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Abstract

A technique has been developed to improve the fi-

delity of airdata measurements during dynamic ma-

neuvering. This technique is particularly useful for

airdata measured during flight at high angular rates

and high angles of attack. To support this research,

flight tests using the F-18 high alpha research vehicle

(HARV) were conducted at the National Aeronautics

and Space Administration (NASA) Ames Research

Center, Dryden Flight Research Facility. A Kalman
filter was used to combine information from research

airdata, linear accelerometers, angular rate gyros, and

attitude gyros to determine better estimates of airdata

quantities such as angle of attack, angle of sideslip, air-

speed, and altitude. This paper will briefly develop the

state and observation equations used by the Kalman

filter and show how the state and measurement covari-

ance matrices were determined from flight data. Flight

data is used to show the results of the technique and

these results are compared to an independent measure-

ment source. This technique is applicable to both post-

flight and real-time processing of airdata.
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Nomenclature

state equation matrix

longitudinal acceleration measurement

(positive in x-direction), gs

lateral acceleration measurement

(positive in y-direction), gs

vertical acceleration measurement

(positive' in z-direction), gs

center of gravity

covariance matrix of the airdata

measurement noise

measurement noise vector

sea-level gravity = 32.174 ft/sec 2

high alpha research vehicle

pressure altitude

high angle-of-attack flush airdata

sensing system

identity matrix

partial derivative matrix used to compute 6

partial derivative matrix used to compute G

k'th time point in the system discretization

gain usedin adjusting G foi" angular rates

National Advisory Committee on Aeronautics

roll rate

pitch rate

yaw rate

radius of the Earth
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Greek

A

Atl

At2

0

Zg

root mean square

a/rspeed vector

airspeed magnitude

state equation input vector

longitudinal component of airspeed

(positive in x-direction)

lateral component of airspeed

(positive in y-direction)

vertical component of airspeed

(positive in z-direction)

airdata state vector

longitudinal body-axis component

(positive forward from e.g.)

lateral body-axis component

(positive right from c.g.)

vertical body-axis componem

(positive down from c.g.)

geometric altitude

measurement vector

airdata parameter obtained from blending
two airdatasources

angleofattack

angleof sideslip

covariancc matrix ofthestate noise

stateequationintegrationtimeinterval

observationupdatetimeinterval

pitchattitude

roll attitude

state noise in accelemmeter, rate gym,
and a_mde measurements

noisevectorfortheaccclemmetcrs,

rategyros,and attitudegyros

covarianccmatrixofcY_

noisevectorfortheblended

airdata signals

covariance matrix of cYg

Introduction

Dynamic flight conditions can pose a significant

problem for most airdata measurement systems for two

reasons. First, typical airdata systems inherently have
low-frequencyresponsecharacteristics,and second,

most airdatasystemscan onlybe calibratedforsteady-

stateflightconditions.Thereforea techniqueto ob-

tainimproved airdataduringdynamic flightmaneu-

verswas developed.This researchwas done during

the Nadona/Aeronautics and Space Admin/strat/on's

(NASA's) high alpha research vehicle (HARV) flight

test program at the Ames Research Center, Dryden

Flight Research Facility, in Edwards, CA. The HARV

was useful for this study because it was instrumented

with calibrated research airdata systems. As expected,

these systems showed degraded performance during

dynamic maneuvering. Typically, dynamic maneuvers

are associated with flight at high angular rates. How-

ever, high-angle-of-attack flight can also be consid-

ered a dynamic maneuver because of the associated

unsteady vortex shedding and separated flow.

