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ABSTRACT

TRW has successfully developed and implemented a Multipurpose Hardened

Spacecraft Multilayer Insulation (MLI) system which meets diverse survivability and

performance requirements.

Within the definition and confines of a MLI assembly (blanket), the design:

a. Provides environmental protection from natural and induced nuclear,

thermal, and electromagnetic radiation

b. Provides adequate electrostatic discharge protection for a

geosynchronous satellite

c. Provides adequate shielding to meet radiated emissions requirements

d. Will survive ascent differential pressure loads between enclosed

volume and space.

This paper describes the MLI design which meets these requirements and

discusses design evolution and verification.

The application is for MLI blankets which closeout the area between the laser

crosslink subsystem (LCS) equipment and the DSP spacecraft compartment. Ancillary

requirements were implemented to ease installation at launch facility and to survive

ascent acoustic and vibration loads. Directional venting accommodations were also

incorporated to avoid contamination of LCS telescope, spacecraft sensors, and second

surface mirrors (SSMs).

As the MLI design matured, requirements were changed or better defined,

resulting in a long and tedious conceptualization and testing phase. The challenges

to the insulation personnel to accommodate these diverse and dynamic requirements

were significant, if not at times painful.

SCOPE

The process undertaken by TRW to develop, verify, and test a MLI configuration

that met all requirements was a long and tedious one taking over four years to

complete. Several design iterations were required to incorporate ancillary

requirements.

The narrative form was used to capture the evolution of the design. The intent

of this paper is two-fold:

i. To describe the new MLI configuration that meets diverse performance

requirements by documenting its construction and assembly/fabrication methodology
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2. To reinforce the need for concurrent engineering (CE) as a major part in

any hardware development phase. Lessons learned during this process do well in

bolstering this argument.

The appendix presents design criteria as edicted toward the end of the hardware

development phase. As sometimes happens in research and development, the actual

"requirements definition" package was written after the start of the design phase.

An example of the 'tiger team' instead of 'concurrent engineering' mentality.

BACKGROUND

A decision was made at the inception of the program to provide radiation pro-

tection to sensitive LCS equipment using hardened MLI closeouts for the open (to

space) areas between the DSP spacecraft bay and the LCS radiators. The LCS design,

by a separate contractor, was too mature and the weight penalty too large to harden

the electronics boxes themselves.

The author believes (hindsight, of course) that this decision might have been

different if it was tempered by emphasis on CE activity rather than cost trade-offs.

SUBSYSTEM DESCRIPTION

Figure 1 describes LCS hardware configuration, DSP spacecraft struct,,re (bay),

and MLI closeouts. Electronic equipment (mounted to the equipment frame) and the

telescope comprise the LCS subsystem. All LCS equipment, with the exception of the

gimballed telescope, is supported by the frame which is mounted vertically in the

spacecraft bay. The equipment frame and the telescope are independently supported

at the same three points in the bay by essentially separate truss systems.

Second surface mirror radiators are mounted on the front (spacecraft +X) of the

electronic equipment to radiate heat outward. These radiators are beryllium and are

fairly stiff and light. Detectors and lasers support the two lower radiators and

are in turn supported by the optics assembly which is attached by a three point

mount to the lower part of the equipment frame. The radiators are attached at their

edges to the DSP bay by the LCS MLI closeouts.

REQUIREMENTS DEFINITION AND IMPLEMENTATION

PHASE i. THERMAL INSULATION BLANKETS HARDENED FOR RADIATION PROTECTION

Initial requirements established the utilization of a tantalum metal foil

(0.001 in. thick) within the MLI construction to provide the hardening. This 1 mil

thick tantalum foil would provide the radiation hardening equivalent of 0.090 in.

thick aluminum. The thin foil was malleable and could be readily formed into the

polyimide and polyester MLI shapes. At this point, cognizant engineering groups

decided that this would be the optimum and most cost effective method of

implementing the hardening requirement. Figure 2A shows the typical construction

(Phase I) of the MLI closeouts. The tantalum foil is encapsulated by 1 mil polyimide

tape to provide protection from abrasion during forming and assembly into the MLI.

