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Abstract

The Meta system is a UNIX-based toolkit that assists in the con-
struction of reliable reactive systems, such as distributed monitoring
and debugging systems, tool integration systems and reliable distrib-
uted applications. Meta provides mechanisms for instrumenting a dis-
tributed application and the environment in which it executes, and
Meta supplies a service that can be used to monitor and control such
an instrumented application. The Meta toolkit is built on top of the
Isis toolkit; they can be used together in order to build fault-tolerant
and adaptive distributed applications.
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1 Constructing Reactive Systems

In a reactive system architecture, the system is partitioned into two pieces:
an environment that follows a basic course of action, and a control pro-
gram that monitors the state of the environment in order to influence the
environment’s progress. This architecture is very general. For example, pro-
cess control systems, system monitors and debuggers, and tool integration
services all have a reactive system structure.

Another application of the reactive system architecture is the structuring
of distributed applications. For example, many distributed applications are
constructed by taking off-the-shelf programs and connecting them with some
communication subsystem. Such an application can be thought of as an
“environment” with a state including the properties of machines running
the application, current performance of the component programs, and the
state of the communication subsystem. The job of the control program
is to monitor the state of the application in order to guarantee that the
system operates efficiently in spite of changing load and failures. The control
program can also be used to interconnect the application’s components in a
more loosely bound manner than conventional RPC mechanisms.

The Meta system, described in this paper, is a UNIX!-based toolkit that
provides the basic primitives needed to build a non-real-time reactive sys-
tem. Using the toolkit, a distributed program can be instrumented with
sensors and actuators in order to expose its state for purposes of control.
Meta provides mechanisms that allow a control program to query the state
of the instrumented application and to respond by invoking actuators when
some condition of interest occurs. The toolkit includes facilities for structur-
ing individual components into collections of components for fault-tolerance.
In addition, Meta guarantees that the monitoring and reaction is done atom-
ically.

Meta itself is built on top of another toolkit, the Isis system. The appli-
cation designer can use Isis for fault-tolerant communication and Meta for
distributed control. In fact, the Meta project was started when four of us in
the Isis project worked on integrating a distributed application constructed
from off-the-shelf components [MCWB90]. The facility we found lacking in
Ists was support for distributed control.

The next section introduces the architecture of an application managed
by Meta. Section 3 presents how applications are instrumented, and Sec-
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tion 4 discusses how the resulting application is controlled. Finally, Section 3
presents the current status of Meta and discusses our future plans.

2 The Meta Architecture

The architecture of Meta can be illustrated through an example of managing
a distributed application. Consider an application that includes services
and clients making use of the services. A given service consists of a set of
identical servers replicated both for fault-tolerance and for coarse-grained
parallelism. Meta will be used to manage the services; in particular, if
the load on a service is too large or the number of servers becomes too
small due to crashes, then a new server is to be started and added to the
service. Additionally, if a server’s queue becomes too long, then waiting
requests are to be migrated to less-loaded servers in the service. There are
other conditions that would probably need to be maintained as well, such
as reducing the number of servers when appropriate, but for sake of brevity
we will keep our example limited.

Meta structures a distributed application using a data model based on
the entity-relation data model [Che76], with each instrumented component
(i.e., a program equipped with sensors and actuators) being viewed as an
entity and its sensors and actuators being the attributes of that entity. For
example, a server in the above example could be instrumented with sensors
that give the server’s load and the queue of waiting requests. Entities of the
same type, that is, having the same set of sensor and actuator attributes,
form an entity set.

Subsets of an entity set may be grouped together to form aggregates.
Aggregate structures provide control programs with a way of grouping re-
lated entities together and limiting actions to members of that group. For

example, the servers comprising a service can be grouped into an aggregate

representing the service. Aggrega.tes are themselves entities, and the sys-

tem architect can define sensors and actuators on aggregates. An aggregate

sensor is a functxon over the state of all the members of the aggregate. For

‘example, a service aggregate could havea sensor that gives the median queue

length of the servers in the service. An aggrega.te actuator causes an action

to be performed on some subset (from one to all) of the current members.
A distributed application is managed through thgfgsg of guarded com-

mands; that is, through a set of (condition, action) pairs that reference the
sensors and actuators of the instrumented application. These commands
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are executed by interpreters that reside in stubs (somewhat like RPC stubs)
coresident with the instrumented programs, thus allowing for fast notifi-
cation and reaction. Each condition is a proposition on the state of sys-
tem; references to both local sensors—within the entity to which the stub
is attached—and nonlocal sensors are allowed. The action portion is a se-
quence of actuator invocations that are executed atomically. Actions may
enable guarded commands on another Meta stub; this facility allows one to
write control programs that span multiple components.