The technique in this paper blends measured airdata

with accelerometer, rate gyro, and attitude gyro infor-

marion to determine an enhanc._ fidelity estimate of
the airdata. Previous work has been done to blcnd

airdata with other instrumentation sources. Comp-
ton et al.| used blending techniques to reconstruct the

space shuttle entry trajectory, and Taylor 2 used simi-

lar techniques in his study of spinning airplanes. Bach
and Wingrove 3 discuss state estimation techniques and

give an extensive bibliography. Many of the tech-

niques required postflight analysis using radar and at-

mospheric data. The technique in this paper can be run

in real-time using 0nly onboard instrumentation. This

technique uses a Kalman filter 4 to blend the various

data sources. The state and observation equations used

by the Kalman filter are presented. Two maneuvers are
also shown m demonstrate the use of the Kalman filter.

The results from the filter are compared with ground-

basedradardatato give an independent evaluation of

the filter estimates. In these examples, alrdata mea-

surements (sampled at 10 samples/see) were blended

with accelerometer, rate gym, and attitude measure-

merits at 100 samples/see to give estimated alrdata at

100 samples/see.
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Vehicle Description

The HARV (Fig. 1) is a modified F- 18A single-place
twin engine fighter-attack aircraft. The aircraft fea-

tures a variable camber midwing with leading-edge ex-

tensions mounted on each side of the fuselage from

the wing root to just forward of the windshield. The
control surfaces include ailerons, stabilators, twin rud-

ders, and multiple flaps. The flap positions arc auto-

matically controlledby the flight control system. The

wingtip Sidewinder launch rails were removed and re-

placed with special camera pods that were also used

to mount the wingtip research alrdata booms. The

fuselage-mounted production F- 18 airdata probes were

not modified and were used for control system inputs.

These measurements were not used for high-angle-of-

attack flight research since the angle-of-attack probe

stopped functioning at 33 ° angle of attack, and the

pressure probes were not calibrated for high-angle-of-

attack flighL

Data Sources

During the flight tests, data from the research instru-

mentation were digitally encoded onboard using pulse

code modulation and were telemetered to the ground.

The data were displayed in real-time and recorded on

tape for postflight analysis.

NACA Airdata Probe

The airdata probe flown on most research aircraft at

Ames-Dryden is the NACA standard probe 5 designed

in the National Advisory Committee on Aeronautics

(NACA) era. It was installed on the right wingtip

boom of the HARV. The NACA probe includes pitot

and static pressure orifices as well as angle-of-attack

and angle-of-sideslip vane-type flow direction sen-

sors (Fig. 2). The pneumatic lag caused by acousti-

cal damping in the pitot and static pressure measure-

ment systems was calculated using the internal geom-

etry of the pressure line and the transducer volume. 6

The pneumatic lag was about 4 msecs at an altitude
of 20,000 ft, and 10 msecs at 40,000 ft. The fre-

quency response of the pneumatic system was flat to
about 4 Hz. The flow-direction vanes had flat fre-

quency response to about 10 Hz. 7 Although they are

recorded at 50 samples/see, in this analysis the mea-

surements from the NACA probe were used at only 10

samples/see. The calibration of this probe for steady-

state flight conditions is presented in Ref. 8. For sub-

sonic Mach numbers and angles of attack up to 50*,

the NACA probe provided angle of attack and angle

of sideslip measurements accurate to within q-l* and
Mach number measurements accurate to within ±0.01.

The accuracies were better at lower angles of attack.

The calibrations also showed an interdependenceof

the airdata parameters. For example, the Mach number

calibration was a function of indicated angle of attack

and the angle-of-attack calibration was a function of
indicated Mach number.

High-Angle-of-Attack Flush Airdata Sensing

(HI-FADS) System

The nonintrusive HI-FADS system was installed on

the tip of the nosecone (Fig. 3) leaving the standard

F-18 nosecone shape unaltered. HI-FADS used nine

surface pressure measurements located within 1.75 in.

of the nosetip. A mathematical model was developed

to relate the surface pressure measurements to the air-

data quantities. 9 The pneumatic lags associated with

each pressure measurement were as much as 15 msecs

at 20,000 ft and 25 msecs at 40,000 ft. These pres-

sure measurements were recorded at 25 samples/see

and had flat frequency response out to 10 Hz. The

measurements were interpolated to provide data at

10 samples/sec for this analysis. As with the NACA

probe, the steady-state ac_racy of the HI-FADS was

1° in flow angles and 0.01 in Mach number, up to 50*

angle of attack. At angles of attack greater than 45 ° ,

separation at the nosetip begins to adversely affect the

airdata from the HI-FADS system, which was not cal-

ibrated to account for these unsteady flows.

