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SUMMARY

Computerized simulation of meshing and bearing contact for spiral bevel gears and hypoid gears
[1,2] is a significant achievement that could improve substantially the technology and the quality of
the gears. This report covers a new approach to the synthesis of face-milled spiral bevel gears and
their tooth contact analysis. The proposed approach is based on the following ideas proposed in [3]
(i) application of the principle of local synthesis that provides optimal conditions of meshing and
contact at the mean contact point M and in the neighborhood of M; (ii) application of relations
between principle directions and curvatures for surfaces being in line contact or in point contact.

The developed local synthesis of gears provides (i) the required gear ratio at M; (ii) a localized
bearing contact with the desired direction of the tangent to the contact path on gear tooth surface
and the desired length of the major axis of contact ellipse at M; (iii) a predesigned parabolic function
of a controlled level (8-10 arc seconds) for transmission errors; such a function of transmission errors
enables to absorb linear functions of transmission errors caused by misalignment (3] and reduce the
level of vibrations.

The proposed approach does not require either the tilt of the head-cutter for the process of
generation or modified roll for the pinion generation. Improved conditions of meshing and contact
of the gears can be achieved without the above mentioned parameters. The report is complemented
with a computer program for determination of basic machine-tool settings and tooth contact anal-
ysis for the designed gears. The approach is illustrated with a numerical example.

The contents of the following sections cover the following topics:

(1). Basic ideas of local synthesis of gears and the mathematical concept of this approach
(Chapter 1). The local synthesis discussed in this chapter is applicable for all types of gears and
provides the optimal conditions of meshing and contact at the mean point of tangency of gear tooth
surfaces.

(2). Methods for generation of the pinion and the gear and basic machine-tool settings that are
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necessary for gear generation (Chapter 2).

(3). Determination of geometry of gear tooth surface, the gear mean contact point and the
principal directions and curvatures at this point (Chapter 3).

(4). Application of basic principles of local synthesis for spiral bevel gears (Chapter 4).

(5). Determination of pinion machine-tool settings considering as given:(i) the gear geometry,
and (ii) the conditions of meshing and contact at the mean contact point obtained from the local
synthesis (Chapter 5).

(6). Computerized simulation of meshing and contact (Tooth Contact Analysis) for spiral bevel
gears that have been synthesized in the previous chapters (Chapter 6).

(7). Analysis of the shift of bearing contact caused by the misalignment of gears (Chapter 7).

(8). The theory of modified roll (variation of cutting ratio in the process for generation) and
mechanisms used for application of modified roll (Appendix A).

(9). Description of developed computer programs and numerical examples that illustrates the

application of those programs.
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1 Local Synthesis of Gears (General Concept)

1.1 Introduction

The main goals of local synthesis are to provide: (i) contact of gear tooth surfaces at the mean point
of contact of gear tooth surfaces, and (ii) improved conditions of meshing within the neighborhood
of the mean contact point. The local synthesis is the first stage of the global synthesis with a goal
to provide improved conditions of meshing for the entire area of meshing. The criteria of conditions
of meshing are the transmission errors and the bearing contact. The principles of local synthesis
that are discussed in this chapter for face-milled spiral bevel gears can be applied for other types

of gears as well.

1.2 Basic Linear Equations

Consider two right-handed trihedrons S,(€%,€),,7) and Sy(&;,¢€,,7) (Fig. 1.2.1). The common
origin of the trihedrons coincides with the contact point M, the n-axis represents the direction of
the surface unit normal, € and €}, are the unit vectors of the principal directions of surface X1, €,
and €, represent the principal directions of surface X, and o(12) is the angle formed between €}
and &, (measured clockwise from €&, to €; and counterclockwise from &y to €, ). In reference [4]
three linear equationé were derived that relate the velocity 17'51) of the contact point over surface ¥

with the principal curvatures and directions of contacting surfaces and the transfer components of

velocities. These equations are:

auvgl) + alzvél) = ai13
amv,(,l) + azgv,gl) = Qg3 (121)
a13v§1) + azavg(-,l) = a33

Here (see the designations in [4] )




a1 = Ky — kgcos? otB) — g sin? (12

a2 = axn = ﬂ%ﬂ sin 2¢(1%)

aiz = 4agi — -—nsvglz) — [Q(lz)ﬁé‘a]

Qs = Kgq— Ky sin? ¢(1?) — g, cos? o(12) (12.2)
azs = ' ags = —-K,qv((zlz) — {J(lz)ﬁé'q}

ass = Kq (v§12))2 T (1’«(112))2 B [.. 2(12) 6(12)} _q [(5(1) % 1—,;{3)) _ (‘3(2) % d:))]

oD = .
1,((11) = Qjﬁl).gq

Equations (1.2.1) and (1.2.2) can be applied for two cases where: (i) surfaces ¥; and X, are
in line contact, and (ii) the surfaces are in point contact. The instantaneous line of contact is
typical for the case when the gear tooth surface (X;) is generated by the tool surface (X,). The
instantaneous point of contact is typical for gears with localized bearing contact.

Line Contact_

When the gear tooth surfaces are in line contact, the direction of velocity 1751) can be varied, and
equations (1.2.1) can not provide a unique solution for the unknowns o{") and 'ul(zl). This results

in that the rank of the augmented matrix

a1 ai12 a3
(Al =| a1z az2 a2 (1.2.3)

ai3 agz3z ass

must be less than 2. This requirement yields




2 _
a1 = a11a22
ai1dz3 = a12a13 (1.2.4)
a12a33 = Q13023

Equivalent equations are

2 3
a
13
a);; = _—a
33
a13Q23
M1z = = — ¢ (1.2.5)
33
2
a
. 23
a2 = —
ass /

Using equations (1.2.5) and (1.2.2) we obtain equations that will enable us to determine o(}2),

k¢ and kp, for I, considering as given &, and k4 for surface X3. The equations are:

2
tan 20(12) = —“113728 (1.2.6)
azs — @15+ (ks — Kq)ass
. ___2a13093
Ky = wn = — B (1.2.7)
a; + a2
Kt + Kp = (Ks + Kq) — -—1—% (1.2.8)

(12)

Equation (1.2.6) provides two solutions : ¢; *’ and agu) = a§12) + 7/2 and both of them can be
used for computations of ks and &, that are represented by equations (1.2.7) and (1.2.8). Fig.1.2.2
i) A9

shows the orientation of two couples of unit vectors & fi ,e,f (¢ = 1,2), with respect to unit vector

€,. The magnitude of principal curvature for the direction with collinear vectors é(fl) and é‘(hz) is the




same (n(fl) = nglz)) although the notation for the unit vectors has been changed. Similarly, we can
say that nfll) = n(f2).
Knowing the angle o(2), and the unit vectors &, and €,, the principal directions on surface £,

can be determined with the following equations,

&Y = & = cos o12)g, — sin 12)g, (1.2.9)

éﬁ,) = &, = sin (1Y), + cos 0(12)€q (1.2.10)

Point Contact
In the case of instantaneous point of contact, the direction of motion of the contact point over

the surface is definite, equations (1.2.2) for the unknowns can provide a unique solution for the

unknowns v{") and vgl) and the rank of matrix [A] is 2. This yields that

i1 @12 413

fa1 G2 G2 _ (1.2.11)

azy azz assg

Equation (1.2.11) yields the following relation

f(nsanqa’cfa’{'hya'(lz)7mll2) =0 (1-2-12)

Our goal is to determine x¢,x; and ¢(}?) (the principal curvatures and directions of ¥;) and

provide at the mean contact point (i) a certain direction of the tangent to contact path on surface
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¥, , (ii) a desired length of the major axis of instantaneous contact ellipse, and (iii) a parabolic
function of transmission errors. For these purpose we have to derive extra equations in addition to
equation (1.2.12)

. Determination of mj,

The derivative m);(¢1) is the second derivative of function ¢(¢#;) that is taken at the mean
contact point; ¢; and ¢, are the angles of rotation of gears 1 and 2. In the case of an ideal gear

train, function ¢2(¢;) is linear and is represented by
N,
= ¢1— 1.2.
¢2 = ¢1 v, (1.2.13)

However, due to misalignment between the meshing gears the real function ¢,(¢;) becomes a
piecewise periodic function with the period equal to the cycle of meshing of a pair of teeth (Fig.
1.2.3). Due to the jump of angular velocity at the junction of cycles, the acceleration approaches
to an infinitely large value and this can cause large vibration and noise. For this reason it is
necessary to predesign a parabolic function of transmission error that can absorb a linear function
of transmission error and reduce the jump of angular velocity and acceleration [3]. This goal(the
predesign of a parabolic function) can be achieved with certain relations between the principal
curvatures of contacting surfaces .

Fig. 1.2.4 shows the predesigned transmission function for the gear convex side (Fig. 1.2.4(a))
and gear concave side (Fig. 1.2.3(b)). Both functions—¢,(¢;) and ¢gt)(¢1 )- are in tangency at the
mean contact point and have the same derivative mg; , at this point.

Consider now that the predesigned transmission function is represented as

b2 — 85 = F(¢1 — ¢1") (1.2.14)




Here: d)go) and ¢go) are the initial angles of rotation of gears 1 and 2 that provide the tangency
of gear tooth surfaces at the mean contact point M.

Using the Taylor expansion up to the members of second order, we obtain

182F

OF
F(é - ¢§°)) = %;(% - ¢§0)) +

= mn(gn — 6+ gy (61— 4% (1.2.15)

where myq(¢1) is equal to N1 /N, at the mean contact point and mj, is the to be chosen constant
value: positive for the gear concave side, and negative for the gear convex side. The synthesized

gears rotates with a parabolic function of transmission errors represented by

Dbalgn) = smis(dr — 6)? (1.2.16)

where

™

(0) T
< — @ < —
w S-S

Equation (1.2.16) enables the determination of mj, considering as known the expected values
of transmission errors.
Relation between Directions of Paths of Contact

1) o (2)

We recall that velocities 7,/ and vrz

are related by the equation [4],

7 = g1 4 5012 (1.2.17)

1) 1 A2)

Directions of velocities ¢, ' and vr2 coincide with the tangents to the contact path that form

angles 71 and 77 with the unit vector €, (Fig. 1.2.5). Equations (1.2.17) yield




2) _ (1 12 2) _ (1 12
vg)-v§)+vg ) vé).—vg)-{-vé ) (1.2.18)
According to Fig. 1.2.5
v,(;) = v{¥ tanx; (1.2.19)

Third equation of system (1.2.1) and équations (1.2.18) and (1.2.19) yield

(12) (12)
_ —anvg  + (ass +azvs ) tanmy
tanm = TORNGE) (1.2.20)
ass + asz2(vg ' —vs ’tanmn)
oD = das (1.2.21)
ai3 + azgtanm
o) = _ Gsstanmm (1.2.22)

a1z + azztanm

Prescribing a certain value for 7, (choosing the direction for path of contact on ¥;), we can
determine tan7, vgl) and v((ll). We recall that coefficients as;, az; and azz do not depend on the

to-be determined principal curvatures k¢ and «; and o(12),

Relations between the Magnitude of Major Axis of Contact Ellipse, Its Orientation and

Principal Curvatures and Directions of Contacting Surfaces

Our goal is to relate parameters 0'(12),/5f and kp of the pinion surface X; with the length of the
major axis of the instantaneous contact ellipse. This ellipse is considered at the mean contact point
and the elastic approach § of contacting surfaces is considered as known from the experimental
data. The derivation of the above mentioned relations is based on the following procedure

Step 1: Using equations (1.2.2), we obtain




aj; + agy = K)(32) - KS) = Ky
a11 — agy = gg — g1 cos 20(12) (1.2.23)

(@11 — a22)? + 4a2, = g2 — 2g; g4 cos 20(12) 4 g2

Step 2: It is known from [4] that

o= l%] (1.2.24)
1
A= 1 {K(l) K(z) \/g1 — 29192 cos 20 + g2 (1.2.25)
Equation (1.2.25) yields
[(@11 + a2z + 4A)% = (a11 — a22)? + 4a, (1.2.26)

Step 3: We may consider now a system of three linear equations in unknowns a;1, a1 and ay;

(1) (1)

Us ‘@11 + Vg “aQ12 = Q13

oz + oazs = azs (1.2.27)

aj; + az = Ky

Step 4: The solution of equation system (1.2.27) for the unknowns a;1,a;2 and as; allows to

N (1)

express these unknowns in terms of a;3,as3, Kp,v;’ and vg ’. Then, using equation (1.2.25) we

can get the following equation for Ky,




4A? — (n? +nd)

Ke = 1.2.28
BT oA (n1 cos 2my + ng sin 2m,) ( )
Here:
ny = a2y — a2y tan?
(1 + tan? n1)ass
n, — @3tanm + azs)(as + azstanm)
? (1+ tan®m)ass
2
4= (1.2.29)

The advantage of equation (1.2.28) is that we are able to determine Ky knowing the major axis
2a of the contact ellipse and the elastic approach 4.
Step 5: The sought for principal curvatures and directions for the pinion identified with k¢, xp

and (1) can be determined from the following equations

kP =k - Ky (1.2.30)
tan20(1) = 2022 2nz — Ky sin2m (1.2.31)

g2 — (a11 — ag2) - gs — 2n1 + Ky cos2my

2a19 2ny — Ky sin2m
= = 1.2.32
n sin 20(12) sin 20(12) ( )
1)
Ky = s = @%’—1 (1.2.33)
@ _
kn = k() = —ETﬂ (1.2.34)




Step 6: The orientation of unit vector €; and ¢, is represented with equations (1.2.9) and
(1.2.10). The orientation of the contact ellipse with respect to €; is determined with angle ot

(Fig. 1.2.6) that is represented with the equations

g1 — g2 COS 20(12)

cos 2a(t) = : (1.2.35)

(97 - 20192 0052007 1 g3)’}
sin2a(!) = g2 5in 2009 ; (1.2.36)

(97 — 29192 cos 20012) + g2)2

The minor axis of the contact (2b) ellipse is determined with the equations
]
b= l'ﬁl (1.2.37)
1

B= [Kf;) ~ K + 1/ - 29192 cos 20 + g ] (1.2.38)

Local Synthesis Computational Procedure :

The following is an overview of the computational procedure that is to-be used for the local
synthesis.

The input data are: K,,Kq, €, &g, 7M),&(12),5{12) and §. The to-be chosen parameters are:
72, My, and 2a. The output data are: fcf,nh,a(”),é'f and €.

Step 1: Choose 7, and determine 7; from equation (1.2.20)

Step 2: Determine (" and vgl) from equations (1.2.21) and (1.2.22)

10




Step 3: Determine A from equation (1.2.29)

Step 4: Determine Ky from equation (1.2.28)

Step 5: Determine o{!?), k; and &, by using the set of equations from (1.2.30) to (1.2.34)
Step 6: Determine the orientation of the contact ellipse and its minor axis by using equations

from (1.2.35) to (1.2.37)

1.3 Conclusion

The contact of tooth surfaces is considered for two cases: line contact and point contact. For line
contact, the principal directions and curvatures of one surface can be determined in terms of the
other’s knowing the relative motion between the two . For point contact, we proposed an approach
for local synthesis of spiral bevel gears which enables: (i) to provide a limited level of transmission
errors, (ii) optimal direction for the path of contact on gear surface ¥j,and (iii) the guaranteed
length of the major axis of contact ellipse.

The output data obtained from the procedure of local synthesis are: x¢,kp, o(12) & ¢ and €.
The machine-tool settings for the generation of the gear tooth surfaces must be carefully chosen to

guarantee the above mentioned conditions of local meshing and contact.

11




2 Pinion and Gear Generation

2.1 Pinion Generation

To describe the pinion generation we will use the following coordinate system (Fig.2.1.1): (i) Sm1—
a fixed coordinate system that is rigidly connected to the cutting machine; (ii) S.; —a movable
coordinate system that is rigidly connected to the cradle and performs rotation with the cradle
about the Z,,,- axis; initiz;lly, Sc1 coincides with Sp,; (Fig.2.1.1 (b)); angle ¢ determines the
current position.of Sy (Fig2.1.1 (¢)) : (iii) Coordinate systems S, and S, that are rigidly connected
to the cradle and its coordinate system S.;; systems S, and S, are used to describe the installment
of the head-cutter on the cradle. Angle g; determines the orientation of S, with respect to Sei;
(iv) Coordinate system Sp that is rigidly connected to the head-cutter (not shown in Fig.2.1.1);
the head-cutter in the process for generation performs rotation with the cradle (transfer motion)
and relative motion with respect to the cradle about an axis that passes through O,; (v) Auxiliary
coordinate systems Sy and S, are used to describe the installment of the pinion on the cutting
machine (Fig.2.1.1 and Fig.2.1.2); the pinion axis forms angle y,,; with axis X, that is parallel to
Xm1. (vi) A movable coordinate system S; that is rigidly connected to the being generated pinion;
the pinion rotates about the axis X, and ¢, is the current angle of pinion rotation (Fig.2.1.2).

Henceforth, we have to differentiate the parameter of motions that are performed in the process
for generation and the parameters of installment of the head cutter and the pinion on the cutting
machine.

In the pfocess for generation the cradle of the cutting machine with the mounted head-cutter
performs rotation with angular velocity &(F) (Fig.2.1.2). The head-cutter performs rotational
motion with respect to the cradle but this motion is not related with the process for generation
and just provides the desired velocity of cutting. The being generated pinion performs rotational
motion with angular velocity (1) (Fig.2.1.2) that is related with &(F ).

The parameters of installment of the head-cutter are: (i) the swivel angle j (Fig.2.1.1) and the

12




tilt angle ¢ that is the turn angle of S; about Y, (Fig.2.1.3); Sp1 = |OcOyn1| is the radial setting; ¢,
is the cradle angle.
The parameters of installment of the pinion are: E,,;-the shortest machine center distance (Fig.

2.1.1, Fig.2.1.2); root angle ¥,,,1; sliding base X p;; machine center to back Xg;.

2.2 Gear Generation

While describing the gear generation, we will consider the following coordinate systems: (i) Sy,2
that is rigidly connected to the cutting machine; (ii) S, that is rigidly connect to the cradle, (iii) Sp,
that is rigidly connected to the head-cutter and S¢s; (iv) Sgo that is an additional fixed coordinate
system rigidly connected to S,,» ; and (v) S that is rigidly connected to the being generated gear.

The cradle performs rotation about the Z,,; axis with angular velocity &®) (Fig.2.2.1). The
initial and current positions of coordinate systems S.; and Sp; with respect to S,,2 are shown in
Fig.2.2.1 (a) and Fig.2.2.1 (b), respectively.

Coordinate system Sy (it is rigidly connected to Sp ) is used to describe the installment of
the gear at the cutting machine (Fig.2.2.2(a)). In the general case apices Oz and O3 of the gear
root cone and pitch cone do not coincide. Apex Oap is located on axis X2 of the cutting machine.
The origin Og4q of Sgz coincides with the apex O3 of the gear pitch core. Axes Xy, apd Xin2 form
angle v,,» which is the gear machine root angle.

Coordinate system S is rigidly connected to the gear that in the process of generation performs
rotation about Xg, with angular velocity &(2) (Fig.2.2.2(b)). Angle ¢, is the current angle of

rotation of gear 2.

2.3 Gear Machine Tool Settings

Gear Cutting Ratio

Fig.2.3.1 shows the sketch of the gear with noncoinciding apexes of the root and pitch cones.

In the process for generation the pitch line O, P is the instantaneous axis of rotation. It is evident
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that the angular velocity of rotation in relative motion, &*?) | must lie in the plane that is formed

by vectors &P and () (Fig.2.3.2)

a®2) = g _ 53 (2.3.1)

The cutting gear ratio is:

@3]  cosbg  cos(Ty — 72)
|@®)] ~ sinT,  sinT,

Ry = (2.3.2)

Gear Settings
Fig.2.3.3 shows the installment of the head- cutter. We designate the mean pitch cone distance

O, P (Fig.2.3.1, Fig.2.3.3) by A,,. Then we obtain (Fig.2.3.3)

Hg = A, coség— Ryssinyg (2.3.3)
Ve = Ryycosig (2.3.4)
Sz = (HE+VE):  (Sr2= [Om20p) (2:3.5)
@ = sin“-;% (2.3.6)

Here: 1 is the spiral angle on the root cone, R,2 is the mean radius of the head cutter. The

sliding base |0,,202] is
Xp2 = Zgrsinym2 (2.3.7)
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Here: 9,2 is the same as the gear root cone angle 3. and Zg is the distance between O, and

O3, which are the apexes of the root cone and the pitch cone, respectively.
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3 Gear Geometry

3.1 _Gear Surface

The gear tooth surface is the envelope to the family of generating surfaces. We recall that the

cradle carries the head-cutter that is provided with finishing blades. The blades are rotated about

the axis of the head-cutter and generate two cone surfaces. Fig.3.1.1 shows one of the cones.

The family of a generating surface (the cone surface) is generated in S, while the cradle and

being generated gear perform related rotations, about the Zns-axis and X,- axis (Fig.2.2.2).

The derivation of the gear tooth surface is based on the following procedure:

Step 1: We represent the cone surface and its unit normal in system Sy, (Fig.3.1.1) as follows

(re — sgsinag)cos fg |

(re — sgsinag)sinfg

P =
p2
—8G Cos ag
1
- Np2 - OTp2  Tp2
Np2 = —= ) sz = 'BT X '5——
| Npa| G G
ie.,
— cos ag cos O
fipp = | —cosag sinfg

sin ag

(3.1.1)

(3.1.2)

(3.1.3)

Here: sg and 6g are the surface coordinates; ag is the blade angle; 7. is the radius of the

head-cutter that is measured at the bottom of the blades. It is evident (Fig.3.1.2) that

P
rc:Ruz:i:—;Z
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Here: R, is the nominal radius, PW is the so called point width; the positive sign in (3.1.4)
corresponds to the gear concave side and the negative sign corresponds to the gear convex side.

Equations (3.1.1) and (3.1.3) represent both generating cones with ag > 0 for the gear convex
side and ag < 0 for the gear concave side.

Step 2: The family of generating surfaces that is generated in S is represented by the following

matrix equation

TTZ(SG’ ba, ¢p) = [MZdz][Mdzmz][Mmzsz][MCz»m]FpZ (3-1-5)

Here (Fig.2.2.2, Fig.2.2.1):

10 0 0]
0 cos¢; sings O
[Maq,] = (3.1.6)
0 —sing, cosgy O

0 0 0 1

[ cosYmz 0 sinqmz —Xpasinyme |

0 1 0 0

[Maym,] = (3.1.7)

—sinYmy 0 cosymz —XpB2cosm2

0 0 0 1
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1 0 0 Spgcosqs |

0 1 0 Spgsing

(Me,p,) = 00 1 0 (3.1.8)
0 00 1
[ cos ¢p —sing, 0 0 1

sing, cos¢p, 0 O
[(Mpye,] = 0 0 10 (3.1.9)

0 0 01

The machine root angle 7,2 in equation (3.17) is equal to gear root cone angle 7.
Step 3: The derivation of the equation of meshing is based on the equation

fima - T8 = 0 (3.1.10)

The subscript “m2” means that vectors in equation (3.1.10) are represented in coordinate system
N : : . ~Ap2) _ =p) _ A2) . ; ‘1
Sim2 & Time is the unit normal to the generating surface; ¥,),’ = ¥,,5 — 7., is the relative (sliding)

velocity. Vector 7,2 is represented by the matrix equation

—cos ag cos(fg + ¢p)
Timz = [Limaps |fip2 = | — cos agsin(fg + ¢p) (3.1.11)
sin ag '

where [Lm,p,] is the 3 X 3 submatrix [Mm,p,].
We consider that the axes of rotation of the cradle and the gear intersect each other (Fig.2.2.2(a)),

thus
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~(p2)

vm2 = (‘Ijgg - ‘B‘Erfz) X sz = 61(71:22) X T—‘mg (31.12)

where

GF) = [—cosy, 0 — siny)¥ (3.1.13)

m2

aG

We assumed that }Qfﬁ%[ =1 in equation (3.1.13). Equations from (3.1.10) to (3.1.13) yield the

following relation

A(BG’ qbp)
S = —————= 3.1.14
"~ Blbc, 45 (3:1-14)
Here
, 1 i . 1
A0, ¢p) = nmyaz[—Ai(sinyz — 7]+ nmay[X B, cosyz + Ag(siny; - 7o)
aG aG
+7n, 2 Ay COS Y2 (3.1.15)

. : . 1.
B(bg,9p) = —nm,csinagsin(fa + @p) + Nmyylsinye — 7 G) sin ag cos(fg + ¢p)
— COS &g COS V2] + N,z €OS Y2 sinag sin(fg + @) (3.1.186)
Ay = resin(f¢ + ¢p) — Sresin(ge — ¢p) (3.1.17)
Ay = rocos(fg + ¢p) — Sracos(g2 — ¢p) (3.1.18)

Step 4: Equations (3.1.5) and (3.1.14) considered simultaneously represent the gear surface in

three- parametric form but with related parameters. Since parameter sg in equation of meshing
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(3.1.14) is linear, it can be eliminated in equation (3.1.5), and then the gear tooth surface will be

represented in two-parametric form, by the vector function 73(6g, ¢p) .

3.2 Mean Contact Point and Gear Principal Directions and Curvatures

The mean contact point M is shown in Fig.2.3.1. Usually, M is chosen in the middle of the tooth
surface. The gear tooth surface and the pinion tooth surface must contact each other at M.

