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Abstract

The Isis toolkit is a distributed programming environment based on support for virtually

synchronous process groups and group communication. We present a new suite of protocols in

support of this model. Our approach revolves around a muiticast primitive, called CBCAST,

which implements a fault-tolerant, causally ordered message delivery. This primitive can be used

directly, or extended into a totally ordered multicast primitive, called ABCAST. It normally

delivers messages immediately upon reception, and imposes a space overhead proportional to

the size of the groups to which the sender belongs, usually a small number. We conclude that

process groups and group communication can achieve performance and scaling comparable to

that of a raw message transport layer - a finding contradicting the widespread concern that this

style of distributed computing may be unacceptably costly.
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1 Introduction

1.1 The ISIS Toolkit

The Isis Toolkit [BJKS88] provides a variety of tools for building software in loosely coupled

distributed environments. The system has been successful in addressing problems of distributed

consistency, cooperative distributed algorithms, and fault-tolerance. At the time of tMs writing,

Version 2.1 of the Toolkit was in use at several hundred locations worldwide.

Two aspects of Isis are key to its overall approach:

An implementation of virtually synchronous process groups. Such a group consists of a set

of processes cooperating to execute a distributed algorithm, replicate data, provide a service

fanlt-tolerantly, or otherwise exploit distribution.

A collection of reliable multicast protocols with which processes and group members interact

with groups. Reliability in Isis encompasses failure atomieity, delivery ordering guarantees,

and a form of group addressing atornicity, under which membership changes are synchronized

with group communication.

Although Isis supports a wide range of multicast protocols, a protocol called CBCAST accounts

for the majority of communication in the system. In fact, many of the Isis tools are little more

than invocations of this communication primitive. For example, the Isis replicated data tool uses

a single (asynchronous) CBCAST to perform each update and locking operation; reads require

no communication at all. A consequence is that the cost of CBCAST represents the dominant

performance bottleneck in the Isis system.

The original Isls CBCAST protocol was costly in part for structural reasons and in part because

of the protocol used [BJ87b]. The implementation was within a protocol server, hence all CB-

CAST communication was via an indirect path. Independent of the cost of the protocol itself, this

indirection was expensive. Furthermore, the protocol server proved difficult to scale, limiting tlw

initial versions of Isis to networks of a few hundred nodes. With respect to the protocol used, our

initial implementation favored generality over specialization, permitting extremely flexible destina-

tion addressing. It used a piggybacking algorithm that achieved the CBCAST ordering property

but required periodic garbage collection.

The case for flexibility in addressing seems weaker today. Experience with Isis has left us with

substantial insight into how the system is used, permitting us to focus on core functionality. Th,,
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protocolsdescribedin this paper supporthighly concurrentapplications,scaleto systemswith
largenumbers of potentially overlapping process groups, and bound the overhead associated with

piggybacked information in proportion to the size of the process groups to which the sender of a

message belongs. Although slightly less general than the earlier solution, the new protocols are able

to support the Isis toolkit and all Isis applications with which we are familiar. The benefit of this

reduction in generality has been a substantial increase in the performance and scalability of our

system. In fact, the new protocol suite has no evident limits to the scale of system it could support.

In the common case of an application with localized, bursty communication, most multicasts will

carry only a small overhead regardless of the size or number of groups used, and a message will be

delayed only if it actually arrives out of order.

The paper is structured as follows. Section 2 discusses the types of process groups supported by

Isis and the patterns of group usage and communication that have been observed among current

Isis applications. Section 3 surveys prior work on multicast. Section 4 formalizes the virtually

synchronous multicasting problem and the properties that a CBCAST or ABCAST protocol must

satisfy. Sections 5 introduces our new technique in a single process group; multiple groups are

considered in Section 6. Section 7 considers a number of Isis-specific implementation issues. The

paper concludes with a discussion of the performance of our initial implementation, in Section 8.

2 Experience with Isis users

We begin by reviewing the types of groups and patterns of group usage seen in existing Isis

applications. This material is discussed in more detail in [BC90].

Isis supports four types of groups, illustrated in Figure 1. The simplest of these is denoted the

peer group. In a peer group, processes cooperate as equals in order to get a task done. They may

manage replicated data, subdivide tasks, monitor one another's status, or otherwise engage in a

closely coordinated distributed action. Another common structure is the client/server group. Here,

a peer group of processes act as servers on behalf of a potentially large set of clients. Clients interact

with the servers in a request/reply style, either by picking a favorite server and issuing ttPC calls

to it, or by multicasting to the whole server group. In the later case, servers will often multicast

their replies both to the appropriate client and to one another. A di]yusion group is a type of client-

server group in which the servers broadcast messages to the full set of servers and clients. Clients

are passive and simply receive messages. Diffusion groups arise in any application that broadcasts

information to large number of sites, for example on a brokerage trading floor. Finally, hierarchical

group structures arise when large server groups are needed in a distributed system [CB89,GMS89].

Hierarchical groups are tree-structured sets of groups. A root group maps the initial connection



requestto an appropriate subgroup, and the application subsequently interacts only with this

subgroup. Data is partitioned among the subgroups, and although a large-group communication

mechanism is available, it is rarely needed.

Peer Groups

Client/Server Groups

Diffusion Groups

Hierarchical Groups

Figure 1: Types of Process Groups

Many Isis applications use more than one of these structures, employing overlapping groups when

mixed functionality is desired. For example, a diffusion group used to disseminate stock quotes

would almost always be overlaid by a client-server group through which brokerage programs register

their interest in specific stocks. Nonetheless, existing Isis applications rarely use large numbers of

groups. Groups change membership infrequently, and generally contain just enough members for

fault-tolerance or load-sharing (e.g., 3-5 processes). On the other hand, the number of clients of a

client/server or diffusion group may be large (hundreds).

Through studies of Isls users [BC90,BCG91] we have concluded that these patterns are in part

artifacts of the way Isis evolved. In versions of Isls prior to the one discussed here, groups were

fairly heavy-weight entities. Applications obtained acceptable performance only by ensuring that

communication to a group was much more frequent than membership changes. Looking to the

future, we expect our system to continue supporting these four types of groups. We also expect that

groups will remain small, (except for the client set of a client-server or diffusion group). However,



aswe rebuild Isis around the protocols described here and move the key modules into lower layers

of the operating system, groups and group communication can be expected to get much cheaper.

These costs seem to be a dominant factor preventing Isis users from employing very large numbers

of groups, especially in cases where process groups naturally model some sort of application-level

data type or object. As a result, we expect that for some applications, groups will substantially

outnumber processes. Furthermore, groups may become much more dynamic, because the cost of

joining or leaving a group can be substantially reduced using the protocols developed in this paper.

To illustrate these points, we consider some applications that would have these characteristics.

A scientific simulation employing an n-dimensional grid might use a process group to represent

the neighbors of each grid element. A network information service running on hundreds of sites

might replicate individual data items using small process groups; the result would be a large group

containing many smaller data replication domains, perhaps moving data in response to access

patterns. Similarly, a process group could be used to implement replicated objects in a modular

application that imports many such objects. In each case, the number of process groups would be

huge and the overlap between groups extensive.

The desire to support applications like these represents a primary motivation for the research

reported here. The earlier Isis protocols have proven inflexible and difficult to scale, and it seems

unlikely that they could be used to support the highly-dynamic, large-scale applications that now

interest us. The protocols reported here respond to these new needs, enabling the exploration

of such issues as support for parallel processing, the use of multicast communication hardware,

mechanisms to enforce realtime deadlines and message priorities, etc.

3 Prior work on group communication protocols

Our communication protocols evolved from a causal message delivery protocol developed by Schiper [5 E 5-'.

and are based on work by Fidge and Mattern [Fid88,Mat89]. In the case of a single process group,

the algorithm resembles protocols developed by Ladin [LLSg0] and Peterson [PBS89]. However,

our work generalizes these protocols in the following respects:

• Both of the other multicast protocols address causality only in the context of a single pro-

cess group. Our solution transparently addresses the case of multiple, overlapping groups.

In [BCG91] we argue that a multicast protocol must respect causality to be used asyn-

chronously (without blocking the sender until remote delivery occurs). Asynchronous com-

munication is the key to high performance in group-structured distributed applications, and

is a central feature of Isis.



The Isls architecture treats cllent/server groups and diffusion groups as sets of overlaid groups,

and optimizes the management of causality information for this case. Both the clients and

servers can multicast directly and fault-tolerantly within these subgroups of a client/server

group. Peterson's protocols do not support these styles of group use and communication.

Ladin's protocol supports client/server interactions, but not diffusion groups, and does not

permit clients to multicast directly to server groups.

Ladin's protocol uses stable storage as part of the fault-tolerance method. Our protocol uses

a notion of message stability that requires no external storage.

Our CBCAST protocol can be extended to provide a total message delivery ordering, inviting

comparison with atomic broadcast (ABCAST) protocols [CM84,B:I87b,GMS89,PGM85,VRB89].

Again, the extensions supporting multiple groups represent our primary contribution. However,

our ABCAST protocol also uses a delivery order consistent with causally, permitting it to be used

asynchronously. A delivery ordering might be total without being causal, and indeed, several of

the protocols cited would not provide this guarantee.

4 Execution model

We now formalize the model and the problem to be solved.

4.1 Basic system model

The system is composed of processes P = {pl,p2,...,Pn} with disjoint memory spaces. Initially,

we assume that this set is static and known in advance; later we relax this assumption. Processes

fail by crashing detectably (a fail-stop assumption); notification is provided by a failure detection

mechanism, described below. When multiple processes need to cooperate, e.g. to manage replicated

data, subdivide a computation, monitor one another's state, and so forth, they can be structured

into process groups. The set of such groups is denoted by G = {gl, g2...}.