Other Onboard Instrumentation

Other onboard research measurements used in this

study included: (1) linear accelerations from a set of

body-axis accelerometers, (2) pitch, roll, and yaw atti-

tudes from a gimbaled attitude gyro, and (3) three-axis

angular velocities from a body-axis rate-gym pack-

age. The measurement uncertainty of these sensors

was established from the flight data noise band. The
linear accelerometer measurements had root mean

square (rms) noise of 0.025 gs, the three rate gyros had

rms noise 0.2 deg/sec, and the three attitudes had rms
noise of 0.25 °. These measurements were recorded

at 200 samples/see, but only used in this analysis at

100 samples/see.

Radar and Atmospheric Data

Velocity and space positioning data were obtained

from a ground based C-band radar track. Atmospheric



wind gradients were obtained for some flights from
weather balloon analysis. These data were not used
in the Kalman filter enhancement algorithm. How-
ever, these two data sources were used to indepen-

dently obtain altitude and airspeed information and the
data were compared with the results from the Kalman

filter. To adjust for errors in the meteorologically de-

termined atmospheric profile, the radar/meteorological

data were biased to agree with the Kalman filter results

at the beginning of the maneuver. Unfortunately, this

initial bias does not completely account for errors in

the atmospheric profile as altitude changes.

Problem Statement

As stated in the introduction, airdata systems are

typically designed and calibrated for steady-state flight
conditions and are not well suited for dynamic ma-

neuvering. Figure 4 shows an example of the prob-
lems encountered when these systems are used dur-

ing dynamic maneuvers. Pressure altitude time histo-
ries from the calibrated NACA airdata probe and the

calibrated HI-FADS system are plotted with altitude

obtained from a ground-based radar. The angle-of-

attack and pitch rate time histories are also shown for

the maneuver in which pitch rate reached a maximum

of 22 deg/sec. The radar-determined altitude in Fig. 4

is considered to be the most representative of the true

altitude since it is only a measurement of the C-band

beacon position and is not affected by local flow con-

ditions, The NACA and HI-FADS pressure altitude

measurements are affected by the local flow and de-

viate significantly from the radar measurement during

the high-rate portion of the maneuver.

Another difficulty with the airdata systems on the

HARV is shown in Fig. 5. In this high-angle-of-

attack maneuver, the HI-FADS angle-of-attack mea-

surement drifts about the NACA probe measuremenL

The drift is associated with unsteady flow at the tip of

the nosecone. At high angles of attack, the amount of

lateral control of the aircraft is insufficient to prevent a

rolling motion. This rolling motion and high-angle-of-

attack flow separation results in unsteady pressures at

the nosetip which are not accounted for in the steady-

state calibrations of the HI-FADS system. In this case,

the NACA probe angle-of-attack value shows a more

accurate measurement of the actual angle of attack.

However, approximately 20 see into this maneuver, the

NACA probe angle of attack is in obvious error for a

short period of time. This is a calibration error. As

4

shown in Ref. 8, the calibration of angle of attack for

the NACA probe is a function of indicated Mach num-
ber. With the combination of large angles of attack

and sideslip, the local total flow angle became so large

that errors in the indicated total pressure became large
and in some cases the indicated total pressure was less

than the indicated static pressure. This caused the in-
dicated Mach number to be in error and therefore ad-

versely affected the angle-of-attack calibration for ap-

proximately 1 see as can be seen in Fig. 5.

