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NOMENCLATURE 

Am 

aij (i, j = 1 , 2 , 3 )  

a, b 

b~ 

C 

c 
D 

E 

F 

6C.X 

24DX 

120EX 

Em; 

+,a 
e'B,e', 

G p 2 ,  zqp2 

HG , VG 

hm 

i 

Augmented matrix of linear equation system 

Distance between the shifted center of bearing contact and 

pitch apex 

Mean cone distance 

Coefficients of basic linear equations 

Half-long and short axes of contact ellipse 

Gear dedendum 

Cleaxance 

Coefficient of the second order of Taylor series of generation motion 

Coefficient of the third order of Taylor series of generation motion 

Coefficient of the forth order of Taylor series of generation motion 

Coefficient of the fifth order of Taylor series of generation motion 

Third order parameter of generation motion 

Forth order parameter of generation motion 

Fifth order parameter of generation motion 

Blank offset in generation of gear i 

Principal directions of surface C1 

Principal directions of surface C2 

Principal directions of gear surface in system Sp2 

Gear horizontal and vertical settings 

Mean whole tooth depth 

Tilt angle 

Swivel angle 

Sum of principal curvatures of surface 1 or 2 



K K (i = 1,2) Principal curvatures of surface 1 or 2 

[LYx] Matrix of coordinate transformation from system Sx to system Sy  

for free vectors 

Derivative of transmission ratio 

Mean contact point 

Matrix of coordinate transformation from system S, to system SY 

for position vectors 

Number of teeth of pinion (i = 1 )  or gear (i = 2)  

Unit normal vector of gear cutter surface in system Sp2 

Common unit normal at point of contact 

Pitch cone apex of gear i 

Root Eone apex of gear 

Percentage of amount of shift along the pitch line over face width 

Point width of gear cutter 

Cradle angle for gear i 

Point radius of pinion head cutter 

Gear ratio of roll 

Gear nominal cutter radius 

Gear cutter tip radius 

Position vector of gear cutter surface in system Sp2 

Position vector of tooth surface of gear i represented in system S;,  r'; 

is equivalent to [r;] 

Position vector of mean contact point in system Sh 

Position vector of pinion cutter center in system Sh 

Position vector of pinion in system S1 

Position vector of gear in system S2 



Coordinate systems originated at point of contact between C1 and C2 

Coordinate system rigidly connected to the cutting machine of gear i 

Movable coordinate system rigidly connected to the cradle of cutting 

machine for gear i 

Fixed coordinate system 

Coordinate system rigidly connected to gear i 

Surface coordinates of gear cutter surface 

Surface coordinates of pinion cutter surface 

Radial setting of gear i 

Auxiliary coordinate system identified by subscript x 

Cam setting 

Sliding velocity of contact point in the motion over surface Ci 

Transfer velocity of contact point in the motion with surface C; 

Projection of c(') upon and Fq 

Relative velocity at contact point 

Relative velocity in the process for gear generation represented in system Sm2 

Coordinates of center of the arc blade 

Sliding base for generation of gear i 

Machine center to back for generation of gear i 

Parameters determining mean contact point 

Vertical and horizontal adjustments for the gear drive 

Distance of gear root cone apex beyond pitch cone apex 

Principal curvatures of surface C2 

Principal curvatures of surface C2 

Principal curvatures of surface C1 

Machine root angle for generation of gear i 

vi i 



Pitch angle of gear i 

Root angle of gear i 

Cam guide angle 

Cutter blade angles for gear and pinion respectively 

Radius of circular arc 

Surface coordinates of the surface of revolution generated 

by circular arc blade 

Direction angle of contact path on surface Xi 

Unit vectors along long and short axes of contact ellipse 

Elastic approach 

Gear dedendum angle 

Angle of rotation of gear i in the process for generation 

Rotation angle in meshing of gear i between the gear (2) and the pinion (1) 

Rotation angles of cradle in the process for pinion and gear 

generation, respectively 

Gear spiral angle 

Surface coordinates of gear tooth surface at mean contact point 

Angle formed between principal directions e'f and e', (in meshing 

and generation ) 

Surface of gear i 

Pinion generating surface 

Gear generating surface 

Angular velocity of surface Xi (in meshing and generation ) 

Angular velocity of the cradle in the process for pinion and 

gear generation, respectively 

Relative angular velocity in the process for gear generation represented 

v i i i  



in system Sm2 

Relative angular velocity in the process of pinion generation 

Angular velocity of gear i 

Relative angular velocity between gear i and gear j 



SUMMARY 

Computerized simulation of meshing and bearing contact for spiral bevel gears and hypoid gears 

[1,2] is a significant achievement that could improve substantially the technology and the quality of 

the gears. This report covers a new approach to the synthesis of face-milled spiral bevel gears and 

their tooth contact analysis. The proposed approach is based on the following ideas proposed in [3] 

(i) application of the principle of local synthesis that provides optimal conditions of meshing and 

contact at  the mean contact point M and in the neighborhood of M; (ii) application of relations 

between principle directions and curvatures for surfaces being in Line contact or in point contact. 

The developed local synthesis of gears provides (i) the required gear ratio at M; (ii) a localized 

bearing contact with the desired direction of the tangent to the contact path on gear tooth surface 

and the desired length of the major axis of contact ellipse at M; (iii) a predesigned parabolic function 

of a controlled level (8-10 arc seconds) for transmission errors; such a function of transmission errors 

enables to  absorb linear functions of transmission errors caused by misalignment [3] and reduce the 

level of vibrations. 

