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computation times and storage requirements.
ABSTRACT Neural networks can, in principle, gain efficiency

An approach to incorporating artificial neural net- through automatically identifying and concentrat-
works in nonlinear, adaptive control systems is de- ing on significant receptive regions in the input
scribed. The controller contains three principal ele- space [3, 4].

ments: a nonlinear-inverse-dynamic control law Neural networks can be incorporated in nonlinear
whose coefficients depend on a comprehensive control logic in at least two ways. The first is as a
model of the plant, a neural network that models generalized feedforward control function that maps the
system dynamics, and a state estimator whose out- space of desired command responses into corre-
puts drive the control law and train the neural sponding control settings. This neural network is
network. Attention is focused on the system-iden- conceptually straightforward, as it is based on the
tification task, which combines an extended inverse of the plant's response to control inputs [5].
Kaiman filter with generalized-spline function ap- The second is to use the neural network as a model
proximation (e.g., basis splines, back-propagation of plant dynamics, which is embodied in the control
feedforward networks, or cerebellar model articula- law but is distinct from the command/control spec-
tion controller networks). Continual learning is ification [as in nonlinear-inverse-dynamic (NID)
possible during normal operation (without taking control]. The first approach may lead to more com-
the system off line for specialized training). Non- pact implementation, while the second may pro-
linear-inverse-dynamic control requires smooth vide more flexibility for multi-modal or fault-toler-
derivatives as well as function estimates, imposing ant control.
stringent goals on the approximating technique.

In the remainder of the paper, we discuss elements
INTRODUCTION of the second approach. After briefly stating the

Current research on artificial neural networks has nonlinear control problem and its NID solution, a

been spurred by the need for pattern recognition, learning structure for neural networks based on an
optimization, and control algorithms that can learn extended Kalman filter is described, and details of
from experience. The biological paradigm provides two network formulations are presented. It is
an attractive starting point, as learning is the crux of shown that smooth neural network outputs are de-

sirable and, in fact, required for NID control. The
living activity. Nevertheless, it remains to be seen back-propagation feedforward network has suffi-whether or not biologically-motivated algorithms
(i.e., artificial neural networks) are computationally cient smoothness as normally defined, but the cere-bellar model articulation controller network must
appealing, particularly as compared to more con- be modified to eliminate quantization effects.ventional numerical techniques for function ap-
proximation. These techniques also can "learn" or THE NONLINEAR CONTROL PROBLEM
"be taught," although those terms rarely are used
for the process of fitting curves or determining coef- Consider the control of a nonlinear dynamic plant
ficients from empirical data. as de._"ribed by,

The most important question appears to be how
well neural networks generalize multivariate func- i = fix) . g(x, u) + w (1)

tions of high input dimension. Basis splines (or B- y = h(x) (2)
splines) represent an efficient, modern, conven-
tional technique [1, 2]. A univariate B-spline func- z -- hz(x) + n (3)
tion approximation can be trained quickly and accu-
rately using deterministic or averaging techniques, with x and w € Rn, u, y € Rm, and z and w € R1. f
and the resulting spline approximant has nice nu- and g are smooth vector fields in Rn; h and hz are
merical properties, such as positivity and compact smooth vectors fields in Rm and RI. x represents
support. Multivariate B-splines can be computed, the dynamic state, u is its control, w is the distur-
but they may become cumbersome in both training bance input, y is the response vector, z is the mea-
and operation if the number of independent vari- surement of the process, and n is the measurement
ables is much larger than two. Furthermore, the error.
multivariate B-spline requires a fairly rigid defini-
tion of the input space, resulting in potentially high For illustration, assume that eq. 1 and 2 can be writ-

ten as,

tpr°fess°r i = fix) + G(x) u + w (4)
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y = H x (5) craft system identification applications presented in
[11-15]"(Fig. 1), g(t) was treated as an integrated ran-

with w = 0 and z = x. Define the derivative response dom-walk (Gauss-Markov) process, necessitating
vector y(d) by termwise differentiation of eq 5 and the estimation of g(t) and _(t) as well as g(t).
substitution of eq. 4, repeated until the control af- Improved estimates were obtained by following the
fects each element of y(dFiinearly [6, 7]: filtering step with a reverse-time modified Bryson-