Each process group has a name and a set of member processes. Members join and leave dynamically;

a failure causes a departure from all groups to which a process belongs. The members of a process

group need not be identical, nor is there any limit on the number of groups to which a process may

belong. The protocols presented below _ assume that processes only multicast to groups that they

are members of, and that all multicasts are directed to the full membership of a single group. (We

discuss client/server groups in Section 7.)



Our systemmodel is unusualin assuming an external service that implements the process group

abstraction. This accurately reflects our current implementation, which obtains group membership

management from a pre-existing Isis process-group server. In fact, however, this requirement can

be eliminated, as discussed in Section 7.4.

The interface by which a process joins and leaves a process group will not concern us here, but

the manner in which the group service communicates membership information to a process is

relevant. A v/ew of a process group is a list of its members. A view sequence for g is a list

viewo(g), view1 (g), ..., view,(g), where

1. viewo(g) = O.

2. Vi : viewi(g)CP, where P is the set of all processes in the system.

3. viewi(g) and viewi+l(g) differ by the addition or subtraction of exactly one process.

Processes learn of the failure of other group members only through this view mechanism, never

through any sort of direct observation.

We assume that direct communication between processes is always possible; the software imple-

menting this is called the message transport layer. Within our protocols, processes always commu-

nicate using point-to-point and multicast messages; the latter may be transmitted using multiple

point-to-point messages if no more efficient alternative is available. The transport communication

primitives must provide lossless, uncorrupted, sequenced message delivery. The message transport

layer is also assumed to intercept and discard messages from a failed process.once the failure detec-

tion has been made. This guards against the possibility that a process might hang for an extended

period (e.g. waiting for a paging store to respond), but then attempt to resume communication

with the system. Obviously, transient problems of this sort cannot be distinguished from permanent

failures, hence there is little choice but to treat both the same way by forcing the faulty process to

run a recovery protocol.

Our protocol architecture permits application builders to define new transport protocols, perhaps

to take advantage of special hardware. The implementation described in this paper uses a transport

that we built over an unreliable datagram layer, but also has an experimental protocol that runs

over ethernet hardware multicast.

The execution of a process is a partially-ordered sequence of events, each corresponding to the

execution of an indivisible action. An acyclic event order, denoted P, reflects the dependence of

events occurring at process p upon one another. The event sendp(m) denotes the transmission

of m by process p to a set of one or more destinations, dests(m); the reception of message m b.v



prodessp is denoted rCvp(m). We omit the subscript when the process is clear from the context. If

Idests(m)l > 1 we will assume that send puts messages into all communication channels in a single

action that might be interrupted by failure, but not by other send or rcv actions.

We denote by rcvp(viewi(g)) the event by which a process p belonging to g "learns" of viewi(g).

We distinguish the event of receiving a message from the event of delivery, since this allows us to

model protocols that delay message delivery until some condition is satisfied. The delivery event is

denoted deliverp(m) where rcvp(m) P deliverp(m).

When a process belongs to multiple groups, we may need to indicate the group in which a message

was sent, received, or delivered. We will do this by extending our notation with a second argument;

for example, deliverp(m, g), will indicate that message m was delivered at process p, and was sent

by some other process in group g.

As in [Lam78], we define the potential causality relation for the system, ---*, as the transitive closure

of the relation defined as follows:

P !1. If3p: e_e,thene_e'

2. vm: send(m)- rcv(m)

For messages m and m', the notation m_m' will be used as a shorthand for send(m)_send(m').

Finaily, for demonstrating liveness, we assume that any message sent by a process is eventually

received unless the sender or destination fails, and that failures are detected and eventually reflected

in new group views omitting the failed process.

4.2 Virtual synchrony properties required of multicast protocols

Earlier, we stated that Isis is a virtually synchronous programming environment. Intuitively, this

means that users can program as if the system scheduled one distributed event at a time (i.e. group

membership changes, multicast, and failures). Were a system to actually behave this way, we would

call it synchronous; such an environment would greatly simplify the development of distributed

algorithms but offers little opportunity to exploit concurrency. The "schedule" used by Isis is,

however, synchronous in appearance only. The ordering requirements of the tools in the Isis

toolkit have been analyzed, and the system actually enforces only the degree of synchronization

needed in each case [BJ87a]. This results in what we call a virtually synchronous execution, in

which operations are often performed concurrently and multicasts are often issued asynchronously



+ (without blocking), but algorithms can still be developed and reasoned about using a simple,

synchronous model.

. Virtual synchrony has two major aspects.

1. Address expansion. It should be possible to use group identifiers as the destination of a

multicast. The protocol must expand a group address into a destination list and deliver the

message such that:

(a) All the recipients are in identical group views when the message arrives.

(b) The destination list consists of precisely the members of that view.

The effect of these rules is that the expansion of the destination list and message delivery

appear as a single, instantaneous event.

2. Delivery atomicity and order. This involves delivery of messages fault-tolerantly (either all

operational destinations eventually receive a message, or, and only if the sender fails, none do).

Furthermore, when multiple destinations receive the same message, they observe consistent

delivery orders, in one of the two senses detailed below.

Two types of delivery ordering will be of interest here. We define the causal delivery ordering for

multicast messages m and m' as follows:

m ---,m ' ==_

VpE dests( m )ndests( m') : deliver(m) p deliver(re').

CBCAST provides only the causal delivery ordering. If two CBCAST's are concurrent, the protocol

places no constraints on their relative delivery ordering at overlapping destinations. ABCAST

extends the causal ordering into a total one, by ordering concurrent messages m and m' such that:

g)_delwerq(m, g).3m, m',pEg : deliverp(m, g)_deliverp(m', g) ==¢, VqEg : deliverq(m, q " "

Note that this definition of ABCAST only orders messages sent to the same group; other definitions

are possible. We discuss this further in Section 6.2. Because the ABCAST protocol orders concur-

rent events, it is more costly than CBCAST, requiring synchronous solutions where the CBCAST

protocol admits efficient, asynchronous solutions.

Although one can define other sorts of delivery orderings, our work on Isis suggests that this is not

necessary. The higher levels of the Isis toolkit are themselves implemented almost entirely using



asynchronousCBCAST [B3"89,Sch88].In fact, Schmuckshowsin [Sch88]that manyalgorithms
specifiedin termsof ABCASTcanbemodifiedto useCBCASTwithout compromisingcorrectness.
Further, hedemonstratesthat both protocolsarecompletefor a classof deliveryorderings.For
example,CBCASTcanemulateanyorderingproperty that permitsmessagedeliveryon the first
roundof communication.

Fault toleranceandmessagedeliveryorderingarenot independent in our model. A process will not

receive further multicasts from a faulty sender after observing it to fail; this requires that multicasts

in progress at the time of the failure be flushed from the system before the view corresponding to the

failure can be delivered to group members. Furthermore, failures will not leave gaps in a causally-

related sequence of multicasts. That is, if m--*m r and a process pi has received m _, it need not be

concerned that a failure could somehow prevent m from being delivered to any of its destinations

(even if the destinations of m and m r don't overlap). Failure atomicity alone would not yield either

guarantee.

4.3 Vector time

Our delivery protocol is based on a type of logical clock called a vector clock. The vector time

protocol maintains sufficient information to represent ---*precisely.

A vector time for a process Pi, denoted VT(pi), is a vector of length n (where n = [P]), indexed

by process-id.

1. When Pi starts execution, VT(pi) is initialized to zeros.

2. For each event send(m) at pi, VT(pi)[i] is incremented by 1.

3. Each message multicast by process p_ is timestamped with the incremented value of VT(pi).

4. When process pj delivers a message m from p; containing VT(m), pj modifies its vector clock

in the following manner:

Vkel..n : VT(pj)[k] = maz( VT(pj)[k], VT(m)[k])

That is, the vector timestamp assigned to a message m counts the number of messages, on a

per-sender basis, that causally precede m.

Rules for comparing vector timestamps are:

1. VT1 <_ VT2 iff¥i: VTI[i] <_ VT2[i]
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2. VT_ < VT2 if VTt <_ VT_ and 3i: VT_[i] < VT2[i]

It can be shown that given messages m and rn_, m--*m' iff VT(m) < VT(m'): vector timestamps

represent causality precisely.

Vector times were proposed in this form by Fidge and Mattern [Fid88,Mat89]; the latter includes a

good survey. Other researchers have also used vector times or similar mechanisms [WPE+83,LLS90,

Sch88,Mar84]. As noted earlier, our work is an outgrowth of the protocol presented in [SES89],

which uses vector times as the basis for a protocol that delivers point-to-point messages in an order

consistent with causality.

5 The CBCAST and ABCAST protocol

This section presents our new CBCAST and ABCAST protocols. We initially consider the case

of a single process group with fixed membership; multiple group issues are addressed in the next

section. This section first introduces the causal delivery protocol, then extends it to a totally

ordered ABCAST protocol, and finally considers view changes.

5.1 CBCAST protocol

Suppose that a set of processes P communicate using only broadcasts to the full set of processes

in the system; that is, Vm : dests(m) = P. We now develop a delivery protocol by which each

process p receives messages sent to it, delays them if necessary, and then delivers them in an order

consistent with causality:

m--.m' ==} Vp: deliverp(m)&deliverp(m').

Our solution is derived using vector timestamps. The basic idea is to label each message with

a timestamp, VT(m)[k], indicating precisely how many multicasts by process Pk precede m. A

recipient of m will delay m until VT(m)[k] messages have been delivered from pk. Since _ is an

acyclic order accurately represented by the vector time, the resulting delivery order is causal and

deadlock free.

The protocol is as follows:

1. Before sending m, process pi increments VT(pi)[i] and timestamps m.
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2. Onreceptionof messagem sent by Pi and timestamped with VT(m), process pj # pi delays

delivery of m until:

{ VT(m)[k] = VT(pj)[k] + 1 if k =Yk: 1...n VT(m)[k] < VT(pj)[k] otherwise

Process pj need not delay messages received from itself. Delayed messages are maintained

on a queue, the CBCAST delay queue. This queue is sorted by vector time, with concurrent

messages ordered by time of receipt (however, the queue order will not be used until later in

the paper).