Enhancement Algorithm

The enhancement algorithm is designed to improve

airdata measurements for high-angular-rate and high-

angle-of-attack flight maneuvers such as those shown

in Figs. 4 and 5. This technique uses a linear Kalman
filter 4 to obtain a minimum variance estimate of the

airdata state parameters. It does so using a linear model

of the equations of motion and estimates of the amount
of noise in the measurements. The dynamics of the

system are modeled by a differential state equation and

an observation equation in matrix form as follows:

----.4 -----=4

d X(t)= A(t) X(t) +go u(t) + 8(0 (1)
dt

7_,(t)=X(t) + g(t) (2)

where X(t) represents the state of the system and is

to be estimated; A is the state equation matrix; go is
.....#

sea level gravity; u(t) represents known inputs to the

system; 7_,(t) represents the system output; 6(t) repre-

sents the state noise; and g(t) represents the observa-

tion noise.

The discrete form of the Kalman filter is used for

this analysis, so the system equations must be dis-

cretized. The continuous-time state equation (F_,q. 1)

is discretized through implicit Euler integration. 1°

)_k+l= [I -atiAk+1] -I[)_k+ at|(gord_+|+ 6"_+I)]

(3)

where Atl isthetimeintervalbetween integrations,I

istheidentitymatrix,andUis theairspeedvector.This

integrationmethod assuresstabilityforlinearsystems.

A discreetform oftheobservationequationwas also

used.The observationtimeinterval(Atz)may ormay

not be equal to the integration time interval. The dis-

creet form of the observation equation (Eq. 2) is

Zt+l = )_t+l+ gt+l (4)



The implementation of the Kalman filter enhance-

ment technique is shown in Fig. 6. The standard
Kalman falter equations can be found in Ref. 4.

State Vector

The airdata state vector defines the basic airdata

parameters: airspeed, angle of attack (a), angle of

sideslip (B), and altitude. The airspeed vector at the

aircraft center of gravity is expressed in Cartesian
form as

- v = U sin(/5)

w U sin( ) cos(#)

where u, v, and w are, respectively, the longitudinal,

lateral, and vertical components of airspeed, and U is

the airspeed magnitude. The Cartesian form is used
in the airdata state vector because this will result in a

set of linear state equations. The fourth element of the

airdata state vector is geometric altitude (Z) which is

related to pressure altitude by the following equation n

Z= / Hp
P. -//p

where R, = Earth's radius.

Therefore, the complete airdata state vector (X) is

_= v
IU

Z

Filter State Equations

The state equations are derived from the kinemat-
ics of the aircraft and an inertial reference frame fixed

with the earth. This derivation is fairly straight for-

ward and will not be presented here. The state equa-
tions are written for the four state variables in the form

of Eq. (1) as follows

where

A

dt

I 0 r -q 0

-r 0 p 0

q -p 0 0

sin 0 - cos 0 sin ¢ - cos 0 cos 4' 0

5

_= v
'to

Z

a= - sin 0 )
au + cos 0 sin ¢

a, + cos 0 cos

/")=

6z

The covafiancematrixff is the state noise vector.

of ffis A. The covariance is based on an analysis of

errors in the accelerometers, rate gyros, and attitude

gyros. The result of this error analysis is Shown in

appendix A.

Observation Equation

Airdata measurements from the HI-FADS system

and the right wingtip NACA probe are used as ob-

servations for the Kalman filter. These two indepen-

dent sources were blended together using a weighted

average to obtain a single observation vector, Z.

This blending was done prior to the Kalman filter

implementation to reduce the number of observa-

tions. The weightings on the airdata system measure-

ments were obtained from calibration data presented
in Refs. 8 and 9. The observation vector is

-- _ 0 sin
- U cos _ sin &

P_-Hp

The ,-, symbol is used to denote quantifies obtained

from weighted average blending of the airdata system

measurements. Therefore, the observation equation is

u gu ]

+
w g_,

Z gz



where [ gug_gwgz] T is the noise in the observations.

