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ABSTRACT

This report covers exploratory work applying existing and experimental
algorithms for various parameters of atmospheric water content (integrated
water vapor, cloud water, precipitation and precipitation size ice particles) to
signals from the Special Sensor Microwave Imager (SSM/I) to examine the
distribution of these quantifies in mid-lafitude cyclones. We also present
two cases where the older microwave radiometer, Nimbus Scanning
Multichannel Microwave Radiometer (SMMR) for North Atlantic cyclones

are compared to the precipitation and water vapor content from the
mesoscale numerical model of the University of Stockholm (as of 1983).

Our objective is to illustrate the potential microwave remote sensing has for
enhancing our knowledge of the horizontal structure of these storms and to

aid the development and testing of the cloud and precipitation aspects of
limited-area numerical models of cyclonic storms. The work was originally

presented at the Palm6n Memorial Symposium in Helsinki, Finland, August

29-September 2, 1988.
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1. INTRODUCTION

Some twenty five years after the possibility was first suggested, horizontal distributions of

several important components of atmospheric water content - integrated water vapor, cloud

liquid water, and precipitation -- can now be routinely mapped over the ocean using

microwave radiometer measurements from satellites. The two most recent instruments of

this type are the Scanning Multichannel Microwave Radiometer (SMMR), which operated

on the Nimbus-7 satellite from October 1978 until late 1987, and the Special Sensor

Microwave/Imager (SSM/I) launched in June 1987 on a satellite in the United States

Defense Meteorological Satellite Program (DMSP).

Integrated atmospheric water vapor ("precipitable water"), can be retrieved accurately from

these instruments and compare well to radiosonde data (e.g., Katsaros et al. 1981,

Alishouse 1983, McMurdie 1989, Petty and Katsaros 1990c). Such water vapor retrievals

have been used for inferring synoptic frontal locations and for investigating certain aspects

of cyclone structure and kinematics (e.g., McMurdie and Katsaros 1985, Katsaros and

Lewis 1986, McMurdie et al. 1987, Katsaros et al. 1989).

Algorithms for calculating cloud water and rain rate, on the other hand, are the subject of

ongoing research. The validation of cloud liquid water and rain rate algorithms over the

ocean is complicated by the limited availability of comparison data. Also, because of the

long wavelengths employed on microwave sensors and the practical limitations placed on

antenna size in space, the spatial resolution of these instruments is still marginal for

mapping details of phenomena such as very narrow frontal rainbands and individual

convective clouds which do not fill the antenna beam.

Despite present limitations, observations by satellite microwave radiometers of atmospheric

water allow new insight into the mesoscale structure of midlatitude cyclones. In the past,

visible and infrared satellite pictures have given valuable qualitative information on

distributions of cloudiness and likely locations of precipitation, but microwave radiometry

nnnml.e__¢ a more ouanfitafive nicture of these parameters. Microwave technieues directly



measure the vertically integrated water content of the whole atmosphere, as opposed to

cloud top parameters observed by visible and infrared sensors, and they are unaffected by

the extensive cirrus shield which frequently accompanies midlatitude frontal cloud bands

and other weather systems.

Numerical modelers have long been expressing a desire for quantitative cloud data for

intercomparison with their water parameterizations. Not only are the location and rate of

production of liquid water of meteorological interest in their own right, but the skill of a

model in forecasting these parameters is a sensitive measure of the correctness of both the

initialization and the simulated dynamics. Furthermore, in higher resolution mesoscale

models and in models forecasting over longer time periods, the dynamics are themselves

sensitive to the rates of latent heat release due to condensation and to the radiative heating or

cooling which occurs in the presence of clouds. Before the advent of microwave

radiometry from space, direct large scale measurements of integrated cloud water were

unobtainable over the ocean in any form.

In this note we demonstrate the unique ability of microwave radiometry to:

(a) provide mesoscale maps of cloud water and precipitation distributions in cyclones,

and,

Co) provide independent verification of the reasonableness of atmospheric water

parameters produced by a limited area numerical model (Hammarstrand, 1987).