Frazier (MBF) smoothing step [16].J In the current
y(d) = f'ix) + G'(x) u (6) application, the filtered estimates _(t) and _(t_ are

used with u(t) to train the neural network g(x, u).
G'(x) is guaranteed to be nonsingular, _ it is possi- Smoothed estimates could be u_ed for further off-
ble to construct an integrator-decoupling control law of line training improvement. [See [17] for a related
the form, application of filtering and smoothing].

u --c(x) . C(x)v (7) z(t) u(t)

where, (

F.KF Model

and Identifier g Îx,u]
c(x) = - [G*(x)]"1f'(x) (9) MBF _(t) and

and v is a command input vector. Together with Smoother Estimator
additional compensation to provide satisfactory
closed-loop stability and command response, eq. 7 Figure 1. Basic Estimation Before Modeling.
forms a nonlinear-inverse-dynamic control law.

For the airplane example, x(t) is an ll-component
For typical response vector specifications in aircraft vector representing 3 components (each) of transla-
control applications [8, 9], one to three differentia- tional and rotational rates, 4 quaternion compo-
fions are required to bring out the control effect in nents, and altitude, fix(t)] represents kinematic and
y(d); hence, up to two partial derivatives of fix) and inertial effects, while the vector g(t) has just 6 non-
G(x) (with respect to x) must exist in those cases, zero terms due to aerodynamic, thrust, and control
Our goal is to approximate an uncertain but observ- effects. These terms are axial, side, and normal spe-
able portion of the system model using neural net- cific forces [X(t), Y(t), and Z(t)] and roll, pitch, and
works. Consequently, neural network outputs yaw specific moments [L(t), M(t), and N(t)]. Conse-
must be smooth enough for the differentiation and quently, 6 parallel neural networks would be
inversion contained in eqs. 6, 8, and 9 to take place, formed for this application. Aerodynamic effects

can be normalized using air density, airspeed, refer-THE SYSTEM IDENTIFICATION PROBLEM ence area, and reference length; hence, the neural

Consider a system described by eq. 1-3 with w = 0 networks would represent the non-dimensional
and z = x, in which fix) is known without error and coefficients Cx(x,u), Cy(x,u), Cz(x,u), Cl(x,u),
g(x,u) is subject to uncertainty or change. Let g(t) Cm(x,u), and Cn(x,u).

represent the value of g(x,u) at time t during some The neural network can be integrated with bUD
period of system operation; then g(t) could be esti- control, as shown in Fig. 2. The dashed arrow from
mated precisely as the estimation model block to the nonlinear con-

trol law block represents an update of the func-
g(t) = i(t) - fix(t)] (10) tional form of the control law rather than the direct

feedback path of the other connections.
and {g(t), x(t), u(t)} would form a suitable training
set for a functional approximation to g(x,u). During v(t) [ ] I y(t)
the courseof normal system operation,itis as- _ Nonlinear Iu(t)_ [ ,, .

of training sets that were sufficiently rich for func-
tion approximation, and it would be possible to
"replay" system trajectories off line for improved
learning. There is no restriction on the form of
g(x,u);itissuggestedherethatg(x,u)be represented : I ^ .

by one or more neural networks. _ L. g(t) ] [
, • ...^_l- ,Extendedl

More realistically, w and n are not zero, and z is not I Estimauu_. . ,

usual observabiUtyrequirements,itispossibleto g Filter
make estimatesofg(t)and x(t)usingan Extended
Kalman Filter,as described,forexample,in [I0].
Followinga procedureanalogous to Estimation
BeforeModeling[II-15],thestatevectorisaugmented Figure2. IntegrationofNeural-NetworkSystem
toincludeg(t)and enough derivativesofg(t)toas- Identificationwith Nonlinear-Inverse-Dynamic
surea smooth estimateofg(t).[Intheoff-lineair- Control.
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NEURAL NETWORK ESTIMATION SCttEMES algorithm. The choice of activation functions and
numbers of layers and nodes is the subject of much

Back-propagation feedforward neural networks and re,arch [e.g [21]].