The procedure of local synthesis discussed in section 2.1 is directed at providing improved
conditions of meshing and contact at M and in the neighborhood of M. The location of point
M is determined with parameters XL and RL (Fig.2.3.1) that are represented by the following

equations

R .
XL = AjcosTe+ (bg — 2+ C) sinTy (3.2.1)

hm

+ c)cos r, (3.2.2)

RL = ApsinTy— (bg — 5

Here: A,, is the pitch cone mean distance; h,, is the mean whole depth; by is the gear mean
dedendum; c is the clearance Equations (3.2.1), (3.2.2) and vector equation 73(6¢g, ¢p) for the gear
tooth surface allows to determine the surface parameters 6 and ¢ for the mean contact point

from the equations

XZ( E‘a‘ﬁ;)

XL (3.2.3)

Y} (06, 43) + 23(0%, 9%) (RL)® (3.2.4)

I
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Gear Principal Directions and Curvatures

The gear principal directions and curvatures can be expressed in terms of principal curvatures
and directions of the generating surface (see chapter (13) in [4]), that is the cone surface.

Step 1: The cone principal directions are represented in Sp, by the equations (see (3.1.1))

OFp,
& = ggc =[-sinfg  cosbg 0 (3.2.5)
i "p2
tol/Je]
Omp
ég’)l = g;c = [~sinagcosfg  —sinagsinfg - cosag)’ (3.2.6)
P2
el

The superscript “p” indicates that the cone surface X, is considered. Unit vector é‘(p ) is directed
p pt'p p ap2

along the cone generatrix and unit vector é’;,)z is perpendicular to éff;,l. The unit vectors of cone

principal directions are represented in S,,, by the equations

ér) = [-sin(6c+¢p) cos(fg +¢p) O (3.2.7)

ég’,’,)u [~sinagcos(f + #p)  —sinagsin(fg + @) - cosag]® (3.2.8)

i

The cone principal curvatures are:

kP = 0826 and ﬁ(({’) =0 (3.2.9)

Te — 8@ Sinag

Step 2: The determination of principal curvatures and directions for gear tooth surface X is

based on equations from (1.2.6) to (1.2.8). The superscript “2” in these equations must be changed
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for “p” and superscript “1” for “2”. The second derivative of cutting ratio, my, = m,, is zero
because the cutting ratio is constant. The principal curvatures of the gear tooth surface will be
determined as £y and &j,. The principal directions on gear tooth surface will be represented in by
€7 and €, and they can be determined from equations (1.2.9) and (1.2.10). To represent in S; the
principal directions on gear tooth surface X, and its unit normal we use the matrix equation that

describe the coordinate transformation from S,,2 to S;. This equation is

dy = [Lad,|[Ldym, |@ma (3.2.10)

£2) o A2)

- -, - o o , 2
Here: d,,2 stands for vectors 7iymg, €4y, and €nm,, and d; stands for 7y, €}, and €}p,.
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4 Local Synthesis of Spiral Bevel Gears

4.1 Conditions of Synthesis

The basic principles of local synthesis of gear tooth surfaces discussed in Section 1 will enable us
to determine the principle curvatures and directions of the being synthesized pinion. Thus, we will
be able to determine the required machine-tool settings for the pinion. While solving the problem
of local synthesis, we will consider as known:

(i) The location of the mean contact point M in a fixed coordinate system, and the orientation
of the normal to gear surface X».

(ii) The principle curvatures and directions on ¥, at M. The local synthesis of gear tooth
surfaces must satisfy the following requirements:

(1) The pinion and gear tooth surfaces must be in contact at M.

(2) The tangent to the contact path on the gear tooth surface must be of the prescribed direction.

(8) Function of gear ratio m2;(¢;) in the neighborhood of mean contact point must be a linear
one, be of prescribed value at M and have the prescribed value for the derivative ma,(¢;) at M.
The satisfaction of these requirements provides a parabolic type of function for transmission errors
of the desired value at each cycle of meshing.

(4) The major axis of the instantaneous contact ellipse must be of the desired value (with the

given elastic approach of tooth surfaces).

4.2 Procedure of Synthesis

We will consider in this section the following steps of the computational procedure: (i) representa-
tion of gear mean contact point in a fixed coordinate system S, ; (ii) satisfication of equation of
meshing of the pinion and gear at the mean contact point ; (iii) representation of principle directions
on gear tooth surface T in Sy; (iv) observation of the desired derivative my;(¢1). (v) observation

at the mean contact point of the desired direction of the tangent to the path contact on gear tooth
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surface ; (vi) observation at the mean contact point of the desired length of the major axis of the
contact ellipse; (vi) determination of principal directions and curvatures on pinion tooth surface
¥ at the mean contact point.

Step 1: We set up a fixed coordinate system S, that is rigidly connected to the gear mesh

housing (Fig.4.2.1(2)). In addition to Sj, we will use coordinate systems S, (Fig.4.2.1(a)) and S,
(Fig.4.2.1(b)) that are rigidly connected to gears 2 and 1, respectively. We designate with ¢, and
¢'1 the angles of rotation of gears being in mesh. We have to emphasize that with this designation
¢;(z’ = 1, 2) we differentiate the angle of gear rotation in meshing from the angle ¢; of gear rotation
in the process of generation.

The orientation of coordinate system S}, is based on following considerations: (i) The axes of
rotation of the pinion and the gear in a drive of spiral bevel gears intersect each other. Taking into
account the possible gear misalignment, we will consider that the pinion-gear axes are crossed at
angle T’ and the shortest distance is E. (ii) We will choose that X}, coincides with the pinion axis
and Oy, is located on the shortest distance (Fig.4.2.1(a)). (iii) Considering as given the shaft angle

T, we will define j,— the unit vector of ¥}, — as follows

- ;hxah

Jh=s—— (4.2.1)
lin X @
where @, is the unit vector of gear axis that is parallel to plane (X, Y3).
The coordinate transformation from S, to S, is based on matrix equation
M .
A = [Midl[ Maz)72 (06, bp) (4.2.2)

where Sy (Fig.4.2.1) is an auxiliary fixed coordinate system. The unit normal to ¥, is repre-
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sented in 5}, as

D) = [Lna)[Laz)fiz (06, ép) (4.2.3)

Here (Fig. 4.2.1)

0 —cos¢, sing, 0
[Mg2] = , (4.2.4)
0 —sing, -—cos ¢>'2 0

cosI' 0 smI’ O

(Mral = | _ 5T 0 cosT 0 (4.2.5)

where T is the shaft angle.
Equations (4.2.3), (4.2.2) and' (4.2.3) enable to represent in S; the position vector and unit

contact normal at M by

005, 85, 62) (0%, 85 6) (4.2.6)

where (6%, #3) are the surface coordinates for the mean contact point at X, ; the angle ¢4 of rotation

of gear 2 will be determined from the equation of meshing (see below).
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Step 2: The equation of meshing of pinion and gear at the mean contact point is

Ay A = £(0%, 65, 05) = 0 (42.7)
Here (Fig. 4.2.1)
w1 = (@) -a?) x 4] - (B x w?) (4.2.8)
s’ = [-1 o of (V=1 (4.2.9)
65512) = —I]—%[cosl‘ 0 —sinI) (4.2.10)

since at point M the angular velocity ratio is

w® N
o@D~ N,

(4.2.11)
Substituting equations (4.2.3), (4.2.8)- (4.2.11) in equation (4.2.7), we can solve equation (4.2.7)
for ¢4. Usually equation (4.2.7) yields two solutions for ¢% but the smaller one, say (¢3)*, should
be chosen.

Step 3: We consider as known the principal curvatures and directions on ¥ at any point of X,
including the mean contact point (see section 3). To represent in Sy, the principal directions at the

mean contact point, we use the matrix equation

i = [Lhdl[La2)a2 (4.2.12)
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where a3 is the unit vector of principal directions on ¥, that is represented in §,. The following
steps of computational procedure are exactly the same that have been described in section 1.2.
This procedure permit determination of the pinion principal directions and curvatures at the mean

contact point.
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5 Pinion Machine-Tool Settings

5.1 Introduction

We consider at this stage of investigation as known:

(i) the common position vector f‘,(f) and unit normal fi;: ) at the point of contact point M of X,
and X,

(ii) pinion surface principal directions and curvatures at M.

The goal is to determine the settings of the pinion and the head- cutter that will satisfy the
conditions of local synthesis. We consider that the pinion surface and the generating surface are
in line contact. Henceforth, we will consider two types of the generating surface: (a) a cone

surface, and (b) a surface of revolution. We consider that each side of the pinion tooth is generated

separately and two head-cutters must be applied for the pinion generation.

5.2 Head-Cutter Surface

Cone Surface
The cone surface is generated by straight blades being rotated about the zp-axis (Fig. 5.2.1(a)).
The X F equations are represented in coordinate system S that is rigidly connected to the head-

cutter as following:

[ (Rep + spsinap)cosfp |

R., + spsinap)sin fp
cp

,;jz
Il

(5.2.1)
—SpCOSQF

Here: sp and 6F are the surface coordinates; ar and R, are the blade angle and the radius of the

“cone in plane zp = 0. The blade angle ar is standardized and is considered as known. Parameter
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ap is considered as negative for the pinion convex side and ap is positive for the pinion concave

side. The point radius R, is considered as unknown and must be determined later.

The unit normal to pinion tooth surface is represented as

7 Np d - 6?}7‘ x 87_"1:
F=-—=— an F= 7= X —
INF{ 00F Osp
ie.,
fip = —|[cos ap cos O cos ap sin O sinaF]T

The principal directions on the cone surface are:

OF
~ o6 .
ef = @:ﬁ:—‘ = [~ sinfp cosfp  0]F
O0p
Eg) = g;; = [sin ap cos O sin ap sin fp — COS ap]T
Ber

The corresponding principal curvatures are

1
and nf,f) = -

(F) cosap
K/I = N
Reyp + spsinap

Surface of Revolution
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(5.2.4)

(5.2.5)

(5.2.6)




We consider that the head-cutter surface ¥ is generated by a circular arc of radius p by

rotation about the zp-axis that coincides with the zp-axis of the head-cutter (Fig. 5.2.1(b)) and

(Fig.5.2.1(c)). The shape of the blade is represented in S, by the vector equations

OoN = 0,C + CN = (X'9) + peos N)i, + (289 + psin A)k,

(5.2.7)

Here: (X((f), Z‘(,c)) are algebraic values that represent in S, the location of center C of the arc;

p = |CN| is the radius of the circular arc and is an algebraic value, p is positive when center C

is on the positive side of the unit normal. ; X is the independent variable that determines the

location of the current point N of the arc. By using the coordinate transformation from S, to Sp

(Fig.5.2.1(c)), we obtain the following equations of the surface of the head-cutter:

| (X,(f) + pcos A)cos O ]
(X(S”) + pcos A) sinfp
Z8) 4 psin )

1

where )\ and 6 are the surface coordinates (independent variables).

The surface unit normal 7ip is represented by the following equations

. ﬁF ~ orp  OFp
= - d Np = ——2 x =5
nr ‘ F| an F 391? X ax

Then we obtain
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i = —[cos AcosOp cos Asinfp sin )\]T (5.2.10)

The variable X at the mean contact point M has the same value as the standardized blade angle

ar. The principal directions on the head-cutter surface are

F 39}? _ . : T
&= G = [-sinfr  cosfp 0] (5.2.11)
lg@;l
é(II;) = - 087% = [sinAcosfp  sinAsinfp  —cos AT (5.2.12)
oy
The principal curvatures are
n(IF) o _osA and /ey;) =1 (5.2.13)

X,gc) + pcos A

The radius R, of the head-cutter in plane (Fig. 5.2.1) can be determined from the equations

Z(C)
Rep = X1 4 p4|1 - (—;’)—)2 (5.2.14)

5.3 Observation of a Common Normal at the Mean Contact Point for Surfaces X,

Yy, XF and X

We consider that at the mean contact point M four surfaces— Xp, Y2, Lp and £1- must be in

tangency. The contact of ¥, and 2 at M has been already provided due to the satisfication of
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their equation of meshing (3.1.10). Our goal is to determine the conditions for the coincidence
at M of the unit normals to £, ¥, and X,. The tangency of X; with the three above mentioned
surfaces will be discussed below.

We will consider the coincidence of the unit normals in coordinate system S,,,;. To determine the
orientation of coordinate system .Sj, with respect to S,,1, let us imagine that the set of coordinate
systems Sy,, S1 and S; (Fig.4.2.1) with gears 1 and 2 is installed in Sy,; with observation of following
conditions (Fig.5.2.2): (i) axis z;, of Sj, coincides with axis z, of Sp; (ii) coordinate system S5,
coincides with S, and the orientation of S;, with respect to S is designated with angle ¢, = ((}5'1 e
where ¢, is the to be determined instalment angle. Angle ¢}, will be determined from the conditions
of coincidence of the unit normals to £, E; £, and ;. The procedure for derivation is as follows:

Step 1: Consider that the coordinate system 5), with the point of tangency of surfaces £, and
T, is installed in Sp,;. We may represent the surface unit normal 7(2) in S,y by using the following

matrix equation (Fig. 5.2.2).

[ cosy; 0 —sinvy; ][ 1 0 0 i
(2 {2 0 1 0 0 cos¢p -—sindp | (M
72 = Lyl L} = fno TSmO G0 (53
siny; 0 cosmy 0 sing, cosop

The unit vector figz) has been represented by equation (4.2.3).
Step 2: The unit vector to the surface of Xp of the head-cutter that generates the pinion
has been represented in S by equation (5.2.3) for a cone and equation (5.2.10) for a surface of

revolution. Axes of coordinate systems Sp and S,,; have the same orientation and

Al = 5 (5.3.2)
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Equations (5.3.1), (5.3.2), (5.2.3) and (5.2.10) yield the following equations

( )+ sin ap siny1

0% = 3.

cosPr COS Y1 COS O (5.3.8)

) (2) ( ) (2)

ain,_; + azn . - QM
cos ¢p, = (2):"’; (2)’2 in ¢y = (2) - G (5.3.4)

(nyr )? + (ngy) (ny)? + (nyy)

Here:

a; = — cos aF sin Oy as = cos af sin<y; cos 0% — sinap cosv; (5.3.5)

The advantage of the proposed approach is that the coincidence of the unit normals to surfaces

YF,X2,%, and ¥; can be achieved with standard blade angles and without a tilt of the head-cutter.

5.4 Basic Equations for Determination of Pinion Machine-Tool Settings

1 () A1) A1) oM

At this stage of investigation we will consider as known: &}, K}/, €501, €5pmy> Py and 7M. It is

(F) (F) (1) (1) A1) A1)

necessary to determine: Kj ,nI ,o(1F) s Repy Em1, XBe, and mF1 Here: k;’, Ky, €}, and €5 4

are the principal curvatures and unit vectors of principal directions on the pinion surface that are

M) (M )

i Trnl are the position vector of M and the contact normal

taken at mean contact point M; 7,,,’ and 7,

at M. The subscript “ml” indicates that the vectors are represented in S,,;. Designations n(IF)
and ng) indicate the principal curvatures of the surface of the pinion head-cutter that are taken
_(Il) and é(IF)

at M. The angle c(*F) js formed by the unit vectors € of principal directions on ¥; and

Yr; R, is the cutter ”point radius” (Fig.5.5.1) that is measured in plane zr = 0 and is dependent
p g
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on ngl). Eymy and Xy are the pinion settings for its generation (Fig.2.1.1 and Fig.2.1.2); mp,

which is equal to 'R_l{;’ and m'F1 are the cutting ratio and its derivative.

(1)

We recall that the pinion surface curvatures £; ’ and EglI) have been determined in the process
of local synthesis. Vectors é(I}l),e"(IlI)h,fﬁM) have been determined in system 5),. To represent these

vectors in S,,,; we have to apply the coordinate transformation from S, to S,,1 similar to equation

(5.3.1).

Gm1 = [Lmlp][Lph,}ah (541)

where dj, represents that principal directions of the pinion surface é%l) and é(ll.r)m the position vector
of mean contact point 7"§LM ) ; dm1 TEpresents the corresponding vectors ‘?(Iir)u’é(l?nu and f(,ﬂ)

Now our goal, as it was mentioned above, is to determine K(IF), rz(g), c(F) E.., Xg1, mpy and
m’Fl. We recall that vectors é‘(ll) and éf,ll) are known from the local synthesis, and é(IF) and E(II;)
become known from equations (5.2.4) and (5.2.5) for straight blade, and from equations (5.2.11)
and (5.2.12) for curved blade, after the coincidence of the contact normal to surfaces L, ¥, and
T is provided. Thus parameter ¢(1F) can be determined from the equations

sino1F) = 731 (6(117)11 X ‘5(121

(5.4.2)

cos (F) = &), - &z

According to Fig. 5.5.1, since the Z,,;-axis is parallel to Zg-axis, surface parameter sy for the

cone surface at mean point can be determined as:

(5.4.3)
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(F)

Parameter x};’ is equal to zero for a cone surface of the head-cutter and it must be chosen
for a head-cutter with a surface of revolution. Then, the number of remaining parameters to-be
determined becomes equal to five and they are: ngF), Emi1,Xg1,mir and m'Fl.

It will be shown below that we can derive only four equations for determination of the unknowns
of the output data. Therefore one more parameter has to be chosen, and this is m'Fl—the modified
roll. Usually, it is sufficient to choose m'Fl = 0, but the more general case with m'F1 # 0 is

considered in this report as well.

The to be derived equations are as follows,

M GUF) ¢ (5.4.4)
ajraz; = al, (5.4.5)
a11G23 = A12013 (5.4.6)
a12a33 = (13023 (5.4.7)

Equation (5.4.4) is the equation of meshing of the pinion and head-cutter that is applied at
the mean contact point. Equations from (5.4.5) to (5.4.7) come from the conditions of existence of
instantaneous line contact between ¥; and Y. The coefficients a;; in equation (5.4.5)-(5.4.7) are

represented as follows,

)

a1 = Ky

— ,.g(Il) c052 a'(lF) - K‘(I?[) sin2 U(IF) (548)
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LD _
a2 = Q91 = =L I sin 20‘(1F) (549)

2
as = ag = —§ ) [0 5 *(F)} (5.4.10)
azp; = ng)- gl)sm o1F) (H)cos o(1F) (5.4.11)
an = am= kv - [$0F) 7 &) (5.4.12)
s = WP () 4 o) ()’ — [ 30 05 (5.4.13)

N, 30 ) 4[5 gE) #D (‘3(1)> me (7. 52
[ m1 W' U, ] + [ ml Wpy Ugy } + FORMRE (n Uy, )

Vectors in equation of meshing (5.4.4) can be represented as follows

) =lcosmy 0 simyT (@) =1) (5.4.14)
1

Gt = z—[0 0 1] (5.4.15)
ap

where R,;,, which is equal to , 1s the ratio of roll.

mr

S0 = gt) _ g (5.4.16)
) =a) - ) (5.4.17)
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—~Ym1sinyg

Uﬁ,) = "S,lti X 7 '(M) = | Xmisiny; — Zypicosyg (5.4.18)
Y1 cos g
=Yomp1 + Enimp
(F — .
"_’g‘) = ‘*’57;1) X (f(mﬂf) - OFOI) = | Xpump1 + mp1Xgcosm (5.4.19)

0

5.5 Determination of Cutter Point Radius

Step.1: Equations (5.4.3), (5.4.6) and (5.4.7) yield the following expression for n(I )

F) _ h(l)n(Il)Jr (F)( (l)coS 0(1F)+N(1)Sm 6(11«“))
I

n(II;) n(Il) sin? o(1F) — f{.(IlI) cos? g(1F)

(5.5.1)

Step 2: According to Meusnier’s theorem, the cutter radius R,, at the mean contact point is

(Fig.5.5.1)

Cosafp

As shown in Fig.5.2.1. the cutter point radius can be determined for a straight blade cutter as

follows,

Rep = R — spsinar (5.5.3)

For the arc blade, the location of the center of the arc can be determined in S, by following

equations,
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X{) = R, — pcosar (6.5.4)

7 = R, — psinap (5.5.5)

Knowing x$ and Z[(,C), we can determine the point radius for the arc blade by equation (5.2.14).
In order to find the position vector of the center of the head cutter, we define the following two

vectors in Sy,1 as shown in Fig. 5.5.1.

7°) = ficosap — é(If,?) sinag (5.5.6)

[ cosfp —sinfp 0 0] X((,c) i [ ch) cos OF ]
sinfp cosfp 0 0 0 X8 sin 0
P = = (5.5.7)
0 0 1 0 Z,(;C) Zoc)
i 0 O O 1 JL 1 ] i 1 |

where, p(°) is a unit vector directed from the blade tip M, to the cutter center O, and Pl is
a position vector directed from OF to the arc center C. Referring to Fig.5.2.2 and Fig.5.5.2, the
position vector of the cutter center Of with respect to Oy, fﬁlOF) can be determined in system Sy,;;

as follows,

For straight blade:

AT = i) - 3D + Repp (5.5.8)
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. For arc blade :

AOP) = M) o o = O (5.5.9)

It can be verified that the Z,,; component of ;;101: )

is zero, since equations (5.4.3) and (5.5.5)
are observed. It is worth to mention that 6% and s} are the surface coordinates where the contact

is at mean point. The values of 6} and s} will serve as the initial guess in tooth contact analysis.

5.6 Determination of mp; = Rla,,’ Epp and X

The determination of cutting ratio Rgp, settings E,,; and Xg; is based on application of equations
(5.4.2), (5.4.4) and (5.4.5).

Initial Derivations

It is obvious that equation of meshing (5.4.4) is satisfied at point M if the relative velocity oF1)
lies in plane that is tangent to the contacting surfaces at M. Thus, if velocity #F1) satisfies the

equation,

FFD = o{FVED) 4 p(FD D) (5.6.1)

it means that equation of meshing (5.4.4) is also satisfied. Assuming that vectors of equation

(5.6.1)) are represented in coordinate system Sp,;, we obtain
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F1) (F F1) (F
o Vefx + o1 el

(F1) _ F1) (F F1) (F
T = | vf ey + 057 ey

F1) (F F1) (F
”g 1)*3(Im)1z + ”gzl)eg’h)mz

For further derivations we will use the following expressions for a;3 and a.;.

aiz = n(IF)'ugFl) + Mty + Mo

az3 = ng)vg” + Mty + Moy

Here,

My = "lee(Il;)lY - nlee(Ifn)lx

My = —cosm [nmwegf,?lz - —nmlze(rf;)w]
My = nmlxe(Ifr)nlY - nleeS'IIrf)nm

My = —cosm ["lee(Ii)nlz - “”mlzefrlf?nw]

ti = mp; — siny

Using equations (5.6.2), (5.6.3) and (5.4.16), we obtain

F
v Vefnhz + 051 ez + Y1 cos71 = 0

Following Derivations
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(5.6.4)

(5.6.5)

(5.6.6)




(F1)

Step 1: Expressions for v} (F1)

and vj;’. Equations (5.6.6) and (5.4.4) represent a system of

two linear equation in unknowns vgm) and vg‘l). The solution of these equations for the unknowns
yields:
oS = Logty + Loy (5.6.7)
”(Ifl) = Lty + Ly (5.6.8)
Here,

‘-’(Ii)nlz(aule — a3 Myq)

Ly = (5.6.9)
alzﬂgF)egr)nlz t+ an K'(If)e(Ifn‘)IZ
Low — 6(11;‘,),112(01111422 — a1 My,) — 011R(111?)Ym1 cos 71 (5.6.10)
2 F)(F) o OF) () e
@12R] “€rrmiz T QU1K €z
I —eﬁlz(auMn — a12My1) (5.6.11)
T kP ) (F) >
1261 "€rrmiz T Q1R €L 7
Low — —eg:,)lz(auMzz — aj3 Mi3) — anfigF)le COs 71 (5.6.12)
12 = (F) (F (F) (F) e

)
A12K] “€rrmiz t QUK € 2

Step 2: Expression for 7(F1)

Substituting the above equation in equation (5.6.2) , we obtain
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X1it1 + X1z
FFY = | Xoity 4 Xog

X3t + X3z

Here:

X1 = L21‘3§r‘:;)1x + Llle(lfr)rxlx

X1 = Losefoh g + Lize§pmax

KXo = Lzle(zi)w + Lue.(lfr)nl}’
(F)

- F)
Xaz = Losey 1y + L12e(11m1y

X3 = Lz1e(IP,212 + Llle(llf?nlz

X3p = L22€(If1)12 + leeSII?nIZ )

Step 3: Expression for ﬁg 2

Equations (5.4.16) and (5.4.18) yield

X1t + Xi3
175F) = | Xoity + Xos

T

Xait; + X33

Here,

X13 = X12 - le sin‘y
Xoz = Xog + X1 siny — Zypy cosy

Xaz = X3z + Y1 cosy
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Step 4: Expressions for triple products in equation (1.2.2) for ags

[@ 3FD 7] = By 82 + Eioty + Eug (5.6.17)
where
Ei1 = iy X1 + npax Xog
E13 = niy X12 — Nmi1x Xa2 — nm1zX21 €05 91 + nyp1y Xs1 cosy; (5.6.18)
Eyy = "(nmIZX22 - nlest) Cos 71
(7 3D 7] = Yoty + Yoy (5.6.19)
where
Yo1 = —npmix Xo1siny + npiy(Xi1siny; — X3 cos 1) + nmi1z X21 cosyr
(5.6.20)
Y22 = —nmix Xassiny + nmay (Xissiny; — X3z cos 1)
[ﬁ (;?'(F) '178)] = Y1t + Y19 (5621)
where
Yi1 = —nm1Y(Xm1 sin-y; — Zymy cos ‘71) = Nn1y Ym1 sinm
(5.6.22)

Y12 = siny1Yy,

Step 5: Expression for the last term in equation (1.2.2) for ass.
We have to differentiate between two derivatives: my, and mp,. The first one, Ty, is applied

to provide a parabolic function of transmissions errors for the case of meshing of the generated
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pinion and the gear. Such a function is very useful because it will allow to absorb linear functions
of transmission errors caused by the gear misalignment. The other derivative, mp,, means that
the cutting ratio in the process for pinion generation is not constant and it is just an additional
parameter of machine-tool settings.