Since currently neither model parameterizations nor satellite algorithms for cloud water or

rain are well established, these qualitative intercomparisons are expected to stimulate and

aid developments in both areas of research. We fast give a short description of the two

microwave radiometers and the algorithms we have used (Section 2). These algorithms are

still undergoing development and refined revisions will be published in the near future

(Petty, 1990). In Section 3 the numerical model is described and the limitations of the

current study due to evolving computer systems is presented. In Section 4 we illustrate
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atmospheric water, as vapor, cloud water, and precipitation size ice within midlatitude

cyclones. Section 5 presents a somewhat mismatched, yet indicative, comparison between

satellite observed cyclonic systems and parameters produced by the numerical model. In

Section 6 we present suggestions for further work.

2. MICROWAVE SENSORS AND RETRIEVAL ALGORITHMS

The characteristics of the two microwave radiometers are given in Table 1. The SMMR is

described by Gloersen and Barrath (1977), and the SSM/I by Hollinger et al. (1987).

Microwave techniques for retrieving atmospheric parameters work best over the ocean,

because the ocean has low, relatively uniform emissivity (e ~ 0.5) and therefore provides a

good background for observing atmospheric emission.

Table 1. Characteristics of the Two Polar Orbiting Radiometers
- SMMR on Seasat and on Nimbus 7 and the SSM/I
on the F8 DMSP Satellite

SMMR SSM/I

FREQ.
GHz

6.6
10.7
18
21
37

APPROX.

RESOLUTION

(km)
150
100

65
60
35

FREQ.
Gnz

19.35
22.235
37
85.5

APPROX.

RESOLUTION

(km)

55

50

35

15

Se_at: 650 km
Nimbus 7: 780 km

Swath Width: 1400 km

Period of Operation:
Se_at: July-October 1978
Nimbus 7: October 1978-

Fall, 1987

Period of Operation:
July, 1987 - Present



2.1 SMMR

The algorithms used here for calculating SMMR integrated water vapor are linear

combinations of the brightness temperatures obtained from selected radiometer channels.

We used the coefficients developed by the Nimbus-7 Experiment Team ('User's Guide for

the Nimbus-7 SMMR PARM and MAP tape, 1983) based on the work of Staelin et al.

(1976), Rosenkranz et al. (1978) and Chang and Wilheit (1979). Water vapor values

derived from the Nimbus 7 SMMR have been found to give rms error values of the order

of 2 kg m -2 (e.g., McMurdie, 1989).

Integrated cloud liquid water (ICLW) was determined from the SMMR data using the

normalized 37 GHz polarization difference to estimate cloud optical depth, as discussed by

Petty and Katsaros (1990a). In contrast to the histogram method described in that study,

however, "clear sky" polarization differences were estimated here based on co-located

SMMR water vapor and wind speed retrievals combined with a preliminary version of the

theoretical brightness temperature model described by Petty (1990). Conversion of cloud

opacities to ICLW was accomplished using the liquid water extinction formula given by

Petty (1990), assuming a mean cloud temperature of 273 K.

It is very difficult to reliably separate the ICLW signal from the rain signal. Here, we

simply assume that values returned by the ICLW algorithm which are less than 0.5 kg m -2

are due solely to cloud water and are thus quantitatively reliable; retrieved values greater

than 0.5 kg m -2 are considered to be du _. at least in part, to rain of unknown intensity.

This threshold, while somewhat arbitrary, found to work reasonably well in practice, as

non-precipitating clouds are rarely expected to support such large ICLW values averaged

over the 30 km footprint of the SMMR, while precipitation, because of the larger effective

layer depth and the proportionally stronger microwave extinction by precipitation size



drops, typically gives rise to 37 GHz polarizationswhich are interpretedby the ICLW

algorithmasbeingdueto ICLW well inexcessof 1kg m-2.

2.2 $SMII

The algorithms used here to retrieve integrated water vapor, integrated cloud liquid water,

and indices of precipitation from SSM/I brightness temperatures are documented in detail

by Petty and Katsaros (1990c). The integrated water vapor (IWV) algorithm is based on

statistical regression of functions of SSM/I 19 and 22 GHz brightness temperatures against

515 coincident radiosonde estimates of IWV. The IWV estimates are obtained at 50 km

resolution and are further smoothed using a 75 km averaging window in order to reduce

pixel-scale noise. RMS relative differences between radiosonde and SSM/I estimates of

IWV were found to be about 13%, of which a significant (but unknown) fraction of this

difference is likely to be due to errors in the radiosonde estimates themselves and to spatial

and temporal mismatches.