3. When a message m is delivered, VT(pj) is updated in accordance with the vector time protocol

from Section 4.3.

Step 2 is the key to the protocol. This guarantees that any message m' transmitted causally before

m (and hence with VT(m') < VT(m)) will be delivered at pj before m is delivered. An example

in which this rule is used to delay delivery of a message appears in Figure 2.

Time

Figure 2: Using the VT rule to delay message delivery

We prove the correctness of the protocol in two stages. We first show that causality is never violated

(safety) and then we demonstrate that the protocol never delays a message indefinitely (liveness).

Safety. Consider the actions of a process pj that receives two messages ml and m2 such that

ml--_m2.

Case 1. ml and m2 are both transmitted by the same process pi. Recall that we assumed

a lossless, live communication system, hence pj eventually receives both ml and rn2. By

construction, VT(ml) < VT(m2), hence under step 2, m2 can only be delivered after ml ha.,

been delivered.
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Case 2. mi and m2 are transmitted by two distinct processes Pi and Pi,. We will show by

induction on the messages received by process pj that m2 cannot be delivered before ml.

Assume that ml has not been delivered and that pj has received k messages.

Observe first that ml---*m2, hence VT(ml) < VT(m2) (basic property of vector times). In

particular, if we consider the field corresponding to process Pi, the sender of ml, we have

VT(ml)[i] <_ VT(m_)[il (i)

Base case. The first message delivered by pj cannot be ms. Recall that if no messages

have been delivered to pj, then VT(pj)[i] = 0. However, VT(ml)[i] > 0 (because m, is

sent by pi), hence VT(m2)[i] > 0. By application of step 2 of the protocol, m_ cannot

be delivered by Pi"

Inductive step. Suppose pj has received k messages, none of which is a message m such

that ml_m. If ml has not yet been delivered, then

VT(pi)[i ] < VT(ml)[i] (2)

This follows because the only way to assign a value to VT(pj)[i] greater than VT(ml)[i]

is to deliver a message from Pi that was sent subsequent to ml, and such a message

would be causally dependent on ml. From relations 1 and 2 it follows that

VT(pj)[i] < VT(m2)[i]

By application of step 2 of the protocol, the k + l'st message delivered by pj cannot be

m2. F1

Liveness. Suppose there exists a broadcast message m sent by process Pi that can never be

delivered to process pj. Step 2 implies that either:

VT(m)[k] _ VT(pj)[k] + 1 for k = i, or3k : 1...n Vr(m)[k] > VT(pi)[k ] , k _ i

and that m was not transmitted by process pj. We consider these cases in turn.

• VT(m)[i] _ VT(pj)[i] q- i; that is, m is not the next message to be delivered from pi to pj.

Notice that only a finite number of messages can precede m. Since all messages are multicast

to all processes and channels are lossless and sequenced, it follows that there must be some

message m' sent by Pi that pj received previously, has not yet delivered, and that is the next

message from Pi, i.e. VT(m')[i] = VT(pj)[i] ÷ 1. If m' is also delayed, it must be under the

other case.
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3k _ i: VT(m)[k] > VT(pj)[k]. Let n = VT(m)[k]. The n'th transmission of process Pk,

must be some message m'---*m that has either not been received at Pi, or was received and

is delayed. Under the hypothesis that all messages are sent to all processes, m I was already

multicast to pj. Since the communication system eventually delivers all messages, we may

assume that m _ has been received by pj. The same reasoning that was applied to m can now

be applied to m _. The number of messages that must be delivered before m is finite and > is

acyclic, hence this leads to a contradiction. []

5.2 Causal ABCAST protocol

The CBCAST protocol is readily extended into a causal, totally ordered, ABCAST protocol. We

should note that it is unusual for an ABCAST protocol to guarantee that the total order used

conforms with causality. For example, say that a process p asynchronously transmits message

m using ABCAST, then sends message m _ using CBCAST, and that some recipient of m _ now

sends m" using ABCAST. Here we have m--*m_m ", but m and m" are transmitted by different

processes. Many ABCAST protocols would use an arbitrary ordering in this case; our solution will

always deliver m before m". This property is actually quite important: without it, few algorithms

could safely use ABCAST asynchronously, and the delays introduced by blocking until the protocol

has committed its delivery ordering could be significant. This issue is discussed further in [BCG91].

Our solution is based on the Isls replicated data update protocol described in [BJ89] and the

ABCAST protocol developed in [BJ87b,Sch88]. Associated with each view views(g) of a process

group g will be a token holder process, token(g)Eview,(g). We also assume that each message m is

uniquely identified by uid(m).

To ABCAST m, a process holding the token uses CBCAST to transmit m in the normal manner.

If the sender is not holding the token, the ABCAST is done in stages:

1. The sender CBCAST's m but marks it as undeliverable. 1 Processes other than the token

holder (including the sender) that receive this message place m on the CBCAST delay queue

in the usual manner, but do not remove m from the queue for delivery even after all messages

that precede it causally have been delivered. It follows that a typical process may have some

number of delayed ABCAST messages at the front of its CBCAST delay queue. This prevents

the delivery of causally subsequent CBCAST messages, because the vector time is not updated

lit might appear cheaper to forward such a message directly to the token holder. However, for a moderately large

messages such a solution would double the IO done by the token holder, creating a likely bottleneck, while reducing

the IO load on other destinations only to a minor degree.
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until delivery occurs. On the other hand, a CBCAST that precedes or is concurrent with one

of these undeliverable ABCAST messages will not be delayed.

2. The token holder treats incoming ABCAST messages as it would treat incoming CBCAST

messages, delivering them in the normal manner. However, it also makes note of the uid of

each such ABCAST.

3. After the process holding the token has delivered one or more ABCAST messages, it uses

CBCAST to send a sets-order message giving a list of one or more messages, identified by

uid, and ordered in the delivery order that arose in step 2. If desired, this CBCAST may

be delayed so as to "batch" such transmissions, but it must be sent before (or piggybacked

upon) any subsequent ABCAST or CBCAST by the token holder. If desired, a new token

holder may be specified in this message.

4. On receipt of a sets-order message, a process places it on the CBCAST delay queue in the

normal manner. Eventually, all the ABCAST messages referred to in the sets-order message

will be received, and all the CBCAST messages that precede the sets-order will have been

delivered (liveness of CBCAST).

Recall that ---, places a partial order on the messages in the delay queue. Our protocol now

re-orders concurrent ABCAST messages by placing them in the order given by the sets-order

message, and marks them as deliverable.

5. Deliverable ABCAST messages may be delivered off the front of the queue.

Step 4 is the key one in the protocol. This step causes all participants to deliver ABCAST messages

in the order that the token holder used. This order will be consistent with causality because the

token holder itself treated these ABCAST messages as if they were CBCAST's.

The cost of doing an ABCAST depends on the locations where multicasts originate and the fre-

quency with which the token is moved. If multicasts tend to originate at the same process repeat-

edly, then once the token is moved to that site, the cost is one CBCAST per ABCAST. If they

originate randomly and the token is not moved, the cost is 1 + 1]k CBCAST's per ABCAST, where

we assume that one set-order message is sent for ordering purposes after k ABCAST's.

5.3 Multicast stability

The knowledge that a multicast has reached all its destinations will be useful below. Accordingly,

we will say that a multicast m is k-stable if it is known that the multicast has been received at _'

destinations. When k = [dests(m)] we will say that m is (fully) stable.
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Recallthat our model assumes a reliable transport layer. Since messages can be lost in transport

for a variety of reasons (buffer overflows, noise on communication lines, etc.), such a layer normally

uses some sort of positive or negative acknowledgement scheme to confirm delivery. Our liveness

assumption is strong enough to imply that any multicast m will eventually become stable, if the

sender does not fail. It is thus reasonable to assume that this information is available to the process

that sent a CBCAST message.

To propagate stability information among the members of a group, we will introduce the following

convention. Each process pi maintains a stability sequence number, stable(pi). This number will be

the largest integer n such that all multicasts by sender Pi having VT(pi)[i] < n are stable.

When sending a multicast m, process pl piggybacks its current value of stable(pi); recipients make

note of these incoming values. If stable(pi) changes and pi has no outgoing messages then, when

necessary (see below), pl can send a stability message containing only stable(pi).

5.4 VT compression

It is not always necessary to transmit the full vector timestamp on each message.

Lemma 1: Say that processpi sends a multicast m. Then VT(m) need only carry vector timestamp

fields that have changed since the last multicast by pi.

Proof: Consider two multicasts m and m _ such that m--*m _. If Pi is the sender of m and pj is

the sender of m', then there are two cases. If i = j then VT(m)[i] < VT(m')[i], hence (step 2,

Section 5.1) m _ cannot be delivered until after m is delivered. Now, if i _ j but m t carries the

field for Pi, then VT(m)[i] < VT(m')[i], and again, m' will be delayed under step 2 until after m

is delivered. But, if this field is omitted, there must be some earlier message m", also multicast by

pj, that did carry the field. Then m will be delivered before m _t and, under the first case, m" will

be delivered before m _. []

Compression may not always be advantageous: the data needed to indicate which fields have

been transmitted may actually increase the size of the VT representation. However, in applications

characterized by relatively localized, bursty communication, compression could substantially reduce

the size of the timestamp. In fact, if a single process sends a series of messages, and receives no

messages between the sends, then the VT timestamp on all messages but the first will just contain

one field. Moreover, in this case, the value of the field can be inferred from the FIFO property of

the channels, so such messages need not contain any timestamp. We will make further use of this

idea below.
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5.5 Delivery atomicity and group membership changes

We now consider the implementation of atomicity and how group membership changes impact the

above protocols. Such events raise several issues that are addressed in turn:

1. Virtually synchronous addressing.

2. Re-initializing VT timestamps.

3. Delivery atomicity when failures occur.

4. Handling delayed ABCAST messages when the token holder fails

without sending a sets-order message.