In the approach proposed in this research project it is not required to have modified roll.
However the use of such parameter in the more general case with mp, # 0 is also included to offer

an extra choice. After some derivations, we obtain

1))2
w ' -
(w(z)) mipy (- ) = Zuth + Zists + Zig (5.6.23)

Here
Z11 = (2C)(nmix X11 + Pm1y X21 + N1z Xa1)

Z1z2 = (2C)[rm1x X13 + Pmiy Xa2s + nm12Xa3 + siny1(nmix X11 + N1y X21 + Nz X31)]

Z13 = (2C) sin 11 (nm1x X13 + nm1y Xa2 + 12 Xs3)
(5.6.24)

where

m
2C = 0 ;1)2 (5.6.25)

Step 6: Final expression for as;.

Using the expressions received in steps 4 and 5, we obtain the following expression for ass

azsz = th? + Zzt + Z3 (5626)
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where,

Zy = k0L + 6Ly — By + 21

Zy = 2RSF)L21L22 + 2:{,([1;)L11L12 —Ep-Ya+Yu+2Zp

Z3 = "(IF)ng + K'(II;)L?z — B3 - Yo + Y12 + Z13

Step 7: New representations of coefficients a;3 and apa.

Equations (5.6.3), (5.6.7) and (5.6.8) yield

a13 = Nait; + Nag

a3 = Niity + Nia

Here;

Nu = K&?”JH + M2

Ny = &(II;)Lu + Ma,
Na = n(IF)Lm + Mn
Nyp = KgF)Lzz + Mi2

Step 8: Derivation of squared equation for ¢;

Equations (5.6.30) and (5.4.5) yield

a1t§ +asty+azs=10
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(5.6.29)

(5.6.30)

(5.6.31)

(5.6.32)




where,

a; = a12Z; — Ny N1y
Ay = a1929 — (N21N12 + N22N11) (5633)
a3 = a1323 — N3 N1z :

Solving equation (5.6.32), we obtain

—ay + y/ai — 4aja3
o= - (5.6.34)
1

There are two solutions for ¢; and we can choose one of them. If the tilt and the modified roll
are not used, it can be proven that in this case a; becomes equal to zero and equation (5.6.32)

yields

tp= -2 (5.6.35)

knowing t;, the ratio of roll may be easily determined as

mp; = t; +siny;

(5.6.36)

Ry, = —
'3
mr1

According to equations (5.4.19) and (5.6.15), the blank offset and machine center to back can

be determined by

Yoump + X11t: + X3
mFpi

En =

(5.6.37)
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Xort1 + Xoz — 2imp

mp1 CO8 7

Xe1 = (5.6.38)

Knowing E.,,; and Xg;, we may represent the position vector of the center of head-cutter with

respect to the cradle center as follows,

Xgicosmi
7o) = 07 4 —Em (5.6.39)

Xg1siny; + Xe1

In practice, the position of the center of the head cutter is defined by radial setting S,; and

cradle angle ¢;, which may be determined by the following equations,

S = VS + ()2
(5.6.40)

Srl

q1 = sin(

Since the cutter center O must lie in the machine plane, the component Z,(nOlF ) must be zero.

Thus, the sliding base Xpg; may be determined as,

Xp1 = ~X@ sinyy (5.6.41)
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6 Tooth Contact Analysis

6.1 Introduction

The tooth contact analysis (TCA) is directed at simulation of meshing and contact for misaligned
gears and enables to determine the influence of errors of manufacturing ,assembly and shaft deflec-

tion. The basic equations for TCA are as follows:

Fi(tl)(oFa ¢Fa ¢Il) = '7_"}(12)(00, ¢pa d)lz) (611)
#(0r, br, ¢1) = 520G, bp, 62) (6.1.2)

Equations (6.1.1) and (6.1.2) describe the continuous tangency of pinion and gear tooth surfaces
¥; and X,. The subscript h indicates that the vectors are represented in fixed coordinate system
Sp. The superscripts 1 and 2 indicate the pinion tooth surface ¥; and gear tooth surface X,
respectively. Vector equation (6.1.1) describes that the position vectors of a point on ¥; and a
point on ¥, coincide at the instantaneous point of contact M; vector equation (6.1.2) describes
that the surface unit normals coincide at M.

Parameters 6 and ¢F represent the surface coordinates for ¥;; 6 and ¢, are the surface
coordinates for £,. Parameters ¢} and ¢ ‘represent the angles of rotation of the pinion and gear
being in mesh.

Two vector equations (6.1.1) and (6.1.2) are equivalent to five independent scaler equations in

six unknowns, which are represented as

fi(oF’ ¢Fa ¢'1’ eGa ep’ ¢I2) =0 (7': 1a2a"'>5) (613)
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The continuous solution of equations (6.1.3) means determination of five functions of a param-

eter chosen as the input one, say ¢}. Such functions are:

0r(41), or(d1), 0c(81), @u(d1), 2(41), (6.1.4)

In accordance with the theorem of Implicit Function System Existence [4], solution (6.1.4) exists
if at any iteration the following requirements are observed:

(1) There is a set of parameters

P(0F3 ¢F’ 0G’ ¢p7 ¢2) (615)

that satisfies equations (6.1.1) and (6.1.2)
(ii) The Jacobian that is taken with the above mentioned set of parameters and with ¢; as an

independent variable, differs from zero, i.e.

D(f1, fa, f3, fa, f5)
(gFa ¢F) 0Ga ¢p, ¢I2)

#0 (6.1.6)

The solution of the system (6.1.3) of nonlinear equations is based on application of a subroutine,
such as DNEQNF of the IMSL software package. The first guess for the starting the iteration process
is based on the data that are provided by the local synthesis.

The tooth contact analysis output data, functions (6.1.4), enable to determine the contact path
on the tooth surface, the so called line of action, and the transmission errors.

The contact path on pinion tooth surface is determined in S; by the following functions

49




71 (6F, ¢F, 61), Or($1), or(d) (6.1.7)

Similarly, the contact path on gear tooth surface is represented by functions

720G, ¢ $2) Oc(d1),  &p(d) (6.1.8)

Function ¢’2(¢>'1) relates the angles of rotation of the gear and the pinion being in mesh. Devi-
ations of ¢’2(¢'1) from the theoretical linear function represent the transmission errors (see section
6.4). TCA is accomplished by the following procedure: (i) derivation of gear tooth surface, (ii)
derivation of pinion tooth surface, (iii) determination of transmission errors, and (iv) determination

of bearing contact as the set of instantaneous contact ellipses.

6.2 Gear Tooth Surface

The gear tooth surface ¥, and the surface unit normal have been represented in S, by equations
(3.1.5) and (3.2.10), where 6 is the parameter of generating cone and ¢, is the rotational angle
of the cradle. Coordinate system S5 is rigidly connected to the gear. To represent the gear tooth
surface ¥y and its unit normal in fixed coordinate system S; we can use the following matrix

equations:

(06, ¢py ) = [Mna(d2))72(0c, bp) (6.2.1)

75)(8G, bpr @3) = [Lua(d2)]fia(6c, $p) (6.2.2)
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6.3 Pinion Tooth Surface

We will consider two cases for generation of pinion tooth surface: (i) by a cone, and (ii) by a surface
of revolution that is formed by rotating curved blades.

Generation by a Cone Surface

Step 1: We recall that the generating cone surface and the surface unit normal has been repre-

sented in SF by equations (5.2.1) and (5.2.3).

i (Rep + sFsinap)cosfp ]

(Rep + spsinap)sinfp

PP = (6.3.1)
—S8F COS OF
- 1 -
~ cosap cosbBp
fipg = | —cosapsinfp (6.3.2)

—SFCOosafp

where Sy and 65 are the surface coordinates.
Step 2: During the process for generation the cradle with the mounted cone surface performs a
rotational motion about the Z,,;-axis and a family of cone surfaces with parameter ¢ is generated

in S,,;. This family is represented in S,,; by the matrix equation

Fm1(3F7 OF, ¢F) = {Mmlcl(ﬁbF)]Fcl (sFa eF) (6'3'3)
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where

f=7F+[Sricosqy  — Spisingg 07 (6.3.4)

The position vector 7; represents a point of the cone surface in coordinate system S¢;; Sr; and
g1 are the settings of the head-cutter center OF in S,,;.

Matrix [Mpmic] is (Fig.2.1.1)

cos¢pp singp 0 0

—singp cos¢grp 0 O
[Mmic1] = (6.3.5)
0 0 10

The unit normal at a point of the generating surface Y is represented in Sp,; by

ﬁml(gFa ¢F) = [Lmlcl(d’F)]ﬁcl (0}7) (636)

where 7i,; = ip.

We recall that the generating cone surface is a ruled developed surface and the surface unit
normal does not depend on sp (Parameter sp determines the location of a point on the cone
generatrix.) Matrix [Lmic1] is the 3 X 3 rotational part of [L,,1.1] and is represented as follows,

cos¢pr singrp O
[Linic1l = | —singp cosdp 0 (6.3.7)

0 0 1
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Step 3: Equation of meshing of the head-cutter cone with the pinion tooth surface. The equation

of meshing is considered with vectors that are represented in S,,;. Thus:

#0400

Here: #{F1) is the sliding (relative) velocity represented as follows

=(F)

For) = (@) = L)) X Ty + By x 3

(6.3.8)

(6.3.9)

While deriving equation (6.3.9), we have taken into account that vector of angular velocity &(%)

of pinion rotation does not pass through the origin O,,; of Spu1; Rom1 represents the position vector

that is drawn from O,; to a point of line of action of F(!); E,n1 can be represented as (Fig.2.1.2):

le = [XGl cosy1 —Em Xa sin71]T

vectors (V) and &F) are represented in S,,; as follows

-’513 =[cosy1 0 sin71]T (l,;}(l) =1J)

(F)
) _ 1 T _
Wy = Rap [O 0 1] (Rap - U)(l)

Equations from (6.3.8) to (6.3.12) yield
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_ Ti(6F,dF)

F= T~2(9F,¢F) (6.3.13)

Here:
T1 = Xnm1(—Emisiny; — A1(siny1 — mp1)) + Yomi1(XB1 cosy1 + Aa(siny; — mpy))
+ Znm1(Em1 cosy1 + A cosyy) (6.3.14)
Ty = Xpmi(siny, — mpy ) sinapsin(6p + ¢r) — Yami[(siny1 — mp1) sinap cos(0F + ¢r)
~ cos ap €os Y1) = Zpmi cos vy sinap sin(fr + ¢r) (6.3.15)
where

A1 = Repsin(6r + ¢r) + Srisin(—q1 + éF)
(6.3.16)
Ay = Repcos(8F + ¢r) + Sr1cos(—q1 + ¢r)

. Step 4: Two-parametric representation of surface of action
The surface of action is the set of instantaneous lines of contact between the generating cone
surface and the pinion tooth surface that are represented in the fixed coordinate system Sy,;. The
surface of action is represented by equations (6.3.3) and (6.3.13) being considered simultaneously.
These equations represent the surface of action by three related parameters. Taking into account

equation (6.3.13) , we can eliminate sy and represent the surface of action in two-parametric form

by
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Tm1 = Tm1(0F, ¢F) (6.3.17)

The common normal to contacting surfaces has been already represented in two-parametric
form by equations (6.3.6).

Generation by a Surface of Revolution

Step 1: The shape of the blades is a circular arc (Fig.5.5.1) and such blades generate a surface
of revolution by rotation about the head-cutter axis.

The position-vector of the center of the generating arc is represented in S,,; by the equation

5(1:;)1(0171 ¢F) = [Mmlcl]{/—’(c) + [ Srl cCosqy — Srl sin a1 O]T} (6318)

where,

cos¢gp singrp 00
—singyr cos¢gp 0 O
(M) = (6.3.19)
0 0 10
i 0 0 0 1|

and 5(9) has been expressed by equation (5.5.7).

Step 2: We will need for further transformations the following equations

— sin(f + ¢F)
€Imy = [me]é(ﬁ = | cos(6F + ¢r) (6.3.20)

0
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and

—cos(0F + ér)
Tm1 = | —sin(fr + ¢r) (6.3.21)

0

AF)

Here: €;,, is the unit vector of principal direction I on the head- cutter surface and 7,,; is a unit
vector that is perpendicular to €1, and the axis of the head-cutter (Fig. 6.3.1)

Step 3: To simplify the equation of meshing we will represent it by the following equation

fimy - TP = g (6.3.22)

(1F,C)
1

where ,, is the relative velocity of the center of the circular arc that generates the head-cutter
surface of revolution. The proof that (6.3.22) is indeed the equation of meshing is based on the
following considerations:

(i) The relative velocity for a point of the head-cutter surface is represented by equation (6.3.9),

given as

) = (@) - ) X g + Bong x 3L (6.3.23)

We can represent position vector 7, for a point M as

Frn1 = 70) + piimi (6.3.24)
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where p is the radius of the arc blade.

While deriving equation (6.3.24), we have taken into account that a normal to the head-cutter
surface passes through the current arc center C; the sign of p depends on how the surface unit
normal is directed with respect to the surface.

Then, we may represent the equation of meshing as follows

Tt i) = (@S] = B50) X (Pt + pASD) + (B x 3O} - )
= @5 = &5) X [(Fom + (Boy x 3] -72lE)

= RO FB) _ g (6.3.25)

Thus, equation (6.3.22) is proven.

Step 4: It follows from equation (6.3.22) that vector @ "( ©) belongs to a plane that is parallel
to the tangent plane T to the head- cutter surface (Fig.6.3.2). This means that if vector ﬁ(mf' ) i
translated from point C to M it will lie in plane T. The unit vector é(II;;)l lies in plane T already.

Then, we may represent the unit normal 7,,; by the equation

€Tm, X 1.).(1F,C)
IeIml }
where i)‘(,if"c) is represented as follows,
aF) = g(F) « j9) (6.3.27)
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17‘("3 =a® x {ﬁ(,fl) +[-Xg1cosy1 Emi — Xgisin 71]T} (6.3.28)

o =) - (6.3.29)

mil

The advantage of vector equation (6.3.26) is that the surface unit normal at the point of contact
is represented by a vector function of two parameters only, §r and ¢p; this vector function does
not contain the surface parameter A.

The order of co-factors in vector equation must provide that the direction of 7,1 is toward the

axis of the head-cutter. The direction of 7i,,; can be checked with the dot product

A = T_iml . ‘le (6330)

The surface unit normal has the desired direction if A > 0. In the case when A < 0, the desired
direction of fi,,1 can be observed just by changing the order of co-factors in equation (6.3.26).

To determine parameter A for the current point of contact we can use the equation,

COSA = Tipy * Tont (6.3.31)

Step 5: Our final goal is the determination in S,,; of a position vector of a current point of

contact of surfaces ¥ and ¥;. This can be done by using the equation,

Tm1(0F, ¢F) = ﬁ(,,i) = pAim1 (6.3.32)
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where p is the radius of the circular arc.

Finally, the pinion tooth surface may be determined in §; as the set of contact points. Thus:

771(017', ¢F) = {Mlp][Mme ]le (GF, ¢F) (6-3-33)

The unit normal to surface ¥; is determined in $; with the equation

78 (oF’ ¢F) = [Llp”LPﬁu]ﬁm1 (61‘"» ¢F) (6-3-34)

Here: 7n1(0F,¢r) and #iy,1(0F, ¢r) have been represented by equations (6.3.17) and (6.3.6) for

straight blade cutter and by equations (6.3.26) and (6.3.32) for curved blade cutter. Here (Fig.2.1.2):

cosy; 0 siny; —Xgisiny;
0o 1 0 Em,
[Mpm,] = (6.3.35)
—-siny; 0 cosy; —(Xgisiny: + Xpi)
| 0 0 0 1 ]
(1 0 0 0]

0 cos¢y sing,
[Myp) = (6.3.36)
0 —sing; cos¢y

o

(=]

0 0 0 1
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where ¢; is the angle of the pinion rotation in the process for generation. Angles ¢, and ¢p (the
angle of rotation of the cradle) are related as follows:

(i) in the case when the modified roll is not used and Rg, is constant, we have

¢1 = RopdF (6.3.37)

(ii) when the modified roll is used, ¢, is represented by the Taylor’s series

¢1 = f(¢F) = Rap(dr — Co% — Déf — B¢} — Foy) (6.3.38)

where C, D, E and F are the coeflicients of Taylor’s series of generation motion (see Appendix
B).

Step 7: The tooth contact analysis, as it was mentioned above, is based on conditions of tan-
gency of the pinion and gear surfaces that are considered in the fixed coordinate system S, (see
section 6.1). To represent the pinion tooth surface and the surface unit normal in S5 we use the

matrix equations

A = (M) (6r, ¢F) (6.3.39)
) = (L)% (6F, ¢F) (6.3.40)

Here:
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[Mp1] = (6.3.41)

where ¢{ is the angle of rotation of the pinion being in mesh with the gear.

6.4 Determination of Transmission Errors

The function of transmission errors is determined by the equation
'y ! '\Oo Nl ! '\0
8(61) = (63 — (¢2)°] - 2161~ (81)" (6.4.1)

Here: (¢;)° (i = 1,2) is the initial angle of gear rotation with which the contact of surfaces 3

and ¥, at the mean contact point is provided. Linear function

ldh - (6 (6:42)

provides the theoretical angle of gear rotation for a gear drive without misalignments. The

range of ¢ is determined as follows

(8,)° - —;,—2 < 6y < ()" + 7\% (6.4.3)
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The function of transmission errors is usually a piecewise periodic function with period equal
to ¢; = %7: (¢ =1,2) (Fig.6.4.1). The purpose of synthesis for spiral bevel gears is to provide that
the function of transmission errors will be of a parabolic type and of a limited value ¢’ (Fig.6.4.1).

The tooth contact analysis enables to simulate the influence of errors of assembly of various
types, particularly, when the center of the bearing contact is shifted in two orthogonal directions

(see section 7).

6.5 Simulation of Contact

Mapping of Contact Path into a Two-Dimensional Space

It was mentioned above that the contact path on the pinion and gear tooth surfaces is determined
with functions (6.1.7) and (6.1.8), respectively. For the purpose of visualization , the contact path
on the gear tooth surface is mapped onto plane (X.,Y.) that is shown in Fig.6.5.1. The X.-axis
is directed along the root cone generatrix and Y, is perpendicular to the root cone generatrix and
passes through the mean contact point (Fig. 6.5.1).

Consider that a current contact point N* is represented in S; (Fig.6.5.2) by coordinates:
Xo(¢y), RL'(¢5) where ¢, is the angle of rotation of the gear and RL' = [EN| = (Y + Zg)%
Axis X, belongs to plane (X,,Y;) (Fig.6.5.2). While mapping the contact path onto plane (X.,Y:),
we will represent its current point N* by N that can be determined by coordinates X, and RL/,
where RL' = |[EN| = |[EN~| (Fig.6.5.3). The coordinates of mean contact point M, XL and R,

have been previously determined by equations (3.2.1) and (3.2.2). Drawing of Fig.6.5.3 yield

O.N =0,0,+0,E +EN (6.5.1)

Here:
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0.03 = O.K + KO,

KO3 = —RL cos(y — 72)2;
where 5}, is determined by:

RL

Y = tan"l(-k—i)

Equations from (6.5.1) to (6.5.8) yield

O.K = —|OR0,|sin 41,

02E = Xg [o{e}] 72{c - X2 sin 72.;;

]

EN = RL'(sin 73, + cos YeJe)

OcN = Xc{c + Y;:.;c

X = X2(¢;) cos yp + RL'(¢>'2) siny, ~ [(XL)? + (RL)2]% cos(7e — 72)

Yo = X(2)sinyz + RL'(¢;) cos 7z — Zpsiny

Contact Ellipse
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(6.5.2)

(6.5.3)

(6.5.4)

(6.5.5)

(6.5.6)

(6.5.7)

(6.5.8)

(6.5.9)




Theoretically, the tooth surfaces of the pinion and the gear are in point contact. However, due
to the elastic deformation of tooth surfaces their contact will be spread over an elliptic area. The
dimensions and orientation of the instantaneous contact ellipse depend on the elastic approach é of
the surfaces and the principal curvatures and the angel o(12) formed between principal directions
é(Il) and é‘(lz) of the surfaces. The elastic approach depends on the magnitude of the applied load.
The value of § can be taken from experimental results and this will enable us to consider the
determination of the instantaneous contact ellipse as a geometric problem. Usually, the magnitude
§ is taken as § = 0.00025 inch.

In our approach the curvatures and principal directions of the pinion and the gear are determined
with the principal curvatures and directions of the generating tools and parameters of relative

motion in the process for generation.

Gear Tooth Principal Curvatures and Directions

The procedure for determination of gear tooth principal curvatures and directions was de-
scribed in section 1.2. Knowing functions 6,(¢5), ¢p(¢3) from the TCA procedure of computa-
tion, we are able to determine the position vector 7y,2(0,(#%), #p(95)) and the surface unit normal
Tima2(0p( %), #p(¢5)) for an instantaneous point of contact. The principal directions and curvatures
for the generating surface can be determined from equations (5.2.4), (5.2.5) and (5.2.6). The pa-
rameters of relative motions in the process for generation can be determined with equations (3.1.12)
and (3.1.13).

Pinion Tooth Principal Curvatures and Directions

As it was mentioned above, the pinion tooth surface can be generated by a cone or by a surface
of revolution. The derivation of principal curvatures and directions on the pinion tooth surface
is based on relations between principal curvatures and directions between mutually enveloping
surfaces Y of the head- cutter and ¥y of the pinion. The procedure of derivation is as follows:

Step 1: We represent in S, the principal directions on the head- cutter surface Xf using the

following equations
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é(ffi).'i = [Lmlcl]é(jf;)’ (.7 = I,II) (6.5.10)

Step 2: Parameters of relative motion in the process for pinion generation have been represented
by equations (5.4.14) to (5.4.19). The derivative of cutting ratio, m/,, is equal to zero for the case
when the modified roll is not used, and can be determined when the modified roll is applied as

follows (see the Appendix)

. _dr _ f(¢r)
where,
f'(¢F) = Rap(1— 2Cr — 3D¢} — 4E¢h — 5F¢})
£ (¢F) = —Rop(2C + 6Dér + 12E¢% + 20F¢3)
(6.5.12)

Step 3: Now, since the principal curvatures and directions on Xr are known and the relative
motion is also known, we can determine for each point of contact path the principal curvatures xj
<11 of the pini h surface I;, the angle o(F1) incipal directions &) &)
and kps of the pinion tooth surface X, the angle o and the principal directions €}, , €}y, on

¥1. We use for this purpose equations (1.2.6) to (1.2.10). The principal directions on ¥; can be

represented in coordinate system S;, by the matrix equation (Fig.5.2.2),
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& = L) LapllLpm,185); (G = 1,1T) (6.5.13)

Orientation and Dimensions of the Instantaneous Contact Ellipse

Knowing the principal directions and principal curvatures for the contacting surfaces at each
point of contact path, we can determine the half-axes a and b of the contact ellipse and angle a(!)
of the ellipse orientation (Fig.6.5.4). The procedure of computation is as follows [4]:

Step 1: Determination of a and b

A= % [K(;) - kP - \/gf — 29192 cos 20 + g2 ] (6.5.14)
B= % [KS) - K)(::z) + \/gf ~ 2g1g2 cos 20 + g3 ] (6.5.15)
a= % (6.5.16)
b= % (6.5.17)
where,
Q=g+ g o =kP k% (i=1,2) (6.5.18)

Step 2: Determination of o(1?) (Fig.6.5.4)
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» €1n €In

ino1?) = [ 7 1) —(2)]
sino iy

6.5.19
cos 112) = &) - i) (0:5:19

Step 3: Determination of a(1)
Angle a(!) determines the orientation of the long axis of the contact ellipse with respect to e‘ﬁI)

(Fig.6.5.4) and is one of the angles determined by the following equations,

go sin 20(12)

tan 2ol = (6.5.20)

g1 — g2 cos 20(12)

Step 4: The orientation of unit vectors 77 and (f of long and short axes of the contact ellipse

(Fig.6.5.4) with respect to the pinion principal directions is determined with the equations
= e‘ﬁlll) cos at) — éﬁ)‘, sin a(V) (6.5.21)

Th

—

Ch= é(hll) sinall) + éﬁfI)_, cos a(?) (6.5.22)

Step 5: In order to visualize the contact ellipse we represent its axes of contact ellipse in plane

(X, Y:) (Fig.6.5.1), using the following equations

i = [Lanlit G2 = [Lan)Ch (6.5.23)

where
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1 0 0 cosI' 0 —sinl’
[Lan]=| 0 —cos¢, —sing, 0 1 0 (6.5.24)

0 sing, —cosd, sin’ 0 cosT
Axes of the contact ellipse form with the gear axes the following angles

A, = arccos(fz - i)
(6.5.25)
A¢ = arccos((2 ;2)

The unit vectors of axes of contact ellipse form in plane (X,,Y:) the following angles with the

X,-axis (the generatrix of the root cone) :

m=08p=7 T=00-7 (6.5.26)
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7 V. and H check

The purpose of the so called V and H check is the computer aided simulation of the shift of
the bearing contact to the toe and to the hill of the gear. The gear quality is judged with the
sensitivity of the shape of the contact pattern and the change in the level of transmission errors to

the above-mentioned shift of contact.