The proposed approach does not require either the tilt of the head-cutter for the process of 

generation or modified roll for the pinion generation. Improved conditions of meshing and contact 

of the gears can be achieved without the above mentioned parameters. The report is complemented 

with a computer program for determination of basic machine-tool settings and tooth contact anal- 

ysis for the designed gears. The approach is illustrated with a numerical example. 

The contents of the following sections cover the following topics: 

(1). Basic ideas of local synthesis of gears and the mathematical concept of this approach 

(Chapter 1). The local synthesis discussed in this chapter is applicable for all types of gears and 

provides the optimal conditions of meshing and contact at the mean point of tangency of gear tooth 

surfaces. 

(2). Methods for generation of the pinion and the gear and basic machine-tool settings that are 



necessary for gear generation (Chapter 2). 

(3). Determination of geometry of gear tooth surface, the gear mean contact point and the 

principal directions and curvatures at this point (Chapter 3). 

(4). Application of basic principles of local synthesis for spiral bevel gears (Chapter 4). 

(5). Determination of pinion machine-tool settings considering as given:(i) the gear geometry, 

and (ii) the conditions of meshing and contact at the mean contact point obtained from the local 

synthesis (Chapter 5). 

(6). Computerized simulation of meshing and contact (Tooth Contact Analysis) for spiral bevel 

gears that have been synthesized in the previous chapters (Chapter 6). 

(7). Analysis of the shift of bearing contact caused by the misalignment of gears (Chapter 7). 

(8). The theory of modified roll (variation of cutting ratio in the process for generation) and 

mechanisms used for application of modified roll (Appendix A). 

(9). Description of developed computer programs and numerical examples that illustrates the 

application of those programs. 





1 Local Synthesis of Gears (General Concept) 

1.1 Introduction 

The main goals of local synthesis are to provide: (i) contact of gear tooth surfaces at the mean point 

of contact of gear tooth surfaces, and (ii) improved conditions of meshing within the neighborhood 

of the mean contact point. The local synthesis is the first stage of the global synthesis with a goal 

to provide improved conditions of meshing for the entire area of meshing. The criteria of conditions 

of meshing are the transmission errors and the bearing contact. The principles of local synthesis 

that are discussed in this chapter for face-milled spiral bevel gears can be applied for other types 

of gears as well. 

1.2 Basic Linear Equations 

Consider two right-handed trihedrons Sa(Zf, G,,  Z) and Sb(e', , e',, 6 )  (Fig. 1.2.1). The common 

origin of the trihedrons coincides with the contact point M, the n-axis represents the direction of 

the surface unit normal, Zf and Zh are the unit vectors of the principal directions of surface El,  e', 

and e', represent the principal directions of surface C2, and dl2) is the angle formed between Zf 

and e', (measured clockwise from e', to Zf and counterclockwise from Zf to Z8 ). In reference [4] 

three linear equations were derived that relate the velocity dl) of the contact point over surface C1 

with the principal curvatures and directions of contacting surfaces and the transfer components of 

velocities. These equations are: 

Here (see the designations in [4] ) 



Equations (1.2.1) and (1.2.2) can be applied for two cases where: (i) surfaces C1 and C2 are 

in line contact, and (ii) the surfaces are in point contact. The instantaneous line of contact is 

typical for the case when the gear tooth surface (El) is generated by the tool surface (X2). The 

instantaneous point of contact is typical for gears with localized bearing contact. 

Line Contact 

When the gear tooth surfaces are in line contact, the direction of velocity dl) can be varied, and 

equations (1.2.1) can not provide a unique solution for the unknowns v!') and vil). This results 

in that the rank of the augmented matrix 

must be less than 2. This requirement yields 



Equivalent equations are 

Using equations (1 .2 .5 )  and (1 .2 .2 )  we obtain equations that will enable us to determine a ( 1 2 ) ,  

~ ' f  and r;h for El considering as given K', and K ,  for surface C 2 .  The equations are: 

tan 2a(12)  = 2a13a23 
- 4 3  + (ss - ~ ~ ) a 3 3  

K'f - Kh = 2a13a23 
a33 sin 2a( l2 )  

K'f  + K'h = (K ' ,  + K'q) - a:, + 4 3  

a33 

Equation (1 .2 .6 )  provides two solutions : s!12) and 0 p 2 )  = u!12) + 7rj2 and both of them can be 

used for computations of and that are represented by equations (1 .2 .7 )  and (1 .2 .8 ) .  Fig.1.2.2 

shows the orientation of two couples of unit vectors $),4:) (i = 1 , 2 ) ,  with respect to unit vector 

Z., . The magnitude of principal curvature for the direction with collinear vectors $) and $) is the 



same (ny) = nf)) although the notation for the unit vectors has been changed. Similarly, we can 

(2) say that n r )  = rf . 

Knowing the angle d l 2 ) ,  and the unit vectors e', and e',, the principal directions on surface El 

can be determined with the following equations, 

$) e j  = cos g ( ' 2 ) ~  - sin a('2)zq 

41) - - 
eff = eh = sina(l2)% + cos a(l2),'4 

Point Contact 

In the case of instantaneous point of contact, the direction of motion of the contact point over 

the surface is definite, equations (1.2.2) for the unknowns can provide a unique solution for the 

unknowns v!') and v r )  and the rank of matrix [A] is 2. This yields that 

Equation (1.2.11) yields the following relation 

Our goal is to determine nf,ni, and a('') (the principal curvatures and directions of El) and 

provide at the mean contact point (i) a certain direction of the tangent to contact path on surface 

4 



C2 , (ii) a desired length of the major axis of instantaneous contact ellipse, and (iii) a parabolic 

function of transmission errors. For these purpose we have to derive extra equations in addition to 

equation (1.2.12) 

Determination of mil 

The derivative is the second derivative of function 42(Qll) that is taken at the mean 

contact point; 41 and 42 are the angles of rotation of gears 1 and 2. In the case of an ideal gear 

train, function Vj2(41) is linear and is represented by 

However, due to misalignment between the meshing gears the real function +2(&) becomes a 

piecewise periodic function with the period equal to the cycle of meshing of a pair of teeth (Fig. 