The covariance matrix of _ is G. The covariance
matrix is related to the noise in the blended airdata

which is tabulated as a function of angle of attack in

appendix B. The matrix G is also allowed to vary as a
function of angular rates since the performance of the

airdata systems degrades during high-rate maneuver-

ing (Fig. 4). This is also explained in appendix B.

Results and Discussion

As shown in Fig. 6, the Kalman filter consists of a

prediction step and a correction step. The prediction

step integrates the state equations at 100 I-Iz by propa-

gating Eq. (3) assuming no state noise. The correction

step was run at 10 Hz and used the observations as a

stabilizing influence on the integration in the predic-

tion step. The Kalman-filter-estimated airdata state is

output from the filter at 100 Hz. Flight data will now

be presented for two demonstration maneuvers.

The first maneuver consisted of three high-rate

pushover-pullups. The airdata measurements are plot-

ted in Figs. 7-10, In Fig. 7(a) the filter-estimated

angle-of-attack time history is plotted with angle of at-

tack from the NACA and HI-FADS systems. Because

of the scale of the plot, distinguishing the estimated

signal from the measured signals is difficult. There-

fore, residual plots (Fig. 7CO)) are used to show the dif-

ference between the estimated and measured signals.

As can be seen, the major differences occur during the

high-rate portion of the maneuver. Angle of sideslip

is shown in Fig. 8(a). The NACA and HI-FADS mea-

surements are slightly different. This is because of a

steady-state calibration bias error in one or both sys-

tems. The estimated signal tracks the NACA measure-

ment more closely because of the weights chosen in

the airdata blending. Residual angle-of-sideslip data

is plotted in Fig. 8CO). The slight bias is seen in the

HI-FADS residual. As with the angle-of-attack mea-

surement, the largest residuals occur during the high-

rate portion of the maneuver. The airspeed (Fig. 9) and

pressure altitude (Fig. 10) measurements show large

differences with the estimated signal during the high-

rate portion of the maneuver. Airspeed residuals of

over 50 ft/sec were shown for the HI-FADS system

and near 30 ft/sec for the NACA system (Fig. 9CO)).

Similarly, Fig. 10(b) shows pressure altitude residuals

of nearly 700 ft for the HI-FADS system and 400 ft for

the NACA system.

Data from a ground-based radar was used to ver-

ify independently that the Kalman filter estimated sig-

nals represent improved airdata. Radar could be used

ordy to verify pressure altitude and airspeed. Figure 11

shows radar and estimated airspeed compared with air-

data measurements during the first pushover-pullup of

the maneuver. The estimated airspeed matches the

radar signal better than the NACA probe (Fig. 11(a)).

In Fig. llco), all three airspeeds show the same

trends throughout the maneuver. The Kalman-filter-

estimated airspeed is similar in magnitude to the

HI-FADS airspeed except that the high-frequency

content has been removed. Figure 12 shows radar
and estimated pressure altitude for the first pushover-

pullup compared with the airdata measurements. The

radar and estimated signals are in good agreement and

are considered to be a better representation of pressure

altitude through the high-rate portion of the maneuver.

The second demonstration maneuver consisted of

large sideslips at approximately 50 ° angle of attack.

A segment of this maneuver is shown in Fig. 5. The

measured and estimated airdata signals are shown in

Figs. 13-16. As can be seen in Figs. 13(a) and 14(a),

the estimated flow angles are smoother than the mea-

sured signals and fair well through the region of mea-

surement inaccuracy. Figure 13CO) shows the angle-
of-attack residuals. The residual from the HI-FADS

system shows how the HI-FADS measurement tends

to drift at the high angles of attack. This drift is caused

by unsteady flow separation on the forebody at these

high flow angles. The residual in the NACA angle-

of-attack measurement shows how the estimated sig-

nal corrected the region of highly inaccurate airdata.