Due to the hardening requirement, the design of the closeouts was predicated

on 100Z line-of-sight protection from any potential natural or induced nuclear
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radiation source in space. Insulation development personnel attacked the problem by

assuming that the closeouts, which closed out the spaces between LCS electronic

radiators and spacecraft structure, had to "hold water." This analogy served well

to implement the "line-of-sight" design requirements.

The three-dimensional shape of the thermal MLI closeout designs required form-

ing of the tantalum to duplicate the thermal MLI shape. This required a significant

amount of new fabrication and assembly methodology development. Stress relief holes

at corners, normally required in sheet metal or MLI fabrication, could not be incor-

porated. In this case, any aperture, no matter how small, negated the radiation

protection. Workarounds for thin foil forming methods were developed to alleviate

this problem.

During the configuration development phase, tantalum barriers were necessary at

certain interfaces to support the "line-of-sight" protection requirement. This is

shown typically in figure 2B.

A closeup of a typical blanket is shown in figure 3. The blankets shown in the

figure are flight-like with the exception of the use of nonperforated plastic films.

After completion of the development and subsequent preliminary blanket

drawings, the MLI closeouts were incorporated into a CAD mechanical ICD drawing of

the LCS hardware and the spacecraft structure. Line-of-sight analyses were then

conducted to determine if the closeout configuration met the radiation protection

criteria.

OTHER DESIGN REQUIREMENTS ESTABLISHED DURING PHASE 1

Nylon velcro (hook and pile) interfaces were established as the interface

between the LCS hardware and the DSP spacecraft bay. This was driven by (i) LCS

contractor hardware was to be integrated into the DSP spacecraft at the launch site

facility, and (2) TRW closeouts were to be integrated for several qualification and

acceptance tests at both the LCS contractor facility and at TRW. Interface require-

ments were established as a part of the applicable mechanical ICD.

At this time, standard geosynchronous electrostatic discharge grounding

accommodations were incorporated. These included, at that time, outer (space

facing) and inner layer VDA grounding with redundant ground tabs.

At the end of this phase, TRW personnel supported thermal-vacuum testing of the

LCS at the contractor facility. The LCS thermal-vacuum support fixture somewhat

duplicated the configuration of the DSP spacecraft bay into which the LCS was to be

integrated for flight. This provided TRW personnel with an excellent opportunity to

verify the form and fit of the closeouts and their installability. Various design

(shape) changes were incorporated into the closeout design as a result of these

"fit-checks" and subsequently incorporated to the ICD.

During this activity, a strawman procedure was cowritten by the LCS contractor

and TRW to define mechanical activities and schedule requirements for the activity

at the launch site. Integration of the LCS occurs late in the launch preparation

sequence, with complex parallel and serial mechanical activities required.
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PHASE 2. MLI CONFIGURATION DESIGN MODIFIED DUE TO RADIATED EMISSIONS

SHIELDING REQUIREMENTS (EMC ENHANCEMENTS)

Later in the program, requirements were formalized to the insulation group

based on the electromagnetic shielding effectiveness characteristics of the close-

outs. Electromagnetic compatibility (EMC) became an issue after the LCS electrical

interface requirements were well defined.

Tailored requirements were established for the closeouts after samples of the

current closeout design were tested for EMC effectiveness. The closeouts would

provide the LCS equipment with a degree of shielding effectiveness equivalent to at

least 20 dB of attenuation between 14 kHz and 18 kHz with the following exceptions:

a. Between I0 MHz and 20 MHz, the closeouts shall provide at least i0 dB

of attenuation

b. Between 1 GHz and 2.4 GHz, the closeouts shall provide at least 35 dB

of attenuation.

These criteria significantly impacted the closeout configuration design insofar

as their assembly. Enhancements to the design included primarily:

a. A change to conductive stainless steel velcro interfaces (MLI to

spacecraft and MLI to LCS radiators)

b. The use of conductive epoxy (Ecco-Bond 57C) for all metal-to-metal

interfaces (i.e., metalized velcro to tantalum).

The MLI construction incorporating these requirements is shown in figure 4.

Solutions were more complex than just changing to metalized velcro. All metal-to-

metal surfaces and interfaces had to be contiguous. Implementation necessitated

some structural changes to the DSP spacecraft bay. Adding secondary support brac-

kets, to simplify the complicated geometry of the spacecraft at the velcro faying

surfaces, was required. The locations in question are shown in figure 5. The "as-

is" interfaces were altered to facilitate velcro installation and bonding. The

modifications incorporated into the spacecraft bay design are depicted in figure 6.