Virtually synchronous addressing

To achieve virtually synchronous addressing when group membership changes while multicasts are

active, we introduce the notion of flushing the communication in a process group. Consider a

process group in view i. Say that view i + 1 now becomes defined. We can flush communication

by having all the processes in viewi+l send a message "flush ih-l", to all other processes in this

view. After sending such messages and before receiving such a flush message from all members of

viewi+l a process will accept and deliver messages but will not initiate new multicasts. Because

communication is FIFO, if process p has received a flush message from all processes in view,+l, it

will first have received all messages that were sent by members of vievai. In the absence of failures,

this establishes that multicasts will be virtually synchronous in the sense of Section 4.

A disadvantage of this flush protocol is that it sends n 2 messages. Fortunately, the solution is

readily modified into one that uses a linear number of messages. Still deferring the issue of failures,

say that we designate one member of viewi+l, pc, as the flush coordinator. Any deterministic rule

can be used for this purpose. A process pi other than the coordinator flushes by first waiting

until all multicasts that it sent have stabilized, and then sending a v/ew_+l flush message to the

coordinator. The coordinator, Pc, waits until flush messages have been received from M1 other

members of viewi+l. It then multicasts its own flush message to the members of viewi+l (it need

not wait for its own multicasts to stabilize). Reception of the flush multicast from Pc provides the

same guarantees as did the original solution. However, the cost of the new protocol is much lower:

2n messages.
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Reinitiallzing VT fields

After executing the flush protocol, all processes can reset the fields of VT to zero. This is clearly

useful. Accordingly, we will now assume that the vector timestamp sent in a message, VT(m),

inchdes the index i of the view viewi in which m was transmitted. A vector timestamp carrying

an expired index may be ignored, since the flush protocol used to switch views will have forced the

delivery of all multicasts that could have been pending in the prior view.

Delivery atomicity and virtual synchrony when failures occur

We now consider the case where some process fails during an execution. Failures introduce two

basic problems:

1. A failure could disrupt the transmission of a multicast. Thus, if pj has received a multicast

m message from pl, and has not learned of the stability of that multicast, some of the other

destinations of m may not have received a copy.

2. We can no longer assume that all processes will respect the flush protocol, since the failure

of a process pi could prevent it from sending flush messages for some view, even if that view

reports Pi as still operational. On the other hand, we also know that a view showing the

failure of Pi will eventually be received.

To solve the first problem, we will have all processes retain copies of the messages they receive. If

pj detects the failure of pi, it will forwaxd a copy of any unstable multicasts it has received from p,

to other members of the group. All processes identify and reject duplicates. However, the second

problem could now prevent the protocol from being respected, leaving the first problem unsolved,

as illustrated in Figure 3. This shows that the two problems are closely related and have to be

addressed in a coordinated way.

The solution to this ato_city and virtual synchrony problem is most readily understood in terms

of the original n 2 message flush protocol. If we are running that protocol, it suffices to delay the

installation of viewi+l until, for some k >_ 1, flush messages for viewi+k have been received from all

processes in viewi+k n viewi+l. Notice that a process may be running the flush protocol for view,+k

despite not yet having installed viewi¥i.

More formally, the algorithm executed by a process p is as follows.
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On receiving viewi+_, p increments a local variable inhibit_sends; while the counter remains

greater than 0, new messages will not be initiated, p forwards a copy of any unstable message

m that was sent in viewj to all processes in viewj n viewi+k 2, and then marks m as stable.

Lastly, p sends "flush i+k" to each member of viewi+k.

On receiving a copy of a message m, p examines the index of the view in which m was sent. H

p most recently installed viewi and m was sent in view(m) < i, p ignores m as a duplicate. If

m was sent in view i, p applies the normal delivery rule, identifying and discarding duplicates

in the obvious manner. If m was sent in view view(m) > i, p saves m until view(m) has been

installed.

3. On receiving "flush i+k" messages from all processes in viewi+l ¢3viewi+k, p installs viewi+l

by delivering it to the application layer. It decrements the inhibit_sends counter, and, if the

counter is now zero, permits new messages to be initiated.

Any message m that was sent in viewi and has not yet been delivered may be discarded.

This can only occur if the sender of m has failed, and has previously received and delivered a

message m' (m'_m) that has now been lost. In such a situation, m is an orphan of a system

execution that was "erased" by multiple failures. 3

4. A message can be discarded as soon as it has been delivered locally and has become stable.

Notice that a message becomes stable after having been forwarded at most once (in step 1).

5. A process p that sent a message m in view i will now consider m to have stabilized if delivery

confirmation has been obtained from all processes in viewi f3 viewi+k, for any value of k, or if

VIEWi+I has been installed.

Lemma 2: The flush algorithm is safe and live.

Proofi A participant in the protocol, p, delays installation of viewi+l until it has received flush

messages sent in view i + k (k >_ 1) from all members of viewi+l that are still operational in

viewi+k. These are the only processes that could have a copy of an unstable message sent in view,.

This follows because messages from failed processes are discarded, and because messages are only

forwarded to processes that were alive in the view in which they were originally sent. Because

participants forward unstable messages before sending the flush, and channels are FIFO, p will

have received all messages sent in viewi before installing viewi+l. It follows that the protocol is

_In practice, it may be easier and faster to multicast all the unstable messages from viewj to all processes in

VIEWI+k. Processes not in view i N vietoi+k will discard this multicazt.

3Notice that in our model, even if process p accepts and delivers a message m under this protocol, the failure of

p could lead to a situation in which m is not delivered to its other destinations. Our definition of delivery atomicity

could be changed to exclude such executions, but atomicity could then only be achieved using a much more costly

2-phase delivery protocol.
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safe.Livenessfollowsbecausethe protocolto install viewi can only be delayed by the failure of a

member of viewi+l. Since vieuq+l has a finite number of members, any delay will be finite.

This protocol can be modified to send a linear number of messages in each view, using the same

coordinator-based scheme as was proposed earlier. Instead of sending "flush i+k" messages to all

processes in viewi+l Cl viewi+_, a process forwards copies of unstable messages to the coordinator,

followed by a "flush i+k" message. (A message m originally sent in VIEWi by a process p,

which failed before m became stable, is regarded as unstable by a surviving process q E VIEWi

until q installs VIEWI+I.) The coordinator, in turn, forwards these messages back to the other

processes in the view, and then, after receiving "flush i+k" messages from all the members in

viewi+k, multicasts its own flush message, viewi+k can be installed when the flush message from

the coordinator is received.

We now consider the case where failures occur during the execution of the above protocol. The

coordinator should abort its protocol if it is waiting for a flush message from some process p, and

viewi+k+l becomes defined, showing that p has failed. In this case, the protocol for viewi+k+t will

subsume the one for viewi+k. Similarly, if the coordinator itself fails, a future flush run by some

other coordinator will subsume the interrupted protocol. A successfully completed flush view will

now permit installation of all prior views.

For liveness, it now becomes necessary to avoid infinitely delaying the installation of a view in

the event of an extended process join/failure sequence. We therefore modify the protocol to have

participants inform the coordinator of their current view. A coordinator that has gathered flush

messages for view i + k from all the processes in viezai+l N viewi+k can send a view i + 1 flush

message to any process still in view i, even if it has not yet received all the flush messages needed

to terminate the protocol for view i + k. With this change, the protocol is five.

As illustrated in Figure 3, this protocol converts an execution with non-atomic multicasts into one

in which all multicasts are atomically delivered, at linear cost.

ABCAST ordering when the token holder fails

The atomicity mechanism of the preceding subsection requires a small modification of the ABCAST

protocol. Consider an ABCAST that is sent in viewi and for which the token holder fails before

sending the sets-order message.

After completion of the flush protocol for view i, the ABCAST message will be on every delay

queue, but not delivered anywhere. Moreover, any sets-order messages that were initiated before
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the failure will have been delivered everywhere, hence the set of undelivered ABCAST messages is

the same at all processes. These messages must be delivered before viewi can be installed.

Notice that the delay queue is partially ordered by --*. We can solve our problem by ordering

any concurrent ABCAST messages within this set using any well-known, deterministic rule. For

example, they can be sorted by uid. The resulting total order on ABCAST messages will be the

same at all processes and consistent with causality.

6 Extensions to the basic protocol

Neither of the protocols in Section 5 is suitable for use in a setting with multiple process groups.

We first introduce the modifications needed to extend CBCAST to a multi-group setting. We then

briefly examine the problem of ABCAST in this setting.

The CBCAST solution we arrive at initially could be costly in systems with very large numbers of

process groups or groups that change dynamically. This has not been a problem in the current Isis

system because current applications use comparatively few process groups, and processes tend to

multicast for extended periods in the same group. However, these characteristics will not necessarily

hold in future Ism applications. Accordingly, the second part of the section explores additional

extensions of the protocol that would permit its use in settings with very large numbers of very

-dYnamic Process groups. The resulting protocol is interesting because it exploits properties of what

we call the communication structure of the system.

6.1 Extension ofCBCAST tomultiple groups

The first extension to the protocol is concerned with systems composed of multiple process groups.

We will continue to assume that a given multicast is sent to a single group destination, but it may

now be the case that a process belongs to several groups and is free to multicast in any Of them.

Suppose that process pi belongs to groups g_ and gb, and nmlticasts within both groups. Multicasts

sent by Pi to g_ must be distinguished from those to gb. If not, a process belonging to gb and not

to ga that receives a message with VT(m)[i] = k will have no way to determine how many of these

k messages were actually sent to gb and should, therefore, precede m causally.