Integrated cloud liquid water (ICLW) is obtained using a semi-physical approach. SSM/I

observations of surface wind speed and IWV (using the lower resolution channels) are

used to estimate the cloud-free polarization difference at 85 GHz; the ratio of the observed

85 GHz polarization difference to this cloud-free polarization difference, which we refer to

as the normalized polarization difference P 85, is a simple function of the total cloud water.

Fields of ICLW are thus obtained at 15 km resolution, with absolute uncertainties of the

order of 0.05 kg m -2 .

A similar approach is used to obtain the normalized 37 GHz polarization difference P 37,

which Petty and Katsaros (1990a, 1990b) showed to be a useful index of the presence and

intensity of precipitation due to the latter's effect on the visibility of the highly polarized sea

surface. Values of P 37 from 0.9 to 1.0 appear to reliably rule out rain within the pixel;
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P 37 < 0.8, on the other hand, may be taken as a fairly unambiguous indication of rain,

with values of P 37 decreasing to near zero with increasing intensity and areal extent of

precipitation within each 25 km SSM/I pixel.

At 85 GHz, radiative scattering by precipitation-size ice particles (i.e., graupel, hail, snow

aggregates) above the freezing level gives rise to a brightness temperature signal which is

significantly depressed compared with brightness temperatures under otherwise similar

conditions of atmospheric opacity. Our algorithm for detecting this effect, expressed here

as a polarization corrected brightness temperature depression S 85 (referenced to 273 K), is

a slightly modified version of the one developed by Spencer et al. (1989); the principal

difference is that our version automatically adjusts for variations in the oceanic and

atmospheric background in order to reduce spurious variations in S 85 arising from factors

other than precipitation.

The concentrations of large ice particles required to give S 85 > 10 K appear to occur

primarily in conjunction with the heavier, cold-cloud rainfall associated with convective

activity or intense midlatitude frontal rain bands. Preliminary comparison to radar

measurements (e.g., Petty and Katsaros, 1989) show that, within a given midiatitude

storm, the 85 GHz scattering signal is highly correlated with surface rainfall intensity

within the SSM/I pixel. The exact statistical relationship, however, appears to vary

somewhat from time to time and place to place, owing to its dependence on the details of

the cloud microphysics and other factors.

Unlike other atmospheric parameters derived from SSM/I observations S 85 appears to

work equally well for identifying precipitation over land, except in the presence of surface

snow cover, which also gives rise to a strong scattering signal.



3. THE NUMERICAL MODEL

A parameterization scheme for the forecast of liquid water, precipitation and cloud cover

was developed at the University of Stockholm, Sweden (Sundqvist, 1978, 1981;

Hammarstrand, 1987). It is designed to be included in a large numerical weather prediction

model. At present the scheme, in a somewhat modified version, is used in the forecast

models of the University of Bergen, Norway (Sundqvist et al., 1989) and at the

Norwegian Weather Service in Oslo (Nordeng, 1986). In this scheme, stratiform and

convective condensation processes are treated separately. Rain rate is parameterized in

terms of cloud water contents for each category, and the total precipitation is the sum of the

stratiform and convective components.

The present study makes use of results from experiments with the scheme incorporated in a

limited area model (LAM) version of the European Centre for Medium Range Weather

Forecasts (ECMWF) global gridpoint model. Integrations were carded out for 36 hour

periods, using operational ECMWF initialization data from a week in May, 1983. Output

from the model forecasts included, among other meteorological parameters, accumulated

precipitation, total cloud cover, integrated cloud liquid water and water vapor. Cases for

comparison were selected based on geographical and temporal coincidence of the available

data with overpasses by the Nimbus 7 SMMR. Despite the non-optimality for SMMR

comparison purposes of some of the times and parameters available from the model*, we