Since guarded commands are evaluated in the same address space as an
instrumented program, their impact on the performance of the application
is a concern. The syntax of the guarded command language (a postfix
language called NPL) is tailored for fast and efficient evaluation, and so
we do not expect programs to be written directly in this language. We
are designing an object-oriented control language called Lomita [MCWBO0]
that can be used to describe the structure of the application and to specify
its control behavior. A Lomita program contains a schema specifying the
entity and aggregate structure along with their sensors and actuators. The
control behavior of the application is specified in Lomita through the use of
rules, where the conditions for the rule may include real-time interval logic
expressions [SMSV83]. Such temporal expressions are compiled into finite
state automata, where the state transitions are implemented using Meta
guarded commands.

Figure 1 illustrates the use of stubs. The machine M, is running a server
that has been instrumented, so there is a stub running in the same address
space as this server that can directly access the sensors and actuators of the
server. The machine is also running a separate Meta-supplied program ac-
cessing the various properties of the machine and its operating system, such
as the amount of available memory and the processor load. This program is
instrumented, and so has a stub that supports a set of sensors and actuators
over the machine and operating system state.

3 Application Instrumentation

An application first must be instrumented before it can be controlled. This
is accomplished by inserting into the application a small amount of code,
and then linking the application with a Meta library. This section describes
the instrumentation process in more detail.



“machine” “server”
stub stub
machine
server
process
M1

Figure 1: An Instrumented Component

3.1 Access to Base Values

A sensor provides access to the value of some underlying system variable.
An application defines a sensor with a Meta library routine:

meta_new_sensor(svr. q- Ier(gth, “load”, TYPE. lNTECéR, min_period); -

This routine creates an integer-valued sensor named “load”. When this
sensor is referenced, the function svr_q_length in the instrumented program
is called, which presuma.bly returns the number of entries on the server’s
work queue,

In a reactive system, the fact tBat a semsor’s va.lue has cha.nged is as im-
porta.nt to know as the current value of the sensor. There are two methods by
which an apphcatlon can alert its stub that a sensor’s value has changed. In
some cases, a sensor’s value changes either slowly or reg'ula.rly, in which case

a lower bound on the time between changes in its value can be determined.
The application tells the stub this lower bound as the fourth parameter of
the meta_new_sensor call. This value states how long that sensor’s value can
be cached before repolling is needed. In other cases, it would be very hard
to determine such a lower bound. In this case, the fourth parameter of the
meta_new_sensor call is zero, and the stub will obtain a fresh value only when
the application makes an upcall to the stub. Such upcalls never block and
can be made even when a nonzero polling period has been specified.

Actuators provide the means through which Meta acts upon the system.
Like sensors, actuators are implemented by function calls in the application
program. Actuators can be parameterized and can return either success or
failure.




3.2 Functional Composition

A control program may wish to monitor a sensor whose value is a function of
an existing sensor or sensors. For example, the control program may wish to
monitor the maximum load of a server or the difference between two queue
lengths supported by a server. Such sensors can be easily defined using
Meta. A stub can construct functions of the semsors it supports and can
define additional sensors in terms of these functions. The stub ensures that
the sensors comprising such a sensor are sampled atomically. A extensive
collection of pre-defined functions are available, and this collection can be
augmented with user-defined functions.

3.3 Aggregates

An aggregate has, as predefined sensors, set-valued versions of the sensors
on the components comprising the aggregate. For example, if a component
has an integer sensor named load, then an aggregate of this component has
a group sensor named load whose type is “set of integers” and whose value
is the set of loads of the components. Other aggregate sensors can then be
defined as functions of group sensors.

Just as an aggregate inherits the sensors of its components, an aggregate
also inherits the actuators of its components. For example, if a component
has an actuator named run, then an aggregate of this component has a group
actuator named run. An invocation of the group actuator run invokes all of
the component run actuators.