CMAC neural networks are particularly suitable for Cerebellar Model Articulation Controller
system identification. Each represents a different
structural model of a process and presents unique The Cerebellar Model Articulation Controller
capabilities for the system identification process. (CMAC) neural network [3, 4] is a generalization of
Although neural network techniques appear very a simple table look-up of a multi-input/single-out-
different from classic techniques such as B-splines, put nonlinear function. Originally modeled on the
under close examination there are strong similari- uniform structure of the cerebellum, the basic
ties. As discussed in [18], most neural netv.'orks, in- CMAC divides the multi-dimensional input space
cludin_ the two models discussed here, can be into a series of overlapping hypercubes. A weight is
viewea as generalized splines. This observation assigned to each hypercube. The output of the
opens the door on a large body of knowledge about CMAC for a specific input point is simply the sum
function approximation. A brief description of the of the weights of those hypercubes enclosing the
two networks follows. Further details about each input point. Applications to date have been in the
can be found in [19]. areas of function approximation [3, 4, 17], robotics

[5,22,23], and adaptive control [24].
Back-Propagation Feedforward Network

Introducing an association space, .fl, the operation of
One of the simplest, and most used, artificial neural the CMAC is best described by two mappings. The
network is the back-propagation feedforward net- first goes from the input space, X, to the associationwork [20]. A feedforward neural network is con-

structed from a weighted interconnection of simple space
nonlinear elements called nodes. The nodes are
separated into layers, with the input to each node Q," X_ .,q- {0, 1}NA (14)

exclusively from the previous layer and the output The elements of the binary selector vector, a, in the
connected only to the following layer. The orderly NA dimensional .,qare fixed byconstruction leads to a simple recursive definition

t tk)= W(k'l) x(k't) (11) aj = otherwise (15)

x(k)=s(kl[t(k)] (12)
where A] is the jth receptive region. The receptive

for layers k = 1 to N. The activation function vector, regions are the overlapping hypercubes that cover
s(k)[tLis formed by concatenating the scalar activa- the input space. By overlapping the receptive re-
tion functions contained in each node of a single gions such that any input lies within exactly C re-
layer: ceptive regions, a has C non-zero values. The size

of C controls the generalization capability of the
s(k)[t] -- [Ol(tt) ... O'n(tn)]T (13) CMAC.

One input to each layer is fixed at unity and serves The second mapping from a to the scalar output, y,
as a threshold, as illustrated by Fig. 3.

wt0t W(l) R: .,_-_ Y (16)
is simply a summation of the weights associated
with the selected receptive regions. Defining a
weight vector, w, of dimension NA, the inner prod-

x(0) x (2) uct of w with a generates the desired output

y = wTa (17)

The basic CMAC (Fig. 4) quantizes the inputs based
on the size of the overlap of the receptive regions.
Since there is only one further linear operation per-

1.0 1.0 Threshold formed, the output of the CMAC is a piecewise-con-
tinuous function.

Figure 3. A Simple Feedforward Neural Network.
Since the weights and output are connected by a

Given the form of the activation function (usually simple linear operation, a learning algorithm is
the same in each node), the number of layers, and easy to prescribe. Each weight contributing to apar-
the number of nodes in each layer, the back-propa- ticular output value is adjusted by a fraction of the
gation rule [20] can be used to update the values of differencebetween the network output and the de-
the weights, w(k). The back-propagation rule at- sired output. The fraction added is determined by
tempts to minimize the mean-square error of the both the speed of desired learning and the number
difference between the network output and a de- of weights contributing to the output.
sired output value using a gradient-based descent
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tion function used in each node. One of the most

o(z)- 1 +e-Z Vz_ R (21)

o oool
_' ,t __ Since this function is infinitely differentiable, the
,/ ,,_ full network also is infinitely differentiable.
i I The basic CMAC network is very different from tile

feedforward network, qhe quantization of the in-
put space causes the CMAC to have piecewise-con-

Adjustment T tinuous output as demonstrated in Fig. 5 for a+
[ coarse quantization of the input value.

Desired 1.5 ....... 7-..... r ..... _--- ".....
Input Space Weight Vector Output

Figure 4. The Basic CMAC Architecture. _- _--_ ....
1 .i:=" L:_:

By its construction, the fidelity of the learned L)
CMAC response is directly related to the quantiza- _ o
tion of the input space into receptive regions. For "_ 0.5

multi-dimensional input spaces, the number of re- _ __
ceptive regions, and therefore the number of L;
weights, scales as _ 0 .S [

NA -- O(Qn) (18) _ _ -

where Q is the number of number of divisions in -0.5 .... _.... f .... _ .... _........