* When the present experiments were undertaken we were not aware of the possibilities of
comparing the results with the SMMR data. The output from the model was therefore not
chosen to coincide in time and character with the output from SMMR. For example, we
chose to plot accumulated precipitation for the period of integration, but the precipitation
parameter available from SMMR is the instantaneous distribution of precipitation. The
experiments should therefore have been rerun, but this was not possible due to the
installation of a new computer system; unfortunately, the LAM was not easily converted to

the new system.
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believethatour resultsarevaluablesincetheyshowweakpointsin themodel formulation

thatcanbeadjustedwhennewexperimentsareundertaken.Furthermore,ourcomparisons

showanewway to verify modeloutputsthathavenotbeenusedbefore.

4. RESULTS: MESOSCALE STRUCTURE OF ATMOSPHERIC WATER IN A
FRONTAL ZONE WITH SSM/I

Fig. 1 depicts the 0600 UTC surface analysis of a mature cyclone moving into the British Isles on

the morning of 18 October 1987. At this time, the cold front extended from the Irish Sea

southwestward, with a frontal wave analyzed some 400 km northwest of the Iberian Peninsula.

The exact position and amplitude of the wave was uncertain, owing to the sparsity of surface

reports in the vicinity.

Fig. 2 shows the NOAA-10 infrared image of the same storm at 0420 UTC. The circulation

around the low pressure center is evident west of Ireland, as is an extensive cirrus shield

accompanying most of the occluded front and the upper portion of the cold front and wave.

Behind the cold front, considerable open-cell convection is visible, including a region of stronger,

more organized convection near 20°W, 47°N which is apparently associated with the secondary

low seen in the surface analysis.

Fig. 3 depicts composite SSM/I views of the cyclone from 0445 UTC (eastern swath) and 0620

UTC (overlapping western swath), using the algorithms described in Sect. 2. The cirrus shield

seen in the infrared image (Fig. 2) is transparent to microwaves and is therefore invisible in the

SSM/I images.

The SSM/I integrated water vapor image (Fig. 3a) exhibits the characteristic water vapor

maximum in the warm air sector ahead of the cold front, accompanied by a sharp decrease across

the front in the direction of the cold air mass, as documented by McMurdie and Katsaros (1985) in
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Figure 1: Surface analysis of an occluded cyclone overrunning the British Isles, valid
06 UTC, 18 October 1987.
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Figure 2: NOAA-10 infrared image, 0420 UTC, 18 October 1987, produced at
University of Dundee, Scotland.
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SMMR data. In a recent study (Katsaros et al. 1989), we have found that the location of SSM/I

water vapor gradients exceeding 0.1 (kg m'2)/km provides an excellent objective indication of the

location of many surface cold fronts, irrespective of latitude and season. Note that there is no

obvious indication in the water vapor field of the frontal wave that had been analyzed northwest of

the Iberian Peninsula (Fig. 1).

The liquid water image (Fig. 3b) shows a detailed map of the vertically integrated liquid water

content of the atmosphere, many features of which bear little apparent relation to the infrared

brightness temperatures seen in Fig. 2 (because of the time elapsed between the SSM/I swaths and

the infrared image, only general comparisons are meaningful). For example, the extensive layer

of stratus northeast of Iceland appears very uniform in the infrared image, yet the SSM/I reveals

significant variations in the total water content of these clouds, with maxima near 0.4 kg m "2. The

strong SSM/I liquid water signal just south of Iceland appears to be associated with low clouds

which are barely discernible in the infrared image because of the intervening cirrus layer. Blacked

out pixels are those for which precipitation has been flagged, based on S 85 > 10 K. Numerous

cold air mass convective cells are evident behind the cold front; most of these appear to have pixel-

averaged liquid water contents of less than 0.2 kg m -2.