This leads us to extend the single VT clock to multiple VT clocks. We will use the notation VT_
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to denotethe logical clock associated with group ga; VT_[i] thus counts 4 multicasts by process Pi

to group ga. The stability sequence number, stable(pi) should be similarly qualified: stablea(pl).

Processes maintain VT clocks for each group in the system, and attach all the VT clocks to every

message that they multicast.

The next change is to step 2 of the protocol (Section 5.1). Suppose that process pj receives a

message m sent in group g, with sender Pi, and that pj also belongs to groups {gl,...,gn} - Gj.

Step 2 can be replaced by the following rule:

2t On receptionof message m from Pi _ Pj,sentin ga,processpj delaysm until

2.1' VT,(m)[i] = VT_(pj)[i] + 1, and

2.2' Vk: (pkEga A k yt i) : VT,,(m)[k] <_ VT(pj)[k], and

2.3' Vg: (geG/): VTg(m) <_ VTg(pj).

This is just the original protocol modified to iterate over the set of groups to which a process

belongs. As in the original protocol, pj does not delay messages received from itself.

Figure 4 illustrates the application of this rule in an example with four processes identified as

pl...p4. Processes Pl, P2 and P3 belong to group G1, and processes P2, P3 and P4 to group G2.

Notice that m2 and m3 are delayed at P3, because it is a member of G1 and must receive ml first.

However, m2 is not delayed at p4, because p4 is not a member of G1. And m3 is not delayed at p2,

because/_ has already received ml and it was the sender of m2.

The proof of Section 5 adapts without difficulty to this new situation; we omit the nearly identical

argument. One can understand the modified protocol in intuitive terms. By ignoring the vector

timestamps for certain groups in step 2.3 r, we are asserting that there is no need to be concerned

that any undellvered message from these groups could causally precede m. But, the ignored entries

correspond to groups to which pj does not belong. Since all communication is done within groups,

these entries are irrelevant to pj.

6.2 Multiple-group ABCAST

When run over this extended CBCAST protocol, our ABCAST solution will continue to provide a

total, causal delivery ordering within any single process group. However, it will not order multicasts

4Clearly, if pi is not a member of ga, then VTa[s_ = 0, allowing a sparse representation of the timestamp. For

clarity, our figures will continue to depict each timestamp VTg as a vector of length n, with a special entry * for each

process that is not a member of ga.
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Figure 4: Messages sent within process groups. G1 = {Pl,P2,P3} and G2 = {P2,P3,P4}

to different groups even if those groups have members in common. In [BCGgl] we examine the need

for a global ABCAST ordering property and suggest that it may be of little practical importance,

since the single-group protocol satisfies the requirements of all existing Isis applications that we

know of. We have extended our ABCAST solution to a solution that provides a global total

ordering; the resulting protocol, in any single group g, has a cost proportional to the number of

other groups that overlap with g. Details can be found in [Ste91]. This extended, global-ordering

ABCAST protocol could be implemented if the need arises.

6.3 Extended VT compression

In Section 5.4 we introduced a rule for compressing a vector timestamp before transmission. One

might question the utility of such a technique within a single process group, especially if the group

is likely to be small. In a multiple-group setting, the same technique might permit a process to

omit entire vector timestamps from some of its multicasts.

Intuitively, the "latest" timestamp for a group ga need only be included on the first of any messages

sent in some other group gb. Further communication within gb need not include this timestamp,

since all this communication will be causally after the message that contained the updated value

of VTa. More precisely, any process in gb that updates its value of VTa as a result of a message

received from some process not in gb will include the updated value of VTa in the next message

m that it multicasts to gb. The updated value need not be included in any subsequent messages

multicast to gb. Further details of this optimization, and a proof of correctness, can be found
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i in [Ste91].

We can do even better. Recall the definition of multicast stability (Section 5.3). Say that a group

is active/or process p, if:

1. p is the initiator of a multicast to g that is not stable, or

2. p has received an unstable multicast to g.

Activity is a local property; i.e. process p can compute whether or not some group g is active for it

by examining local state. Moreover, g may be active for p at a time it is inactive for q (in fact, by

delaying the delivery of messages, a process may force a group to become inactive just by waiting

until any active multicasts stabilize).

Now, we modify step 2' of the extended protocol as follows. A process p which receives a multicast

m in group ga must delay m until any multicasts m' previously received in other groups gb (b _ a)

have been delivered locally. For example, say that process p receives ml in group gl, then m2

in group g2, and then m3 in group gl. Under the rule, m2 must not be delivered until after ml.

Similarly, m 3 must not be delivered until after m2. Since the basic protocol is live in any single

group, no message will be delayed indefinitely under this modified rule.

Then, when sending messages (in any group), timestamps corresponding to inactive groups can

be omitted from a message. The intuition here is that it is possible for a stable message to have

reached its destinations, but still be blocked on some delivery queues. Our change ensures that

such a message will be delivered before any subsequent messages received in other groups. Knowing

that this will be the case, the vector timestamp can be omitted.

It is appealing to ask how effective timestamp compression will be in typical Isis applications. In

particular, if the compression dramatically reduces the number of timestamps sent on a typical

message, we will have arrived at the desired, low overhead, protocol. On the other hand, if com-

pression is ineffective, measures may be needed to further reduce the number of vector timestamps

transmitted. Unfortunately, we lack sufficient experience to answer this question experimentally.

At this stage, any discussion must necessarily be speculative.

Recall from Section 2 that Isis applications are believed to exhibit communication locality. In our

setting, locality would mean that a process that most recently received a message in group gi will

probably send and receive several times in gi before sending or receiving in some other group. It

would be surprising if distributed systems did not exhibit communication locality, since analogous

properties are observed in almost all settings, reflecting the fact that most computations involve

some form of looping [Den80]. Process-group based systems would also be expected to exhibit
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locality for a secondreason: when a distributed algorithm is executed in a group g there will often

be a flurry of message exchange by participants. For example, if a process group were used to

manage transactionally replicated data, an update transaction might multicast to request a lock,

to issue each update, and to initiate the commit protocol. Such sequences of multicasts arise in

many Isis algorithms.

The extended compression rule benefits from communication locality, since few vector timestamps

would be transmitted during a burst of activity. Most groups are small, hence those timestamps

that do need to be piggybacked on a message will be small. Moreover, in a system with a high

degree of locality, each process group through which a vector timestamp passes will "delay" the

timestamp briefly.

For example, suppose that a process that sends one multicast in group g_ will, on the average, send

and receive a total of n multicasts in g_ before sending or receiving in some other group. Under our

extended rule, only the first of these multicasts will carry vector timestamps for groups other than

gl. Subsequent multicasts need carry no vector timestamps at all, since the sender's timestamp

can be deduced using the method of Section 5.4. Moreover, if the vector timestamp for a group

gl changes k times per second, members of an adjacent group g2 (that are not also members of

gl) will see a rate of change of kin. A group at distance d would see every nd_th value, giving a

rate of k/n d per second. Thus, the combination of compression and communication locality can

substantially reduce the vector timestamp overhead on messages. In fact, if most messages are sent

in bursts, the "average" multicast may not carry any timestamps at all!

6.4 Atomicity and group membership changes

The protocol for group flush and multicast atomicity need to be reconsidered in light of this multiple

group extension.

Virtually synchronous addressing

Recall that virtually synchronous addressing is implemented using a group flush protocol. In the

absence of failures, the protocol protocol of Section 5.5 continues to provide this property. Although

it may now be the case that some messages arrive carrying "stale" vector timestamps corresponding

to group views that are no longer installed, the convention of tagging the vector timestamp with

the view index number for which it was generated permits the identification of these timestamps,

which may be safely ignored: any messages to which they refer were delivered during an earlier

view flush operation.

26



Atomicity and virtual synchrony when failures occur

When the flush algorithm of Section 5.5 is applied in a setting with multiple, overlapping groups,

failures introduce problems not seen in single-group settings.

Consider two processes Pl, P2 and two groups gl, gs, such that Pl belongs to gl and Ps to both gl

and g2, and suppose the following event sequence occurs:

1. Pl multicasts ml to gl in view view(g1).

2. Ps receives and delivers ml, while in view (view(g_), view(g2)).

3. p2 multicasts ms to gs, still in view (view(g1), view(g2)).

4. Both Pl and P2 fail, causing the installation of new views view(g1) _ and view(g2)'.

Now, consider a process q belonging to both gl and g2. This process will be a destination of both

rnl and ms. If P2 was the only process to have received ml before Pl failed, rnl will be lost due to

the failure; q would then install view view(g1) _ without delivering ml. Further, suppose that m2

has been received by another process q', belonging to gs but not gl. If q_ remains operational, q

will receive rn2 during the flush protocol for view(g2) _. This creates a problem:

1. If q delivers rn2 before installing view(g1)', causality will be violated, because ml was not

delivered first.

2. If ms is not delivered by q, atomicity will be violated, because m2 was.delivered at a process

q' that remained operational.

Even worse, q may not be able to detect any problem in the first case. Here, although m2 will carry

a vector timestamp reflecting the transmission of ml, the timestamp will be ignored as "stale." h_

general, q will only recognize a problem if ms is received before the flush of gl has completed.

There are several ways to solve this problem. Since the problem does not occur when a process

communicates only within a single group, our basic approach will be to intervene when a process

begins communicating with another group, delaying communication in group gs until causally prior

messages to group gl are no longer at risk of Ioss. Any of the following rules would have this effect:

• One can build a k-resilient protocol that operates by delaying communication outside a group

until all causally previous messages axe k-stable; as k approaches n, this becomes a conser-

vative but completely safe approach. Here, the sender of a message may have to wait before

being permitted to transmit it.
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Relyon the underlying message transport protocol to deliver the message to all destinations

despite failures. For example, a token ring or ethernet might implement reliable multicast

transport directly at the link level, so that messages are never lost at this stage.