1.2.3). Due to the jump of angular velocity at the junction of cycles, the acceleration approaches 

to an infinitely large value and this can cause large vibration and noise. For this reason it is 

necessary to predesign a parabolic function of transmission error that can absorb a linear function 

of transmission error and reduce the jump of angular velocity and acceleration [3]. This goal(the 

predesign of a parabolic function) can be achieved with certain relations between the principal 

curvatures of contacting surfaces . 

Fig. 1.2.4 shows the predesigned transmission function for the gear convex side (Fig. 1.2.4(a)) 

( t )  and gear concave side (Fig. 1.2.3(b)). Both function~-q5~(~$~) and q52 (dl)- are in tangency at the 

mean contact point and have the same derivative mzl , at this point. 

Consider now that the predesigned transmission function is represented as 



Here: and dr)  are the initial angles of rotation of gears 1 and 2 that provide the tangency 

of gear tooth surfaces at the mean contact point M. 

Using the Taylor expansion up to the members of second order, we obtain 

where m21(41) is equal to Nl /N2  at the mean contact point and m& is the to be chosen constant 

value: positive for the gear concave side, and negative for the gear convex side. The synthesized 

gears rotates with a parabolic function of transmission errors represented by 

where 

Equation (1.2.16) enables the determination of mi, considering as known the expected values 

of transmission errors. 

Relation between Directions of Paths of Contact 

We recall that velocities dl) and d2) are related by the equation [4], 

Directions of velocities dl) and d2) coincide with the tangents to the contact path that form 

angles 71 and 72 with the unit vector e', (Fig. 1.2.5).  Equations (1.2.17) yield 



According to Fig. 1.2.5 

vf)  = v:) tan qi 

Third equation of system (1.2.1) and equations (1.2.18) and (1.2.19) yield 

tan71 = -a31 v F 2 )  t (a33 + O ~ ~ V ! ' ~ ) )  tan q2 
( 1 2 )  - v;12)  a33 + a32(vq tan 772) 

Prescribing a certain value for 772 (choosing the direction for path of contact on C 2 ) ,  we can 

determine tanql, v!') and v r ) .  We recall that coefficients a31, a32 and 033 do not depend on the 

to-be determined principal curvatures rcj and rch and a(12). 

Relations between the Magnitude of Major Axis of Contact Ellipse, Its Orientation and 

Principal Curvatures and Directions of Contacting Surfaces 

Our goal is to relate parameters a(12),tcf and tch of the pinion surface C1 with the length of the 

major axis of the instantaneous contact ellipse. This ellipse is considered at the mean contact point 

and the elastic approach 6 of contacting surfaces is considered as known from the experimental 

data. The derivation of the above mentioned relations is based on the following procedure 

Step 1: Using equations (1.2.2), we obtain 



Step 2: It is known from [4] that 

A = - K(')  - K?) - Jg:  - 2g1g2 cos 2a + gi 
4 a  ' [  I 

Equation (1.2.25) yields 

[(ail + a22 + 4AI2 = (all - ~ 2 2 ) ~  + 4 ~ : ~  

Step 3: We may consider now a system of three linear equations in unknowns al l ,  a12 and a22 

Step 4: The solution of equation system (1.2.27) for the unknowns all ,  a12 and a22 allows to 

express these unknowns in terms of al3, a23, K a ,  v!') and v?). Then, using equation (1.2.25) we 

can get the following equation for K E  



4A2 - (nl + n i )  
Kc = 

2A - (nl cos 2q1 + n2 sin 2771) 

Here: 

The advantage of equation (1.2.28) is that we are able to determine fix knowing the major axis 

2a of the contact ellipse and the elastic approach 6. 

Step 5: The sought for principal curvatures and directions for the pinion identified with nj, n,, 

and a(12) can be determined from the following equations 

tan2a(12) = 2a22 - 2n2 - Kc sin 2q1 - 
92 - (ail - a22) 92 - 2721 + KC cos2q1 

2a12 - 2n2 - KX sin 2q1 
91 = 

sin 2a(12) - sin 2a(12) 



Step 6 :  The orientation of unit vector Zf and e'r, is represented with equations (1 .2 .9 )  and 

(1 .2 .10) .  The orientation of the contact ellipse with respect to Zf is determined with angle d l )  

(Fig. 1.2.6) that is represented with the equations 

gl - g 2  cos 20(12)  
cos = (1 .2 .35)  

( g ;  - 2g1g2 cos 29('2) + g ; )  t 
g2 sin 2a(12) 

sin 2 d 1 )  = (1 .2 .36)  
(g: - 2g1g2 cos 2a(l2)  + g;) t  

The minor axis of the contact (2b)  ellipse is determined with the equations 

K:) - KP)  + Jg: - 29192 cos 2 0  t g; I 

Local Synthesis Computational Procedure : 

The following is an overview of the computational procedure that is to-be used for the local 

synthesis. 