Figure 7 shows a typical grounding tab implemented into the MLI to meet EMC

requirements. Ground-to-structure is through the metalized velcro interface.

At this point, project management decided that the thermal insulation closeouts

were now taking on significantly more performance characteristics and were multi-

purpose in their function. It became necessary to capture all requirements with a

"specification" identifying all design criteria. Germane excerpts from this speci-

fication are included in the appendix. Paragraph 3.3.2 of the appendix delineates,

in detail, the design criteria incorporated for the closeouts as a result of the EMC

effectiveness testing.

Writing this specification required that all players (engineering disciplines)

gathered together to identify interdependencies and impacts. Concurrent engineering

activity at last.
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PHASE 3. MLI CONFIGURATION DESIGN MODIFIED DUE TO CONTAMINATION

REQUIREMENT S _CONCERNS

A concern that surfaced during the writing of this specification, was the

effects of contamination on the LCS telescope. Contamination of the LCS SSM

radiators and another TRW sensor installed on the +Z surface of the spacecraft were

secondary concerns.

The MLI closeout design included stainless steel velcro interfaces around the

periphery of the individual closeouts to attach them to the TRW spacecraft structure

and to the LCS radiators. The concern was that during ascent, particulate contami-

nation entrapped in the bay would vent through the velcro interfaces and deposit on

telescope, sensors, and SSMs. Contamination analysis validated these concerns

resulting in a requirement to seal the velcro interface by overtaping with polyimide

tape. 0vertaping negated the purpose of the velcro interfaces since now the

closeouts would not be easily removed and reinstalled. Calmer heads prevailed as

schedule time for this activity was included as part of the final integration

activities at the launch facility.

This change also forced a change in base aluminized plastic materials compris-

ing the multilayer construction of the blankets. In the original design, blanket

venting itself occurred through the edges of the assembly. With edges now sealed, a

change to perforated aluminized plastic filler and outer layer materials was made.

Analysis of the particulate contamination available within the MLI itself was also

made. Results were acceptable and the change approved.

The contamination issue resulted in a major design change to incorporate a vent

in one of the closeouts. Vent design and size was driven by differential @ressure

requirements during ascent (0.I psid). Its location and direction of discharge was

critical as was EMC shielding requirements. The vent design is described in figure

8. Vent EMC design criteria is described in the appendix, paragraph 3.3.2.2.

ACOUSTIC DEVELOPMENT TEST

The MLI closeout designs were frozen. A flight-like set of the closeouts was

fabricated and were installed into a structural test configuration (see figure 9) of

the LCS and the DSP spacecraft. Open areas between LCS SDM radiators and spacecraft

bay are shown in figures 10A and 10B. These same areas with MLI closeouts installed-

are shown in figures IIA amd lIB. A closeup of the insulated assembly is shown in

figure 12. The purpose of the test was to verify their capability to withstand the

predicted acoustic environment to be imposed during ascent. Test requirements for

this acoustic test are presented in the appendix, paragraph 4.1.2.1.

The test was successful and TRW breathed a sigh of "its over and we made it."

A closeout design that meet all (it was believed) requirements was finally on paper.

PHASE 4. MLI CONFIGURATION DESIGN MODIFIED DUE TO LAUNCH ACOUSTIC_VIBRATION

ENVIRONMENTS (RADIATOR DEFLECTIONS)

As it turned out it was not true. Data was published reporting the results of

static analysis using an analytical model of the LCS and spacecraft. The impact of

this data on the closeout design needed to be understood.
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Relative movements between the radiator edges and DSP will result from both the

high frequency acoustic and structure-borne vibration and from the low frequency

flight loads vibrations. At any point in flight there will be vibrations from both

frequency ranges. Test or analysis cannot normally treat both effects simulta-

neously, so they are commonly treated separately as was done for the MLI closeouts.

The closeout performance during high frequency acoustic and structure-borne

vibration was verified during the aforementioned acoustic test.

To understand the impact of the closeouts on the radiators during flight load

events in the low frequency region, the only type of analysis available at this time

was static analysis using peak accelerations. Load factors for this analysis were

determined from "final design load cycle" results for the Titan and the shuttle.