each input dimension and n is the number of input -5 0 5 10 15 20 25

dimensions. For even reasonably sized, multi-in- Angle of Attack, a, degreesput problems, the number of weights quickly over-

whelms the memory capacity of most computers. Figure 5. Example CMAC output for very coarse
Fortunately, in many applications, such as control, receptive regions.
only small regions of (or trajectories through) the
input space are used. By implementing a many-to- Although useful in many other situations, the basic
few mapping of the weight vector using a random CMAC cannot be used in NID control because the
hash-coding technique [25], the number of necessary control laws require continuous derivatives.
weights can be compressed to a reasonable size. For Noticing the similarity between the receptive re-
example, in [23], a CMAC was applied to a robotics gions of CMACs and first-order basis splines, Lane
problem with 15 inputs. The weight vector was et al. introduce highcr-order CMACs in [26]. Equation
compressed using a random hash function from 15 is redefined to be
the original large length down to lengths between
32,768 and 8 weights. Virtually no degradation in [Bni(X) x €_A j

performance was visible for lengths down to 1024. aj =/O' (22)otherwise
DIFFERENTIABILITY OF THE ESTIMATION

SCHEMES where the basis functions, B, of order, n, differ from

The application to NID control imposes strong re- conventional B-splines [basis functions] [1, 2, 26] to
strictions on the estimation scheme to be used, in- account for differing support (or receptive) regions.
cluding the the existence of smooth derivatives. Due to the similarity of the basis functions, higher-
The two neural network techniques described have order CMACs inherit the continuity properties of B-
differing capabilities in this regard, splines, including (n - 2) continuous derivatives.

The penalty paid for this increase in continuity is
Recognizing that the overall function of the feed- the increased computation necessary in eq. 22 when
forward network is compared to eq. 15. An example of receptive re-

gions for a higher-order CMAC is given in Fig. 6.
x(N) = g [x (0)] (19) A

the derivative of the network function, 8g/i)x (°), 1
can be calculated recursively as / JJL!LL

i)x(k) i)dk)lt(k)]w (k_l (20) I I I I I I -
_x(k'l)- _)t(k) _'i-5 _'i-4 _'i-3 _'i-2 _'i-1 _'i

Since the weight matrices are constant, the differen- Figure 6. Receptive Regions of a Higher-Order
tiability of the network is determined by the acfiva- CMAC.
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ance of the network error is due to the piecewise
EXAMPLE NEURAL NETWORK SYSTEM continuity of the CMAC output, ttigher-order

IDENTIFICATION CMACs will alleviate this problem.

As a preliminary step to the full implementation of 0.05 ....... -_...... 7..... r-_'-_- ..... :--. ....
the integrated neural-network. NID control law. a
simple investigation of the capabilities of the neu-
ral networks was performed. A one-dimensional
test function representing lift coefficient variation I 7,z

with angle-of-attack for the airplane example is _ _ t[ II !__ _.

given in Fig. 7. _ 0_ _ _i_,_,_i_,,_,!_ltil,,.i_ _It' " _l'"

1.5 .... ,.... 1- _-7-_.--'-_--'_--_"-7 _ .

u ,/ :
.-" -_ -0.05 ........ ".......... t.... J .... - ........ j .....

___0.5 -5 0 5 10 15 20 25

_ Angle of Attack, _t, degrees
t..)

0 Figure 9. CMAC error for lift curve test function

t Further testing of the neural networks, including-0.5 .... ' .... i .... J .... , .... _..__ multi-dimensional inputs and higher-order
CMACs, remains to be completed. Full implemen-

-5 0 5 10 15 20 25 tation of the integrated neural-netv,.ork, NID con-
Angle of Attack, ct, degrees trol law (Fig. 2) will follow.

Figure 7. Lift curve test function CONCLUSIONS

The learning capabilities of neural networks were Neural networks provide a feasible alternative for
tested by presenting random angles-of-attack be- function approximation in adaptive (or learning)
tween -5 ° and 25°, and the corresponding lift coeffi- nonlinear control systems. Parallel neural net-
cients to each network. The result after 50,000 ran- works representing generalized forces due to state
dom traininl_ samples presented to a back-propaga- and control can be trained using the outputs of an
tion network with two hidden layers of 10 and 5 extended Kalman filter. Neural network outputs
nodes respectively, is given in Fig. 8. The error be- must be continuously differentiable for use with
tween the network output and the actual lift curve nonlinear-inverse-dynamic control logic. Back-pro-
is very small, indicating a good representation of pagation feedforward neural networks using sig-
the original function, moidal activation functions have the necessary dif-

ferentiability. Cerebellar model articulation con-
0.05 troller neural networks must be modified to

achieve the required smoothness. Determining the
U practicality of neural-network/nonlinear-inverse-
I dynamic controllers is an important area for future

Z research.Z
,,.2
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