The input data are: rc,,nq, e' , ,e' , ,dM),d12),d12) and 5 .  The to-be chosen parameters are: 

772, mi, and 2a. The output data are: n f ,  rch, d l 2 ) ,  Zf and Zh. 

Step 1:  Choose 772 and determine 771 from equation (1 .2 .20)  

Step 2: Determine u!') and v t )  from equations (1 .2 .21)  and (1 .2 .22)  



Step 3: Determine A from equation (1.2.29) 

Step 4: Determine Kc from equation (1.2.28) 

Step 5: Determine a(l2),tcj and tch by using the set of equations from (1.2.30) to (1.2.34) 

Step 6: Determine the orientation of the contact ellipse and its minor axis by using equations 

from (1.2.35) to (1.2.37) 

1.3 Conclusion 

The contact of tooth surfaces is considered for two cases: line contact and point contact. For line 

contact, the principal directions and curvatures of one surface can be determined in terms of the 

other's knowing the relative motion between the two . For point contact, we proposed an approach 

for local synthesis of spiral bevel gears which enables: (i) to provide a limited level of transmission 

errors, (ii) optimal direction for the path of contact on gear surface &,and (iii) the guaranteed 

length of the major axis of contact ellipse. 

The output data obtained from the procedure of local synthesis are: tcf ,  tch, dl2), e'f and Zh. 

The machine-tool settings for the generation of the gear tooth surfaces must be carefully chosen to 

guarantee the above mentioned conditions of local meshing and contact. 



2 Pinion and Gear Generation 

2.1 Pinion Generation 

To describe the pinion generation we will use the following coordinate system (Fig.2.1.1): (i) Sml- 

a fixed coordinate system that is rigidly connected to the cutting machine; (ii) SC1 -a movable 

coordinate system that is rigidly connected to the cradle and performs rotation with the cradle 

about the Zml- axis; initially, Scl coincides with Sml (Fig.2.1.1 (b)); angle bF determines the 

current position of Scl (Fig 2.1.1 (c)) : (iii) Coordinate systems S, and Sb that are rigidly connected 

to the cradle and its coordinate system Scl; systems S, and Sb are used to describe the installment 

of the head-cutter on the cradle. Angle ql determines the orientation of S, with respect to SC1; 

(iv) Coordinate system SF that is rigidly connected to the head-cutter (not shown in Fig.2.1.1); 

the head-cutter in the process for generation performs rotation with the cradle (transfer motion) 

and relative motion with respect to the cradle about an axis that passes through 0,; (v) Auxiliary 

coordinate systems Sd and Sp are used to describe the installment of the pinion on the cutting 

machine (Fig.2.1.1 and Fig.2.1.2); the pinion axis forms angle yml with axis X d  that is parallel to 

GI. (vi) A movable coordinate system S1 that is rigidly connected to the being generated pinion; 

the pinion rotates about the axis X,  and dl is the current angle of pinion rotation (Fig.2.1.2). 

Henceforth, we have to differentiate the parameter of motions that are performed in the process 

for generation and the parameters of installment of the head cutter and the pinion on the cutting 

machine. 

In the process for generation the cradle of the cutting machine with the mounted head-cutter 

performs rotation with angular velocity dF) (Fig.2.1.2). The head-cutter performs rotational 

motion with respect to the cradle but this motion is not related with the process for generation 

and just provides the desired velocity of cutting. The being generated pinion performs rotational 

motion with angular velocity (Fig.2.1.2) that is related with dF) . 

The parameters of installment of the head-cutter are: (i) the swivel angle j (Fig.2.1.1) and the 



tilt angle i that is the turn angle of St about (Fig.2.1.3); ST1 = 1OCOm11 is the radial setting; ql 

is the cradle angle. 

The parameters of installment of the pinion are: Eml-the shortest machine center distance (Fig. 

2.1.1, Fig.2.1.2); root angle y,~; sliding base XB1; machine center to back XG1. 

2.2 Gear Generation 

While describing the gear generation, we will consider the following coordinate systems: (i) Sm2 

that is rigidly connected to the cutting machine; (ii) Sc2 that is rigidly connect to the cradle, (iii) Sp2 

that is rigidly connected to the head-cutter and Sc2; (iv) Sdz that is an additional fixed coordinate 

system rigidly connected to SnZ2 ; and (v) S2 that is rigidly connected to the being generated gear. 

The cradle performs rotation about the Z,,2 axis with angular velocity (Fig.2.2.1). The 

initial and current positions of coordinate systems Sc2 and Sp2 with respect to Sm2 are shown in 

Fig.2.2.1 (a) and Fig.2.2.1 (b), respectively. 

Coordinate system Sd2 (it is rigidly connected to Sm2 ) is used to describe the installment of 

the gear at the cutting machine (Fig.2.2.2(a)). In the general case apices Ozn and Oz of the gear 

root cone and pitch cone do not coincide. Apex Ozn is located on axis Xm2 of the cutting machine. 

The origin 0d2 of Sd2 coincides with the apex 0 2  of the gear pitch core. Axes Xd2 and Xm2 form 

angle ym2 which is the gear machine root angle. 

Coordinate system S2 is rigidly connected to the gear that in the process of generation performs 

rotation about Xd2 with angular velocity (Fig.2.2.2(b)). Angle 42 is the current angle of 

rotation of gear 2. 

2.3 Gear Machine Tool Settings 

Gear Cutting Ratio 

Fig.2.3.1 shows the sketch of the gear with noncoinciding apexes of the root and pitch cones. 