Figure 14(a) again shows a noticeable difference be-

tween the HI-FADS and NACA angle of sideslip. The

residual angle-of-sideslip data (Fig. 14('o)) shows the

largest residuals during the portions of the maneu-

ver at the high angles of sideslip. As with the first

demonstration maneuver, the Kalman filter estimates

of airspeed (Fig. 15) and pressure altitude (Fig. 16)
are significantly different than the measured values.

The ability of the filter to obtain an improved air-

speed and altitude is shown in Figs. I7 and 18. Fig-

ures 17(a) and (b) show that the radar airspeed mea-

surement agrees more closely with the Kalman filter

estimated airspeed than the NACA or HI-FADS air-

speed measurements. Figures 18(a) and Co) show this

for pressure altitude.

t



Concluding Remarks

A technique to improve the fidelity of airdata mea-
surements during dynamic maneuvering has been

demonstrated with flight test data. These results are

useful since most airdata sensors are designed and cal-

ibrated for steady-state conditions and thus have in-

adequate frequency response during dynamic maneu-

vering. This technique uses a Kalman filter to merge

airdata measurements with linear acceleration, angular

rate, and attitude information. By adjusting the airdata

measurement weights in the Kalman filter as a function

of angle of attack and angular rates, the airdata signal

fidelity has been improved. Flight test data from the
F-18 HARV have been used to show that the Kalman-

filter-estimated airdata is more realistic than measured

airdata during high-angle-of-attack and high-angular-

rate maneuvering. This has been verified using infor-

mation from radar and meteorological data.

The technique can be used for postflight processing

of flight data and real-time computation of the airdata.

The postflight processing capabilities would improve

airdata fidelity during dynamic maneuvers used for re-

search in such areas as handling qualities and param-

eter identification. The real-time implementation can

improve the efficiency of research flights by allowing

the quality of flight test maneuvers to be immediately

assessed. Also, a real-time algoriflam could be imple-

mented on an onboard microprocessor. The algorithm

would include calibrations for the airdata systems and

Kalman filter routines to improve the airdata frequency

response. The results of the onboard computations

could be used to augment flight control systems that

require high-fidelity airdata.
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APPENDIX A

State Noise

The state noise covariance matrix (A) is assumed

to be a function of instrumentation noise in the ac-

celerometers, rate gyros, and attitude gyros. Based

on measured observations, state noise caused by winds

and other random effects has been ignored. Research

into techniques to adaptively determine wind noise co-

variances is currently being conducted.

The state noise covariance matrix at each filter time

step was computed. From Eq. (1), assuming that u, v,
w, and Z are known without error, the state noise vector

is given by

8u
6u

6,

6,

The covariance matrix can then be computed as

o.°

6p

6q

6r

60

6_

60=

6a v

• 6a, .

A = J6I:6J62"

where Z6 is the covariance of _Y6and is diagonal. The

diagonal elements of _ are the squared rms errors for
each sensor. These rms values are listed in the Data

Sources section of this paper. Only the diagonal ele-
ments are used since it is assumed that the noise in the

instrumentation is uncorrelated.

- J6_

where _6 is the noise vector for the accelerometers,

rate gyros, and attitude gyros.

Taking partial derivatives from the state equation,

J6 -

0 --w v --go cos 0

w 0 -¢ -go sin0sin

-_ ¢ 0 -g0 sin Ocos

ucosO

0 0 0 +v sin _ sin 0

+w cos _ sin 0

0 go 0 0

gocosOcos4, 0 go 0

-go cosOsinO 0 0 go

-v cos 0 cos _ 0 0 0
+w cos 0 sin



APPENDIX B

Measurement Noise

The measurementnoisecovarianccmatrix(G)isob-

tainedfrom theestimatedaccuracyoftheblendedair-

data parameters &, _, _r, and Hv • These parameters

were obtained from a weighted average blending of

measurements from two independent airdata systems.

The measurement noise vector is given by

gu

gv

gw

gz

N
a_o Ow

6U

6a

6H_

- jg g

where cYg is the noise

airdata signals.