Construct a special-case message logging server which is always guaranteed to have a copy of

any messages that have not yet been delivered to all their destinations. Such a facility would

resemble the associative message store in the original Isfs system [BJ87b] and also recalls

work by Presotto and Powell [Pow83].

Our implementation uses the first of these schemes, and as initially structured, operates completely

safely (i.e. with k = n). That is, a process Pi that has sent or received multicasts in group g_ will

delay initiation of a multicast in group g2 until the gl multicasts are all fully stable. Our future

system will be somewhat more flexible, allowing the process that creates a group to specify a value

of k for that group; such an approach would have a performance benefit. We note that standard

practice in industry is to consider a system fault-tolerant if it can tolerate a single failure, i.e. k = 1.

Barry Gleeson _ has made the following observation. Delays associated with multicast stability for

reasons of atomicity represent the most likely source of delay in our System: However, with the

following sort of specialized multicast transport protocol, this delay can be completely eliminated.

Consider an application in which the sender of a message is often co-resident with one of the

recipients, that is, on the same physical computer, and in which the network interface is reliable

(lossless) and sequenced (sends messages in order, even when the destination sets differ). This

implies, for example, that if a message m is received by a process p, any message m' transmitted

from the same source prior to m will have already been received at all its destinations.

On the resulting system, it would never be necessary to delay messages to a local destination: any

action taken by a local recipient and causally related to the received message would only reach

external nodes after stability of the prior multicast. Moreover, a remote destination would never

need to delay a message because it could safely assume that the other destinations have also received

it. In this setting, no message need ever be delayed clue to atomicity considerations! Our protocols

could then perform particularly well, since they would tend to "pipeline" multicasts between nodes,

while never delaying intra-node communication at all.

6.5 Use of communication structure

Until the present, we have associated with each message a vector time or vector times having a

total size that could be linear in the number of processes and groups comprising the application.

SBarry Gleeson is with the UNISYS Corporation, San Jose, California.
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On the onehand,wehavearguedthat in manysystemscompressioncoulddrasticallyreduce size.

Moreover, similar constraints arise in many published CBCAST protocols. However, one can still

imagine executions in which vector sizes would grow to dominate message sizes. A substantial

reduction in the number of vector timestamps that each process must maintain and transmit is

possible in the case of certain communication patterns, which are defined precisely below. Even if

communication does not always follow these patterns, our new solution can form the basis of other

slightly more costly solutions which are also described below.

Our approach will be to construct an abstract description of the group overlap structure for the

system. This structure will not be physically maintained in any implementation, but will be

used to reason about communication properties of the system as it executes. Initially, we will

assume that group membership is "frozen" and that the communication structure of the system is

static. Later, in Sections 6.6 and 6.6, we will extend these to systems with dynamically changing

communication structure. For clarity, we will present our algorithms and proofs in a setting where

timestamp compression rules are not in use; the algorithms can be shown to work when timestamp

compression is in use, but the proofs are more complicated.

Define the communication structure of a system to be an undirected graph CG = (G, E) where the

nodes, G, correspond to process groups and edge (gl,g2) belongs to E iff there exists a process p

belonging to both gl and g2. If the graph so obtained has no biconnected component 6 containing

more than k nodes, we will say that the communication structure of the system is k-bounded. In

a k-bounded communication structure, the length of the largest simple cycle is k. 7 A 0-bounded

communication structure is a tree (we neglect the uninteresting case of a forest). Clearly, such a

communication structure is acyclic.

Notice that causal communication cycles can arise even if CG is acyclic. For example, in figure 4,

messages ml, m2, m3 and m4 form a causal cycle spanning both gl and g2. However, the acyclic

structure restricts such communication cycles in a useful way. Below, we demonstrate that it is

unnecessary to transport all vector timestamps on each message in the k-bounded case. If a given

group is in a biconnected component of size k, processes in this group need only to maintain and

transmit timestamps for other groups in this biconnected component. We can also show that they

need to maintain at least these timestamps. As a consequence, if the communication structure is

acyclic, processes need only maintain the timestamps for the groups to which they belong.

We proceed to the proof of our main result in stages. First we address the special case of an acycli_

communication structure, and show that if a system has an acyclic communication structure, each

6Two vertices are in the same biconnected component of a graph if there is still a path between them after any

other vertex has been removed.
7The nodes of a simple cycle (other than the starting node) are distinct; a complex cycle may contain arbitrary

repeated nodes.
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processin the systemonly maintainsand multicaststhe VT timestamps of groups to which it

belongs. Notice that this bounds the overhead on a message in proportion to the size and number

of groups to which a process belongs.

We will wish to show that if message ml is sent (causally) before message mk, then ml will be

delivered before mk at all overlapping sites. Consider the chain of messages below.

ml m2 m3 mk- 1 mk

Pl _ P2 _ P3 _ .... Pk-1 _ Pk _ Pk+l

gl g2 g3 gk-1 gk

This schema signifies that process Pl multicasts message m: to group gl, that process p_ first

receives message ml as a member of group gl and then multicasts m2 to g2, and so forth. In

general, gi may be the same as gi for i # j and pi and Pi may be the same even for i # j (in other

words, the processes pl and the groups gi axe not necessarily all different). Let the term message
pj

chain denote such a sequence of messages, and let the notation mi"-*m_ mean that pj transmits

mj using a timestamp VT(mi) that directly reflects the transmission of mi. For example, say that

mi was the k'th message transmitted by process Pi in group ga. So miP._mj iff VTa(pj)[i] >_ k and

consequently VTa(mi)[i ] >_ k. Our proof will show that if mi---,m i and the destinations of mi and
pj

rrtj overlap, then mi.,zmj, where pj is the sender of m i. Consequently, mi will be delivered before

mj at any overlapping destinations.

We now note some simple facts about this message chain that we will use in the proof. Recall that

a multicast to a group ga can only be performed by a process Pi belonging to ga. Also, since the

communication structure is acyclic, processes can be members of at most two groups. Since rnk

and ml have overlapping destinations, and P2, the destination of mx, is a member of gl and of g2,

then gk, the destination of the final broadcast, is either gl or g2. Since CG is acyclic, the message

chain ml...mk simply traverses part of a tree reversing itself at one or more distinguished groups.

We will denote such a group gr. Although causality information is lost as a message chain traverses

the tree, we will show that when the chain reverses itself at some group gr, the relevant information

will be "recovered" on the way back.

Lemma 3: If a system has an acycIic communication structure, each process in the system only

maintains and multicasts the VT timestamps of groups to which it belongs.

Proof: The proof is by induction on l, the length of the message chain ml...mk. Recall that we

must show that if ml and mt_ have overlapping destinations, they will be delivered in causal order

at all such destinations, i.e ml will be delivered before mt_.
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Base case. l= 2. Here, causaldeliveryistriviallyachieved,sincePk --P2 must be a member of

gl and mk willbe transmittedwith g1'stimestamp. Itwillthereforebe deliveredcorrectly

at any overlappingdestinations.

Inductive step. Suppose that our algorithmdeliversallpairsof causallyrelatedmessages cor-

rectlyifthere isa message chain between them of lengthl < k. We show that causalityis

not violatedformessage chainswhere l= k.

Consider a point in the causalchain where itreversesitself.We representthisby

mr_l--*mr---_mr,-.-*mr+l , where mr_land mr+l are sent in gr-1 -= gr+l by Pr and Pr+l

respectively, and mr and mr, are sent in gr by Pr and p_,. Note that pr and P_+I are members

of both groups. This is illustrated in Figure 5. Now, mr, will not be delivered at p_+l until

Figure 5: Causal Reversal

mr has been delivered there, since they are both broadcast in gr. We now have mr-i 2_ mr

P'_,_ mr+l. We have now established a message chain between ml and mk where l < k. So,

by the induction hypothesis, ml will be delivered before mk at any overlapping destinations,

which is what we set out to prove. []

Theorem 1: Each process Pi in a system needs only to maintain and multicast the VT timestamps

of groups in the biconnected components of CG to which pi belongs.

Proof: As with Lemma 3, our proof will focus on the message chain that established a causal link

between the sending of two messages with overlapping destinations. This sequence may contain

simple cycles of length up to k, where k is the size of the largest biconnected component of CG.

Consider the simple cycle illustrated below, contained in some arbitrary message chain.
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ml ml ml+l
Pt ===_ ...P2 ==_ P3 ==_

gl gl gl

Now, since Pl, P2 and P3 axe all in groups in a simple cycle of CG, all the groups are in the same

biconnected component of CG, and all processes on the message chain will maintain and transmit

the timestamps of all the groups. In particular, when mt arrives at P3, it will carry a copy of VTgl

indicating that ml was sent. This means that mt will not be delivered at P3 until ml has been

delivered there. So mt+l will not be transmitted by P3 until ml has been delivered there. Thus
p_

ml"_ml+l. We may repeat this process for each simple cycle of length greater than 2 in the causal

chain, reducing it to a chain within one group. We now apply Lemma 3, completing the proof. []

Theorem I shows us what timestamps are sufficient to assure correct delivery of messages. Are all

these timestamps in fact necessary? It turns out that the answer is yes. It is easy to show that if a

process that is a member of a group within a biconnected component of CG does not maintain a

VT timestamp for some other group in CG, causality may be violated. We therefore state without

formal proof:

Theorem 2: If a system uses the VT protocol to maintain causality, it is both necessary and

sufficient for a process Pi to maintain and transmit those VT timestamps corresponding to groups

in the biconnected component of CG to which Pi belongs.

6.6 Extensions to arbitrary, dynamic communication structures

The previous section assumed that the communication graph was known statically. Operationally,

this would correspond to a system in which, once established, process group membership never

changed. Any realistic application is likely to be more dynamic, making it hard to manage infor-

mation concerning the biconnected components Of CG: Moreoverl anyreal distributed system will

probably contain a mixture of subsystems, some having a regular communication structure, and

some not.