In the process for generation the pitch line 0 2 P  is the instantaneous axis of rotation. It is evident 



that the angular velocity of rotation in relative motion, $(p2) , must lie in the plane that is formed 

by vectors and d2) (Fig.2.3.2) 

The cutting gear ratio is: 

1 $ ( 2 ) /  COS bG C O S ( ~ Z  - 72) 
RaG = - - ---- 

) 3 ( p )  I s inr2  s in r2  

Gear Settings 

Fig.2.3.3 shows the installment of the head- cutter. We designate the mean pitch cone distance 

02P (Fig.2.3.1, Fig.2.3.3) by A,. Then we obtain (Fig.2.3.3) 

HG = A, cos bG - Ru2 sin llrG (2.3.3) 

Here: $G is the spiral angle on the root cone, RUz is the mean radius of the head cutter. The 

sliding base IOm202 1 is 

XB2 = ZR sin 7,2 (2.3.7) 



Here: ym2 is the same as the gear root cone angle 7 2 .  and ZR is the distance between OzR and 

02,  which are the apexes of the root cone and the pitch cone, respectively. 



3 Gear Geometry 

3.1 Gear Surface 

The gear tooth surface is the envelope to the family of generating surfaces. We recall that the 

cradle carries the head-cutter that is provided with finishing blades. The blades are rotated about 

the axis of the head-cutter and generate two cone surfaces. Fig.3.1.1 shows one of the cones. 

The family of a generating surface (the cone surface) is generated in S2 while the cradle and 

being generated gear perform related rotations, about the Zm2-axis and X2- axis (Fig.2.2.2). 

The derivation of the gear tooth surface is based on the following procedure: 

Step 1: We represent the cone surface and its unit normal in system Sp2 (Fig.3.1.1) as follows 

(r, - s~ sin aG) cos BG 1 
4 

rp2 = 

Here: SG and OG are the surface coordinates; a G  is the blade angle; r, is the radius of the 

head-cutter that is measured at the bottom of the blades. It is evident (Fig.3.1.2) that 

(T ,  - SG sin aG) sin BG 

-SG COS CXG 

1 - A 

4 

np2 = 

- - COs (YG COS eG 

- cos QG sin BG 

sin a G  - 



Here: RU2 is the nominal radius, P W  is the so called point width; the positive sign in  (3.1.4) 

corresponds to the gear concave side and the negative sign corresponds to the gear convex side. 

Equations (3.1.1) and (3.1.3) represent both generating cones with CYG > 0 for the gear convex 

side and a G  < 0 for the gear concave side. 

Step 2: The family of generating surfaces that is generated in Sz is represented by the following 

matrix equation 

?Z(SG, OG,  dp) )= [M~dz][Md2mz][Mm~c~][Mc,~]r',~ 

Here (Fig.2.2.2, Fig.2.2.1): 

[Mzdz] = 

- - 
1 0 0 0 

0 cos 42 sinqb2 0 

0 - sin$;! cos b2 0 

0 0 0 1 - - 

LMdz m2 I = 

0 1 0 0 

- sin ymz 0 cos y , ~  -XB2 cos ym2 



[Mczml= 

The machine root angle ym2 in equation (3.17) is equal to gear root cone angle 7 .  

- 1 0 0 st2 cos q2 - 
0 1 0 ST2 sin q 2  

0 0 

0 0 0  1 

- - 

[Mmzcz]= 

Step 3: The derivation of the equation of meshing is based on the equation 

- - 
cos 4, - sin4, 0 0 

sin4, cos 43p 0 0 
0 0 1 0  

0 0 0 1 

- - 

The subscript "m2" means that vectors in equation (3.1.10) are represented in coordinate system 

Sm2 ; Zmz is the unit normal to the generating surface; dzi) = dzi - dzi is the relative (sliding) 

velocity. Vector Zm2 is represented by the matrix equation 

- COS CYG C O ~ ( ~ G  + 4,) 
Zm2 = [LmzPz]$2 = - COS a G  sin(oG + 4,) 

sin CXG 1 
where [LmZP2] is the 3 x 3 submatrix [M,,,]. 

We consider that the axes of rotation of the cradle and the gear intersect each other (Fig.2.2.2(a)), 

thus 



where 

We assumed that 1~tll = 1 in equation (3.1.13). Equations from (3.1.10) to (3.1.13) yield the 

following relation 

Here 

1 1 
A ( ~ G ?  #)PI = n,,z[-Al(sin72 - -)I t nmZy [ X B ,  cos 72 + A2(siny2 - -)I RUG RaG 

fn,2,A~ COS 72 (3.1.15) 

1 
B(BG, $p) = -n,,, sin QG s i n ( 8 ~  t #)p) + nmZy [sin 7 2  - -) sin a~ c o s ( 9 ~  4- 4p) 

RUG 

- cos QG cos y2] t n,,, cos 7 2  sin QG s i n ( 6 ~  f 4p) (3.1.16) 

Step 4: Equations (3.1.5) and (3.1.14) considered simultaneously represent the gear surface in 

three- parametric form but with related parameters. Since parameter s~ in equation of meshing 



(3.1.14) is linear, it can be eliminated in equation (3.1.5), and then the gear tooth surface will be 

represented in two-parametric form, by the vector function F2(OG, &) . 

3.2 Mean Contact Point and Gear Principal Directions and Curvatures 

The mean contact point M is shown in Fig.2.3.1. Usually, M is chosen in the middle of the tooth 

surface. The gear tooth surface and the pinion tooth surface must contact each other at  M. 