3.4 Fault-Tolerance

When necessary, sensor fault-tolerance is achieved through replication. The
process containing the sensor to be made fault-tolerant is replicated, and
the replicas are grouped into an aggregate; the value of the fault-tolerant,
aggregate sensor is then a function of the members’ sensor values [Sch90].
The severity of sensor failures that can be tolerated depends on the choice
of aggregate function. For example, to provide tolerance to crash failures,
the aggregate function need only pick one of the member’s values to return
as the sensor value. In this case, the availability of the sensor is the same as
the availability of any member of the aggregate. In process control systems,
however, a real-world sensor such as the temperature of a reaction vessel
can be represented as an interval bounding the actual value of the quantity



being measured. In this case, a fault-tolerant intersection function can be
used to mask arbitrary failures of sensors [MW90,Mar90].

Group actuators are useful for achieving fault-tolerance in that they can
be used to implement coordinator-cohort based actuation [ISI90]. When
invoking a group actuator, the command can include two additional param-
eters: an integer specifying the number of individual actuations to perform,
and a preference list of aggregate members which indicates which aggregate
members to try first. If the chosen actuator fails, then another member will
be picked according to the preference list until the number of requested actu-
ations is achieved or can not be achieved, in which case the group actuation

fails.

4 Control

Once an application is instrumented, a control program can be written. The
basis for controlling applications in Meta is a language of guarded commands
that reference the state of the instrumented application.

4.1 Interpreting Guarded Commands

Each Meta stub implements a guarded command interpreter that has direct
access to the sensors and actuators of the component to which the stub
is attached. A stub can reference sensors and actuators not local to the
component by communicating with the interpreter that does have direct
access. The name of a sensor or actuator is sufficient for the Meta system
to resolve which interpreter has direct access. So, a guarded command
can be executed by any stub, although some stubs would provide better
performance than others.

Since aggregates are not represented by a single component in the ap-
plication, some stub must be selected to maintain the definitions of a given
aggregate’s sensors (and actuators). Exactly which stub computes the ag-
~ gregate values is up to the application designer; either an existing stub or a
“Meta server” (a stub instrumenting a dummy process) can be designated

to do so, and other stubs can be designated as cohorts? that will take over
in case the stub instrumenting the aggregate fails. This approach central-

~ IThese cohorts should not be confused with the cohorts in the ISIS coordinator.cohort
facility, although the concept is the same. We are currently investigating how to best

implement this structure.



izes the computation of aggregate values, which in turn facilitates providing
consistent views of the aggregate’s state.

The interpreters for Meta guarded commands may also be made fault-
tolerant through replication. In this case, one interpreter is responsible for
executing a given guarded command while the others remain as standbys.
Sufficient state is exchanged among the replicas so that one of the standbys
can take over in case the primary interpreter fails.

In our client-server example, the servers of a service are grouped into an
aggregate. Each member of the aggregate (a server) has been instrumented,
as described previously in Section 3, with a sensor that gives the load of the
server. An aggregate sensor can then be defined that provides some measure
of the service load, such as the median load of all the servers. If each server
is equipped with an actuator that accepts a request for migration, then
reliable migration can be implemented by invoking the set-valued aggregate
actuator with the number of actuations specified as one and the preference
list selected, for example, from the servers’ loads. The stub that implements
the aggregate sensors and actuators could be one of the servers in the service
(presumably in the server stub) or a separate Meta server.

4.2 Atomic Guarded Commands

Recall that a guarded command consists of a set of (condition, action) pairs.
A condition is a propositional expression over the sensor values, and an
action is a sequence of parameterized actuator invocations. Ideally, Meta
would ensure that the action is executed as an atomic command, that is,
atomically and consistently with respect to its triggering condition [LS84].

When a predicate becomes true, the action should be executed in the
same state in which it was triggered, but due to the asynchrony in the envi-
ronment this can not be done without introducing blocking. Instead, Meta
guarantees that any reference to sensor values during the action sequence
obtains the same value as when the condition was triggered. Another prop-
erty of atomic actions is that either all of the action is executed or none
of it is executed. Providing this property requires a transactional facility
with the ability either to undo the effects of partial actions or to invoke a
forward recovery mechanism. Additionally, to provide consistent execution,
the intermediate states of the action should not be visible to other guarded
commands.