Consider the multiple-group examples raised in the introduction. A scientific computation using

:groups for neaxest neighbor_mmu-I_cat_n:will have_n _reg_ax C0mmu_cation StrUcture. The

structure is known in advance and is =a=property of the =algorithm, and it would be =desirable to

exploit this to reduce overhead on messages. Lemma 3 and Theorem 1 are ideally suited for this

purpose. (We describe the system call interface used to communicate this information in Section 7).

This might or might not be true for the network information service. The designer of such a service

has a choice between controlling the location of replication domains, or permitting data to migrate
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in an uncontrolled manner, creating fairly random domains. However, such a service will want

to balance processor loads and storage utilization, which might be hard in the latter approach.

Thus, the designer might well prefer to "tile" the network with process groups in a regular way,

which could then be exploited using our above results - again, presuming a suitable interface for

communicating this information.

On the other hand, a system built of abstract objects will almost certainly have an arbitrary

communication structure that changes continuously as applications are started and terminate.

Here, the communication structure would be impossible to represent; indeed, it may well change

faster than information about it can be propagated within the system. The best a process could

possibly do is to reason about local properties of the structure.

We now develop some simple results that enable processes to maintain only timestamps for groups

to which they actually belong, and yet to operate safely in dynamically changing communication

graphs that may contain cycles. Below, we will assume that processes may join and leave groups

dynamically, and may leave a group for reasons other than failure (in existing Isis this is possible,

but uncommon). This results in a highly dynamic environment. Nonetheless, a process might be

able to infer that a group to which it belongs is not present in any cycle. This would follow, for

example, if the group is adjacent to at most one other group. Such information can be obtained by

an exchange of adjacency information when a process joins a group, and subsequently multicasting

updated information in gl each time a current member joins some other group g2. Further, say

that group g2 is adjacent to groups gl and g3, but that gl is adjacent to no other group. Then g2

and eventually g3 may come to learn that there is no cycle present.

Conservative solution

Our first solution is called the conservative protocol, and uses multicast stability (Section 5.3). The

idea will be to restrict the initiation of new multicasts so that a message m can only be sent in a

group g when it is known that any causally prior messages m _ will be delivered first, if m and m'

share destinations.

The conservative multicast rule states that a process p may multicast to group gl iff gl is the only

active group for process p or p has no active groups (the notion of an active group was defined in

Section 6.3). If p attempts to multicast when this rule is not satisfied, it is simply delayed. During

this delay, incoming messages are not delivered. This means that all groups will eventually become

inactive, and the rule above will eventually be satisfied. At this point, the message is sent. It is now

immediate from the extended compression rule of Section 6.3 that when a message m is multicast

in group g, only the sender's timestamp for group g need be transmitted.
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The conservativerule imposes a delay only when two causally successive messages are sent to

different groups. Thus, the rule would be inexpensive in systems with a high degree of locality.

On the other hand, the overhead imposed would be substantial if processes multicast to several

different groups in quick succession.

Multicast epochs

We now introduce an approach capable of overcoming the delays associated with the conservative

rule, but at the cost of additional group flushes. We will develop this approach by first assuming

that a process leaves a group only because of a failure, and then extending the result to cover the

case of a process that leaves a group but remains active (as will be seen below, this can create a

form of phantom cycle).

Assume that CG contains cycles, but that some mechanism has been used to select a subset of

edges X such that CG _ = (G, E- X) is known to be acyclic. We extend our solution to use the

acyclic protocol proved by lemma 2 for most communication within groups. If there is some edge

(g, g_)EX, we will say that one of the two groups, say g, must be designated as an excluded group.

In this case, all multicasts to or from g will be done using the protocol described below.

Keeping track of excluded groups could be difficult; however it is easy to make pessimistic estimates

(and we will derive a protocol that works correctly with such pessimistic estimates). For example,

in Isis, a process p might assume that it is in an excluded group if there is more than one other

neighboring group. This is a safe assumption; any group in a cycle in CG will certainly have two

neighboring groups. This subsection develops solutions for arbitrary communication structures,

assuming that some method such as the previous is used to safely identify excluded groups.

We will define a notion of multicast epoch, to be associated with messages such that if for two

messages ml and m2, epoch(m1) < epoch(m2), then ml will always be delivered before m2. In sit-

uations where a causal ordering problem could arise, our solution will increment the epoch counter.

Specifically, each process p maintains a local variable, epochp. When process p initiates a multicast,

it increments its epoch variable if the condition given below holds. It then piggybacks epochp on

the outgoing message. On reception of a message m, if epochp < epoch(m), then p will initiate the

flush protocol for all groups to which it belongsl by sending a message "start flush" to the other

group members. Reception of this message triggers execution of the flush protocol of Section 5.5,

just as for a new group view (because our implementation clears vector timestamps as part of the

flush, Isls numbers views using a major and minor view number: the major number is increme_ted

for each new view, and the minor one for each flush done within the same view). On completing
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theflushprotocol,all groupmemberssetthevalueof their epoch variables to the maximum of the

ones held by group members.

When will a process increment its epoch variable? Say that m is about to be multicast by p to g.

We say that p is not safe in g if:

• The last message p received was from some other group g_, and

• Either g or g_ is an excluded group.

Our protocol rule is simple; on sending, if process p is not safe in group g, p will increment epoch v

before multicasting a message m to g. In this case, m will carry the epoch value but need not carry

any vector timestamps. Otherwise, p will just increment its VT timestamp in the usual manner,

and then piggyback onto m the epoch variable and timestamps for any (active) groups to which it

belongs. A message is delivered when it is deliverable according to both the above flush rule and

the VT delivery rule.

Notice that the flushing overhead of the modified protocol is incurred only when epoch values

actually change, which is to say only on communication within two different groups in immediate

succession, where one of the groups is excluded. That is, if process p executes for a period of time

using the VT protocol and receives only messages that leave epochp unchanged, p will not initiate

a flush. However, when an epoch variable is incremented s the result could be a cascade of group

flushes. Epoch variables will stabilize at the maximum existing value and flushing will then cease.

Theorem 3: The VT protocol eztended to implement multicast epochs will deliver messages causally

within arbitrary communication structures.

Proof: Consider an arbitrary message chain where the first and last messages have overlapping

destinations. For example, in the chain shown below, Pk+l might be a member of both gl and gk

and hence a destination of both ml and mk. Without loss of generality, we will assume that gl...gk

are distinct. We wish to show that the last message will be delivered after the first at all such

destinations.

8An interesting variation on this scheme would involve substituting synchronized realtime clocks for the epoch

variable; a message would then be delayed until the epoch variable for a recipient advanced beyond some minimum

value. Readers familiar with the A-T real-time protocols of [CASD86] will note the similarity between that protocol

and such a modification of ours. In fact, clock synchronization (on which the A-T scheme is based) is normally done

using periodic multicasts [ST87,Lam78], much like our flushing scheme. The development of a A-T based epoch

protocol clearly warrants future study.
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ml m2 Ink

P_ =:_ P2 _ ...Pk _ Pk+_

gl g2 gk

If none of gl ...gk is an excluded group, then, by Lemma 3, ml will be delivered before mk at pk+a.

Now, let gi be the first excluded group in the above message chain. If gi is excluded, then pi will

increment its epoch va,riable before sending mi. As epoch numbers can never decrease along a causal

chain, we will have epoch(m1) < epoch(mk), and a flush protocol will have run in any groups to

which a destination of mk belongs, before mk can be delivered, ml was sent before the flush, and

hence will be delivered by pk+l before it delivers ink. []

Recall that we have been assuming that a process only leaves a group because of failure. Now, with-

out changing the definition of the communication graph, say that processes can also leave groups

for other reasons, remaining active and possibly joining other groups. Earlier, it was suggested that

a process might observe that the (single) group to which it belongs is adjacent to just one other

group, and conclude that it cannot be part of a cycle. In this class of applications, this rule may

fail. The implication is that a process that should have incremented its epoch variable may neglect

to do so, leading to a violation of the causal delivery ordering.

To see how a problem could arise, suppose that a process p belongs to group gl, then leaves gx and

joins g2. If there was no period during which p belonged to both gl and g2, p would use the acyclic

VT protocol for all communication in both gl and g2. Yet, it is clear that p represents a path by

which messages sent in g2 could be causally dependent upon messages p received in gl, leading to a

cyclic message chain that traverses gl and g2. This creates a race condition under which violations

of the causal delivery ordering could result.

This problem can be overcome in the following manner. Each process pi simply increments its

epoch counter after it leaves a group ga and before it sends any subsequent messages. This will

ensure that any message sent by Pi after it leaves ga will be delivered subsequent to any message

whose effect pi had observed, directly or indirectly, before it left ga-

7 Applying the protocols to ISIS

This section briefly discusses some pragmatic considerations that arise when implementing the

protocols for use in Isls.
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Peer Groups k, k <__n (depending on degree of compression)

n is the number of group members.

Client/Server Groups k, k _< s + c

s is the number of servers and c is the number of clients.

Diffusion Groups k, k _< b

b is the number of members broadcasting into the group.

Hierarchical Groups k, k _< n

n is the size of a subgroup.

Table 1: Timestamp sizes resulting from different process group styles

7.1 Optimizations for Client/Server Groups

Up to now, our discussion has focused on communication in peer groups. In Isis client/server

settings, a set of servers forms one group, and each client of the service they are providing forms

an additional group containing that client and the server set (see figure 1). Theorem 2 appears to

state that in this case, each group containing one of the clients needs to maintain the timestamps of

every other such client group - a total timestamp size of O(s • c), where s is the number of servers

and c is the number of clients. Fortunately, since clients will not be communicating with each other

except through the servers, and the servers form a peer subgroup of size s that receives all of these

multicasts, an optimization can be applied to reduce the entire timestamp size to O(s + c). This

optimization essentially collapses all the client groups into one large group; it is fully described in

[Stegl]. A modified version of the conservative delay rule can be used to reduce any timestamps

transmitted outside of the group to size s. Finally, since timestamps associated with inactive groups

can be omitted, and most clients of a large group will presumably be inactive, even the internal

timestamps can be reduced in size, to length O(s + k) for some small k. 9

Our protocols also work well with the other styles of process group usage, as summarized in Table 1.