The procedure of local synthesis discussed in section 2.1 is directed at providing improved 

conditions of meshing and contact at M and in the neighborhood of M. The location of point 

M is determined with parameters XL and RL (Fig.2.3.1) that are represented by the following 

equations 

Here: A, is the pitch cone mean distance; h, is the mean whole depth; bG is the gear mean 

dedendum; c is the clearance Equations (3.2.1), (3.2.2) and vector equation f+2(OG,$p) for the gear 

tooth surface allows to determine the surface parameters O& and for the mean contact point 

from the equations 



Gear Princi~al Directions and Curvatures 

The gear principal directions and curvatures can be expressed in terms of principal curvatures 

and directions of the generating surface (see chapter (13) in [4]), that is the cone surface. 

Step 1: The cone principal directions are represented in Sp2 by the equations (see (3.1.1)) 

d p )  = BBG - 
sp2 - [- sineG cos eG olT 

4 P 2  

1%' 

4,) = &- = [- sin aG cos eG - sin aG sin eG - cos aGIT OF, 
1 7 - 1  

The superscript "p" indicates that the cone surface C, is considered. Unit vector $4; is directed 

-(PI along the cone generatrix and unit vector eaP2 is perpendicular to &!. The unit vectors of cone 

principal directions are represented in Sm2 by the equations 

3,) = [- sin ac cos(eG + $) - sin a~ s i n ( 6 ~  + 4p) - cos C ~ G ]  e q m ~  (3.2.8) 

The cone principal curvatures are: 

,(PI = cos a G  
and rct) = 0 

T ,  - SG sin a~ 

Step 2: The determination of principal curvatures and directions for gear tooth surface C2 is 

based on equations from (1.2.6) to (1.2.8). The superscript "2" in these equations must be changed 



for "p" and superscript "1" for "2". The second derivative of cutting ratio, m;, - mL2 is zero 

because the cutting ratio is constant. The principal curvatures of the gear tooth surface will be 

determined as ~f and tch. The principal directions on gear tooth surface will be represented in by 

Zf and Zh and they can be determined from equations (1.2.9) and (1.2.10). To represent in S2 the 

principal directions on gear tooth surface C2 and its unit normal we use the matrix equation that 

describe the coordinate transformation from Sm2 to S2. This equation is 

4 2 )  Here: iim2 stands for vectors Gmz, Zfm2 and Zhmhm,, and Z2 stands for 1 2 ,  6) and e,,, . 



4 Local Ssnthesis of Spiral Bevel Gears 

4.1 Conditions of Svnthesis 

The basic principles of local synthesis of gear tooth surfaces discussed in Section 1 will enable us 

to determine the principle curvatures and directions of the being synthesized pinion. Thus, we will 

be able to determine the required machine-tool settings for the pinion. While solving the problem 

of local synthesis, we will consider as known: 

(i) The location of the mean contact point M in a fixed coordinate system, and the orientation 

of the normal to gear surface C 2 .  

(ii) The principle curvatures and directions on C 2  at M. The local synthesis of gear tooth 

surfaces must satisfy the following requirements: 

(1) The pinion and gear tooth surfaces must be in contact at M. 

(2) The tangent to the contact path on the gear tooth surface must be of the prescribed direction. 

(3) Function of gear ratio mzl in the neighborhood of mean contact point must be a linear 

one, be of prescribed value at M and have the prescribed value for the derivative  mi,(+^) a t  M. 

The satisfaction of these requirements provides a parabolic type of function for transmission errors 

of the desired value at each cycle of meshing. 

(4) The major axis of the instantaneous contact ellipse must be of the desired value (with the 

given elastic approach of tooth surfaces). 

4.2 Procedure of Synthesis 

We will consider in this section the following steps of the computational procedure: (i) representa- 

tion of gear mean contact point in a fked coordinate system Sh ; (ii) satisfication of equation of 

meshing of the pinion and gear at the mean contact point ; (iii) representation of principle directions 

on gear tooth surface C 2  in Sh; (iv) observation of the desired derivative mil(+l). (v )  observation 

at the mean contact point of the desired direction of the tangent to the path contact on gear tooth 



surface ; (vi) observation at the mean contact point of the desired length of the major axis of the 

contact ellipse; (vi) determination of principal directions and curvatures on pinion tooth surface 

XI at the mean contact point. 

Step 1: We set up a fixed coordinate system Sh that is rigidly connected to the gear mesh 

housing (Fig.4.2.l(a)). In addition to  Sh, we will use coordinate systems S2 (Fig.4.2.l(a)) and S1 

(Fig.4.2.l(b)) that are rigidly connected to gears 2 and 1, respectively. We designate with 4; and 

4; the angles of rotation of gears being in mesh. We have to emphasize that with this designation 

4:(i = 1,2) we differentiate the angle of gear rotation in meshing from the angle 4; of gear rotation 

in the process of generation. 

The orientation of coordinate system St' is based on following considerations: (i) The axes of 

rotation of the pinion and the gear in a drive of spiral bevel gears intersect each other. Taking into 

account the possible gear misalignment, we will consider that the pinion-gear axes are crossed at 

angle and the shortest distance is E. (ii) We will choose that Xh coincides with the pinion axis 

and Oh is located on the shortest distance (Fig.4.2.l(a)). (iii) Considering as given the shaft angle 

l?, we will define ih- the unit vector of Yh - as follows 

where iih is the unit vector of gear axis that is parallel to plane (Xhr Yh). 