Since redesign of the closeouts was in process, waiting for more comprehensive

deflection data, from coupled loads or base shake analysis efforts planned in the

future, was not an option.

From the structural dynamics point of view, equipment (mounted to the equipment

frame) and the telescope are primary mass components. Detectors, lasers, lower

radiators, and optics assembly account for about 116 ib of the approximately

300 ib subsystem.

The radiators, which are attached to the spacecraft bay by the closeouts, must

be able to accommodate any relative movement between radiators and structure since

the only load path intended is through the three point mount.

Static analysis data indicated that worst-case relative displacements across

the LCS/DSP interface were:

MAXIMUM RELATIVE DISPLACEMENT IN EACH DIRECTION (in.)*

dX dY dZ Z Level

0.112

0.099

0.077

0.063

0.063

0.067

0.067

0.067

0.051

0.053

0.031

0.031

0.028

0.023

0.023

LR lower edge

LR upper edge

DR upper edge

ER lower edge

ER upper edge

* TRW document, lOC L122.2.90-I03, "LCS/DSP Closeout Compliance Requirements," from

E. A. Verner and A. J. Dunn, dated Ii May 1990.

These values include i0 mil (3a) for the acoustic response in the X direction

normal to the radiators (see figure 13) to account for the acoustic (high frequency)

vibrations. A factor of 1.4 was recommended to show adequate margin for

qualification, considering the inconsistencies in installation.
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The impact on the current design had to be evaluated. Could compliance of the

closeouts accommodate the expected relative displacements as defined by the data

presented above?

COMPLIANCE TEST

Compliance testing was in order. A simplified test was designed to verify

whether the current design could withstand expected deflections. Fabrication of a

test article that duplicated the worst case configuration as defined by the data

was needed.

The test article was approximately a 1 ft 2 assembly duplicating the two lower

edge (+Z) laser radiator corners (at + and -Y). Full size representations of the

211-1, -2, and the -209 closeouts were fabricated. Since the test article was

approximately 1/3 as wide (Y axis) as the flight article, a proportionally sized

vent box was incorporated to duplicate its effect on the compliance of the MLI

corner assembly (test article is shown in figure 14).

Upon initial installation of the test article in the fixture, a nominal (flight

integrated) separation between laser radiator edge and spacecraft structure was

established. The test encompassed: first compressing (-dX) the test fixture attach-

ment plate (laser radiator simulator) by 50Z of the maximum (dX = 0.157; worst-case

= LR, lower edge + margin) required per the data in the above table; and then ten-

sioning (+dX) the same distance.

The first test (one cycle) resulted in failure of the bond line at the corners,

between velcro and simulated radiator. After two weeks of "intensive" brainstorming

(the tiger-team mentality), involving design reviews of alternate concepts to make

the MLI corner assembly more compliant, a candidate was selected. A test article

incorporating this "flexible" design was fabricated. Basically this design incor-

porated a joint/corner (between the -209 and -211 closeouts) with a built-in convex

curvature. This curvature would act like a "spring" Setting it at nominal dis-

tance (dX) upon installation would essentially precompress this "spring," allowing

it to be further compressed when loaded in the -dX direction and expand when

tensioned in the +dX direction.

Another test was performed using the same setup as before, but subjecting the

assembly to i00 cycles. The result, failure at the velcro hook and pile interfaces

themselves. Failure meant that separation of the hook from the pile exceeded the

maximum allowed gap of 0.050 in.

LET US "DO IT RIGHT" APPROACH

Never has the saying "...back to the drawing board" been more appropriate. At

this time a total redesign of the MLI closeout laser radiator joint]corner configu-

ration was undertaken. Supporting the MLI design group were members of the stress,

structures, and material engineering groups ("It is never too late for CE"). The

knowledge base acquired to date served well in identifying and eliminating design

concepts that would adversely affect the EMC enhancements, the radiation protection

criteria, and the installability concerns. Acceptance of the design was also predi-

cated on proving that the closeouts would survive acoustic and vibration loads during

ascent without any loss in performance. By this time, the "closeout design problem"

had manifested itself as a 'show stopper' to project, company, and customer. Extreme

interest in "solutions" was the byline from all interested persons.
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Previous compliance testing, as described above, only subjected the closeouts

to deflections in one axis (X). In flight, loads would be applied simultaneously in

all three axes causing deflections in all three directions.