In diffusion groups, one vector timestaanp is needed for the whole group. In the case of diffusion

groups, the number of entries in the timestamp can be optimized: entries are only needed for the

server processes, since these are the only ones that initiate multicasts. Hierarchical groups fall

naturally into our general approach: since a process normally interacts with a single representative

subgroup, the length of the vector timestamp seen is normally determined by the size of that

subgroup. Further, a hierarchical group manager might have the freedom to create subgroups to

be explicitly acyclic.

Some Isis applications form large process groups but would benefit from the ability to multicast to

9For example, by implementing the compression scheme or by simply having a client of a group drop out of i_

after some period of inactivity.
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subsets of the total membership. For example, a stock quote service might send an IBM quote to

only those brokers actually trading IBM stock. Such an ability can be emulated by forming groups

approximating the multicast destination sets and discarding unwanted messages. Alternatively, our

protocol can be extended into one directly supporting subset multicast. The basic idea is to move to

a large timesta.mp, representing the number of times each possible sender has sent to each possible

recipient. The resulting array would be sparse and repetitious, and hence could be substantially

compressed. At present, we favor the former scheme, as it requires no changes to our basic protocol.

7.2 Point-to-point messages

Early in the the paper, we asserted that asynchronous CBCAST is the dominant protocol used

in Isls. Point-to-point messages, arising from replies to multicast requests and RPC interactions,

are also common. In both cases, causal delivery is desired. Our implementation supports the

transmission of point-to-point messages with causal delivery guarantees. This is done using an

RPC scheme, in which the sender is inhibited from starting new multicasts until delivery of the

point-to-point message is acknowledged. The vector time of the sender is included on the message,

but the sender's vector timestamp is not incremented prior to transmission. Point-to-point messages

are thus treated as events internal to the processes involved.

The argument in favor of this method is that a single point-to-point RPC is fast and the cost is

unaffected by the size of the system. Although one can devise more complex methods that eliminate

the period of inhibited multicasting, problems of fault-tolerance render them less desirable.

7.3 System interface issues

One question raised by our protocols concerns the mechanism by which the system would actually

be informed about special application structure, such as an acyclic communication structure. This

is not an issue in the current Isis implementation, which uses the conservative rule, excluding

groups adjacent to more than one neighboring group. In the current system, the only problem is

to detect clients of a group, and as noted earlier, these declare themselves through the pg_client

interface.

In the future, we expect to address these issues through a new system construct, the causality

domain [BCG91]. A causality domain is a set of groups within which causality is enforced. Each

group is created in a domain and subsequently remains in it. Causality is not enforced between

domains, but a flush primitive can be provided, which will block a process until all causally prior
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°
messages have been delivered. 1° We are designing an interface by which parameters such as the

message stability constant k or assertions about the communication structure can be asserted on a

per-domain basis. In the case of a domain declared to have an aeyclic communication structure, a

• routine pg_exclude may be used to designate excluded groups.

An application such as the physics simulation described earlier could set up its group structure as

a separate causality domain, declaring it to be acyclic and excluding enough groups to ensure that

cycles will be broken. By invoking flush before switching from domain to domain, causal safety

would be achieved on both intra- and inter-domain operations.

?.4 Group view management

The current Isis implementation retains the prior Isls group view management server. Looking to

the future, however, it will be possible to use our new protocol in a stand-alone fashion. Membership

changes (adding or dropping a member from a group) can be implemented using the CBCAST

protocol, including the new member as a destination in the former case. Clearly, this requires

a form of mutual exclusion, which is obtained by having a distinguished group member initiate

any such membership changes. 11 Reception of this CBCAST message would trigger a view flush

protocol: approximately 3n messages are thus needed to add one member to a group of size n. The

addition or deletion of a client in a client-server or diffusion group is cheaper: a multicast and flush

are still needed, but since clients don't need to know about other clients, it can be confined to the

server subgroup.

A source of failure information is needed in this scheme. In [RB91] we discuss the asynchronous

failure detection problem and present an optimal algorithm.

Such a redesigned system would realize a long-term goal of our effort. The current Isls architecture

is difficult to scale to very large LAN settings because of its reliance on a central protocol server.

Although this server need not reside directly on every node, it introduces a bottleneck that limits

the scalability of the architecture to networks with at most a few hundred workstations. By

reimplementing the group view mechanism in terms of our new multicast protocol and separating

failure detection into a free-standing module, this limit to scalability can be eliminated.

l°There are a number of possible implementations of flush, but for brevity we defer discussion of this issue to a

future paper.
llAs in conventional distributed computing environments, this approach assumes that groups would be registered

with some sort of group location service. Initial connection to a group would be via a forwarded request, causing the
caller to be added as a new member or client. Subsequent to this, group operations could be performed directly.
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8 Performance and transport protocol selection
T

We implemented the new CBCAST and ABCAST protocols within the Isis Toolkit, version 2.1

(publica£1y avMlable since Oct. 1990). The implementation is somewhat less ambitious than what

we plan for the future Isis system. Nonetheless, the measured performance was encouraging.

Group

Size

2

Causal muiticast
L ..,

with replies Asynchronous

(ms)

S M L

1.42 1.46 1.44

7.36 8.79 18.3

9.66 11.1 26.6

12.0 15.1 35.4

16.4 17.8 44.3

17.8 21.1 55.4

21.5 26.2 60.4

25.2 30.1 66.6

msg/sec kb/sec

S L

2469 16706

673 601

361 440

288 282

224 203

215 151

177 125

150 104

Table 2: Muiticast performance figures. S: null packets M: 1K packets; L: 7K packets. All figures

measured on Sun 4/60's running SUNOS 4.0.3

Table 2 shows that the cost of transmitting to a group grows roughly linear.ly with the size of the

group. The data was generated using the new CBCAST protocol within a single group. The figures

are comparable to what can be achieved using the vendor-supplied remote procedure mechanism

for the machines with which we worked: for example, a remote procedure call using a lkb message

through our facility (with a null reply) had a round-trip latency of 8.79ms. The figure for SUN

RPC is comparable. Similarly, the throughput figures compare quite well with traditional streaming

protocols such as TCP (we obtained 673 null messages per second, or 600kb of data per second).

A graph of this data appears as Figure 6.

In order to understand how CPU time was expended by our protocol, we profiled the protocol

within a single processor and between a pair of processes using'l_PC over a 10Mbit eihernet: _Bodi

request and reply were sent as single-destination CBCAST's. (The choice of RPC may seem odd, in

light0fouremp-hasis onasynchronous multicast, but th_s is:the Obvious way to measure round-trip

delays). We then computed the costs attributable to different parts of the system. Table 3 shows

a profile for a null RPC sent by a thread to another entry point within its own address space. This

involves creating a new thread to handle each delivered message but no communication outside of
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Total Causal

Operation Cost Cost

send 406 uS 86 uS

receive 394 uS 31 uS

reply 406 uS 86 uS

receive 224 uS 31 uS

Total 1.43 mS 234 uS

(Measured) 1.43 mS

Table 3: Null causal multicast to another local thread w/reply

Causal multicast .23 mS

Rest of Isis 1.21 mS

Transport 3.6 mS

System Calls 1.59 mS

Wire Time 1.8 mS

Total 8.42 mS

(Measured) 8.79 mS

Table 4: lk causal multicast to a remote process w/reply

the address space of the test program. The first column shows total (measured) costs, the second

shows costs attributed to causality, which we obtained by comparing the costs of sending causally

ordered and FIFO messages.

Table 4 shows the costs on a layer-by-layer basis for the 8.79ms RPC to a remote process. The costs

are broken down into the time spent in the protocol implementation (taken from the null multicast

table, above), the transport costs, costs spent in system calls, and the time on the wire for a lk

message with its Isls-supplied header and a null reply. The header size used was approximately

400 bytes in each case.

The major conclusion we draw from these performance studies is that nearly all the time spent

in our new protocol is in the layers concerned with physically transporting messages to a remote

machine. Our protocol imposes little cost in relation to this number. This result has convinced us

that our new system should be built over some sort of extensible kernel, so that the protocol can be

moved closer to the hardware communication device. For example, both Mach and Chorus permit

application developers to move modules of code into the network communication component of the

kernel. In our case, this would yield a significant speedup. The other obvious speedup would result

from the use of hardware multicast, an idea that we are now exploring experimentally.
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Figure 6: RPC Timing as a function of message and group size

9 Conclusions

We have presented a protocol efficiently implementing a reliable, causally ordered multicast primi-

tive. The protocol is easily extended into a totally ordered "atomic" multicast primitive, and has

been implemented as part of Version 2.1 of the Isis Toolkit. Our protocol offers an inexpensive way

to achieve the benefits of virtual synchrony. It is fast and scales well; in fact, there is no evident

limit to the size of network in which it could be used. Even in applications with large numbers

of overlapping groups, the overhead on a multicast is typically small, and in systems with bursty

communication, most multicasts can be sent with no overhead other than that needed to implement

reliable, FIFO interprocess channels. With appropriate device drivers or multicast communication

hardware, the basic protocol will operate safely in a completely asynchronous, streaming fashion,

never blocking a message or its sender unless out-of-order reception genuinely occurs. Our con-

clusion is that systems such as Isis can achieve performance competitive with the best existing

multicast facilities - a finding contradicting the widespread concern that fault-tolerance may be

unacceptably costly.
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