Taking partial derivatives,

vector for the blended

Jg --

cos &cos _ - U sin &cos _ - U cos &sin

sin 0 u cos

sin & cos _ U cos &cos _ -U sin & sin

0 0 0

The following table lists the square roots of the covari-

ances as a function of angle of attack.

a,deg 6U, ft/sec 6a, deg 6/3, deg 6Hp, ft

0 0.5 0.00 0.00 10

20 1.0 0.10 0.20 13

30 2.0 0.20 0.25 18

40 3.0 0.30 0.40 22

50 5.0 0.50 0.50 30

60 10.0 1.00 1.00 40

These values represent the steady-state rms noise level

in the airdata measurements.

High angular rates also adversely affected the air-

data observations because of unmodeled aerodynamic

influences which were not calibrated for. The pressure

altitude measurement was affected most significantly.
To account for this in the filter, the covariance ma-

trix component associated with the pressure altitude

error was adjusted as a function of the total aircraft

angular rate

0

0

0

(/Z,-Hp) 2

Similar to the state noise ca)variance, the measurement

noise covariance matrix is computed as

G = JgY-_JgT

where _ is the covariance of fig and is diagonal.

Again, only the diagonal elements are used since the
random airdata measurement noise is assumed to be

uncorreUated. The diagonal elements of Zg were ob-
tained from covariance matching ]2 and are adjusted

as a function of angle of attack.

G (4,4) = G (4,4)due to a eK_V/"_--_2+r2

where G (4,4)due to a is the pressure altitude covari-

ance obtained using information from the above table.

The gain K was varied in the analysis and finally cho-

sen to equal unity for angular rates expressed in units of

deg/sec. This equation effectively lowered the weight-

ing of the pressure altitude observation during high-

rate maneuvers. The form of this equation has no spe-

cial significance, but was determined ad hoc to solve

the problem.
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Figure 1. The F-18 high alpha research vehicle (HARV) in-flight.
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Figure 3. Schematic of the HI-FADS system.
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(a) Angle-of-attack time histories from the NACA probe, HI-FADS, and Kalman filter.

Figure 7. Comparison of the Kalman filter angle of attack with measurements

from the airdata systems during three high-rate pushover-pullups.
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Figure 7. Concluded.
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Figure 8. Comparison of the Kalman filter angle of sideslip with measurements

from the airdata systems during three high-rate pushover-pullups.
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(b) Angle-of-sideslip residuals.

Figure 8. Concluded.
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(a) Pressure altitude time histories from the NACA probe, HI-FADS, and Kahnan filter.

Figure 10. Comparison of the Kahnan filter pressure altitude with measurements

from the airdata systems during three high-rate pushover-pullups.
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Figure 13. Comparison of the Kalman filter angle of attack with measurements

from the airdata systems during a high-angle-of-attack lateral maneuver.
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(a) Angle-of-sideslip time histories from the NACA probe, HI-FADS, and Kalman filter.

Figure 14. Comparison of the Kalman filter angle of sideslip with measurements

from the airdata systems during a high-angle-of-attack lateral maneuver.
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(a) Airspeed time histories from the NACA probe, HI-FADS, and Kalman filter.

Figure 15. Comparison of the Kalman filter airspeed with measurements

from the airdata systems during a high-angle-of-attack lateral maneuver.
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(b) Airspeed residuals.

Figure 15. Concluded.
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(a) Pressure altitude time histories from the NACA probe, HI-FADS, and Kalman filter.

Figure 16. Comparison of the Kalman filter pressure altitude with measurements

from the airdata systems during a high-angle-of-attack lateral maneuver.
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Figure 17. Comparison of Kalman filter, radar, and measured

airspeed during a high-angle-of-attack lateral maneuver.
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Figure 18. Comparison of Kalman filter, radar, and measured pressure

altitude during a high-angle-of-attack lateral maneuver.
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