It was obvious that a test program to simultaneously load a full size test

article (radiator) in all three axes was not practical or cost effective.

FULL S_ZE MOCKUP

The next best thing was to design and fabricate a full scale, high fidelity and

dynamic mockup of the LCS/spacecraft bay assembly. The design will incorporate a

worm gear assembly attached to the simulated radiators. This assembly will allow

the radiators to traverse in the X and Y axes (Z axis deflections negligible) from

any point within the envelope created by the required deflections (+ margin).

A flight-like set of the closeouts will be installed on the mockup for demons-

tration purposes. Actuation through all axes will be possible. Interim visual

inspections and photographic documentation will reveal any failures at the velcro

interfaces or at the Ecco-Bond lines.

success (is !_INENT)

The design is "not on paper" as of this writing. Assembly of the mockup and

integration of the closeouts will occur in September 1990. We fully expect to

demonstrate acceptable compliance using the dynamic mockup. It is five years since

the design and verification process started. We did our "real" concurrent engineer-

ing work in the fourth year.

CONCLUSION

Sometimes implementing requirements into the hardware design goes well, some-

times it does not. This narrative provides a good example of when it does not. When

I first wrote this paper, it was not as a narrative but was written in the classical

"technical paper" form. The latter form, I thought, did not lend itself in meeting

my two objectives.

"Cost and schedule" is what we all live by in this industry. Hindsight shows

that implementing radiation protection within the MLI was probably the wrong

decision when incurred costs are used as the measuring tool. Five years ago,

hardening the LCS equipment electronic boxes would probably have cost less even with

the weight penalty. Five years ago, understanding the importance of concurrent

engineering would p_obably have facilitated the design and verification process of

hardening through the use of MLI. Performance requirements/crlteria could have been

implemented as shown in figure 15. That is the significance of the lessons learned

during this process.

Technically, we at TRW gained a lot of valuable experience.

a. The technology of hardening spacecraft structure and/or hardware

through the multilayer insulation is valuable and will certainly be used again.

b. The assembly and fabrication methods to enhance the EMC shielding

effectiveness of MLI will also be beneficial to other applications.
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Insofar as schedule, "luck" played a big part in schedule considerations. The

need date for the hardened MLI flight hardware somehow kept slipping due to other

reasons not associated with the MLI design problem. Five sets of very expensive

closeouts are not required until late next year.

APPENDIX

HARDENED MLI CLOSEOUT SPECIFICATION

Today's design for the MLI closeouts encompass a diverse and complex set of

requirements which have successfully been implemented for flight application.

Germane excerpts from the governing specification are presented here.

(Extracted from TRW Document IOC L125.2.90-005, "EQ Spec for LCS Closeouts Revised

per 1-4-90 Meeting," from J. Lloyd Petty, dated 22 Jan 1990.)

3. CHARACTERISTICS

3.1 Functional Description. The closeouts function as follows:

a. Complete the thermal enclosure of the sensor components when mounted to the

spacecraft body.

b. Provide line-of-sight protection of sensor electronic equipment (boxes)

from prompt radiation through the use of a tantalum layer in the MLI blanket.

c. Provide easy access to sensor equipment by being removable using velcro

fastener systems.

d. Provide vent of ambient pressure from the sensor compartment during launch.

Vent will not allow a line-of-sight path to contamination-sensitive surfaces.

3.1.1 Functional. The closeouts help to maintain thermal balance while protecting

the sensor equipment from natural and induced radiation. The closeouts will be

electromagnetically compatible with other spacecraft subsystems and will be grounded

for protection against electrostatic discharges;

3.1.2 Pressure/Altitude, Venting. The vent design shall ensure that the maximum

delta pressure from inside to outside the sensor compartment is less than 0.I psi.

The ambient pressure characteristics during STS ascentJdescent are defined in EVl-

48, and for Titan IV ascent in figure A-I.

3.1.2.1 Natural and Induced Radiation. The sensor shall be protected from the

natural and induced radiation environment as defined in (applicable TRW document).

There shall be no line-of-sight radiation permitted to strike the sensor electronic

components (boxes).

3.1.2.2 _. The weight of a set of closeouts shall not exceed 4 lb.
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3.2 Environmental Conditions. The closeouts shall be designed to withstand or

shall be protected against the worst probable combination of environments as speci-

fied below, and shall operate as specified herein without performance degradation.