The SSM/I derived surface wind speed field, which is used as an input in the calculation of the

atmospheric water fields, is depicted in Fig. 3c. In general, the wind speed field is in good

agreement with the pressure gradient field in the conventional surface analysis. A single obvious

exception occurs near the south coast of Iceland, where the relatively high wind speeds retrieved

by the SSM/I would seem to support a tighter packing of the isobars toward Iceland and a weaker

gradient midway between Iceland and the occluded front. Note that some of the relatively high

wind speeds indicated in the immediate vicinity of the frontal cloud band may be due to

contamination of the wind signal by precipitation.
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Fig. 3ddepictsthenormalized37GHzpolarizationdifferenceP37, a measure of the visibility of

the polarized sea surface through clouds and precipitation. As indicated in section 2, values of

P37 below 0.8 are taken to correspond to precipitation. A narrow, well-defined band of

precipitation is seen along the entire length of the front, including the occluded portion wrapping

around the low center near 55N, 13W. Some mesoscale structure in the form of kinks and local

enhancements in the rainband is evident, particularly west of France. However, if one assumes

that the shape and location of the precipitation band are mainly determined by the location of the

surface cold front, then there would again appear to be little evidence of the pronounced frontal

wave analyzed in Fig. 1. Although we did not have access to the conventional reports used in the

synoptic analysis, it may be questioned whether the surface cold front would have been analyzed

with this wave, had the SSM/I images of water vapor and precipitation been available to the

analyst.

Fig. 3e depicts the polarization-corrected depression (S 85) of the 85 GHz brightness temperature.

Values departing greatly from zero are associated with strong radiative scattering due to

precipitation-size ice within convective clouds and frontal rainbands. Despite the use of the same

85 GHz channels for both S 85 and for the liquid water field (Fig. 3b), the two fields are seen to

be quite different. For example, The significant liquid water features observed north of 60°N

latitude in Fig. 3b have little or no associated scattering signal. This is consistent with our

identification of that region of liquid water with low, stratiform clouds in which vertical motions

are weak and the formation of significant concentrations of large ice particles is unlikely. Certain

portions of the spiral cloud band near 55°N also show relatively high liquid water content but little

to no scattering by ice. Likewise, the majority of the cellular cloudiness evident behind the cold

front in both the infrared and liquid water images also exhibits no scattering signal. Those few

cells which are also evident in Fig. 3b are apparently associated with well developed

cumulonimbus clouds capable of producing large graupel and perhaps even hail aloft.
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Of greatestinterest, of course, are the well-defined regions of precipitating ice appearing within

the frontal cloud band itself. Although they appear almost exclusively within those regions

identified as precipitating in Fig. 3d, the scattering signal provides considerable additional meso-0_

scale information concerning the locations and relative intensities of precipitation activity along the

front. For example, individual precipitation cores with diameters of less than 30 km appear to be

easily resolvable within the southern end of the frontal rain band. The structure and strength of

features in the SSM/I ice-scattering imagery have been found in other cases to closely match the

structure and intensity of coincident surface radar echoes (Petty and Katsaros, 1989).

5. COMPARISON BETWEEN NUMERICAL MODEL FORECASTS AND SMMR

OBSERVATIONS OF ATMOSPHERIC WATER

5.1 Cloud water and rain

Two passes of the Nimbus 7 satellite measuring rain and cloud associated with waves on

the polar front are presented in Fig. 4. The frontal analysis was obtained from the German

Weather Service (Deutsche Wetterdiens0 and contours represent accumulated precipitation

(in ram) calculated by the model for the period 00 UTC to 18 UTC on 23 May 1983. The

plotted symbols represent SMMR-derived ICLW values, obtained from satellite passes at

1218 UTC and 1358 UTC on the same date. In several regions values exceeding

0.5 kg m -2 appear. We interpret these as occurrence of rain of unknown intensity. The

position and shape of the SMMR-observed rain pattern near 45°W suggest that the cold

frontal position obtained from the operational German surface should be advanced by about

200 km and oriented more North-South.