The coordinate transformation from S2 to Sh is based on matrix equation 

where Sd (Fig.4.2.1) is an auxiliary fixed coordinate system. The unit normal to C2 is repre- 



sented in Sh as 

Here (Fig. 4.2.1) 

[Md21 = 

where I' is the shaft angle. 

Equations (4.2.3), (4.2.2) and (4.2.3) enable to  represent in Sh the position vector and unit 

contact normal at M by 

- 
1 0 0 0 - 
o - cos 4; sing)', O 

o - sing); - cos g); O 

0 0 0 1 - - 

fMhd' dl= 

where (Oh, 4:) are the surface coordinates for the mean contact point at  C2 ; the angle g); of rotation 

of gear 2 will be determined from the equation of meshing (see below). 

cosr  0 sinl? 0 - 
0 1 O E  

- s i n r  o cos r o 

0 0 0 1  

- - 



Step 2: The equation of meshing of pinion and gear at the mean contact point is 

fir' . $2h'Z' = f ($2, $, 4;) = 0 

Here (Fig. 4.2.1) 

Nl 'J;) = c o  r o - sinrlT 
N2 

since at  point Id the angular velocity ratio is 

Substituting equations (4.2.3), (4.2.8)- (4.2.11) in equation (4.2.7), we can solve equation (4.2.7) 

for 44. Usually equation (4.2.7) yields two solutions for 4'2 but the smaller one, say (#J;)*, should 

be chosen. 

Step 3: We consider as known the principal curvatures and directions on E2 at any point of X2, 

including the mean contact point (see section 3). To represent in Sh the principal directions at the 

mean contact point, we use the matrix equation 



where ti2 is the unit vector of principal directions on X2 that is represented in S2. The following 

steps of computational procedure are exactly the same that have been described in section 1.2. 

This procedure permit determination of the pinion principal directions and curvatures at the mean 

contact point . 



5 Pinion Machine-Tool Settings 

5.1 Introduction 

We consider at  this stage of investigation as known: 

(i) the common position vector i$:) and unit normal 51:) at the point of contact point M of Ez 

and El 

(ii) pinion surface principal directions and curvatures at M. 

The goal is to determine the settings of the pinion and the head- cutter that will satisfy the 

conditions of local synthesis. We consider that the pinion surface and the generating surface are 

in line contact. Henceforth, we will consider two types of the generating surface: (a) a cone 

surface, and (b) a surface of revolution. We consider that each side of the pinion tooth is generated 

separately and two head-cutters must be applied for the pinion generation. 

5.2 Head-Cut ter Surface 

Cone Surface 

The cone surface is generated by straight blades being rotated about the zpaxis (Fig. 5.2.l(a)). 

The XF equations are represented in coordinate system SF that is rigidly connected to the head- 

cutter as following: 

Here: SF and OF are the surface coordinates; CYF and R, are the blade angle and the radius of the 

cone in plane z p  = 0. The blade angle aF  is standardized and is considered as known. Parameter 

-. rp = 

(R, + SF sin a F )  cos OF 
- 

(R, + SF sin aF )  sin OF 

-SF Cos &F 

1 - - 



u~ is considered as negative for the pinion convex side and a F  is positive for the pinion concave 

side. The point radius RCp is considered as unknown and must be determined later. 

The unit normal to pinion tooth surface is represented as 

... fiF 
n p  = - - a?F aFF 

and N F = -  x -  
13Fl d 8 ~  asF  

ZF = - [cos a F  cos OF cos CYF sin sin cyF]T 

The principal directions on the cone surface are: 

e'F - a e F  - I - a?F - [- sin OF cos OF OIT 
1 - 1  30, 

eII  4 F )  - - - - - [sin OIF cos OF sin a F  sin OF - cos aF] T aFF 
I I  

The corresponding principal curvatures are 

R ( F )  = cos CYF and K ( ~ ) = -  1 
I  R, + S F  sinaF 11 P 

Surface of Revolution 



We consider that the head-cutter surface CF is generated by a circular arc of radius p by 

rotation about the zo-axis that coincides with the rF-axis of the head-cutter (Fig. 5.2.l(b)) and 

(Fig.5.2.l(c)). The shape of the blade is represented in So by the vector equations 

- - -  
OoN = OoC + C N  = (x?) + p cos A)zo + (3;') + ~ s i n  A)io (5.2.7) 

Here: ( ~ f ) ,  2r)) are algebraic values that represent in So the location of center C of the arc; 

- 
p = ICN( is the radius of the circular arc and is an algebraic value, p is positive when center C 

is on the positive side of the unit normal. ; X is the independent variable that determines the 

location of the current point N of the arc. By using the coordinate transformation from So to SF 

(Fig.5.2.1 (c)) , we obtain the following equations of the surface of the head-cutter: 

I (xic)  + p cos A) sin I 
z?) + sin A 

1 

where X and O F  are the surface coordinates (independent variables). 

The surface unit normal fiF is represented by the following equations 

@F -, a+ nF = - and N F = - - x -  
I@FI  aeF ax 

Then we obtain 



+ 
n F  = - [cos X cos OF cos X sin eF sin x ] ~  

The variable X at the mean contact point M has the same value as the standardized blade angle 

CYF.  The principal directions on the head-cutter surface are 

- 

+F - "F = [- sin cos eF 0jT e 
I - -  

' G I  
'r'F - 

i F )  = - -@- = [sin X cos OF sin X sin OF - cos XIT e~~ ~ T F  (5.2.12) 

',I 

The principal curvatures are 

J F )  = cos X 1 
I and R!;) = - 

XT?) + p cos X P 

The radius Rcp of the head-cutter in plane (Fig. 5.2.1) can be determined from the equations 

5.3 Observation of a Common Normal at the Mean Contact Point for Surfaces E,, 

E2 , CF and C 1  

We consider that at the mean contact point M four surfaces- E p ,  C 2 ,  C F  and El- must be in 

tangency. The contact of Cp and C 2  at M has been already provided due to the satisfication of 



their equation of meshing (3.1.10). Our goal is to  determine the conditions for the coincidence 

at M of the unit normals to CF, Cp and C2. The tangency of El with the three above mentioned 

surfaces will be discussed below. 