3.2.1 Operating Environments

3.2.1.2 Pressure/Altitude. The closeouts will be capable of operating at atmos-

pheric pressure between sea level and 10E-10 torr (verifiable to 5 x 10E-5 torr).

3.2.1.3 Acoustic Field. The closeouts shall be designed to withstand the acoustic

environment imposed by the launch vehicle during launch and ascent as defined in

3.3.6 of EVI-48.

3.3 Design and Construction. The closeouts design shall be in accordance with the

requirements herein.

3.3.1 Parts, Materials, and Processes

3.3.1.1 Materials and Processes. Only materials and processes conforming to all

requirements (applicable TRW document) shall be considered standard and shall be

used. The approved materials and processes shall be as specified in (applicable TRW

document).

3.3.1.2 Dissimilar Metals. Protection of dissimilar metal combinations shall be in

accordance with MIL-STD-889. The worst-case environment, including storage, shall

be considered.

3.3.1.3 Magnetic Materials. Magnetic materials shall be used only if necessary for

equipment operation. Those magnetic materials used shall cause minimum permanent,

induced, and transient external magnetic fields.

3.3.1.4 Fungus-inert Materials. Materials that are nutrients for fungus shall not

be used when their use can be avoided. Materials shall be treated in accordance

with MIL-T-152 if not hermetically sealed. If materials are used in a hermetically

sealed enclosure, fungicidal treatment will not be necessary.

3.3.1.5 Finish. All surface finishes shall meet the environmental, bonding, and

thermal property requirements as specified in DOD-E-8983.

3.3.1.6 Outgassing. Low outgassing polymeric materials shall be used where sensi-

tive thermal control and other surfaces are in direct line-of-sight and where tem-

perature differences can exist between such surfaces. Materials shall be selected

for low outgassing per (applicable TRW document).

3.3.1.7 Insulating and Dielectric Materials. Not applicable.

3.3.1.8 Thermophysical Properties. The thermophysical properties of the thermal

materials used in the closeout design are the same as summarized in (applicable TRW

document).

3.3.1.9 Contamination Control

3.3.1.9.1 Contamination Path. The vent design shall allow no contaminants a line-

of-sight path to the optical sensor, radiator mirrors, or surfaces of sensors and

detectors.
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3.3.1.9.2 Closeout Surface Cleanliness. At scheduled general cleanings and prior

to final closeout installation, the exterior and interior surfaces of the closeouts

shall be free from such visible contamination as scale, particles, corrosion, dirt,

grease, oil, or other foreign materials when examined under white light (to 150 fc)

from a distance of 1 to 2 ft as specified in (applicable TRW document).

3.3.1.9.3 Allowable Molecular Levels. Prior to final closeout installation the

allowable molecular deposition levels on the internal and external surfaces shall be

<0.001 glft 2 as specified in (applicable TRW document).

3.3.2 Electromagnetic Compatibility. The sensor closeout will provide the sensor

equipment compartment with a degree of shielding effectiveness. The closeouts shall

provide at least 20 dB of attenuation between 14 kHz and 18 MHz with the following

exceptions:

a. Between I0 MHz and 20 MHz, the closeouts shall provide at least i0 dB

of attenuation.

b. Between 1 GHz and 2.4 GHz, the closeouts shall provide at least 35 dB

of attenuation for the sensor not to interfere with or be interfered by (applic-

able satellite) communication links.

3.3.2.2 Vent Openings Shielding. All vent openings shall be designed to provide

shielding effectiveness which is not less than 35 dB of attenuation between 1 GHz

and 2.4 GHz.

3.3.2.3 Mating Joints. Conductive hook and pile fastener tape (velcro or equiva-

lent) shall be used on all closeout/spacecraft, closeout_radiator, closeout/radiator

cover, and closeout/closeout mating joints. The fastener tape shall be replaced

after ii cycles of attachmentldetachment.

3.3.2.4 Fastener Tape Attachment. The fastener tape shall be bonded to the close-

out tantalum layer with ECCO-Bond 57C. The fastener tape shall be continuous along

the circumference of the individual closeouts and the sensor's spacecraft equipment

bay except at corners where the fastener tape is cut and butt joined. The maximum

gap between pieces of tape at the corners and butt joints shall be 0.05 in.