7.1 Determination of V and H values

Fig.7.1.1 shows the initial position M of contact point (it is the mean contact point), and the new
position M* of the contact point). The shift of the contact pattern was caused by the deformation
under the load. Coordinates X L and RL determines the location of M. For the following derivations
we will use the following notations.

(i) PF = A — A* is the shift of the center of bearing contact, where F is the tooth length
measuring along the pitch line; p is an algebraic value, that is positive when A* < A and the shift
is performed to the toe as shown in Fig.7.1.1. Usually, p is equal to 0.25.

(ii) 6¢ and ag are the gear dedendum and addendum angle.

(iii) PD = bg and P*D* = b}, are the gear dedendums that are measured in sections I and I*.

(iv) hy, = BD and h* = B*D* are the gear tooth heights.

(v) Ty is the pitch cone angle

The determination of V and H for point contact M* is based on the following procedure.

Step 1: Determination of X L* and RL*.

Fig.7.1.1 results in :

h* = hy, — pF(tanég + tan ag) (7.1.1)
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¢ = bg — pFtandg

where by, = P*D* and bg = PD

* h
A te and MD = —-;—c— , where c is the clearance.

We assume that M*D* =

Taking into account that

Oo M* = Oy P* 4 P*M*

we obtain

h*

XL*= A"cosTy + P*M™sinTy = A% cos Ty + (b — ;C)sinfg
h*+C

RL* = A*sinTy + P*M*cosTy = A*sinl'y — (b5 — + Ycos Ty

(7.1.2)

(7.1.3)

(7.1.4)

(7.1.5)

The surface coordinates (6, ;) can be determined by solving the following two equations,

X2(0%,4%) = X L*

[V2(0%, &)1 + [22(08, #3)1" = (RL*)?
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Step 2: Determination of V and H

We introduce the shift of the bearing contact in coordinate system S; by V and H that are
directed along the shortest distance between the pinion and gear axes, and the pinion axis, respec-
tively (Fig.7.1.2). V is positive when the gear is shifted apart from the pinion in Y} direction, H is

positive when the pinion is withdrawn. It is obvious that

A0y = 7D + Vi (7.1.8)
A1 =7 + Hi, (7.1.9)

Here: Ffli) (¢ = 1,2) is the position vector for the initial point of contact, [7"‘;:)]* (i = 1,2) is the
position vector for the shifted contact point; %y, 75 and ic’h are the unit vectors of coordinate axes
Sh.

Equations of tangency at the new contact point provide

(0%, 85, 62)) = [FD(65, 5. 611" (7.1.10)
7768, 65, 65)" = [AD(6, 6, 61)]" (7.1.11)

Gear surface coordinates ¢ and ¢j can be determined from equations (7.1.6) and (7.1.7).

Equations (7.1.10) and (7.1.11) yield

V = [V, 305, 5 ) — (Y65, &5, 61" (7.1.12)
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H = [ X0, 8% ¢2) — (X (05, 6%, 1))

120 65, 8,1 ~ 12005, 63 81))" = 0

o Ty Tz hZ™y
sin ¢; = 0
(nP) + (1)
2 1 2 1
cos ¢’1 — ngdzngl’) + ng;z)ngz)

(') + (nl})?

"2 (05, 85 6)]* — nis (0, &%, 61)]" = 0

satisfied with the designed gear ratio, i.e.,

A2 . 512 = £(65, 6%, by, b1,0F, $p, V, H) = 0

(7.1.12), (7.1.13) and (7.1.15).
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(2) (V) L p(2), (1) )

/

(7.1.13)

(7.1.14)

(7.1.15)

(7.1.16)

Equations from (7.1.12) to (7.1.16) represent a system of five independent equations in six
unknowns: V, H, ¢5,4],0r and ¢p. The sixth independent equation, that is required for the

solution of unknowns, can be derived based on the condition that the equation of meshing must be

(7.1.17)

In solving the above system, we first solve a sub-system composed of equations (7.1.14), (7.1.16)

and (7.1.17) for ¢}, ¢F and fF, and then calculate the values of ¢}, V and H directly, by equations




7.2 Tooth Contact Analysis for Gears with Shifted Center of Bearing Contact

After the determination of parameters V and H, the tooth contact analysis for gears with shifted
center of bearing contact can be performed similarly to the analysis described in sections 6.4. and
6.5. The initial guess for the first iteration in the procedure of computations is provided by the set

of six unknowns obtained in section 7.1.
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Appendix A

Generation with Modified Roll

1 Introduction

Modification of roll or sometimes called modified roll means that the cutting ratio is not constant
but varied in the process for generation. The variable cutting ratio—the variable ratio of roll- can
be provided by a cam mechanism of the transmission of the cutting machine or by the servo-motors
of a computer controlled cutting machine. According to the developments of Gleason, the TCA
program can aﬁalyze the process for generation up to members of the fifth order. However, due to
the limitations caused by application of cam mechanisms only the parameters up to the third order
are controllable in the process for generation.

The modified roll is an additional parameter for the synthesis of spiral bevel gears. In our
approach the synthesis of spiral bevel gears can be performed, as it was mentioned above, with a
constant cutting ratio. However, we consider in this section the application of modified roll as well

to provide a broader point of view on synthesis of spiral bevel gears.

2 Taylor Series for the Function of Generation Motion

According to the practice of Gleason, the kinematic relation between the angles of rotation of the
workpiece and the cradle is represented by a Taylor’s series up to fifth order. To the knowledge of

the authors, Gleason has never published any materials related to the kinematics of the modified
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roll. However, Professor Zheng had done a good job in deciphering Gleason’s mechanisms for
modified roll and represented the kinematic relations in his valuable book [5].
Consider that the angles of rotation of the pinion and the cradle are related by a nonlinear

function

¢1 = f(¢r) feCK (K >3) (A.1)

We assume that ¢; = 0 at ¢ = 0 and represent f(¢r) in the neighborhood of ¢ = 0 by the

Taylor series as follows,

b1= 1 O)6r + 5 £ (O + - (4.2)
Taking into account that
dé1 _ .
dop = f(¢r) (A.3)
We obtain
' w(l)
F0) = ~ylor=0 = Bap (A.4)

where R,y is the ratio of roll.

Without loosing generality of the solution, we can take w1 =1 and then obtain
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1 d
f (¢F)‘d¢t—F =1

Differentiation of equation (A.5) yields

" d ' d?
£(r )Y = f(9r) T2
Equation (A.6) yields
ar __f'(¢F)
wp  f(9rF)

2

T is the angular acceleration of the cradle.

where ay = d—ft)z—

Equation (A.7) with new designations can be represented as follows

dz 1 n
20 = —— = —
i A

Similar differentiation of higher order of equation (A.3) yields:

$1 = Rap(¢F — CoF — Doy — E¢p — Fo)

Here:
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(A.8)

(A.9)




1 n
20 = - 5= 1(0)
6D — 1 f”l(O)

-

1 v
245 =517 (0)
120F = ——— " (0)

-

Unfortunately, function f(¢r) cannot be represented in explicit form for certain cutting ma-
chines, for instance, for the Gleason spiral bevel grinder. For such a case we will consider the

following auxiliary expressions

Por a3
ag = dt3 ) 6CX = ;31;" (A.].O)
d*¢r a4
ay = di s 24DX = Z’-;—g (A.ll)
& or as
= = — Al
%= g o WX =% (A.12)

Then, differentiating equation (A.6) and taking ¢r = 0, we may obtain the following equations

6D = 6CX — 3(20)? (A.13)
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24E = 24DX + (2C)[15(2C)? - 10(6C X)) (A.14)

120F = 120EX - 15(2C)(24DX) + 105(2C)?[6C X — (2C)%] — 10(6CX)?  (A.15)

The procedure for determination of coefficients C, D, E and F for the Taylor’s series (A.9) when
function fi(¢F) cannot be represented in explicit form is as follows:

Step 1: Differentiate the implicit equation that relates ¢ and ¢; up to five times and then find
wF,as,as, a4, as in terms of ¢; and ¢, at ¢; = ¢ = 0.

Step 2: Considering ¢; = ¢p = 0, find 6CX,24DX,120EX by equations (A.10) - (A.12).

Step 3: Find 2C,6D,24F,120F by equation (A.8),(A.13)- (A.15).

3 Synthesis of Gleason’s Cam

Introduction

Gleason’s cam mechanism,as shown schematically in Fig. A.3.1, is an ingenious invention that
has been proposed and developed by the engineers of the Gleason Works. The mechanism trans-
forms rotation of the cam about O, into rotation of the cradle about O.. The rotation of the cam
about O is related with the rotation of the pinion being generated, but the angles of cam rotation
and pinion rotation, ¢, and ¢,, are related by a linear function when there is no cam settings.

To authors’ knowledge, the engineers of the Gleason Works have not published the principles
of synthesis and analysis of this mechanism. However, H.Cheng [6], Zheng [5] have made good
contributions to the deciphering of this mechanism. The following is a systematic representation
of synthesis and analysis of Gleason’s mechanism.

The purpose of cam synthesis is to obtain the shape of the cam, considering that the angles of

rotation of the cam and the cradle are related by a linear function, ¢.(¢2). However, this function
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can be modified into a nonlinear function by changing the location of the designed cam with respect
to Oq and the orientation of the cam guides that are installed on the cradle. Fig. A.4.1 shows the
settings of the cam mechanism with the ’designed shape : (i) the cam is translated along the line
0.0, an amount AT ; (ii) and then, the cam guides are rotated about the cam rotation center
and formed angle a with 0O.0,. It is obvious that the cam mechanism with the settings AT and
a will transform rotation about O, to O, with a nonlinear function between the angles of rotation
of the cam and the cradle. The deviation of this function from a linear one depends on settings of
the cam mechanism and will be discussed in section A .4.

Coordinate Systems

While considering the synthesis of the cam mechanism, we will use three coordinate systems:
the movable coordinate systems S, and S, that are rigidly connected to the cradle and the cam,
and S; that is the fixed coordinate system (Fig. A.3.2).

Equation of Meshing, Contact Point in S,

Assuming that the transformation of motion is performed with constant ratio of angular veloc-
ities and in the same direction, we can determine the location of instantaneous center of rotation,
I, in coordinate system S; by using the equation (Fig. A.3.2)

“q

_Etru (A.16)

We Ty

Where, F in the distance between the cradle center O, and the cam rotation center Oq, 7y is the
so-called pitch radius of the cam.

The location of insta.ntanebus point of contact M on the guides can be determined by using
the theorem of planar gearing [4]. According to this theorem the common normal to the guides
and the cam at the point of their contact must pass through the instantaneous center of rotation

I. Thus, contact point M and the unit normal at M are represented in 5. as follows
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re=[-b-u 0 1 |7 (A7)

ﬁc=[1 00 7T (A.18)

(A.19)

Here: b is an algebraic value (b is positive if the left side of guides is considered and b is negative
if the right side of guides is considered); u is a variable parameter that is determined with the

equation

u=(E+ry)cosb. - E (A.20)

Equations (A.17) and (A.20) yield

Fo(B)=[-b f(6:) 0 1T (A.21)

where

f(6.)=E - (E+ry)cosb, (A.22)

Shape of the Cam

The shape of the cam is a planar curve that is represented in S, by the matrix equation
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7a(0c) = [Myp][ My ][ M c]7e(6.) (A.23)

Here: coordinate system S, is an auxiliary fixed coordinate system (Fig. A.3.2). Matrices in

equation (A.23) are represented as follows

[ cosf; —sinf; 0 0]

(==
(o)

sinf, cosb,

0 0 10 (4.24)

0 00 01

[Mps] = (A.25)

" cosf, sinf. 0 07

—sinf, cosf, 0 O

0 0 01

The normal to the cam shape is represented by the matrix equation

7q(6e) = [Lap)[Lps][L gelic(8e) (A.27)
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Here: [L,y] is the identity matrix and is the (3 x 3) submatrix of the respective matrix [M]. We
consider that the shape of the cam and its normal depend on the generalized parameter 6, only

since

Ty

6, = (m)Oq (A.28)
The final equations of the cam and its normal are represented as follows
[ —b cos(%eq) + (ru + E)cos(;7450,) sin(—E—;rEr—qu) — Esin6, |
—bsin(=£—6.) — T E _gy_
7 = bsin( i 0q) — (ru + E) cos(;456,) cos(g37-04) — Ecosby (4.29)
0
=3 1 -
cos(—E—fzeq)
g = | sin(g-b,) (A.30)
0

4 Cam Analysis

The cam analysis is directed at the determination of function 6%(6;) for a cam and guides with
modified settings. The analysis is based on simulation of tangency of the designed cam with the
cradle guides taking into account the settings of the cam and the guides.

Coordinate Systems and Coordinate Transformation

Coordinate systems Sy, Se and S. are rigidly connected to the guides and the cradle (Fig.

A.4.1(a)). The guides after rotation about O, form angle a with the y.-axis.
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Coordinate systems S, S, and Sy, are rigidly connected to the cam. The settings of the cam
with respect’to Sm are determined by AT and angle a. -

The cam and the cradle perform rotations about O, and Oy, respectively (Fig. A.4.2). The
conditions of continuous tangency mean that the designed cam and the guides have a common
normal and a common position vector at every instant in Sy.

A current point N of the guide is determined in S; with the equation (Fig. A.4.1 and Fig.

A.44):

i) = (M7 Mee) [ Mealfe | (A.31)

where
fg=[-b~-X 0 1T (A.32)
The unit normal is determined in Sy as follows
) = [L3o) Lee) [ Lealiia (A.33)
where

ig=[1 0 0}F (A.34)

Here:
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[ cosf —sin@* 0 0

sind; cosfy 0 0

[Mp.] =
0 0 10
i 0 0 0 1_
100 0 ]
010 —-E
(Mee] =
0 01 O
100 0 1 |
[ cosa sina 0 O]
—sina cosa 0 0
[Med]:
0 0 10
0 0 01

(A.35)

(A.36)

(A.37)

A current point of the cam and the unit normal at this point are represented in S; by the

equations (Fig. A.4.1(b), Fig. A.4.2).

M) = M M M ]IV )7

W2 = (L3 )Ll Ll )y
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Equations (A.38) and (A.23) yield

1) = (M) M (M) M ) Mg Mo | M (4.40)

where

Fo=[=b-u 0 1] (A.41)

Matrices [My,], [Mpy] and [M;.] have been represented by equations (A.24), (A.25) and (A.26),

respectively. Matrices [M7 ], [My,,],[M},,] and [M}, ] are represented as follows (Fig. A.4.1(b),

Fig. A.4.2):
(1. 0 0 0 ]
010 -E
(M3, = (A.42)
0 01 O
(000 1
cosOE —sinG; 0 0
sinO,’; cosO{I‘ 00
[Mpm] = (A.43)
0 0 10
0 0 01

85




cosa sina 0 O

—sina cosa 0 O

[Med]:
0 0 10
| 0 0 0 1)
100 0 ]
01 0 —AT
(M7] =
001 0
000 1 |

Equations (A.39) and (A.27) yield

A8 = (L3 LAl L L) Lol Lpf I L gl

Here:

[ ]=[1 0 0]

Matrices (L*] and [L] are 3 X 3 submatrices of matrices [M*] and [M].

Equations of Tangency

The tangency of cam and guides with modified settings is represented by equations

A0z, 00, @) = (6], 0, AT, )
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(A.45)

(A.46)

(A.47)

(A.48)



(62, 6.,0) = 765, 6,,,0) (A.49)

We recall that vector equations (A.48) and (A.49) yield a system of only three independent
equations in four unknowns: 67,60} ,‘OC and ); setting parameters AT and « are considered as given;
6, and 6. are related with equation (A.28) and 6, is considered as a generalized parameter. Our
goal is to determine the function that relates angles of rotation of the cam and the cradle, ¢; and

*, and the parameters of settings a and AT, i.e. the function

F(62,6", AT,a) =0 (A.50)

q

Equality of Contact Normal-Satisfaction of Equation (A.49)

Equations (A.49), (A.33) and (A.46) yield

[L7:)A] = [L5m][A][Lop] (L] (A.51)

Then we obtain

[B][4] = [A]l] (A.52)

Here:
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cos( — 65) sin(6; - 67) O
[B) = [L} ) Lpm]l = | — sin(O; — 603) cos(6; - 6*) 0 (A.53)

0 0 1

cos(fy — 0.) —sin(fy —6:) O
[C) = [Lgp)[Lsc) = | sin(fg —6:) cos(f, —6;) O (A.54)

0 0 1

cosa sina 0
[A] = [Led) = L3yl = | —sina cosa O (A.55)

0 0 1

Matrices (A.52) are rotational matrices that describe rotation about axes of the same orienta-

tion. This means that we can change the order of co-factor matrices and

[Bl[A] = [C][A] (A.56)

This yields that
[C17*(B]4] = [4] (A.57)
[C]7*[B] = [1] (A.58)

where [I] is a unitary matrix and
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Equation (A.59) yields

since

E
E +r,

0 — 6 = —(6,—0.) = — 0,

Equality of Position Vectors-Satisfaction of Equation (A.48)

Equations (A.48), (A.31) and (A.38) yield

(M) 7 (M) (M) M| [MealFia = (M| Mo 1 M| (M) Mo ]

After transformations we obtain

Here:
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(A.60)

(A.61)

(A.62)

(A.63)




- -
a1 @12 0 ayg

az az 0 ag

Q=
0 0 1 0
0 0 0 1 |
| 011’ a;z 0 afy |
asz1 ans 0 034
[§] =
0 0 1 O
0 0 0 1

(A.64)

(A.65)

The rotational 3 X 3 submatrices of [Q] and [S] are equal due to the equality of contact normals

(see equation (A.52). The elements of [Q] and [S] are represented by

@11 = COS7 ay2 =sin7n az; = —aiz Qs = diq

where n = 67 — 67 + o , and

a1s = E[-sin(f; — 67) +sind;] , azq = E[- cos(f; — 67) + cos ]
ayy = —E[sin(6;, — a) — ATsina] , a3y = E[cos(f; — a) — AT cos o]
Matrix equation (A.62) yields the following system of two linear equations

ap(u—A)+aa—ajy =0 , ax(u—-A)+a—a5 =0
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(A.67)
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(A.69)



Eliminating (u — A), we obtain
((114 - 0;4)0,22 - (a24 - (154)0,11 =0 (A70)

Equations (A.70), (A.66), (A.67) and (A.68) results in

F(8;,60;,AT,a) = sin[%(% -6+ %Zsin((); —8) —sin(6; —a) —sina=0 (A.71)

Equation (A.71) represents in implicit form the displacement function for the cam mechanism
with settings o and AT. It is easy to be verified, that equation (A.71) with AT = 0,a = 0

represents the linear function ,

E+ry

Tu

0, = 6, (A.72)

For Gleason’s grinder, E is equal to 15 inch. According to Gleason’s practice, the sense of
rotation of the cradle and the cam is opposite to the assumption in the derivation in this report.
Without loss of generality, by substituting ; = —6} and 8} = -0} with E = 15 in equation (A.71)

we obtain the final expression of the relation between 6% and 6} as follows,

sin(f; + a) - sina + é157: sin(87 — 67) 4 sin %‘5-(0: -6)=0 (A.73)

91




5 Determination of Coefficients of the Taylor’s Series

The determination of the coefficients of the Taylor’s Series for generation motion with modified
roll is a lengthy process. Gleason provides its customers with computer program which can select
the cams with settings and analyze the effects of the modified roll. However Gleason’s program
is a black box with no explanation for the determination of the coeflicients of the Taylor’s Series.
Valuable contribution to the understanding of Gleason’s program has been made by C.Q. Zheng
[6]. For reader’s convenience, a series of derivations are represented in this section, which coincide
with the equations in [5] except some printing errors.

In the process of generation, the cam rotates at a constant angular velocity . Without loss of

*

generality, we assume that the cam rotates with unitary velocity, i.e. Tiiq— = 1. Using the procedure

discussed in section A.2, we differentiate equation (A.73) five time as follows,

wy cos(0r + a) + (w) — 1)[—?—?— cos(8 — 0*) + — cos {-—5 sin(f; — ;)] =0 (A.74)

az cos(8: + a) + (w2)?sin(6 + a)

T
+a2[ﬁ cos —(9* 03) + = A cos(O" - 63)]

~(wt ~ 1712 sim -(e* o)) + 9-5?- sin(6 - 67)] = 0 (A.75)

az cos(8} + @) — 3ax(w?)? sin(0F + ) — (w?) cos(8; + @)

Ty . AT
A+a3[1—5 cos (GC - 67) + 15

—3az(w) ~ 1)[( )2 n (0* -0+ — AT sm(9* ~ 07

Tu * AT
~(w _1) [ 15) COSE(&C _0(1)+ 15

cos(6; — 67)]

cos(; — 63)] =0 (A.76)
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aqcos(6; + @) ~ dagw} sin(6} + a) ~ 3aZsin(fr + )
—6(wy)?az cos(6 + a) + (wX)sin(6) + a)

—4daz(w} — 1)[(———)2 sin (9* 63) + % cos(f; - 67)]

15

AT
~3d2] '—)2 sin ( bz —03)+ — TE sin(6; - 67)]
r * * AT * *
+a4[ﬁ cos 15( 6;) + T3 cos(6; ~ ;)]
'u Ty * * éz * *
—6az(wy —1)? [(—1——5) cos—(@c 3) + I cos(6; — 67)]
(Wl — 1)4[(%)4 sin (0* - 07) + A;T sin(0; — 67)] = (A.77)

as cos(6; + a) - [10as(w3)? + 15a3uf — (u2)] con(f + )
~[5asw} + 10azas — 10ay(w?)®]sin(8 + a)
+as[% cos (67— 03) + 2 AT = cos(0; ~ )]

~Sag(w ~ D[22 sin (0* —03)+ = sin(0; - )]
~10ag(w? — 1P((32)" cos 2262 — 03) + 2 AT = cos(6] — 0;)]

~10a2a3[( )2 sin (0* —-07) + or sm(6* 63)]

15
~15a3(w} — 1)[(1—5)3 cos ——(0* 6;) + _AI—SI cos(6; — 67)]
+10az(w) — 1)3 I’g) sin ———(9* —-07) + éz sin(6; — 67)]
5y lu s * * AT * *
+(w; — 1)°[(==)° cos —-(9 -07)+ — cos(0 -67)1=0 (A.78)

15 15

At 07 = 67 = 0, we can determine w?, a, a3, a4, a5 from above expressions as follows,

. Tu + AT
¢ 7 15cosa +r, + AT

(A.79)
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_ 15sin o 2
9 = Tbcosa+ Py + AT (we) (4.80)

3 v AAY
3aawhsina + (w2)cosa + (w2 - 1)%(=25 + —
w = 158  ab (A.81)
CcOS & + r__u.i.g. .
15
2 4 2 e AT
Bag(w?)? cos a + [4azw? + 3a3 — (w2)!]sina + Baz(w) — 1) (153 + ——5—)
ag = o a + o + AT a (A.82)
15
as = L {[10a3(w?)? + 16ajw? — (w})°]cos
: cosa + Tut of aT ’ i i
15
+[baqw? + 10azas — 10az(w?)?] sin & + [10az(w} — 1)°
AT 3 AT
2 N\ - * 3 _u -
#1503 ~ DI + 58 ) - (uf ~ 1)°(3% + =)} (4.83)
Using equation (A.8) and (A.10) - (A.12), we obtain
1 15cos o
_ 1 X A.84
Ba w? 1+ru+AT (A.84)
20 = Roc — 1 tana (A.85)
Rac
( Rar)a 3
14 3(2C)tana + —fg—o;:(153 + AT)
6CX = lasges ; (A.86)
15 cos a
UDX = L {6(2C) cosa + [4(6CX) + 3(2C)? — Usina
cosa + -——1—5—'—
+6(2C)(1 ~ Rac)? {ga + ——)} (A.87)
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1

ry + AT {
15

+[5(24DX) + 10(2C)(6C X) — 10(2C)] sin a

S AT

w1

—(1 - Rao)® 15?5 + —-)} | _ (A.88)

120EX = [L0(6C X) + 15(2C)? — 1]cos

cos o +

+[10(6CX)(1 — Rac)? +15(2C)%(1 = Racl(

Knowing R,.,2C,6C X,24DX and 120EX, we can determine 6D,24F and 120F by equations

(A.13) - (A.15).

6 Selection of Cams and Cam Settings

In order to provide the desired low transmission errors and bearing contact, the ratio of roll Rop
and second ratio of roll (2c), which are determined by the local synthesis, must be applied for the

grinder. Due to the structure of Gleason’s grinder, the ratio of roll, R,y is related to R, as follows,

Rge = mimcRap (A89)

Here, R, is the transmission ratio between the cam and the cradle, as determined by equation
(A.84). m, is a fixed gear ratio and is equal to 1 in Gleason’s grinder; mn; is the gear ratio from the

workpiece to the cam and is determined as,

m; = — (A.QO)

3
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here, n is the number of teeth of the workpiece and n; is the index internal, i.e. the gear tooth
number skipped over in indexing.

