75 x 10 -4) the

magnitude of the harlnonics at fo - 27r/T = 10002094 IIz

(with f_ = l0 MIlz) is around -100 dBc, and the spec-
tral lines due to the intermodulation products are below

-300 dBc. It follows that an update rate of 1 KIIz (for

Phobos) is sufficient to guarantee that the effects of the

frequency update rate have impact on the spectral purity
of the PLO.

VIII. Conclusion

An algorithm is described for piecewise orthonormal ex-

pansion in terms of Gram polynolnials. This method out-

performs other approaches in terms of the MSE by a factor

of one hundred in some cases. This algorithm was applied
to a number of cases for the ephemerides approximation.

Using the piecewise Gram polynomial approximation al-

gorithm, the progratnmable local oscillator can operate at
a minimum frequency update rate of 2.94 kllz to maintain

a minimum worst-case phase error of at most 1.0 degree

when tracking a moon such as Phobos, which represents

one of the worst cases of Doppler shift that may be en-

countered in the solar system.
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Table 1. Results of the approximation algorithms

Approximation Mean-square error Polynomial
algorithm

240 points Chebyshev 0.0773128 - 0.865531 + 0.0735729x
orthonormal expansion - 0.000826432x 2

+ 0.00000228612x 3

1000 points Chebyshev - 937736 + 0.0178576x
orthonormal expansion - 0.0000479041x 2

+ 3.19042 x 10-8x 3

240 points least squares - 1.0 + 0.0746888x

Chebyshev polynomial - 0.000826432x 2
+ 0.00000228612x 3

240 points least squares - 1.0 + 0.0746888x
Gram polynomial - 0.000826't32x 2

+ 0.00000228612x 3

240 points Gram - 8.878124 + 0.0673012x

orthonormal expansion - 0.000703089x 2
+ 0.00000153851x 3

0.0359122

3.456 × 10 -6

1.81487 X 10 -]5

0.0308202

Table 2. The Phobos experiment

Approximation Mean-square error Polynomial
algorithm

Gram polynomial 9358.31 - 1.00546 × 106 - 1.83.043x
orthonormal - 3.5313x 2 + 0.00924722x 3

expansion -- 5.57485 X 10-6x 4

Constrained piecewise 8936.54 - 1.01784 x 106 -346.157x

Gram polynomial - 2.91032x 2 + 0.0083382x 3

approximation - 5.12973 x 10-6x 4

Table 3. The comet experiment

Approximation Mean-square error Polynomial
Mgorithm

Gram polynomial 800.046 - 127756 - 167.347x
orthonormal expansion - 0.038991x 2

+ 91.2606 × 10-6x 3
- 3.41438 × 10-8x 4

235.818 -- 130512 - 193.964x

- 0.112562x 2

+ 16.7592 X 10-6x 3
- 6.05596 × 10-6x 4

Constrained piecewise
Gram polynomial

approximation
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10-20 MHz
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SYNTHESIZER I MHz

HP 8662 j MODULATOR_

i×81FREOUENCY [ 8100MHz /
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l
CONTROL DSN STATION

HPIB REFERENCE
INTERFACE 100 MHz
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