Meta currently provides only a limited amount of atomicity. For exam-
ple, if a guarded command references only the sensors and actuators of a



single component (either simple or aggregate), then its execution will be
atomic. This amount of consistency is all that is needed for our client-server
problem. For example, Meta will guarantee that if a machine is selected and
removed from a free-machine aggregate when starting a new server, then
the selection and removal will be done atomically (in this case, by using the
coordinator-cohort facility of Isis). Other applications will require stronger
guarantees of atomicity, however, so we are currently examining mechanisms
that will enforce stronger guarantees of atomicity when necessary.

4.3 Example

Figure 2 shows part of a Lomita description of our client-server appli-
cation. The description first defines the schema for server entities. In this
simplified presentation, a server contains separate actuators for starting and
stopping a job, with jobs being named by a string. For the sake of dis-
cussion, we assume that a job may be started and stopped repeé.tédly The
service aggregate has the sensor sload which is defined to be the median load
of the individual sensors. The run actuator starts a job on some member of
the aggregate, and the preference list specifies that the member should be
selected on the basis of its load. -

The two rules shown in this figure are compiled into NPL programs. The
first rule states that a job should be migrated from a server whose load is too
high. This rule can be translated into a single gnarded command that can
run in the server’s stub. The following C call distributes the NPL command

to all server entities:

meta_ npl( “server”,
“load 5 > GUARD jobs First ‘job’ BIND job suspend
job service(‘JobService').run");

This guarded commaand contains the conditional predicate load > 5 and
then the action sequence of binding the variable job to the first job on the job
list, suspending that job, and then resubmitting it for execution by invoking
the service aggregate operator run.

The second rule is more complex; it states that if the size of a service is
too small or the load remains high for too long, then a new server should
be started. The Lomita compiler would translate this rule into a finite state
automaton, which in turn would be implemented by a set of Meta guarded
commands.



server: entityset
attributes
key name : string;
sensor load: integer;
sensor jobs: {string};
actuator stop(string);
actuator start(string);
end
end

service: server aggregate
attributes
key port : string = “JobService”;
sensor sload : integer = median(load);
actuator run(job : string) = start(job)[load,1,"“<="];
actuator create = .. .;

end
end

when server(Name).load > 5 do
job = First(server(Name).jobs);
server(Name).suspend(job);
service( “JobService” ).run(job);
end

when SIZE(service( “JobService”)) < 3 or

during service( “JobService” ).sload > 5 for 60
always service( “JobService” ).sload) > 5
do

create(...);

end )

Figure 2: Job Service
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5 Discussion

The Meta project has explored the feasibility of toolkit-based architecture
for building reactive systems and has applied this approach to distribu-
ted application management. Meta provides a uniform way of intercon-
necting disparate components, facilitating both the design of new systems
and the construction of systems glued together from existing applications.
Our approach has the benefit of separating management policies from their
implementation—that is, how those policies are carried out.

5.1 Related Work

Although much work has been done on system monitoring, our work differs
in that it combines control with monitoring to provide the general architec-
tural support needed to construct a class of reactive systems. A prominent
example of a system designed strictly for monitoring is the work of Snod-
grass [Sno88); in his work, the system state is cast as a temporal database.
Systems for debugging (especially those for debugging distributed systems),
are a specialization of general monitoring systems. These systems provide
a way to access the system state and to watch for certain predicates to be
satisfied through the use of breakpoints [MH89,Bat88]. Of particular inter-
est is the system IDD [HHKS85] that permits interval logic expressions in
specifying breakpoints.

Lomita is a rule-based language built on a real-time extension of interval
logic. The rule-based language we have found most similar to Lomita is
L.0 [CCNS90]. However, this executable language does not deal with the
problem of instrumenting existing applications nor does it use a sensor-
actuator data model. Configuration systems such as Conic [KMS89] overlap
with the use of Meta for distributed application management in that they
facilitate interconnecting components, but they lack the means for specifying
reactive behavior.

5.2 The ISIS System

Much of Meta depends upon facilities provided by the Isis toolkit. One such
facility is the notion of a group. An Isis group is a named dynamic set of
processes. Each member of the group has the same view of which processes
are currently in the group despite other processes asynchronously joining
the group, leaving the group and crashing. Among other uses, Meta uses

i1



Isis process groups to implement atomicity of aggregate invocation and to
organize the members of an aggregate.