From equation (A.80) and (A.89), we obtain

a= tan_l[(%)] (A.91)
15cos a
ry + AT = R 1 (A.92)

The cams and their pitch radii r, are tabulized. A cam with pitch radius closest to (7, + AT)
calculated by equation (A.92) should be selected. After the cam with pitch radius r, is selected

the corresponding setting, AT, can then be determined as:

15 cos &

AT:Rac-l

— 7y (A.93)

In some cases, it is also necessary to control 6CX. In order to satisfy R,.,2C and 6CX, the
value of n; can be used together with AT and a. Since n; must be an integral number it is difficult
to obtain an accurate solution. But by careful selection of cams and index interval n;, a practical
engineering solution is often achievable.

When the cam and its settings are selected, it is then necessary to determine the coefficients of
the Taylor’s Series of the generation motion and carry out the TCA to see how the higher order
coeflicients (i.e., 60,24 FE and 120F) affect the transmission errors and bearing contact. If the result

of TCA are satisfactory, then the gears can be ground by the selected cam and cam settings.
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Appendix B

Description of Program and Numerical Example

Input and Output of Program

The research project is complemented by a computer program, which can be used for the
determination of machine tool settings through the method of local synthesis and simulate the
transmission errors and bearing contact through TCA. The input data to the program include four
parts.

Part 1. Blank Data
TN1 : pinion number of teeth
TN2 : gear number of teeth
C : shaft offset ( zero for spiral bevel gear )

FW : width of gear

GAMMA : shaft angle

MCD : mean Cone distance
RGMAL : pinion root cone angle
B1 : pinion spiral angle

B2 : gear spiral angle

RGMA2 : gear root cone angle
FGMA2 : gear face cone angle

PGMA2 : gear pitch cone angle
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D2R : gear root cone apex beyond pitch apex
D2F : gear face cone apex beyond pitch apex
ADD2 : gear méan addendum

DED2 : gear mean dedendum

WD : whole depth

CC : clearance

DEL : elastic approach (experiment datum)

Part 2. Cutter Specifications

RU2 : gear nominal cutter radius
PW2 : point width of gear cutter

ALP2 : blade angle of gear cutter

Part 3. Parameters of Synthesis Condition

FI21 : derivative of transmission ratio, negative for gear convex side and positive for gear concave
side. The range is —0.008 < F'121 < 0.008 .

KD : percentage of the half long axes of contact ellipse over face width. KD = 0.15 - 0.20 .
ETAG : direction angle of contact path. For right hand gear, —80° < ETAG < 0° for gear convex
side and —80° < ETAG < 0° for gear concave side; For left hand gear, 0° < ETAG < 80° for
gear convex side and —80° < ETAG < 0 for gear concave side. When ETAG is close to zero, the
contact path is along the tooth height, when the magnitude is increased, the contact path will have
bias in and reach almost longitudinal direction if ETAG is close to 90 degrees.

GAMA1 : pinion machine root angle, whiéh is the same as the pinion root angle if no tilt is used.
RHO : radius of the arc blade if curved blade is used, which can be any values when curved blade
is not used.

C2 : second order ratio of roll if modified roll is used. C2 is zero without modified roll.
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ALP1 : pinion cutter blade angle. ALP1 is positive for gear convex side and negative for gear
concave side. ALP1 can be the same as ALP2. For better result, it is suggested for pinion concave
side the magnitude of ALP1 is smaller than ALP2 and for pinion convex side, the magnitude of
ALP1 is larger than ALP2.(As shown in the example).

TN1I : number of teeth skipped over indexing. TN1I is only used in modified roll, the ratio between

TN1I and TN1 must not be an integer.

Part 2. Control Codes
JCL : JCL control V and H check, JCL = 1 means no V-H check.
JCH : For right hand gear, set JCH = 1, for left hand gear set JOH = 2.
JCC : For straight blade, set JCC = 1, for curved blade set JCC = 2.

TL1, TL2 : Extra points on contact path, both should be less or equal than 2.

The program output includes: (1) the machine-tool settings for gear and pinion; (2) the trans-
mission error; (3) the contact path; (4) the length and orientation of the long axes of the contact
ellipse; and bearing contact at toe and heel position.

Numerical Example

The model used in this report is the spiral bevel drive with the shaft angle of 90 degrees. In
the numerical example, modified roll and curved blade for generation of gears were not used since
favorable results were attained without them. The list of the blank data and machine tool settings
are tabulized in the attached tables.

The TCA results with V-H check are shown through Fig. B.1 through Fig. B.6. The V and H
values shown in the figures are of 1'0166 inch. It is shown also that the transmission errors are very

small and the bearing contact is stable for both side at the three positions, toe, mean and heel.
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BLANK DATA

PINION GEAR
NUMBER OF TEETH: 11 41
PRESSURE ANGLE: 20°
SHAFT ANGLE: 90°
MEAN SPIRAL ANGLE: 35.0°
HAND OF SPIRAL: LF RH
OUTER CONE DISTANCE: 90.07
FACE WIDTH: 27.03
WHOLE DEPTH: 8.11 8.11
CLEARANCE: 0.81 0.81
ADDENDUNM: 5.24 2.061
DEDENDUM: 2.87 6.05
PITCH ANGLE: 15°1" 74°59'
ROOT ANGLE: 13°20' 70°39'
FACE ANGLE: 19°21" 76°40'

GEAR CUTTER SPECIFICATIONS

BLADE ANGLE: 20°
CUTTER DIAMETER: 152.40
POINT WIDTH: 2.79
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RADIAL SETTING(s):

CRADLE ANGLE(q):

MACHINE CENTER TO BACK(Xg):
SLIDING BASE(Xp):

RATIO OF ROLL(R.):

BLANK OFFSET(E ) :

MACHINE ROOT ANGLE (vp):

GEAR MACHINE TOOL SETTINGS

70.43577

62.3981°

0.00

0.00

1.032397

0.0

70.65°

PINION MACHINE TOOL SETTINGS

CUTTER BLADE ANGLE:

CUTTER POINT RADIUS:
RADIAL SETTING(s):

CRADLE ANGLE(q):

MACHINE CENTER TO BACK(Xs):
SLIDING BASE(Xp):

RATIO OF ROLL(R):

BLANK OFFSET(E_):

MACHINE ROOT ANGLE (yp):

CONVEX

21.5°
80.4876
71.55166
59.4638°
1.08497
-0.25021
3.898097
-2.56862 (Up)

13.3333¢
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CONCAVE

18.5°

71.7222
69.04316
64,0624°
-1.58960
0.36659
3.788604
2.19033 (Down)

13.3333°
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Fig. 2.1.3 Tilt of Pinion Head-Cutter
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Fig. 3.1.1 Gear Head-Cutter
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Fig. 5.2.1 Pinion Head-Cutters
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Fig. 6.3.1 Principal Directions of Pinion Head-Cutter Surface with
Circular Arc Blades
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Fig. 7.1.2 Gear-Pinion Misalignment
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Fig. A.3.1 Cam Profiles and Guides
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Transmission Error in Meshing Period
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Transmission Error in Meshing Period
Gear Concave Side - Heel
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THIS PROGRAM IS TO DERIVE THE MACHINE TOOL SETTINGS
FOR PINION GENERATION & TEST THE RESULTS

OO0

IMPLICIT REAL*8(A-H,0-2)
REAL*8 KS,KQ,K1I,K1II,K2I,K2I1,KFI,KFII,KD,KF,KH,mcd
REAL*8 M11,M12,M13,L11,L12,L13,L14,M21,M22,M23,121,1L22,L23,L24,

&N11,N12,N21,N22

real®8 xi(5),x(5),£(5)
EXTERNAL FCN1,FCN2,FCN,FCNM,FCNR, FCNMR
DIMENSION CH(3),P(3),E1EF(3),ESN(3),EQN(3),W1VT2(3),WV12(3),

SW2VT1(3) ,EFIH(3) ,EFIIH(3) ,RH(3) ,GNH(3) ,E2IH(3) ,E2IIH(3) ,PI12P(20),

&E1IH(3) ,ELIIH(3) ,EFI(3),EFII(3),E1I1(3),E11I(3),GN(3),EFEL(3),

&ERR (20) , xcp (20) ,yep (20) ,AX1(20) ,aX2(20) ,ANG1(20) , ANG2 (20)
COMMON/A1/CNST,TN1,TN2,C,FW,GAMMA,x1,rl,med
COMMON/A2/B1,RGMAl,FGMALl, PGMAL,DIR,D1F,ADD1,DED]
COMMON/A3/B2,RGMA2, FGMA2, PGMA2,D2R, D2F, ADD2 ,DED2, WD, CC, D2P
COMMON/A4/SR2,Q2,RC2,PW2,XB2,XG2,EM2,GaMA2,CR2,ALP2,PHI2,PHI2P
COMMON/A5/SG, XM, YM, ZM, XNM, YNM, ZNM, X2M, Y2M,Z2M, XN2M, YN2M, ZN2N,

&XNH2, YNH2, ZNH2,XH2, YH2,ZH2
COMMON/A6/ES (3) ,EQ(3),CN(3),W1(3),W2(3),w12(3),vT1(3),v12(3),

$v1i2(3),KS,KQ,KF,KH,EF(3) ,EH(3),SIGSF,PI21
COMMON/A7/SR1,Q1,RcE,PW1,XB1,%G1,EM1,GaMALl,CR]1,ALP1,PHIL,PHILP
COMMON/A8/SE,XM1,YM1,ZM1, XNM1, YNM1, ZNM1, X1M,YIM, Z1N,

&XN1M, YN1M, ZN1M,XNH1,YNH1,ZNH1,XH1, YH1,ZH]
COMMON/A9/PHI2P0,0X,0Z,%0,20,RH0,ALP,V,H,CRIT,PCR1T
COMMON/A10/K11,K1II,K21,K2I1,DEL,E1IH,E1IIH,E2IH,E21IH, GNH,

&A2P ,B2P,TAUIR, TAU2R,A2L,B2L
COMMON/A11/RAM,PSI1,C2,D6,E24,F120,CX6,DX24,EX120,RUL,DELT,RUP,

SRAl,CPF,DPF,EPF,FPF
CNST=DARCOS (-1.0D00) /180.0D00

C
C..
C.. INPUT THE CONTROL CODES
C..
c
c IF V AND H CHECK IS NOT DESIRED, SET JCN = 1
C DO NOT SET JCN TO BE 3
C
JCL=2
c
C.. FOR RIGHT HAND GEAR JCH=1, FOR LEFT HAND GEAR JCH =2
C
JCH=1
C
C.. FOR STRAIGHT BLADE JCC=1, FOR CURVED BLADE JCC=2
c
Jcc=1
C
Cc TL1 AND TL2 ARE NUMBER OF EXTRA POINT ON CONTACT PATH
c WHICH SHOULD NOT BE LARGER THAN 2
c
TL1=1.0
TL2=1.0
C...
cC.. INPUT BLANK DATA OF GEAR AND PINION
C..
TN1=11.0
TN2=41.0
Cc=0.0
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1990

FW=27.03
GAMMA=90,0*CNST
MCD=76.56
RGMA1=13.3333*CNST
B1=35,0*CNST
B2=35.0%CNST
RGMA2=70.6500*CNST
FGMA2=76.6667*CNST
PGMA2=74,9833%CNST
D2R= 0.0

D2F=0.0

ADD2=2.06
DED2=6.05

WD= 8.11

CC=0.81
DEL=0.00025%25.4

INPUT NORMINAL RADIUS OF GEAR CUTTER AND POINT WIDTH, BLADE ANGLE

RU2=152.4000/2.0
PW2=2.79
ALP2=20.0%CNST
DC2=2.0%RU2

INPUT THE SYNTHESIS CONDITION PARAMETERS AND PINION CUTTER BLADE
ANGLE, ALP1(FOR GEAR CONVEX, ALP1>0, FOR GEAR CONCAVE ALP1<0)

#EE GEAR CONVEX SIDE

F121=-0.0008
KD=0.180
ETAG=-65.0*CNST
GAMA1=13,3333*CNST
RHO= 250.0

c2= 0.00
ALP1=18.500%CNST
TN11I=8.0

SGN=DSIN(ALP1) /DABS (DSIN(ALP1))
KSIDE=0

GOTO 1989
%*%%% GEAR CONCAVE SIDE

CONTINUE

FI21= 0.0008
KD=0.180

ETAG= 65,0%CNST
GAMA1=13.3333*CNST
RHO= 200.0

C2= 0.00
ALP1=-21.50%CNST
TN1I=8.0

SGN=DSIN(ALP1) /DABS (DSIN(ALP1))
KSIDE=1
jel=2
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INPUT GEAR MACHINE TOOL SETTINGS

1989 Q2= 52.6589*CNST
SR2=3.8872%25.4
XG2=0.0
XB2=-0.0333%25.4
CR2=.9772974
RAG=1,0/CR2
GAMA2=RGMA2

EM2=0.0
RC2=RU2-SGN*PW2/2.0
ALP2= SGN¥*ALP2

CALCULATE GEAR MACHINE TOOL SETTINGS

A0 00 000 o0 000 OO0

1989 hg=mcd*dcos (pgma2-rgma2)-ru2*dsin(b2)
vg=ru2®*dcos (b2)
g2=datan(vg/hg)
s r2=dsqrt (hg*’"Z*‘Vg"""Z)
xg2=0.0
GAMA2=RGMA2
xb2=d2r*dsin(gama2)
EM2=0.0
rag=dcos (pgma2-rgma2) /dsin (pgma2)
er2=1.0/rag
RC2=RU2-SGN*PW2/2.0
ALP2= SGN*ALP2

(@)

DELT IS THE CAM SETING

DELT=0.0

DEFINE THE MEAN CONTACT POINT

loNeXe]

v=0.000

H=0.000

FA=FGMA2-PGMA2

RA=PGMA2-RGMA2
HM=CC+WD-0.5%FW* (DTAN (FA) +DTAN (RA) )
DED2R=DED2-0.5*FW*DTAN (RA)

XL=MCD*DCOS (PGMA2) + (DED2R-HM/2.0) *DSIN (PGMA2)
RL=MCD*DSIN (PGMA2) - (DED2R~HM/2.0) *DCOS (PGMA2)

AGL=DATAN (RL/XL)

0X=—DSQRT (XL**2+RL**2) *DCOS (AGL-RGMA2)
0Y=—-D2R*DSIN (RGMA2)

WRITE(9,11) 0X,0Y,XL,RL

FIND SURFACE COORDINATES OF THE MEAN CONTACT POINT

oNesEesEe e N!

ERRREL=0.1D-10

N=2

ITMAX=200

IF (JCH.EQ.1) THEN
Q2=-Q2
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12

XI(1)=270.0%CNST+B2

ELSE

XI(1)=B2

END IF

X1(2)=0.0

CALL DNEQNF (FCN1,ERRREL,N, ITMAX,XI, X, FNORM)
TH=X (1)

PH=X(2)

ST=DSIN (TH)

CT=DCOS (TH)

SH=DSIN (PH)

CS=DCOS (PH)

SP=DSIN (ALP2)

CP=DCOS (ALP2)

SM=DSIN (GAMA2)

CM=DCOS (GAMA2)

THIG=TH

WRITE(9,11) Xn2M,Yn2M,Zn2M,ZNM, YNM, ZNM
WRITE(9,11) XM,YM,ZM,sg,hm

DEFINE VECTORS TO COMPUTER THE SECOND ORDER PROPERTY OF GEAR

ES (1) =-DSIN(TH-PH)
ES(2)= DCOS (TH-PH)
ES(3)= 0.0

EQ (1) =-SP*DCOS (TH-PH)
EQ(2)=-SP*DSIN (TH-PH)

EQ(3)=-CP
CN(1)=XNM
CN(2)=YNM
CN(3)=ZNM
KS=CP/ (RC2-SG*SP)
KQ=0.0
W1l(1)=-CM
W1(2)= 0.0
W1(3)=-SM
W2(1)= 0.0
Ww2(2)= 0.0
W2 (3)=-CR2

VT1(1)= YM*SM+EM2*SM
VT1(2)=—XM*SM+ (ZM-XB2) *CM
VT1(3)=—-YM*CM-EM2*CM
VT2(1)= YM*CR2

VT2 (2)==XM*CR2

vT2(3)= 0.0

DO 10 I=1,3
W12(D)=Ww1(I)-W2(1)
v12(I)=vT1(I)-vT2(1)
CONTINUE

FIND THE PRINCIPAL DIRECTION AND CURVATURES AT MEAN POINT

PI21=0.0

CALL CURvAl

WRITE(9,12) KF,KH,SIGSF
FORMAT (3X,3(G14.7,2X))
K2I=KF

K211=KH§

PHI2=PH/CR2

sh2=dsin (phi2)
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ch2=dcos (phi2)

xX= CM¥ef (1) +SM*ef(3)
yY= ef(2)
zZ=-SM¥*ef (1) +CH*ef (3)
ef (1)=xx

ef (2)= CH2*yY-SH2*22Z
ef (3)= SH2*yY+CH2%zZ
WRITE(9,11) xx,yy,zz

xX= CM™eh (1) +SM*eh(3)

yY= eh(2)
zZ=-SM*eh (1) +CM*eh (3)

eh (1) =xx

eh(2)= CHZ*yY’SHZ*ZZ

eh(3)= SH2*yY+CH2%z2Z
WRITE(9,11) E£(1),Ef(2),Ef(3)
WRITE(9,11) Eh(1),En(2),EhR{(3)

ERRREL=0.1D-10

N=1

ITMAX=200

XI(1)=0.0

CALL DNEQNF (FCN2,ERRREL,N, ITMAX,XI,X,FNORM)
PHI2PO=X (1)

WRITE(9,11) X(1)

WRITE(9,11) XH2,YH2,ZH2

WRITE(9,11) XNH2,YNH2,ZNH2

CHP=DCOS (X (1))
SHP=DSIN(X(1))

CMM=DCOS (GAMMA)
SMM=DSIN (GAMMA)

XX= ef (1)

YY=-ef (2) *CHP+ef (3) *shp
ZZ=-¢f (2) *SHP-ef (3) *chp
EF(1)= XX*CMM+ZZ*SMM
ef(2)= YY

EF (3) =—XX*SMM+ZZ*CMM

XX= eh(1)

YY=—eh (2) *CHP+eh (3) *shp
ZZ=-eh(2) *SHP~eh (3) *chp
EH(1)= XX*CMM+ZZ*SMM

eh(2)= YY

EH(3) =—XX*SMM+ZZ*CMM
WRITE(9,11) EF(1),EF(2),EF(3)
WRITE(9,11) EH(1),EH(2),EH(3)
ETAG=90.0*CNST+SIGSF+ETAG

LOCAL SYNTHESIS AT MEAN CONTACT POINT

RH(1)=XH2
RH(2)=YH2
RH (3)=zH2
GNH (1) =XNH2
GNH (2) =YNH2
GNH (3) =ZNH2
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E21H(1)= EF(1)
E2IH(2)= EF(2)
E2IH(3)= EF(3)
E2ITIH(1)= EH(D)
E2ITH(2)= EH(2)
E2ITH(3)= EH(3)
K2I=KF

K2I1I=KH

RELATIVE MOTION PARAMETERS IN GEAR & PINION MESHING PROCESS

R12=TN1/TN2
W1(1)=-1.0D00
W1(2)=0.0D00
W1(3)=0.0D00

W2(1)= R12*CMM
W2(2)=0.0D00

W2 (3)=-R12%*SMM

W12 (1)=W1(1)-W2(1)

W12 (2)=W1(2)-W2(2)

W12 (3)=W1{(3)-w2(3)
VT1(1)= 0.0D00

VT1(2)= ZH2

VT1(3)=-YH2

VT2 (1)= R12*(YH2-C) *SMM
VT2 (2)=-R12% (XH2*SMM+ZH2*CMM)
VT2(3)= R12%(YH2-C) *CMM
Vi2(1)= vT1(1)-vT2(1)
V12(2)= VT1(2)-vT2(2)
vi2(3)= vT1(3)-vT2(3)
WRITE(9,3) v12(1),vi2(2),vi2(3)
FORMAT (5X,3G14.7,/)

CALCULATE THE COEFFICIENT Al3,A23,A33

ESN(1)= GNH(2)*E2IH(3)-GNH(3) *E2IH(2)
ESN(2)=-(GNH (1) *E2IH(3)~GNH(3) *E21H (1))
ESN(3)= GNH(1)*E2IH(2)-GNH(2) *E2IH (1)

EQN(1)= GNH(2)*E2IIH(3)-GNH(3)*E2IIH(2)
EQN (2)=-(GNH (1) *E2IIH(3)-GNH(3) *E2I1IH (1))
EQN(3)= GNH(1)*E21IH(2)-GNH(2)*E2IIH(1)

WIVT2(1)= W1 (2)*VT2(3)-W1(3)*VT2(2)
WIVT2(2)=—(W1 (1) *VT2(A)-W1(3) *vT2(1))
WIVT2(3)= W1(1)*VT2(2)-W1(2)*vT2(1)

W2VT1(1)= W2(2)*VT1(3)-W2(3)*VT1(2)
W2VT1(2)=—- (W2 (1) *VvT1(3)-W2(3)*vTi(1))
W2VT1(3)= W2 (1)*VT1(2)-W2(2)*vT1(1)

W12 ()= W12(2)*v12(3)-H12(3)*v12(2)
WV12(2)=-(W12(1)*v12(3)-W12(3)*v1i2(1))
WV12(3)= W12(1)*V12(2)-W12(2)*v12(1)

v128=0.0D00
v12Q=0.0D00
WNES=0.0D00
WNEQ=0.0D00
VWN= 0.0D00
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W1TN=0.0D00
W2TN=0.0D00
VT2N=0.0D00

Do 1 I=1,3

V128= V12(I)*E2IH(I)+V12S
V12Q= v12(I)*E2IIH(I)+V12Q
WNES= W12 (1) *ESN(I)+WNES
WNEQ= W12 (I)*EQN (I)+WNEQ
VWN =GNH (I)*WV12(I)+VWN
WITN=GNH (I) *W1VT2 (I)+W1TIN
W2TN=GNH (I) *W2VT1 (I) +W2TN
VI2N= GNH(I)*VT2(I)+VT2N
CONTINUE

WRITE(9,6) Vv12S,v12Q
FORMAT (5X,2G14.7,/)

COMPUTER THE COEFFICIENTS Al13,A23,A33

B13=-K2I*V12S~WNES
B23=-K2II*V12Q-WNEQ
B33=K2I*V12S**2+K2II*VI2Q**2-VWN-WITN+W2TN+VT2N*FI21*TN2/TN1

LOCAL SYNTHESIS OF MESHING AT MEAN CONTACT POINT

DL=KD*FW

SIGK2= K2I+K2II

SIGG2= K2I-K211

A=DEL/DL**2

T1=-B13%V12Q+ (B33+B13%V12S) *DTAN (ETAG)
T2=B33+B23%(V120Q-V12S*DTAN(ETAG))

ETAP=DATAN(T1/T2)

VSl =B33/(B13+B23*DTAN(ETAP))

AM1=DSIN (ETAP) *%2

AM2=-DSIN(2.0DQOO*ETAP) /2.0D00O
AN1=(B13-B23*DTAN(ETAP))/ ((1.0DOO+DTAN (ETAP) *%2) *VS1)
AN2=(B13*DTAN (ETAP) +B23) / ((1.0DOO+DTAN (ETAP) **2) *VS1)
SGN=DSIN (ALP1) /DABS(DSIN(ALP1))

A=A*SGN

SIGK=(4.0D00*A**2- (AN1*%2+AN2%%2)) / ( 2.0D00%*A— (AN1*DCOS (2.0D00*
&ETAP) +AN2*DSIN(2.0DOO*ETAP) })

SIGKl= SIGK2-SIGK

T1= 2.0D00*AN2-SIGK*DSIN(2.0DO0O*ETAP)
T2=SI1GG2-2.0D00*AN1+SIGK*DCOS (2.0DO0O*ETAP)
SIG12=.50D00*DATAN(T1/T2) )
SIGG1=(2.0D00*AN2~-SIGK*DSIN (2.0DOO*ETAP)) /DSIN(2.0D00*SI1G12)
K1I=(SIGK1+SIGG1)/2.0D00

K11I1=(SIGK1-SIGG1)/2.0D0O0

WRITE(9,11) ETAP,K1I,K1II
WRITE(9,11) SIGK,SIGl12,SIGK1,SIGG1
WRITE(9,8) T1,T2

FORMAT (5X,3G14.7)

PRINCIPLE DIRECTIONS OF PINION SURFACE AT POINT M
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DO 15 1=1,3

EI1IH(I)= DCOS(SIG12)*E2IH(I)~DSIN(SIG12)*E2IIH(I)
E1ITH(I)= DSIN(SIG12)*E2IH(I)+DCOS(SIG12)*E2TIH(I)
CONTINUE

WRITE(9,11) E1IH(1),E1IH(2),E1IH(3)

WRITE(9,11) E1IIH(1),E1I11H(2),E1IIH(3)