3.3.2.5 Fastener Tape Resistance. The dc electrical resistance, measured through

the thickness of the fastener tape prior to bonding, shall be 2 ohms maximum.

3.3.2.6 Sealing of Fastener Tape With RTV. The primary around the edge of the

fastener tape shall be filled with a bead of RTV, to entrap the ECCO-Bond within the

bonding area of the fastener tape.

5.3.2.7 Sealing of Fastener Tape Interfaces. Clear kapton tape shall be applied,

continuous or overlapped, to cover edges of mated hook to pile fastener tape.

3.3.2.8 Apertures

3.3.2.8.1 Fastener Tape Mating Surfaces. Using magnification, there shall be no

clear aperture with a linear dimension greater than 0.05 in along any of the fast-

ener tape mating surfaces.

3.3.2.8.2 Tantalum Layer. Using magnification, there shall be no clear aperture

with a linear dimension greater than 0.05 in. in the tantalum layer.
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3.3.2.9 Staples for Added Strength. Corrosion resistant steel staples, which may

be used to provide additional strength to the bond of fastener tape to the MLI

closeouts, shall not be removed from the blanket once installed.

3.3.2.10 Tantalum Sheet Lap Joints. All bonding of the closeouts tantalum sheet

lap joints shall be done with ECCO-Bond 57C, and shall extend along the entire

length of the bond joint.

3.3.3 Grounding of Closeouts

3.3.3.1 Ground Design. The closeouts shall be grounded to the spacecraft structure

by means of conductive fastener tape. The ground shall include the outer layer of

MLI, the tantalum foil layer used for radiation shield, and the inner layer of MLI.

3.3.3.2 Grounding Levels. The dc electrical resistance measured from any point on

the closeout surface through the fastener tape to the adjacent spacecraft structure

shall be 35 ohms maximum for EMC for electrostatic discharge (ESD).

3.3.4 Mechanical Compliance

3.3.4.1 Induced Loads. The induced load levels shall result in a positive margin

of safety in the sensor.

3.3.5 Interchangeability. Each closeout shall be directly interchangeable in form,

fit, and function with other closeouts of the same part number.

3.3.6 Safety. The closeouts shall be designed to meet the requirements of NHB

1700.7, paragraph 209-3 (flammable material).

3.3.7 Human Performance/Human Engineering. TRW will follow the applicable human

engineering standards established in MIL-STD-1472.

4. QUALITY ASSURANCE PROVISIONS

4.1 General. Quality assurance controls for fabrication, inspection, and testing

of the closeouts shall be in accordance with (applicable TRW document).

4.1.1 Failure Criteria. The closeouts shall exhibit no failure, malfunction, or

out-of-tolerance performance or degradation as a result of examinations and tests

specified herein. Any such failure, malfunction, out-of-tolerance performance, or

degradation shall be cause for Material Review Board action. Retest requirements

shall be in accordance with MIL-STD-1540.

4.1.1.2 Government Inspection. The procuring agency, or its designated representa-

tive, shall have the option to witness all formal tests, all environmental expo-

sures, pre- and post-exposure examinations of tested items, and to verify all test

equipment and calibration data.

4.1.2 Development Tests

4.I.Z.I Acoustic Test. An acoustic test shall be performed on a test of represen-

tative flight-like closeouts when installed between the structural development model

of test sensor and the spacecraft test model. The test shall verify their capa-

bility to withstand the predicted acoustic environment to be imposed on the close-

outs in flight.
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Test Requirements

a. The closeout test articles shall be subjected to a broadband random

incidence sound field with an overall pressure level of 145.2 dB (re: 0.0002

dynelcm2).

b. The octave band sound pressure levels shall be as specified in Table II,
column 3 of EVI-48A.

c. The acoustic environment shall be applied to the test article for a

period of three minutes.