The model-derived convective precipitation region (near 52N, 20°W) is centered on a band

of heavy cloud water and rain observed by the SMMR. The SMMR also finds significant

precipitation in other areas along the front, both to the north and to the south, where the

model failed to predict any accumulation. West of 40°W, both the model and the SMMR
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Figure 4: SMMR inferred integrated liquid water content observed over the North
Atlantic at 1220 UTC (right swath) and 1400 UTC (left swath), 23 May 1983,
compared with accumulated precipitation (mm) predicted by limited-area model for

period 00 UTC - 18 UTC, 23 May. Values of SMMR ILWC > 0.5 kg m -2 are
interpreted as rain of unknown intensity. Solid contours represent stratiform
precipitation predicted by the model; dashed contours represent convective
nr_r, in_t_t{r_n 17rnnt_l raneltirme w_r_ tnlean ?rnm th_ 1_arlinar Watrork_rra f'r_r 1")
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identify areas of precipitation associated with an open-wave cyclone. Again, the SMMR-

observed rain field is considerably more extensive than that predicted by the model.

Similar results are seen in Fig. 5, which depicts non-frontal stratiform rain associated with

a low pressure center west of Norway.

The difference between the predicted and the observed distributions of rain may be due to a

number of factors. For example, the model's parameterized condensation and/or rate of

conversion to rain may be too slow, or the model may have underestimated the

convergence field in these cyclones.

5.2 Integrated Water Vapor

Figure 6a depicts the patterns of integrated water vapor observed by the SMMR at 0137

UTC, 21 May 1983. The data swath sampled an area in advance of a weak cold front

approaching from the west. Fig. 6b depicts the model's 36-hour forecast of integrated

water vapor for the same area, valid at 0600 UTC, 21 May 1983, or approximately 4.3

hours following the SMMR pass.

Both the patterns and the magnitude of the two fields agree remarkably well in the region

east of 20°,0°)W. West of 20°W, the model forecast is significantly moister than the field

observed by the SMMR. Given the time delay, it is possible that moisture advected into the

region under the influence of the approaching front is partly responsible for the increase.

However, the rate of advection and/or convergence necessary to bring about such a change

in only four hours seems unreasonably large. It is more likely that the model is simply

carrying too much water vapor ahead of the front, which may result from inefficiencies in

the parameterization of condensation and release of precipitation. This assumption is

supported by the results from Fig. 4 and 5 discussed above.
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Figure 5: SMMR inferred integrated liquid water content observed over the North

Atlantic at 0140 UTC (right swath) and 0320 UTC (left swath), 21 May 1983,
compared with accumulated precipitation (mm) predicted by limited-area model for

period 00 UTC - 18 UTC, 23 May. Values of SMMR ILWC > 0.5 kg m -2 are
interpreted as rain of unknown intensity. Solid contours represent stratiform
precipitation predicted by the model. Frontal positions were taken from the Berliner
Wetterkarte for 00 UTC.
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Water vapor fields produced in the model are influenced by a number of factors, including

the initialization, the parameterization of vapor source and sink terms (e.g., surface fluxes

and condensation processes), and the calculated horizontal and vertical motion fields. This

comparison suggests that, at least for the case described here, one or more of these factors

may require some adjustment in the model. Comparisons using a larger set of model

predictions and coincident microwave radiometer observations could be very useful in

isolating and quantifying such errors.

6. CONCLUSIONS

With this short report we wish to draw attention to the valuable resource for observing the

mesoscale structure of midlatitude cyclones that microwave radiometers operating from

space provide. The high spatial resolution and unique properties of the SSM/I 85 GHz

channels make them a particularly welcome addition to existing satellite tools. Rainbands

and regions of embedded convection within frontal clouds appear to be directly detectable at

resolutions never before possible from space.

The preliminary comparisons between a limited-area model and SMMR data show that

microwave sensors in space can potentially be used to provide much needed comparison

data for atmospheric liquid water and water vapor parameterizations in numerical forecast

models.

Microwave radiometer observations should also be used to improve the initial water vapor

fields for the numerical forecast models. When the predicted fields of clouds and

precipitation are tested against microwave observations it would then be a better test of the

model's performance. Since these microwave radiometers only provide integrated values

of the atmospheric water parameters, the satellite measurements would have to be used as a
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constraintandthemodelsdistributionof thewatervaporin thevertical would haveto be

employed.

Even though the present comparison betweenhydrologically important parameters

measuredby microwaveradiometersandsimilarquantifiespredictedby numericalmodels

isonly qualitative,it givesconfidencein bothtypesof informationandsuggeststhatit may

beworthwhile to makesuchcomparisonsroutinely.
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