COINCIDE THE NORMALS OF CUTTER AND THE PINION SURFACES

SM1=DSIN (GAMAL)
CM1=DCOS (GAMAL)
SP=DSIN(ALP1)
CP=DCOS (ALP1)
1=- (XNH2+SP*SM1)
T2= CP*CM1
IF (JCH.EQ.1) THEN
THF=DARCOS (T1/T2)
ELSE
THF=DARCOS (T1/T2)
THF=360.0*CNST-THF
END IF
BAl=-CP*DSIN (THF)
BA2= CP*DSIN(GAMAL) *DCOS (THF) ~SP*DCOS (GAMAL)
TT=- (YNH2**2+ZNH2%*%*2)
CSH=- (BAl*YNH2+BA2*INH2) /1T
SNH=(BA2*YNH2~BA1*ZNH2) /TT
PHIH=2.0*DATAN2 (SNH, (1.0D00+CSH))
WRITE(9,8) THF,PHIH

FIND THE PRINCIPAL DIRECTIONS OF PINION GENERATING SURFACE

EFI(1)=-DSIN(THF)

EFI(2)= DCOS (THF)

EFI(3)= 0.0D0O

EFII(1)= SP*DCOS (THF)

EFII(2)= SP*DSIN(THF)

EFI1(3)=~CP

WRITE(9,11) EFI(1),EFI(2),EFI(3)
WRITE(9,11) EFII(1),EFII(2),EFII(3)

FIND THE PINION PRINCIPAL DIRECTIONS IN SYSTEM SMI1

X%= E1IH(1)

YY= DCOS (PHIH) *E1IH(2) +DSIN (PHIH) *E1IH(3)
ZZ=-DSIN(PHIH) *E1IH(2)+DCOS (PHIH) *E1IH(3)
E1I(1)= CML*XX-SM1*ZZ

E11(2)= YY

E1I(3)= SM1*XX+CM1*zZ

XX= E1IIH(1)

YY= DCOS (PHIH) *E1IIH(2)+DSIN(PHIH) *E1IIH(3)
2Z=-DSIN (PHIH) *E1IIH(2)+DCOS (PHIH)* ElIIH(S)
EITI(1)= CM1*XX-SM1%*ZZ

E111(2)= YY

E1TI(3)= SM1*XX+CM1%*2Z

FIND THE UNIT NORNMAL IN SYSTEM SM1

XX= XNH2
YY= DCOS (PHIH) *YNH2+DSIN (PHIH) *ZNH2
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ZZ=-DSIN (PHIH) *YNH2+DCOS (PHIH) *ZNH2
GN(1)= CM1*XX-SM1*ZZ

GN(2)= YY

GN(3)= SMI*XX+CM1*ZZ

EXPRESS THE POSITION VECTOR IN SM1

XX= XH2

YY= DCOS (PHIH) *YH2+DSIN (PHIH) *ZH2
Z2=-DSIN (PHIH) *YH2+DCOS (PHIH) *ZH2
RX= CM1*XX-SM1*ZZ

RY= YY

RZ= SMI*XX+CM1*ZZ

XX=-CP*DCOS (THF)

YY=-CP*DSIN (THF)

2Z=-SP

WRITE(9,11) E1I(1),E1I(2),E11(3)
WRITE(9,11) E1II(1),E11I(2),E111(3)
WRITE(9,11) GN(1),GN(2),GN(3)
WRITE(9,11) XX,YY,ZZ

WRITE(9,11) RX,RY,RZ

DO 20 I=1,3
XX=-EFI (1)
EFI(I)= EFII(I)
EFII(I)=XX
CONTINUE

WRITE(9,11) E1I(1),E11(2),E11(3)
WRITE(9,11) EI11I(1),E1II(2),E11I(3)

FIND THE ANGLE FORMED BETWEEN PRINCIPAL CURVATURES

EFE1(1)= EFI(2)*E1I(3)-EFI(3)*E11(2)
EFE1(2)=-EFI(1)*EL1I(3)+EFI(3)*E11 (1)
EFE1(3)= EFI(1)*E1I(2)-EFI(2)*EL1I(1)
T1=0.0D0O0O

T2=0.0D00

DO 30 I=1,3

T2=EFI(I)*E1I(I)+T2

T1=GN(I) *EFE1(I)+T1

CONTINUE

SIGF1=2.0%*DATAN2(T1,1.0+T2)

FIND THE CURVATURE OF PINION GENERATION SURFACE AT MEAN POINT

IF (JCC.EQ.1) THEN

KFI=0.0

B12=0.5D00* (K1I-K1II)*DSIN(-2.0D00*SIGF1)
B11=KFI~K1I*DCOS (SIGF1) **2-K1II*DSIN(SIGF1)**2
TKK= K1I*DSIN(SIGF1)**2+K1II*DCOS (SIGF1)**2
KFII=(B12**2+B11*TKK)/Bll

WRITE(9,11) SIGF1,KFII

FIND THE CUTTER POINT RADIUS AND ITS CENTER
SF=SG*DCOS (ALP2) /DCOS (ALP1)
SF=DABS (RZ) /DCOS (ALP1)

RCF=CP/DABS (KFII)~-SF*SP
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40

Cc777

QOO0

OO0 0n

.

DO 40 I=1,3

P(I)= GN(I)*CP-EFI(I)*SP

CONTINUE

RCX= RX-SF*EFI (1)+RCF*P (1)

RCY= RY-SF*EFI (2)+RCF*P(2)

RC2= RZ-SF*EFI(3)+RCF*P(3)

WRITE(9,11) RCF,SF

WRITE(9,11) RCX,RCY,RCZ

ELSE

KFI=1.0/RHO

B12=0.5D00* (K1I-K1I1)*DSIN(-2.0DOO*SIGF1)
B11=KFI~-K1I*DCOS (SIGF1) **2~K1II*DSIN(SIGF1) **2
TKK= K1I*DSIN(SIGF1)**2+K1II*DCOS(SIGF1)**2
KFII=(B12**2+B11*TKK) /B11

WRITE(9,11) SIGF1,KFII

DBT=-RZ

RM=CP/DABS (KFII)

Z20=- (DBT+RHO*SP)

X0=RM-RHO*CP
RCF=X0+RHO*DSQRT (1.0~ (ZO/RHO) **2)
RCX=RHO*GN (1) ~X0*DCOS (THF) +RX
RCY=RHO¥*GN (2) -XO*DSIN (THF) +RY
RCZ=RHO*GN (3) -Z0O+RZ

WRITE(9,777) X0,20

FORMAT (3X,' X0, X0 =',2(2X,G14.7))
WRITE(9,11) RCF,RM,DBT

WRITE(9,11) RCX,RCY,RCZ

END IF

THE FOLLOWING IS TO FIND THE CUTTING RATIO

CSM1=CM1
SNM1=5M1
T1X=EFI (1)
T1Y=EFI(2)
T1Z=EFI{(3)
T2X=EFII (1)
T2Y=EFII(2)
T2Z=EFII(3)
XN=GN (1)
YN=GN(2)
ZN=GN(3)
RXC=RX
RYC=RY
RZC=RZ

WRITE(9,11) RCX,RCY,RCZ
WRITE(9,11) T1X,Tl1Y,TiZ
WRITE(9,11) T2X,T2Y,T2Z
WRITE(9,11) XN,YN,ZN

WRITE(9,11) RXC,RYC,RZC

THE FOLLOWING IS TO DETERMINE DELTA,EM,AND IFM

M11=XN*T1Y-YN*T1X
M12=~CSM1* (YN*T1Z-ZN*T1Y)
M21=XN*T2Y-YN*T2X
M22=-CSM1¥* (YN*T2Z-ZN*T2Y)
WRITE(9,11) M11,M12,M21,M22
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L11=(B12/B11*M11-M21) /KFII
L12=(B12/B11*M12~-M22) /KFII

L21=-T2Z/T12*L11

L22=-T2Z/T1Z*L12-RYC*CSM1/T1Z
DTT=B12*KFI*T2Z+B11*KFII*T1Z
L11=-T1Z*(B11*M21-B12*M11)/DTT
L12=(-B12*KFI*RYC*CSM1-T1Z2*(B11*M22-B12*M12))/DTT
L21=T2Z2%(B11*M21-B12*M11) /DTT
L22=(~-Bl11*KFII*RYC*CSM1+T22* (B11*M22~-B12%*M12)) /DTT
C WRITE(9,11) L11,L12,L21,L22

X11=L21*T1X+L11%T2X

X12=L22*T1X+L12%T2X

X21=L21*T1Y+L11*T2Y

X22=L22*T1Y+L12%T2Y

X31=L21*T1Z+L11%T2Z

X32=L22*T12+L12*T2Z

El11=YN*X11-XN*X21
E12=YN¥*X12~XN*X22-ZN*X21*CSM1+YN*X31*CSM1
E13=-(ZN*X22-YN*X32) *CSM1

Y11=—XN* (RXC*SNM1-RZC*CSM1) -~YN*RYC*SNM1
Y12=Y11%*SNM1

X13=X12-RYC*SNM1

X23=X22+RXC*SNM1-RZC*CSM1

X33=X32+RYC*CSM1

¥21=—XN*X21*SNM1+ZN*%X21*CSM1+YN® (X11*SNM1-X31*CSM1)
Y22=-XN*X23%SNM1+YN* (SNM1*X13-CSM1*X33) +ZN*X23*CSM1

aOOO0O0O0

OO0

THE EFFECT OF SECOND ORDER RATIO OF ROLL ON A33
TM1=XN*X11+YN*X21+ZN*X31
TM2=XN*X13+YN*X23+ZN*X33

C WRITE(9,163) TM1,TM2

C163 TFORMAT(2X,'TM1,TM2 ',2(2X,G14.7))

ZZ1=C2*TM1

Z22=C2* (TM2+SNM1*TM1)

ZZ3=C2*SNM1*TM2

Z1=KFII*L11%%2-E1l
Z2=2 _ 0DOO*KFII*L11*L12-E12-Y21+Y1l
Z3=KFII*L12%*2-E13-Y22+Y12
Z1=RFI®L21**2+KFII*L11%%2~E11+2Z1
22=2.0*KFI*L21*L22+2,0D00®KFII*L11%L12~-E12-Y21+Y11+Z2Z2
Z3=RFI*L22%*2+4KFII*L12%%2~E13-Y22+Y12+2Z3
N11=KFII*L11+M21
N12=KFII*L12+M22
N21=KFI*L21+M1l
N22=KFI®L22+M12
C WRITE(9,11) B12,21,M11,N11

AA=B12%Z1-N21*N11

BB=B12%Z2-N21*N12-N22*N11

CCC=B12%*23-N22*N12
C WRITE (9,11) AA,BB,CCC

IF (AA.GT.0.000001) GOTO 1949

T1=-CCC/BB

GOTO 1950

1949 T1=(-BB+DSQRT (BB**2-4.0D00*AA*CCC)) /(2.0D00%AA)
1950 FM1=T1+SNMI

aaOoOn
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CR1=FM1
RAP=1.0/CR1
VF3=X31*T1+X32+RYC*CSM1

THE DETERMINATION OF EM AND DELTA

OO 00

EM1=(X11*T1+RYC*FM1+X13) /FM1
XG1=(X21*T1-RXC*FM1+X23) / (FM1*CSM1)

RCX=RCX+XG1*CSM1
RCY=RCY-EM1
RCZ=RCZ+XG1*SNM1

V1=RCY

H1=RCX

XB1=RCZz

SR1=DSQRT (V1**2+H1%%2)
Ql=-DARSIN(V1/SR1)
XB1l=-XB1

. DETERMINE THE CAM SETTING

anoon

RAl=1.0/CR1

RAM=TN1/TN1I*RAl

PSI1=DATAN (C2*RAM/ (RAM-1.0))
RUP=15.0*DCOS(PSI1)/{(RAM-1.0)
RU1=RUP

DELT=0.0

[eNe!

CALL CaX
WRITE(9,191) RUP

WRITE(9,191) RU1

191 FORMAT(2X,'RUl DELT = ',2(2X,G14.7))
WRITE(9,199) RA1l,C2,D6,E24,F120
WRITE(9,199) RAl,CPF,DPF,EPF,FPF

199 FORMAT (2X, 'CAM',2X,5(2X,G14.7))

WRITE(9,25) FM1

25 FORMAT(5X,' FMl = ',Gl4,7)
WRITE(9,44) EM1,SR1,Ql

44  FORMAT (2X, 'EM1,SR1,Q1',3(3X,G14.7))
WRITE(9,45) XG1,XB1,V1,Hl

45  FORMAT(2X,'XGl1,XB1,v1,H1',4(2X,G14.7))

o000 0nn

IF (KSIDE.EQ.0.0) THEN
WRITE(9,131)

131 FORMAT (/ZX, 13 ededededededede el s s s e e v e S S de e e de e e e s e e st sk o ,/
S 2X,1'7 OUTPUT FOR GEAR CONVEX SIDE w0/
& ZX 1 Yoo 131314 o s de v ot de dle gl e e vt S v s e e e e de ek 0 R /)
ELSE
WRITE(9,331)
331 FORMAT (/ZX ¥ dfedtedle e v e vl v e de v e e e e v e de e dle e s st ok dle e s s v s de e e el dte e e , /
s 2X, "7 OUTPUT FOR GEAR CONCAVE SIDE wr o/
& 2X ¥ Jedfe s e s dede dedess Yo s de ¥ e e o sl e de e e Yoottt , /)
END IF
WRITE(9,13)
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13 FORMAT(/2X [ e de v sk v ******************************',/
$ 2X,'*  GEAR CUTTER SPICIFICATIONS * L/
& ZX,'*****************************************',/)
WRITE(9,115) DC2,PW2,ALP2

115 FORMAT(/2X,' GEAR CUTTER DIAMETER : Dc2 =' ,Gl4.7,/

S ‘ 2X,' CUTTER POINT WIDTH : PW =' ,Gl4.7,/
& 2X,' CUTTER BLADE ANGLE : PHI2 =' ,Gl14.7,//)
WRITE(9,3)
3 FORMAT(/ZX bfedesese v vt c%*******************************l,/
$ 2%,'*  BASIC GEAR MACHINE-TOOL SETTINGS *t,/
& ZX, b devesesre sy e vt s st s Yo e v v e s de s e st sl e de v sl e e e e s sk sty /)
WRITE(9,4) QZ,SR2,XGZ,XBZ,EMZ,GAMAZ,RAG
4 FORMAT(/2X,' BASIC CRADLE ANGLE : Q2 =' ,Gl14.7,/
& 2X,' RADIAL SETTING : SR2 =' ,G14.7,/
# 2X,' MACHINE CENTER TO BACK : XG2 =' ,Gl4.7,/
# 2X,' SLIDING BASE : XB2 =' ,Gl4.7,/
S 2X,' BLANK OFFSET : EM2 =' ,G14.7,/
# 2X,' MACHINE ROOT ANGLE :  GAMA2 =' ,Gl4.7,/
# 2X,' RATIO OF ROLL : RAG =' ,G14.7,//)
WRITE(9,6)
6 FORMAT(//ZX’l**i**************“************* dedeseskdede ck”/
2%, '" BASIC PINION MACHINE TOOL SETTINGS “',/
& 2X L 't 3 e Yo e St e v Yo s s e e s e st s e e dede s e de s de e s s e ,/)
WRITE(9,7) ALPl, RCF, Q1,SR1,XGl,XB1l,EMI, GAMAl RAP
7 FORMAT(/2X,' BLADE ANGLE : ALP1 G14.7,/
& 2X,' POINT RADIUS : RCF =' ,G14.7,/
& 2X,"' BASIC CRADLE ANGLE : QL =' ,614.7,/
S 2X,' RADIAL SETTING : SR1I =' ,Gl4.7,/
& 2X,' MACHINE CENTER TO BACK : XGl =' ,Gl4.7,/
S 2X,' SLIDING BASE : XBl =' ,Gl4.7,/
& 2X,' BLANK OFFSET : EM1l =' ,Gl4.7,/
$ 2X,' MACHINE ROOT ANGLE : GAMALl =' ,G14.7,/
& 2X,' RATIO OF ROLL : RAP =' ,Gl14.7,//)
IF (JCC.EQ.2) THEN
WRITE(9,61)
61 FORMAT (//ZX 1 esedesed Jeut o so3 o 3 Yot eotdeide Yot ,/
& 2%, '%  COORDINATES OF THE CENTER OF THE ARC */
& ZX L ¢ 3% Yo e de ST e s et e S vt v e e dededede e \*',/)
WRITE(9,71) X0,20
71  FORMAT(/2X,' RADIAL COORDINATE : X0 =' ,G14.7,/
& 2X,' AXIAL COORDINATE : 20 =' ,Gl4.7,//)
ELSE
GOTO 1919
END IF
1919 CONTINUE
WRITE (9, 16)
16 FORMAT (//ZX * e st ve e de s s e S e s S s e s s e s el S v e e e st dede e e o . /
& 2X, " CAM SETTINGS AND COEFFICIENTS OF TAYLOR SERIES*' /
& zx 1 fededede ek dededede e e e e dede Yo ve Yo e v v st s de S v sl e e e e e e e s v et /)
WRITE(9,17) PSIl, RUP, DELT, RA1l,C2,D6,E24,F120
17 FORMAT(/2X,' GUIDE ANGLE : ’ PSI1 =' ,Gl4.7,/
& 2X,' CAM PITCH RADIUS : RUP =' ,Gl4.7,/
& 2X,' CAM SETTING : DELT =' ,Gl14.7,/
& 2X,' 1ST ORDER COEFFICIENT : RAl =' ,Gl4.7,/
& 2X,' 2ND ORDER COEFFICIENT : c2 =' ,G14.7,/
& 2X,' 3RD ORDER COEFFICIENT : D6 =' ,Gl4.7,/
& 2X,' 4TH ORDER COEFFICIENT : E24 =' ,G14.7,/
& 2%,' 5TH ORDER COEFFICIENT : F120 =' ,G14.,7,//)

o
C... CALL TCA
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DEFINE THE INITIAL POINT

OO0

XI(1)=THIG
XI(2)= 0.000000
XI(3)=THF
X1(4)=0.0
X1(5)= 0.00

+. FIND THE INITIAL CONTACT POINT

aan

5555 N=5
ERRREL=0. 1D~10
ITMAX=200
PHI2P=PHI2PO
IF (JCC.EQ.1l) THEN
CALL DNEQNF (FCN,ERRREL,N, ITMAX,XI,X,FNORM)
ELSE
CALL DNEQNF (FCNR,ERRREL,N, ITMAX,XI,X,FNORM)
END IF
PHI1PO=X(5)

OO0

PHI2P1=PHI2P0-180.0*CNST/TN2-TL1*180.0%CNST/(6.0%TN2)
PHI2P2=PHI2P0+180.0%*CNST/TN2+TL2%180.0%CNST/ (6.0*TN2)
KK=1
PHI2P=PHI2P!
333 CONTINUE
IF (JCC.EQ.1) THEN
CALL DNEQNF (FCN,ERRREL,N, ITMAX,XI, X, FNORM)
ELSE
CALL DNEQNF (FCNR,ERRREL,N, ITMAX,XI, X, FNORM)
END IF
XI(1)=X(1)
X1(2)=X(2)
XI(3)=X(3)
XI(4)=X(4)
XI1(5)=X(5)

... find the transmission error

a0 0n

ERRR=PHI2P-PHI2PO-TN1/TN2*(X (5)-PHI1PQ)
ERRR=PHI2P-PHI2PO+TN1/TN2* (X (5)-PHI1PO)
ERR (KK) =3600.0*ERRR/CNST
PI2P (KK) =PHI2P

C
C... computer the contact path
C
xle= x2m
rle= dsqrt (y2m**2+22m**2)
xcp(KK)= xlc*dcos (rgma2)+rle*dsin(rgma2)+ox
yep (KK) =-xlc*dsin(rgma2) +ric*dcos (rgma2) +oy
C... COMPUTER THE PRINCIPAL DIRECTIONS AND CURVATURES OF GEAR

TH=X (1)
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e Ne NS

110

PH=X(2)
ST=DSIN(TH)
CT=DCOS (TH)
SH=DSIN (PH)
CS=DCOS (PH)
SP=DSIN (ALP2)
CP=DCOS (ALP2)
SM=DSIN (GAMA2)
CM=DCOS (GAMA2)

DEFINE VECTORS TO COMPUTER THE SECOND ORDER PROPERTY OF GEAR

ES (1) =-DSIN(TH-PH)
ES(2)= DCOS (TH-PH)
ES(3)= 0.0

EQ (1) =-SP*DCOS (TH-PH)
EQ(2) =-SP*DSIN (TH-PH)

EQ(3)=-CP
CN (1) =XNM
CN(2) =YNM
CN(3) =ZNM
KS=CP/ (RC2-SG*SP)
KQ=0.0
Wl(1)=-CM
W1(2)= 0.0
W1(3)=-5M
W2(1)= 0.0
Ww2(2)= 0.0
W2 (3)=-CR2

VT1(1)= YM*SM+EM2%*S$M
VT1(2)=~XM*SM+ (ZM-XB2) *CM
VT1(3)=~YM*CM~EM2*CM
VT2(1)= YM*CR2

VT2 (2)=—-XM*CR2

VT2(3)= 0.0

DO 110 I=1,3

W12 (I)=W1(1)-w2(D)
V12(I)=vT1(I)-vT2(1)
CONTINUE

P121=0.0

CALL CURVAl

K21=KF

K21I=KH

PHI2=PH/CR2
sh2=dsin(phi2)
ch2=dcos (phi2)

xX= CM¥ef (1) +SM*ef (3)
yY= ef(2)
zZ=-SM*ef (1) +CM*ef (3)
ef (1)=xx

ef (2)= CH2*yY-SH2%zZ
ef (3)= SH2*yY+CH2%*zZ

xX= CM*eh (1)+SM*eh(3)
yY= eh(2)
2Z=-SM*eh (1) +CM*eh (3)
eh (1) =xx
eh(2)= CH2*yY-SH2%22
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eh(3)= SH2*yY+CH2*2Z

CHP=DCOS (PHI2P)
SHP=DSIN (PHI2P)
CMM=DCOS (GAMMA)
SMM=DSIN (GAMMA)

XX= ef (1)

YY=—ef (2) *CHP+ef (3) *shp
ZZ=-ef (2) *SHP-e£ (3) *chp
E2IH(1)= XX*CMM+ZZ¥*SMM
E2IH(2)= YY

E2IH(3) =-XX*SMM+2Z*CMM

XX= eh (1)

YY=-eh (2) *CHP+eh (3) *shp
2Z=-¢h (2) *SHP~eh (3) *chp
E2ITH(1)= XX*CMM+ZZ*SMM
E2IIH(2)= YY

E2ITH(3) =-XX*SMM+Z2*CMN

COMPUTER THE PRINCIPAL DIRECTIONS AND CURVATURES OF PINION

TH1=X(3)

PH1=X(4)
STP=DSIN(TH1+PH1)
CTP=DCOS (TH1+PH1)
IF(JCC.EQ.1) THEN
SP1=DSIN(ALP1)
CP1=DCOS (ALP1)
ELSE
SGN=ALP1/DABRS (ALP1)
ALP=SGN¥*ALP
SP1=DSIN(ALP)
CP1=DCOS (ALP)

END IF
SM1=DSIN(GAMAL)
CM1=DCOS (GAMAl)

DEFINE VECTORS TO COMPUTER THE SECOND ORDER PROPERTY OF PINION

ES(1)=-STP
ES(2)= CTP
ES(3)= 0.0

EQ(1l)= SP1*CTP
EQ(2)= SP1*STP
EQ(3)=-CP1
CN(1)=XNM1
CN(2)=YNM1
CN(3)=2ZNM1

IF (JCC.EQ.1) THEN
KS=CP1/ (RCF+SF*SP1)

KQ=0.0

ELSE

KS=DCOS (ALP) / (RHO*DCOS (ALP) +X0)
KQ=1.0/RHO

END IF

W1l(l)= cM1

Wi(2)= 0.0

W1(3)= sMl

W2(1)= 0.0
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210

W2(2)= 0.0
W2(3)= CRIT
VT1(1)=-YM1*SM1-EM1*SM1
VT1(2)= XM1*SM1-(ZM1-XB1) *CM1
VT1(3)= YM1*CM1+EM1*CM1
VT2 (1) =-YMI*CRIT
VT2(2)= XM1*CRIT
vT2(3)= 0.0
DO 210 I=1,3
W12(1)=W1(1)-W2(1)
V12(1)=vT1(I)-vT2(I)
CONTINUE

PI121=PCRI1T

CALL CURVAL

WRITE(9,12) KF,KH,SIGSF
K1I=KF

K1II=KH

PHI1=PH1/CR1
SH1=DSIN(PHI1)

CH1=DCOS (PHI1)

XX= CM1*EF (1) +SM1*EF(3)
yY= ef (2)
2Z=-SM1*EF (1) +CM1*EF (3)
ef (1)=xx

EF(2)= CH1%*YY+SH1¥*Z2Z
EF(3)=—-SH1*YY+CH1%*ZZ

XX= CM1*EH(1)+SM1*EH(3)
yY¥= eh(2)

ZZ=-SM1*EH (1)+CM1*EH(3)
eh (1) =xx

EH(2)= CH1*YY+SH1%Zz
EH(3)=-SH1*YY+CH1*ZZ

CH1P=DCOS (X(5))

SH1P=DSIN(X(5))

E1TH(1)=EF (1)