4.1.2.2 Shielding Effectiveness Test. The closeouts" shielding effectiveness

shall be demonstrated by conducting a laboratory test using an EMC engineering

approved test sample.
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FILLERS:

OUTER: 1/4 mil
2 rail ALUMINIZED
ALUMINIZED MYLAR
KAPTON* 10 LAYERS

/

ALUMINIZED
ALUMINIZED KAPTON *
KAPTON* TAPE CAP
1 mil TAPE, 100%

ALUMINIZED
KAPTON*
1 mil TAPE,
100%

VELCRO HOOK,
NYLON

INNER: TANTALUM RTV VELCRO PILE, SPACECRAFT
ALUMINIZED (0.001 mid NYLON STRUCTURE OR
KAPTON* LCS RADIATOR

1 mil

* ® KAPTON IS A REGISTERED TRADEMARK OF THE DUPONT CORPORATION

Figure 2A. MLI Closeout Cross-Section, Typical Construction

(with tantalum)

LCS FORWARD
RADIATION
RADIATOR
COVER

TYPICAL
MAXIMUM 0.05

" GAP ALLOWED

_[_]/-215-2 MLI (+Z+Y)

_x_,,_ ] l _1...,_ BLANKET ADIATION

L_I \
TYPICAL MAXIMUM
0.05 GAP ALLOWED

TANTALUM (BETWEEN HOOK AND PILE)

VIEW: SEE FIGURE 5

Figure 2B. Typical Tantalum Barrier Closeout Design Radiation

Protection Method; Typical for 100Z Line-of-Sight
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Figure 3A. LCS MLI Closeout (-212)

Figure 3B. LCS MLI Closeout

[(i) -215 space side_ (2) -215 structure side]
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OUTER SKIN

/
10 LAYER
FILLER TAPE

ALUMINIZED KAPTON *
TAPE CAP

VELCRO HOOK

METALIZED/
STAINLESS STEEL

INNER SKIN TANTALUM RTV ECCO-BOND

(IN ALL CASES)
CONDUCTIVE
EPOXY

STRUCTURE
VELCRO PILE

METALIZED!
STAINLESS STEEL

* ® KAPTON IS A REGISTERED TRADEMARK OF THE DUPONT CORPORATION

Figure 4. Typical MLI Closeout Construction with EMC Enhancements

I ÷Z
÷y

f-1

i

-7.

y,tn _1

Figure 5.

AFT; FWD RADIATOR

S/C CENTRAL CYLINDER/
BAY INTERFACE

.x
LCS/Spacecraft Bay Assembly - Overview

/ FIGURE 2B

FWD; RADIATOR/
+Z PANEL INTERFACE
(FIGURE 6AI
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2

VIEW B OF FIGURE 5

NOTE: MLI OMITTED FOR CLARITY

Figure 6A.

._ VELCRO

+Z SIC PANEL _'_'.:i-f.-':}:.':
,-,...... _, _!_ E_'_,_L_;Moo5GAP

_;};_ SUPPORT S___

VELCRO

TYPICAL: _,,._. z,z. (_-_. JJ
MAXIMUM 0.05 GAP"

ALLOWED (BUTt" JOINT)

TOP OF VIEW B

+Z FWD Spacecraft Bay Interface; Continuous Stainless Steel

Velcro/Bond Method; Modifications for EMC Enhancements

Imp lement at ion

NOTE: MLI OMITrED FOR CLARITY

S/C INNER

CYLINDER

BRACKET

-,,,.
U

VIEW A

TYPICAl:

MAXIMUM 0.05

GAP ALLOWED

i::::::.::i".":::":_,',... {BUl-r JOINT)

,-.:,,.:..:.._..:_:_..._....

ADDITIONAL

SUPPORT

BRACKET VELCRO

TYPICAL: MAXIMUM
0.05 GAP ALLOWED

(BUTT JOINT)

TOP OF VIEW A

Figure 6B. +Z Aft Spacecraft Bay Interface; Continuous Velcro/Bond Method;

Modifications for EMC Enhancements Implementation
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Figure 9. LCS Structural Development Model and DSP Structural Test Model

(preparation for acoustic test)
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Figure 10A. LCS SDM/STM Acoustic Test Article (-Y View)

Figure lOB. LCS SDM/STM Acoustic Test Article (+y View)
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Figure IIA. LCS SDM/STM Acoustic Test Article With MLI Closeouts (-Y View)

Figure liB.
LCS SDM/S_M Acoustic Test Article With MLI Closeouts (+Y View)
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Figure 12. LCS SDM/STM Acoustic Test Article (Front View)
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L:CS BAY /
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Figure 13. Static Displacement Plot of DSPILCS Coupled Model

(one load case)
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