Providing consistent behavior in Meta relies heavily upon the notion
of virtual synchrony provided by the Isis system [BJ87]. The Isis system
make asynchronous events such as message receipts and group membership
changes appear to happen synchronously. This property greatly facilitates
reasoning about system behavior and constructing a system that behaves
in a consistent manner. Fundamental to this property is the notion of an
ordered broadcast. Ists provides two important broadcast primitives [JB89]:
abcast, which totally orders the broadcasts to a group, and cbcast which
partially orders the broadcasts to a group dependent on the causal order of
the broadcasts. For example, if two apparently concurrent events occur in
the instrumented application, Meta can impose a global total order on these
events by using abcast.

5.3 Status

Several iterations of prototypes have been built with the latest being avail-
able from Cornell as part of the ISIS toolkit. Work is currently underway on
a major release supporting the complete functionality described here. Pre-
liminary performance figures from this work show the system to impose a
low amount of overhead. The following benchmarks were obtained by run-
ning Meta on Sun 4/60’s with interprocess communication handled by ISIS
over a 10 Mbps Ethernet.

The time to execute a simple guarded command of the form A GUARD
B with trivial local sensor A and trivial local actuator B is 84.1 microsec-
onds, with uncertainty less than .1 microsecond. This implies approximately
12,000 guarded commands can be executed a second.

The bulk of the time for remote actions is of course in the message de-
livery. The ISIS causal broadcast (cbcast) takes 14.4 milliseconds®; the ISIS
atomic broadcast abcast takes up to twice as long. Running the previous
simple guarded command at a remote interpreter takes 32.6 milliseconds.
This figure includes one cbcast to the interpreter to report the value and an
abcast from the interpreter to effect the actuation.

The act of referencing a remote sensor has some initial start-up cost,
which we call the subscription cost. Upon receiving a subscription request

3Performance figures of the order of milliseconds are accurate to within .2 milliseconds
with a confidence of 95 percent, except for the time to subscribe, which is accurate to
within 1.1 milliseconds.
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from some remote interpreter, a Meta stub will report all changes in the
sensor’s value to the subscriber. To get a feel for the subscription cost, we
measured the time need to do the following: send to the local interpreter a
guard that immediately triggers and causes the interpreter to subscribe to
a remote sensor, get the first value, and cancel the subscription. This time
was measured to be 66.2 milliseconds. This figure includes the time to parse
the guard, but the cost of this should be negligible, less than one percent.
Note that the guard is sent locally via cbcast rather than via a (faster) direct
procedure call because we wish to support replication of interpreters. The
cbcast therefore results in communication with the ISIS protocol server for
that machine.

Note that all communication in Meta goes through the ISIS protocol
server, a separate process running on each machine. Newer versions of ISIS
now under development allow for restricted types of broadcasts to be sent
directly to the intended recipients, bypassing the ISIS protocol servers. This
results in considerable savings; a cbcast of this form only costs 5.6 millisec-
onds. The bypass mode of communication requires the sender and receiver
to be in the same group, which is not typically the case in Meta. However,
the current implementation of Meta does put aggregates in the same group,
opening the way to use the bypass mode of communication, and we are
currently exploring ways of exploiting it even further;— —-—

Previous versions of Meta have been released, but these chd zot support
the complete NPL language but instead had the notion of a watch, in which a
Meta stub could be instructed to wait for the value of some sensor to satisfy
some relation. This earlier work has emphasized the benefit of detecting
conditions as close as possible to the site at which they become satisfied.

We are currently building a network manager as a test application for
Meta, and are designing a debugging and monitoring tool and a system
configuration system.

5.4 Directions

The current Meta toolkit is adequate for use in systems in which timing
is not crucial. Although guarded commands can make temporal assertions,
given the potentially unbounded latencies in the underlying UNIX and Isis
platforms, such assertions can only be viewed as approximate upper bounds.
However, the structure that Meta provides is general enough that we should
be able to extend it to real-time reactive systems as well.

There are two main obstacles we see to extending Meta to real-time sys-
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tems. The first has to do with the underlying IsIs toolkit; to guarantee
bounded reaction time, the underlying causal broadcast and group mem-
bership protocols must provide some real-time guarantees. A companion
project in the ISIS group is currently looking into structuring IsiS under
Mach to provide these two protocols. The second obstacle has to do with
the semantics of guarded commands. Guarded commands currently have
the semantics of atomic actions; if a guarded command is continuously en-
abled, then it will eventually execute. We need to add an upper bound on
how long the command can be enabled without executing, and then build
a scheduler that either guarantees the command will be executed within its
deadline or aborts the command if it cannot be executed within its deadline.
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