E1IH(2)= CH1P*EF(2)-SH1P*EF(3)
E1IH(3)= SH1P*EF(2)+CHIP*EF(3)
EITIH(1)=EH(1)

E1IIH(2)= CH1P*EH(2)-SH1P*EH(3)
E1IIH(3)= SHIP*EH(2)+CH1P*EH(3)
Do 109 1=1,3

E1TH(I)=-E1IH(I)
EITIIH(I)=-El1IIH(I)

CONTINUE

COMPUTER THE DIMENSION AND ORIENTATION OF THE CONTACT ELLIPSE

GNH (1) =XNH2
GNH (2) =YNH2
GNH (3) =ZNH2
CALL ELLIP

AX1 (KK) =A2L
AX2 (KK)=B2L
ANG1 (KK) =TAUIR
ANG2 (KK) =TAU2R
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KK=KK+1
PHI2P=PHI2P+180,0%CNST/ (TN2%6.0)
IF(PHI2P.LE. (PHI2P2+0.0001)) GOTO 333

WRITE(9,441)
441 FORMAT(/,'*********#***************

sefedededese s ve st s e dese deskdles et

& /,'* TRANSMISSION ERROR IN A MESHING PERIOD 1
S /,|*********************ﬁ************ﬁﬁ**************l’/)
C
DO 444 I=1,KK-1
PI2P(I)=PI2P(I)/CNST
WRITE(9,555) PI2P(I),ERR(I)
555  FORMAT(3X,3(G14.7,3X))
444 CONTINUE
C
WRITE(9,551)
551 FORMAT(/,|***k****ﬁ******ﬁ**************************ﬁ*ﬁ*****l’
& /,'* CONTACT PATH FOR A PAIR OF TEETH IN MESH xy
S /’l**********“****#**********ﬁ******ﬁ************ﬁ***!’/)

DO 666 I=1,KK-1
WRITE(9,747) XCP(I),YCP(I)
747 FORMAT (3X,2(G14.7,3X))

666 CONTINUE

C
WRITE(9,661)

661 FORMAT (/ , tededede st st sede oot
& /,'* DIMENSION AND
S / s 1Yotk e ek
DO 888 I=1,KK-1
WRITE (9,889) AX1(I),ANG1(I),AX2(I),ANG2(I)

889 FORMAT (3X,4(G14.7,3X))

888 CONTINUE

c

C

2 o ale alo ale ole ol wla ate ale ohe afa ate
TIOICITACITICIRR

%
ORIENTATION OF CONTACT *
ede s vt Yo vede e de Yo e st st e e v st vt e e e v S ko e e e

7

IF(JCL.EQ.1) GOTO 1111
IF(JCL.EQ.3) GOTO 1113

V AND H CHECK FOR TOE POSITION

OO0

HMT=WD+CC~3.0/4.0*FW* (DTAN (FA) +DTAN (RA) )
DED2T=DED2-3.0/4.0*FW*DTAN (RA)

TMCD=MCD-0. 25%FW ,
XL=TMCD*DCOS (PGMA2) + (DED2T-HMT/2.0) *DSIN (PGMA2)
RL=TMCD*DSIN (PGMA2) - (DED2T-HMT/2.0) *DCOS (PGMA2)

FIND THE MEAN CONTACT POINT ON THE GEAR SURFACE

OO0

ERRREL=0.1D-7
N=2
ITMAX=200
IF (JCH.EQ.1) THEN
XI(1)=270.0%CNST+B2
ELSE
XI(1)=B2
C XI(1)=90.0%CNST-B2
END IF
X1(2)=0.0
CALL DNEQNF (FCN1,ERRREL,N, ITMAX,XI,X, FNORM)
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149

139

(@}

aAOOO0O0n

1113

1113

TH=X (1)

PH=X(2)

2Y1=X(1)

z2Y2=X(2)

N=3

ERRREL=0. 1D~10
ITMAX=200
XI1(1)=0.0
XI(2)=THF

XI1(3)= 0.0

IF (JCC.EQ.1) THEN
CALL DNEQNF (FCNM,ERRREL,N, ITMAX,XI,X, FNORM)
ELSE

CALL DNEQNF (FCNMR,ERRREL,N, ITMAX,XI,X, FNORM)
END IF

PHI2PO=X (1)
XI(1)=zY1
XI(2)=2Y2
XI(3)=X(2)
XI(4)=X(3)
XI(5)=PHI1P
WRITE (9, 149)

FOR T ( / / 6 X , 1 e v oo e ¥ v ¥o ¥ v ¥ ¥e 3% Yo 3t v ¥e 3 we 3% v 3 v v 3 v v v 5k v 3 ¥ v v Yo 3% ve e ok Se sk Yot sk
<

& 6X,'™

& 6 X . Yoy e T Tt T e Y Yo Y e Y e Y v v Yo s e Y v s e e s Y e v
WRITE(9,139) V,H
FORMAT (//4X, ' ¥*¥* v

'\Gl4,7,'® H =t Gl4.7//;

JCL=3
GO TO 5555

V AND H CHECK FOR HEEL POSITION

HMH=WD+CCC-1.0/4.0%FW* (DTAN (FA) +DTAN (RA))
DED2H=DED2-1.0/4.0*FW*DTAN (RA)
HMCD=MCD+0.25%FW
HMH=WD+CC-0. 16*FW* (DTAN (FA) +DTAN (RA))
DED2H=DED2-0. 16 *FW*DTAN (RA)

HMCD=MCD+0. 16*FW
XL=HMCD*DCOS (PGMA2) + (DED2H-HMH/2.0) *DSIN (PGMA2)
RL=HMCD*DSIN (PGMA2) - (DED2H-HMH/2.0) *DCOS (PGMA2)
ERRREL=0.1D-7

N=2

ITMAX=200

IF (JCH.EQ.1) THEN

XI(1)=270.0%CNST+B2

ELSE

XI(1)=90.0%CNST-B2

XI(1)=B2

END IF

XI1(2)=0.0

CALL DNEQNF (FCN1,ERRREL,N, ITMAX,XI,X, FNORM)
TH=X (1)

PH=X (2)

ZY1=X(1)

ZY2=X(2)

FIND THE V AND H VALUE FOR HEEL POSITION
N=3

ERRREL=0.1D-10

ITMAX=200
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X1(1)=0.00

XI(2)=THF

XI1(3)= 0.0

XI(2)=THF+0.2

X1(3)=-0.2

IF (JCC.EQ.1) THEN

CALL DNEQNF (FCNM, ERRREL,N, ITHMAX,XI,X,FNORM)

ELSE

CALL DNEQNF (FCNMR,ERRREL,N, ITMAX,XI,X,FNORM)

END IF

PHI2PO=X (1)

XI(1)=zY1

XI1(2)=zY2

XI{3)=X(2)

XI1(4)=X(3)

XI1(5)=PHIlP

WRITE(9,11) PHI2PO,PHIIP

WRITE(9,159)
FORMAT(//6X"***********ﬁ****************k**************' /
& 6X, '™ V AND H CHECK AT HEEL POSITION wt/
& 6X"**************************k****************' /
WRITE(9,169) V,H

FORMAT (//4&4X,'®%% v = ' G14.,7,'*** H =' G14,7//)

JjcL=1

GOTO 5555

CONTINUE

IF(KSIDE.EQ.0) GOTO 1990
STOP

END

FCN1 IS TO FIND THE MEAN CONTACT POINT

SUBROUTINE FCN1(X,F,N)

IMPLICIT REAL*8 (A-H,0-Z)

INTEGER N

REAL*8 X(N),F(N),mcd
COMMON/A1/CNST,TN1,TN2,C,FW,GAMMA, x1,rl,mecd
COMMON/A3/B2,RGMA2, FGMA2,PGMA2,D2R,D2F, ADD2,DED2, WD, CC,D2P
COMMON/A4/SR2,Q2,RC2,PW2,XB2,XG2,EM2, GaMA2,CR2,ALP2,PHI2,PHI2P
COMMON/A5/SG, XM, YM, ZM, XN, YNM, ZNM, X2M, Y2M, Z2M, XN2M, YN2X, ZN2X,
&XNH2, YNH2, ZNH2,XH2, YH2,ZH2

TH=X (1)

PH=X(2)

SP=DSIN (ALP2)

CP=DCOS (ALP2)

SM=DSIN (GAMA2)

CM=DCOS (GAMA2)

STP=DSIN(TH-PH)

CTP=DCOS (TH-PH)

XNM=~CP*CTP

YNM=-CP*STP

ZNM= SP

AAl=RC2*STP+SR2*DSIN (-Q2-PH)

AA2=RC2*CTP+SR2%*DCOS (-Q2-PH)

AX=-EM2%*SM

AY= XB2*CM

AZ= EM2*CM

FIND SG
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Tl= XNM* (AX-AA1% (SM~CR2))+YNM* (AY+AA2¥* (SM~CR2)) +ZNM* (AZ+AA1*CM)
T2==XNM* (SM—CR2) *SP*STP+YNM* ( (SM~CR2) *SP*CTP~CP*CM) +ZNM*CM*SP*STP
§G=T1/T2

XM= (RC2-SG¥*SP) *CTP+SR2*DCOS (-Q2-PH)

YM= (RC2-SG*SP) *STP+SR2*DSIN (-Q2-PH)

ZM=—5G*CP

AM=—SG*SP*CTP+AA2

YM=-SG*SP*STP+AAl

ZM=—-8G*CP

xX= CM*XM+SM*ZM-XG2-XB2*SM

yY= YM+EM2

2Z=—SM*XM+CM*ZM-XB2*CM

XN= CM*XNM+SM*ZNM

YN= YNM

ZN=—SM*XNM+CM*ZNM

PHI2=PH/CR2

sh2=dsin{(phi2)

ch2=dcos (phi2)

X2M= xX

Y2M= CH2%yY-SH2%zZ

Z2M= SH2*yY+CH2*zZ

XN2M= XN

YN2M= CH2*YN-SH2%ZN

ZN2M= SH2*YN+CH2*ZN

F(1)=%2M-XL

F (2) =Yy:‘::':2+ZZ7'r7'<2_RL7'<7’=2

F (2) =YZM*7‘:2+22M:'::'r2_RL:'::‘:2
RETURN

END

SUBROUTINE CURVAl IS TO COMPUTER THE CURVATURE OF THE
GENERATED SURFAFE

SUBROUTINE CURVAL

IMPLICIT REAL*8 (A-H,0-2)

REAL*8 KS,KQ,KF,KH

DIMENSION ESN(3),EQN(3),W1VT2(3),Wv12(3),W2vT1(3)
COMMON/A6/ES (3) ,EQ(3),CN(3) ,W1(3),W2(3),W12(3),vT1(3),vT2(3),
s$v12(3),XS,KQ,KF,KH,EF(3) ,EH(3),SIGSF,PI21

ESN(1)= CN(2)*ES (3)-CN(3) *ES(2)
ESN(2)=-(CN(1)*ES(3)-CN(3)*ES (1))
ESN(3)= CN(1)*ES(2)-CN(2)*ES (1)

EQN (1)= CN(2)*EQ(3)-CN(3)*EQ(2)
EQN(2)=-(CN(1)*EQ(3)-CN(3)*EQ(1))
EQN(3)= CN(1)*EQ(2)-CN(2)*EQ(1)

WIVT2(1)= W1(2)*VT2(3)-W1(3)*VT2(2)
WIVT2(2)=— (W1 (1) *vT2(3)-W1(3)*vT2(1))
WIVT2(3)= WL (1) *VvT2(2)-W1(2)*vT2(1)

W2VT1(1)= W2(2)*VT1(3)-Ww2(3)*VT1(2)
W2VT1(2)=-(W2(1)*vT1(3)-W2(3)*VvT1(1))
W2VT1(3)= W2 (1) *VT1(2)-W2(2)*vT1(1)

WV12(1)= W12(2)*v12(3)-W12(3)*v12(2)
WV12(2)=-(W12(1)*v12(3)-W12(3)*V12(1))
WV12(3)= W12(1)*v12(2)-W12(2)*v12(1)
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V128=0.
Vv12Q=0.
WNES=0.
WNEQ=0.
VWN= 0.
WITN=0.
W2TN=0.
VT2N=0.

OO0 OCOO0OOCOO

DO 1 1=1,3

V128= Vv12(I)*ES(I)+Vv12S
v120= v12(I)*EQ(I)+V12Q
WNES= W12 (I)*ESN(I)+WNES
WNEQ= W12 (I) *EQN (I)+WNEQ
VWN = CN(I)*Wv12(I)+VWN
WITN= CN(I)*WIVT2(I)+W1IN
W2TN= CN(I)*W2VT1(I)+W2IN
VT2N= CN(I)*VT2(I)+VT2N
CONTINUE

COMPUTER THE CURVATURE OF THE GENERATED SURFACE

Al3=-KS*V12S-WNES

A23=-KQ*V12Q-WNEQ
A33=KS*V128**2+KQ*V12Q**2-VWN-WITN+W2TN+PI21*VT2N/W2 (3)
T1=2.0D00%*A13%A23
T2=A23%%2-A13%%2+ (KS-KQ) *433
SIG1F=0.5D0O0*DATAN2 (T1,T2)

KF=0.50D00%* (KS+KQ) ~0.5D00% (A13%*2+A23%%2) /A33
&+A13%A23/ (A33*DSIN(2.0DO0*SIGLIF))

KH= KF-2.0D00%a13%A23/ (A33*DSIN(2.0D0O0*SIGL1F))
SIGSF=SIGIF

po 2 1=1,3

EF(I)= DCOS(SIGLF)*ES(I)~-DSIN(SIGIF)*EQ(I)
EH(I)= DSIN(SIGIF)*ES(I)+DCOS(SIGIF)*EQ(I)
CONTINUE

RETURN

END

FCN2 IS TO FIND THE INITIAL GEAR ROTATIONAL ANGLE

SUBROUTINE FCN2(X,F,N)

IMPLICIT REAL*8 (A-H,0-Z)

INTEGER N

REAL*8 X(N),F(N)
COMMON/A1/CNST,TN1,TN2,C, FW, GAMMA, XL ,RL,MCD
COMMON/A5/SG, XM, YM,ZM, XNM, YNM, ZNM, X2M, Y2M, Z2M, KN2M, YN2M, ZN2M,
&XNH2, YNHZ,ZNH2,XH2,YH2,ZH2

CM=DCOS (GAMMA)

SM=DSIN (GAMMA)

CHP=DCOS (X (1))

SHP=DSIN(X (1))

XX= X2M

YY=-Y2M*CHP+Z2M*SHP

ZZ=-Y2M*SHP-Z2M*CHP

XH2= XX*CM+ZZ*SM

YH2= YY+C

ZH2=-XX*SM+2Z*CM
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XX= XN2M
YY=-YN2M*CHP+ZN2M*SHP
Z2=-YN2M*SHP-ZN2M*CHP
XNH2= XX*CM+ZZ*SM
YNH2= YY
ZNH2=-XX*SM+ZZ*CM

R12=TN1/TN2

V12X=-(YH2-C) *SM*R12

V12Y= XH2*SM*R12+(1.0+R12%CM)*ZH2
V12Z=~YH2*(1,0+R12%*CM) +C*CM*R12
F(1)=XNH2*V12X+YNH2*V12Y+ZNH2*V122Z
RETURN

END

THE FOLLOWING IS THE TCA SUBROUTINE FOR CURVED BLADE

SUBROUTINE FCNR (X,F,N)

IMPLICIT REAL*8(A-H,0-2Z)

real®8 x(N),f(N)

DIMENSION CH(3),P(3),E1EF(3),ESN(3),EQN(3) ,W1vT2(3),Wv12(3),
SW2VT1(3) ,EFTH(3) ,EFTIH(3) ,RH(3),GNH(3) ,E2IH(3),E2ITIH(3),
&E1IH(3) ,E1IIH(3),EFI(3),EFII(3),E11(3),E1II(3),GN(3),EFEL1(3),
&ERR (20) ,XP (20) ,YP(20)

COMMON/A1/CNST,TN1,TN2,C,FW,GAMMA,x1,rl,med

COMMON/A2/B1,RGMAl,FGMAL,PGMAL,DIR,D1F, ADD],DED]

COMMON/A3/B2,RGMA2, FGMAZ, PGMA2 ,D2R,D2F, ADD2, DED2, WD, CC,D2P

COMMON/A4/SR2,Q2,RC2,PW2,XB2,XG2,EM2,GaMA2 ,CR2,ALP2  PHI2,PHI2P

COMMON/A5/SG, XM, YM, ZM, XNM, YNM, ZNM, X2M, Y2M, Z2M, XN2M, YN2M, ZN2M,
&XNHZ2, YNH2,ZNH2,XH2, YH2,ZH2

COMMON/A6/ES(3) ,EQ(3) ,CN(3),W1(3),W2(3),W12(3),vT1(3),vT2(3),
$v12(3) ,KS,KQ,KF,KH,EF (3) ,EH(3),SIGSF,PI21

COMMON/A7/SR1,Q1,Recf,PW1,XB1,XG1,EM1,GaMAl,CR]1,ALP]1,PHI1,PHI1P

COMMON/A8/SE,XM1, YML1,ZM1, XNML, YNM1,ZNM1, X1M,Y1X, Z1N,
&XN1M,YNIM,ZN1M,XNH1,YNH],ZNH],XH1,YH1,ZH1

COMMON/A9/PHI2P0,0X,0Z,%0,Z0,RHO,ALP,V,H,CR1T,PCRIT

COMMON/A11/RAM,PSI1,C2,D6,E24,F120,CX6,D%X24,EX120,RULl,DELT,RUP,
SRAl,CPF,DPF,EPF,FPF

TH=X (1)

PH=X (2)

SP=DSIN(ALP2)

CP=DCOS (ALP2)

SM=DSIN (GAMA2)

CM=DCOS (GAMA2)

STP=DSIN (TH-PH)

CTP=DCOS (TH-PH)

XNM=~CP*CTP

YNM=-CP*STP

ZNM= SP

AA1=RC2*STP+SR2*DSIN (-Q2-PH)

AA2=RC2*CTP+SR2*DCOS (-Q2-PH)

AX=-EM2%SM

AY= XB2*CM

AZ= EM2*CM

FIND SG

Tl= XNM* (AX-AA1* (SM-CR2) ) +YNM* (AY+AA2* (SM~CR2) ) +ZNM* (AZ+AAL1*CH)
T2=-XNM* (SM~CR2) *SP*STP+YNM* ( (S4¥~CR2) *SP*CTP-CP*CM) +ZNM*CM**SP*STP
SG=T1/T2
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XM= (RC2-SG*SP) *CTP+SR2*DCOS (-Q2~PH)
YM= (RC2-SG¥SP) *STP+SR2*DSIN(-Q2-PH)
ZM=—-SG*CP '
XM=-SG*SP*CTP+AA2
YM=-SG*SP*STP+AAl
ZM=-SG*CP

xX= CM*XM+SM*ZM-XG2-XB2*SM
yY= YM+EM2
2Z2==SM*XM+CM*ZM-XB2*CM

XN= CM*XNM+SM*ZNM

YN= YNM

ZN=-SM*XNM+CH*ZNM
PHI2=PH/CR2

sh2=dsin(phi2)

ch2=dcos (phi2)

X2M= xX

Y2M= CH2*yY-SH2%*zZ

Z2M= SH2%yY+CH2%*zZ

XN2M= XN

YN2M= CH2*YN-SH2%*ZN

ZN2M= SH2*YN+CH2*ZN
CMM=DCOS (GAMMA)

SMM=DSIN (GAMMA)

CHP=DCOS (PHI2P)

SHP=DSIN (PHI2P)

XX= X2M
YY=-Y2M*CHP+Z2M*SHP
Z2Z=-Y2M*SHP-Z2M*CHP

XH2= XX*CMM+ZZ*SMM

YH2= YY+C+V
ZH2==XX*SMM+ZZ*CMM

XX= XN2M
YY=—YN2M*CHP+ZN2M*SHP
ZZ=-YN2M*SHP-ZN2M*CHP
XNH2= XX*CMM+ZZ*SMM
YNH2= YY
ZNH2=-XX*SMM+ZZ*CMM

DEFINE THE PINION SURFACE

TH1=X(3)

PH1=X(4)
SM1=DSIN(GAMAl)
CM1=DCOS (GAMAL)
STP=DSIN(TH1+PH1)
CTP=DCOS (TH1+PH1)

FIND CR1T,PF,PPF,PCRIT

DDD=DABS (PH1)
IF(DDD.LE.0.001) GOTO 6
PHI1=RA1*(PH1-CPF*PH1**2-DPF*PH1%**3~EPF*PH1**4-FPF*PH1**5)
PF=RA1%*(1.0-2.0*CPF*PH1-3.0*DPF*PH1**2
$—4.0*EPF*PH1%*3-5, 0*FPF*PH1%**4)
PPF=-RA1*(2.0*CPF+6.0*DPF*PH1+12.0%EPF*PH1**2+20. 0*FPF*PH1**3)
CR1T=1.0/PF
PCR1T=-PPF/PF**3
GOTO 7
PHI1=RA1*PH1
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CR1T=CR1
PCR1T=2,0%CPF/ (RAL**2)
CONTINUE

CR1T=CR1

PCR1T=0.000

FIND THE NOMAL OF THE EQUIDISTANCE SURFACE

XMO= XO*CTP+SR1*DCOS (-Q1+PH1)
YMO= XO*STP+SR1*DSIN(-Ql+PH1)
ZMO= 20

V1X=-YMO*SM1-EM1*SM1

V1Y= XMO*SM1-(ZMO-XB1)*CM1
V1Z= YMO*CMI+EM1*CM1
V2X=~-YMO*CRIT

V2Y= XMO*CRIT

v2z= 0.0

VX=V1X-V2X

VY=V1Y-V2Y

VZ=v1z-y2Z

TX=-CTP

TY=-STP

T2=0.0

FX= STP

FY=-CTP

F2=0.0

XNN= FY*YZ~FZ*VX

YNN= FZ*VX-FX*VZ

ZNN= FX*VY-FY*VX

DDD=DSQRT (XNN¥*¥*2+YNN**2+ZNN*%*2)
XNM1=XNN/DDD

YNM1=YNN/DDD

ZNM1=ZNN/DDD
DT=TX*XNM1+TY*YNM1+TZ%*ZNM1
IF(DT.GE.0.0) GOTO 10
XNM1=-XNM1

" YNM1=-YNM1

ZNM1=-ZNM1

CONTINUE

XM1l= XMO-RHO*XNM1

YM1= YMO-RHO*YNM1

ZM1= ZMO-RHO¥*ZNM1
ALP=DARCOS (TX*XNM1+TY*YNM1+TZ*ZNM]1)
xX= CMI*XM1+SM1*ZM1-XG1-XB1*SM1
yY= YMI+EM1
2Z=—SM1*XM1+CM1*ZM1-XB1*CM1
XN1=CM1*XNM1+SM1*ZNM1
YN1=YNM1
ZN1=-SM1*XNM1+CM1*ZNM1
PHI1=PH1/CR1

shl=dsin(phil)

chl=dcos (phil)

X1IM= xX

Y1M= CH1*yY+SH1*2Z
Z1M=-SH1*yY+CH1%*zZ

XN1IM= XN1

YNIM= CHI*YN1+SH1*zN1
ZNIM=~SH1*YN1+CH1*ZN1
PHI1P=X(5)

shlP=dsin(philP)
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chlP=dcos (philP)

XHl= X1M+H

YH1= CHIP*Y1M-SHIP*Z1M
ZH1= SHIP*YIM+CH1P*Z1M
XNH1= XNIM

YNH1= CHIP*YNIM-SHIP*ZN1M
ZNH1= SHIP*YNIM+CH1P*ZN1M
F(1)=XH2-XH1

F(2)=YH2-YH1

F(3)=zH2-ZH1
F(4)=XNH2-XNH1
F(5)=2ZNH2-ZNH1

RETURN

END

THE FOLLOWING IS THE SUBROUTINE FOR STRAIGHT BLADE

SUBROUTINE FCN(X,F,N)

IMPLICIT REAL*8(A-H,0-Z)

real®8 x(N),f(N)

DIMENSION CH(3),P(3),ElEF(3),ESN(3),EQN(3),W1VT2(3),Wwv12(3),
SW2VT1(3) ,EFIH(3) ,EFIIH(3) ,RH(3) ,GNH(3),E2IH(3) ,E2IIH(3),
&EIIH(3) ,E1IIH(3) ,EFI(3),EFII(3),E11(3),E111(3),GN(3),EFE1(3),
&ERR (20) ,XP (20),YP (20)

COMMON/A1/CNST,IN1,TIN2,C,FW,GAMMA, x1,rl,med

COMMON/A2/B1,RGMAL,FGMAL,PGMALl,DIR,D1F,ADD],DEDI

COMMON/A3/B2 ,RGMA2, FGMAZ2 ,PGMA2,D2R ,D2F,ADD2 ,DED2, WD, CC,D2P

COMMON/A4/SR2,02,RC2,PW2,XB2,XG2,EM2,GaMA2,CR2,ALP2,PHI2,FHIZP

COMMON/A5/SG, XM, YM, ZM, XNM, YNM, ZNM, X2M, Y2M, Z2M, XN2M, YN2M, ZN2N,
&XNH2,YNH2,ZNH2,XH2, YH2,ZH2

COMMON/A6/ES (3) ,EQ(3),CN(3),W1(3),W2(3),W12(3),vT1(3),vT2(3),
sv12(3),KS,KQ,KF,KH,EF(3) ,EH(3) ,SIGSF,PI2]

COMMON/A7/SR1,Ql,Rcf,PWl,XB1,XGl,EM1,GaMAl,CR]1,ALP1,PHI1,PHILP

COMMON/A8/SE,XM1, YM1,ZM1,XNM1, YNM1,ZNM1, XIM,YIN, Z1N,
&XN1M,YNIM,ZN1M,XNH1,YNH1,ZNH1,XHI, YH1,ZH1

COMMON/A9/PHI2P0,0%,0Z,X0,20,RH0O,ALP,V,H,CR1T,PCR1T

COMMON/A11/RAM,PSI1,C2,D6,E24,F120,CX6,DX24,EX120,RU1,DELT,RUP,
SRAl,CPF,DPF,EPF, FPF

TH=X (1)

PH=X(2)

SP=DSIN(ALP2)

CP=DCOS (ALP2)

SM=DSIN (GAMA2)

CM=DCOS (GAMA2)

STP=DSIN (TH-PH)

CTP=DCOS (TH-PH)

XNM=~CP*CTP

YNM=-CP*STP

ZNM= 8P

AA1=RC2*STP+SR2*DSIN(-Q2~PH)

AA2=RC2*CTP+SR2*DCOS (-Q2-PH)

=-EM2*SM
AY= XB2¥*CM
AZ= EM2%*CM

FIND SG

T1= XNM* (AX-AA1* (SM~CR2)) +YNM™ (AY+AA2% (SM-CR2) ) +ZNM* (AZ+AAL1*CM)
T2=-XNM* (SM-CR2) *SP*STP+YNM* ((SM-CR2) *SP*CTP-CP*CM) +ZNM*CM*SP*STP
SG=T1/T2
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XM= (RC2-SG*SP) *CTP+SR2*DCOS (-Q2~PH)
YM= (RC2-SG*SP) *STP+SR2*DSIN (-Q2-PH)
ZM=-S8G*CP
XM=-SG*SP*CTP+AA2
YM=-SG*SP*STP+AAl
ZM=-SG*CP

xX= CM*XM+SM*ZM-%XG2-XB2%SM
yY= YM+EM2
2Z=~SM*XM+CM*ZM~XB2*CH
XN= CM*XNM+SM*ZNM

YN= YNM
ZN=~SM*XNM+CM*ZNM
PHI2=PH/CR2
sh2=dsin(phi2)
ch2=dcos (phi2)

X2M= xX

Y2M= CH2*yY-SH2%*zZ
Z2M= SH2*yY+CH2%*2Z
XN2M= XN

YN2M= CH2*YN-SH2*ZN
ZN2M= SH2*YN+CH2*ZN
CMM=DCOS (GAMMA)
SMM=DSIN (GAMMA)
CHP=DCOS (PHI2P)
SHP=DSIN (PHI2P)

XX= X2M
YY=-Y2M*CHP+Z2M*SHP
ZZ=~-Y2M*SHP-Z2M*CHP
XH2= XX®CMM+ZZ*SMM
YH2= YY+C+V

YH2= YY+C-V
ZH2=~XX*SMM+ZZ*CMNM

XX= XN2M
YY=-YN2M*CHP+ZN2M*SHP
ZZ=-YN2M**SHP-ZN2M*CHP
XNH2= XX*CMM+ZZ*SMM
YNH2= YY
ZNH2=-XX*SMM+ZZ*CMM

DEFINE THE PINION SURFACE

TH1=X(3)

PH1=X (4)

SP1=DSIN(-ALP1)

CP1=DCOS (~ALP1)
SM1=DSIN(GaAMAL)

CM1=DCOS (GAMAL)
STP=DSIN(TH1+PH1)

CTP=DCOS (TH1+PH1)
XNM1=-CP1*CTP

YNM1=-CP1*STP

ZNM1= SP1
AB1=RCF*STP+SR1*DSIN(-Ql+PH1)
AB2=RCF*CTP+SR1*DCOS (-Q1+PH1)
AXX=-EM1*SM1

AYY= XB1*CM1

AZZ= EM1*CM1

FIND SF,CRIT,PF,PPF,PCRIT
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DDD=DABS (PH1)

IF(DDD.LE.0.001) GOTO 6

PHI1=RA1* (PH1-CPF*PH1**2-DPF*PH1%**3~EPF*PH1**4—FPF*PH1%*5)
PF=RA1*(1.0-2.0%CPF*PH1-3,0*DPF*PH1%**2
$-4,0*EPF*PH1%**3-5, Q*FPF*PH]*%4)
PPF=-RA1%*(2.0%CPF+6.0*DPF*PH1+12.0*EPF*PH1%**2+20.0*FPF*PH]**3)
CR1T=1.0/PF

PCR1T=-PPF/PF**3

GOTO 7

PHI1=RA1*PH1

CR1T=CR1

PCR1T=2.0*CPF/ (RA1*%2)

CONTINUE

CR1T=CR1

PCR1T=0,.000

Tl= XNM1*(AXX-AB1*(SM1-CRIT))+

&YNM1* (AYY+AB2* (SM1-CR1T) ) +ZNM1* (AZZ+AB1%*CM1)

T2=~%XNM1* (SM1-CRIT) *SP1*STP+
&YNM1* ((SM1-CRIT)*SP1*CTP-CP1%*CM1) +ZNM1*CM1*SP1*STP
SF=T1/T2

XM1= (RCF-SF*SP1) *CTP+SR1*DCOS (-Q1+PH]1)
YM1= (RCF-SF*SP1) *STP+SR1*DSIN(-Q1+PH1)
ZM1=-SF*CP1l

xX= CMI*XM1+SM1%*ZM1-XG1-XB1%*SM1
yY= YM1+EM1
2Z=-SM1*XM1+CM1*ZM1-XB1*CM1
XN1=CM1*XNMI1+SM1¥*ZNN1
YN1=YNM1
ZN1=-SM1*XNM1+CM1*ZNM1
PHI1=PH1/CR1

shl=dsin(phil)

chl=dcos (phil)

X1M= xX

Y1M= CH1*yY+SH1%zZ
Z1M=-SH1*yY+CH1%zZ

XN1M= XN1

YNIM= CH1*YN1+SHI1*ZN1
ZN1M=~SH1*YN1+CH1*ZN1
WRITE(9,111) XIM,YIM,Z1M
PHI1P= X(5)
shlP=dsin(philP)

chlP=dcos (philP)

XH1= XIM+H

YHl= CH1P*Y1M-SHIP*ZIM
ZHl= SHI1P*YIM+CHIP*Z1M
XNH1= XN1M

YNH1= CHIP*YNIM-SH1P*ZN1M
ZNH1= SHIP*YNIM+CHIP*ZNIM
F(1)=XH2-XH1

F(2)=YH2-YH1

F(3)=ZH2-ZH1

F(4)=XNH2-XNH1
F(5)=YNH2-YNH1

RETURN

END
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* SUBROUTINE ELLIP IS TO DETERMINE THE SIZE AND ORINTATION *
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SUBROUTINE ELLIP

IMPLICIT REAL*8(A-H,0-2)

REAL*8 KS,KQ,K1I,K1II,K2I,K21I

DIMENSION RO(3),ETA2(3),ZETA2(3),E1E2(3) ,ETA(3),ZETA(3)
DIMENSION E1IH(3) ,E1IIH(3),E2IH(3),E2IIH(3),GNH(3)
COMMON/A1/CNST,TN1,TN2,C,FW,GAMMA, x1,rl,med
COMMON/A3/B2,RGMA2,FGMA2,PGMA2,D2R,D2F, ADD2,DED2, WD, CC,D2P
COMMON/A4/SR2,Q2,RC2,PW2,XB2,XG2 ,EM2,GaMAa2,CR2,ALP2,PHI2, PHI2P
COMMON/A5/S8G, XM, YM, ZM, XNM, YNM, ZNM, X2M, Y2M, Z2M, XN2M, YN2M, ZN2M,
&XNH2, YNH2,ZNH2,XH2, YH2,ZH2
COMMON/A9/PH12P0,0X,02,X0,20,RH0,ALP,V,H,CR1IT,PCRIT
COMMON/A10Q/K11,K111,K2I,K211,DEL,ELIH,EITIH,E2IH,E211H, GNH,
&A2P,B2P, TAULIR, TAU2R,A2L,B2L

CNST=DARCOS (-1.0D00) /180.00

E1E2(1)= E1IH(2) *E2IH(3)-E1IH(3)*E2IH(2)
E1E2(2)=-(EI1IH(1) *E2IH(3)-E1IH(3) *E2IH(1))
E1E2(3)= EI1IH(1) *E2IH(2)-EI1IH(2)*E2IH(1)

T1=0.0

T2=0.0

DO 1 I=1,3

Tl= EIIB(I)*E2TH(I)+T1
T2= GNH(I)*E1E2(I)+T2
CONTINUE

T1=T1+1.0D00
SIG12=2,0D00*DATAN2(T2,T1)

SK1= KI1I+KI1II
SK2= K2I+K2II
SGl= K1I-K1II
SG2= K2I-K2II

T1=SG1-SG2*DC0S (2.0D00*SIG12)
T2=SG2*DSIN(2.0D00*SIG12)
T3=DSQRT (SG1**2+8G2%*2-2,0D00*SG1*SG2*DCOS (2.0D00*SIG12))

TX=T2/T3
TY=T1/T3+1.0D00
ALP12=DATAN2 (TX,TY)

THE DIRECTION AND LENGTH OF THE AXES OF CONTACT ELLIPSE

DEL=0.00700D00

AL=0.25D00%* (SK1-8K2-T3)

BL=0.25D00* (SK1-SK2+T3)

WRITE(9,5) SIG12,AL,BL

FORMAT(2X, 'SIG12, AL,BL = ',3(2X,Gl14.7))
AL=DABS (AL)

BL=DABS (BL)

A2L=2.0D00*DSQRT (DEL/AL)
B2L=2.0D00*DSQRT (DEL/BL)

DO 2 I=1,

3
ETA(I) DCOS(ALP12) *E1TH(I)-DSIN(ALP12) *EIIIH(I)
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ZETA(I)= DSIN(ALP12)*E1TH(I)+DCOS(ALP12)*E1TIH(I)
CONTINUE

DETERMINE THE PROJECTION OF CONTACT ELLIPS IN AXIAL SECTION

CHP=DCOS (PHI2P)
SHP=DSIN (PHI2P)

CMM=DCOS (GAMMA)
SMM=DSIN (GAMMA)

XX= ETA (1) *CMM-ETA (3) *SMN
YY= ETA(2)

2Z= ETA(1) *SMM+ETA (3) *CMM
ETA2(1)= XX

ETA2 (2) =-YY*CHP-ZZ*SHP
ETA2(3)= YY*SHP-ZZ*CHP

XX= ZETA(1)*CMM~ZETA(3) *SMM
YY= ZETA(2)

ZZ= ZETA(1l) *SMM+ZETA(3) *CMM
ZETA2(1)= XX

ZETA2 (2) =—-YY*CHP-ZZ*SHP
ZETA2(3)= YY*SHP-ZZ*CHP

RO(2)=Y2M/DSQRT (Z2M**2+Y2M**2)
RO (3) =Z2M/DSQRT (Z2M**2+Y2M*¥2)
RO(1)=0.0D0OC

T11=0.0D00

T12=0.0D00
DO 3 I=1,3

T12= ETA2(I)*RO(I)+T12
T11=ZETA2(I)*RO(I)+T11
CONTINUE

TAUL1=DATAN2(T11,ZETAa2(1))
TAU2=DATAN2(T12,ETA2(1))

A2P=A2L*ZETA2 (1) /DCOS (TAU1)
B2P=B2L*ETA2 (1) /DCOS (TAU2)

TAUIR=(TAUL1-RGMA2) /CNST
TAU2R=(TAU2-RGMA2) /CNST
RETURN

END

THE FOLLOWING IS THE V-H CHECK PROGRAM FOR CURVED BLADE

SUBROUTINE FCNMR (X,F,N)

IMPLICIT REAL*8(A-H,0-2)

real*8 x(N),f(N)

COMMON/A1/CNST,TN1,TN2,C,FW, GAMMA, x1,rl,med

COMMON/A5/SG, XM, YM, ZM, XNM, YNM, ZNM, X2M, Y2M, Z2M, XN2M, YN2M, ZN2N,
&XNH2,YNH2,ZNH2,XH2,YH2,ZH2
COMMON/A7/SR1,Q1,Rcf,PW1,XB1,XG1,EM1,GaMAl,CR1,ALP1,PHI1,PHILP
COMMON/A9/PHI2PO,0X,0Z,%0,20,RHO,ALP,V,H,CR1T,PCRIT
COMMON/A11/RAM,PSI1,C2,D6,E24,F120,CX6,DX24,EX120,RUL,DELT, RUP,
SRAl,CPF,DPF,EPF, FPF

CM=DCOS (GAMMA)
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SM=DSIN (GAMMA)
CHP=DCOS (PHI2P0)
SHP=DSIN(PHI2P()
CHP=DCOS (X (1))
SHP=DSIN(X (1))

XX= X2M
YY=-Y2M*CHP+Z2M*SHP
2Z=-Y2M*SHP-Z2M*CHP
XH2= XX*CM+ZZ*SM
YH2= YY+C
ZH2=-~XX*SM+2Z*CM

XX= XN2M
YY=-YN2M*CHP+ZN2M*SHP
ZZ=-YN2M*SHP-ZN2M*CHP
XNH2= XX*CM+ZZ*SM
YNH2= YY
ZNH2=-XX*SM+Z2Z*CM

DEFINE THE PINION SURFACE

TH1=X(2)

PH1=X(3)
SM1=DSIN(GAMAL)
CM1=DCOS (GaMAl)
STP=DSIN(TH1+PH1)
CTP=DCOS (TH1+PH1)

FIND CRIT,PF,PPF,PCRIT

DDD=DABS (PH1)

IF(DDD.LE.0.001) GOTO 6

PHI1=RA1* (PHl-CPF*PH1%*2-DPF*PH1**3~EPF*PH]
PF=RA1*(1.0-2.0%CPF*PH1-3,0*DPF*PH]%%2

$=4.0*EPF*PH1*"3-5, 0*FPF*PH1**4)

PPF=-RA1%* (2.0%CPF+6,0*DPF*PH1+12,0%EPF*PH1%
CR1T=1.0/PF

PCR1T=-PPF/PF¥**3

GOTO 7

PHI1=RA1*PHI

CR1T=CR1

PCR1T=2.0*CPF/ (RA1%%*2)

CONTINUE

FIND THE NOMAL OF THE EQUIDISTANCE SURFACE

XMO= XO*CTP+SR1*DCOS (-Q1l+PH1)
YMO= XO*STP+SR1*DSIN(-Ql+PH1)
ZMO= Z0

V1X=-YMO*SM1-EM1*SM1

V1Y= XMO*SM1-(ZMO-XB1)*CM1
V1Z= YMO*CM1+EM1*CM1
V2X=-YMO*CRIT

V2Y= XMO*CRIT

v2z= 0.0

VX=V1X-V2X

VY=V1Y-v2Y

VZ=v12-v2Z

TX=-CTP

TY=-8TP
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Tz=0.0

FX= STP

FY=-CTP

Fz=0.0

XNN= FY*VZ-FZ*VX

YNN= FZ*VX-FX*VZ

ZNN= FX*VY-FY*VX

DDD=DSQRT (XNN*¥*2+YNN**2+ZNN**2)
XNM1=XNN/DDD

YNM1=YNN/DDD

ZNM1=ZNN/DDD
DT=TX*XNM1+TY*YNM1+TZ*ZNM1
IF(DT.GE.0.0) GOTO 10
XNM1=—XNM1

YNM1=-YNM1

ZNM1=-ZNM1

CONTINUE

XM1= XMO-RHO*XNM1

YM1= YMO-RHO®YNMI

ZM1= ZMO-RHO*ZNM1
ALP=DARCOS (TX*XNM1+TY*YNM1+TZ*ZNM1)
xX= CM1*XM1+SM1*ZM1-XG1-XB1¥*SM1
yY= YM1+EM1
zZ=-SM1*XM1+CM1*ZM1-XB1*CM1
XN1=CM1*XNM1+SM1*ZNM1
YN1=YNM1
ZN1==-SM1*XNM1+CM1*ZNM1
PHI1=PH1/CR!

shl=dsin(phil)

chl=dcos (phil)

XIM= xX

Y1M= CH1*yY+SH1%2Z
Z1M=-SH1*yY+CH1%zZ

XNIM= XN1

YNIM= CH1*YN1+SH1*ZNl
ZNIM=-SH1*YN1+CH1*ZN1

TT=YNIM**2+ZNIM**2
SHIP=(-ZNIM*YNH2+YNIM*ZNH2) /TT

CH1P=( YNIM*YNH2+ZNIM¥*ZNH2)/TT
PHI1P=2.0D00*DATAN2 (SH1P, (1.0D0O0+CH1IP))

XH1= XIM

YH1= CH1P*YIM-SH1P*Z1M
ZHl= SHIP*YIM+CHIP*Z1M
XNH1= XN1M

YNH1= CHI1P*YNIM-SH1P*ZN1M
ZNH1= SHIP*YNIM+CH1P*ZNIM
v=-(YH2-YH1)

H=XH2-XH1

F(1)=zZH2-ZH1

F(2)=XNH2-XNH1
F(2) =YNH2*¥2+ZNH2*¥*2-TT

R12=TN1/TN2
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V12X=0.0-YH2*SM*R12

V12Y= ZH1+R12* (XHZ*SM+ZH2*CN)
V12Z=-YH1-R12*YH2*CM
V12X=-(YH2- (C-V)) *SM*R12

V12Y= XH2*SM*R12+(1.0+R12%*CM)*ZH2
V122Z=~YH2*(1.0+R12%CM)+(C-V) *CM*R12
F(3) =XNH2*V12X+YNH2*V12Y+ZNH2*V12Z
RETURN

END

THE FOLLOWING IS THE V-H CHECK SUBROUTINE FOR STRAIGHT BLADE

SUBROUTINE FCNM(X,F,N)

IMPLICIT REAL*8(A-H,0-2)

real®™8 x(N),f(N)

COMMON/A1/CNST,TN1,TN2,C,FW,GAMMA, x1,r1, med

COMMON/A5/SG, XM, YM, ZM, XNM, YNM, ZNM, X2M, Y2M, Z2M, XN2M, YN2M, ZN2M,
&XNH2, YNH2,ZNH2,XH2, YH2, ZH2
COMMON/A7/SR1,Q1,Rcf,PWl,XB1,XG1,EM1,GaMAl,CR1,ALP]1,PHIL,PHI1P
COMMON/A9/PHI2PO,0X,0Z,%0,20,RHO, ALP,V,H,CR1T,PCRIT
COMMON/A11/RAM,PSI1,C2,D6,E24,F120,CX6,DX24,EX120,RUL,DELT,RUP,
$RAl,CPF,DPF,EPF,FPF

CM=DCOS (GAMMA)

SM=DSIN (GAMMA)

CHP=DCOS (X (1))

SHP=DSIN(X (1))

XX= X2M

YY=-Y2M*CHP+Z2M*SHP

2Z=-Y2M*SHP-Z2M*CHP

XH2= XX*CM+ZZ¥*SM

YH2= YY+C

ZH2=-XX*SM+ZZ*CM

XX= XN2ZM
YY=-YN2M*CHP+ZN2M*SHP
ZZ=-YN2M*SHP~ZN2M*CHP
XNH2= XX*CM+ZZ*SM
YNH2= YY
ZNH2=-XX*SM+ZZ*CM

DEFINE THE PINION SURFACE

TH1=X(2)

PH1=X(3)

SP1=DSIN(-ALP1)

CP1=DCOS (~ALP1)

SM1=DSIN (GAMA1)

CM1=DCOS (GAMAL)

STP=DSIN (TH1+PH1)

CTP=DCOS (TH1+PH1)
XNM1=~CP1*CTP

YNM1=-CP1*STP

ZNM1= SP1
AB1=RCF*STP+SR1*DSIN(-Q1+PH1)
AB2=RCF*CTP+SR1*DCOS (-Q1+PH1)
AXX=-EM17*SM1

AYY= XB1¥*CM1

AZZ= EM1*CM1
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FIND SF,CRIT,PF,PPF,PCRIT

PHI1=RA1* (PH1-CPF*PH1**2~DPF*PH1**3-EPF*PH1**4-FPF*PH1%**5)
PF=RA1*(1.0-2.0*CPF*PH1-3.0*DPF*PH1**2
$-4,0*EPF*PH1**3-5,  0*FPF*PH1%**4)
PPF=-RA1*(2.0*CPF+6.0*DPF*PH1+12.0*EPF*PH1%**2+20, 0*FPF*PH1**3)
CR1T=1.0/PF

PCR1T=-PPF/PF¥*3

Tl= XNM1*(AXX-AB1*(SM1-CR1T))+
&YNM1¥* (AYY+AB2 (SM1-CR1T)) +ZNM1* (AZZ+AB1*CM1)
T2=-XNM1* (SM1-CR1T) *SP1*STP+
&YNM1* ((SM1-CR1T) *SP1*CTP-CP1*CM1) +ZNM1*CM1*SP1*STP
SF=T1/T2

XM1= (RCF-SF*SP1) *CTP+SR1*DCOS (-Ql1+PH1)
YM1= (RCF-SF*SP1)*STP+SR1*DSIN (-Q1+PH1)
ZM1=-SF*CP1

xX= CM1*XM1+SM1*ZM1-XG1-XB1*SM1

yY= YMI+EM1

2Z=-SM1*XM1+CM1*ZM1~-XB1*CM1
XN1=CM1*XNM1+SM1*ZNM1

YN1=YNM1

ZN1=-SM1*XNM1+CM1*ZNM1

PHI1=PH1/CR1

shl=dsin{(phil)

chl=dcos (phil)

XIM= xX

Y1M= CH1*yY+SH1%*zZ

Z1M=-SH1*yY+CH1*zZ

XN1M= XN1

YNIM= CH1*YN1+SH1*ZN1
ZN1M=—SH1*YNI1+CH1*ZN1
TT=YN1IM**2+ZN1M**2
SH1P=(-ZNIM*YNH2+YNIM*ZNH2) /TT

CH1P=( YNIM*YNHZ+ZNIM®ZNH2)/TT
PHI1P=2.0DO0*DATAN2 (SH1P, (1.0DO0+CH1P))
SH1P=DSIN(PHI1P)

CH1P=DCOS (PHI1P)

XH1= XIM

YH1= CHIP*Y1M-SHIP*Z1M

ZH1= SHIP*YIM+CHIP*Z1M

XNH1= XNIM

YNH1= CHI1P*YNIM-SHIP*ZN1M

ZNH1= SHIP*YNIM+CHIP*ZN1M

v=-(YH2-YH1)

H=XH2-XH1

F(1)=zH2-7zH1
F(2)=XNH2-XNH1
F(2)=YNH2**2+ZNH2**2-TT

R12=TN1/TN2

V12X=0.0-YH2*SM*R12

V12Y= ZH1+R12% (XH2*SM+ZH2%*CM)
V12Z=-YH1-R12*YH2*CM
V12X=-(YH2- (C-V)) *SM*R12

V12Y= XH2%*SM*R12+(1.0+R12%CM) *ZH2
V12Z=-YH2% (1.0+R12*CM) + (C-V) *CM*R12
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F(3)=XNH2*V12X+YNH2*V12Y+ZNH2*V122Z
RETURN
END

SUBROUTINE CAM IS FOR THE COEFFICIENTS OF GENERATION MOTION

SUBROUTINE CAM

IMPLICIT REAL*8(A-H,0-2)
COMMON/A11/RAM,PSI1,C2,D6,E24,F120,CX6,DX24,EX120,RUL,DELT,RUP,
SRAl,CPF,DPF,EPF, FPF

T1=1,0+3.0%C2*DTAN(PSI1)
&+ (1,0-RAM) **3% (RU1*%*3/15,0%*2+DELT) / (15.0*DCOS (PSI1))
T2=1.0+(RUI+DELT)/(15.0*DCOS(PSI1))

CX6=T1/T2

Tl= 6.0%C2*DCOS(PSI1)+(4.0%CX6+3,0%C2%*2-1.0) *DSIN(PSI1)
&+6.0%C27% (1.0-RAM) **2% (RUL1**3/15,0%*3+DELT/15.0)

T2= DCOS(PSI1)+(RUL+DELT)/15.0

DX24= T1/T2

T1=(10.0%CX6+15.0%C2%*%2-1.0) *DCOS (PSI1)
& +(5.0%DX24+10,0%C2*CX6~10.0"C2) *DSIN(PSI1)
& +(10.0%CX6* (1.0-RAM) **2
&  +15.0%C2%%2%(1.0-RAM)) *(RU1**3/15.0%*%3+DELT/15.0)
& =(1.0-RAM)*¥*5% (RU1**5/15.0%*5+DELT/15.0)
T2=DCOS(PSI11)+ (RUI+DELT)/15.0

EX120=T1/T2

D6=CX6-3.,0%C2%%*2

E24=DX24+C2%* (15.0%C2%%2-10.0%CX6)

CPF=C2/2.0
DPF=D6/6.0
EPF=E24/24.0
FPF=F120/120.0
RETURN

END

#U.S. GOVERNMENT PRINTING OFFICE:1 891 .527 06426007
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