We will consider the coincidence of the unit normals in coordinate system Sml. To determine the 

orientation of coordinate system S!, with respect to Sml, let us imagine that the set of coordinate 

systems Sh, S1 and S2 (Fig.4.2.1) with gears 1 and 2 is installed in Sml with observation of following 

conditions (Fig.5.2.2): (i) axis xtL of SI, coincides with axis xp of Sp; (ii) coordinate system S1 

coincides with Sp and the orientation of Sh with respect to S1 is designated with angle g!, = (4;)' 

where q5h is the to be determined instalment angle. Angle 4h will be determined from the conditions 

of coincidence of the unit normals to CF, C2 Cp and C1. The procedure for derivation is as follows: 

Step 1: Consider that the coordinate system S), with the point of tangency of surfaces C2 and 

Cp is installed in Sml. We may represent the surface unit normal d2) in Sml by using the following 

matrix equation (Fig. 5.2.2). 

The unit vector ~ f )  has been represented by equation (4.2.3). 

Step 2: The unit vector to the surface of CF of the head-cutter that generates the pinion 

has been represented in SF by equation (5.2.3) for a cone and equation (5.2.10) for a surface of 

+(MI 
nh (5.3.1) 

revolution. Axes of coordinate systems SF and Sml have the same orientation and 

0 0 
- 

0 cos 4 h  - sin4h 

0 sin& cos4h 
- - 

z E ~  = [ L ~ ~ ~ ] [ L ~ ~ ] Z ~ )  = 

-cosy1 0 - s h y l - - 1  

o 1 o 

sin yl 0 cosyl 
- - 



Equations (5.3.1), (5.3.2), (5.2.3) and (5.2.10) yield the following equations 

nP2 + sin a F  sin y1 
cos 0; = - 

cos 71 COS a F  

( 2 )  a l & )  + a2nZb 
( 2 )  a l n z  - q n Z h  

COS dlr = 
( 2 ) 2  ( 2 1 2  

sin Oh = 
(nyh ) + (n,,, ) ( n $ ) ) 2  + (nVh1)2 

Here: 

a1 = - cos a~ sin 8: a2 = cos a~ sin yl cos 6& - sin a p  cos yl (5.3.5) 

The advantage of the proposed approach is that the coincidence of the unit normals to surfaces 

C F ,  C 2 ,  C P  and C1 can be achieved with standard blade angles and without a tilt of the head-cutter. 

5.4 Basic Equat ions for Determinat ion of Pinion Machine-Tool Set t ings 

( 1 )  ( 1 )  41) 4 -M At this stage of investigation we will consider as known: , K~~ , ezml,  ezIml ,  nml and ?El. I t  is 

( 1 )  ( 1 )  41) 41) necessary to determine: K?), &$:), u ( l F ) ,  Rq, Eml ,  Xsc, and m;, . Here: , m , eIml and emml 

are the principal curvatures and unit vectors of principal directions on the pinion surface that are 

taken s t  mean contact point M ;  8:) and 6:) are the position vector of M and the contact normal 

(F) at M .  The subscript "ml" indicates that the vectors are represented in Sml .  Designations 

and KE) indicate the principal curvatures of the surface of the pinion head-cutter that are taken 

at M. The angle is formed by the unit vectors ej') and q) of principal directions on El and 

C F ;  Rep is the cutter "point radius" (Fig.5.5.1) that is measured in plane z~ = 0 and is dependent 



(1) on . Eml and Xcl are the pinion settings for its generation (Fig.2.1.1 and Fig.2.1.2); mF1, 

which is equal to ', and m;, are the cutting ratio and its derivative. 
RCP 

We recall that the pinion surface curvatures KP) and KE) have been determined in the process 

of local synthesis. Vectors $2, $A, i$,M) have been determined in system Sh. To represent these 

vectors in Sml we have to apply the coordinate transformation from Sh to Sml similar to equation 

(5.3.1). 

41) where & represents that principal directions of the pinion surface $2 and eII,,, the position vector 

41) 41) i m )  of mean contact point 6;); Zm1 represents the corresponding vectors eIml, eIIml and rml . 

Now our goal, as it was mentioned above, is to determine rciF), K!:), d l F ) ,  Em1, Xol, mF1 and 

4F) m .  We recall that vectors $) and ej:) are known from the local synthesis, and g) and eII 

become known from equations (5.2.4) and (5.2.5) for straight blade, and from equations (5.2.11) 

and (5.2.12) for curved blade, after the coincidence of the contact normal to surfaces C2, C P  and 

CF is provided. Thus parameter a(lF) can be determined from the equations 

i n  ( 1  = - 4 4F) 
nm1 (elm1 X '1rn1) 

-4F) cos o('F) = $Al . eIml 

According to Fig. 5.5.1, since the Zml-axis is parallel to ZF-axis, surface parameter SF for the 

cone surface at mean point can be determined as: 



Parameter KK) is equal to zero for a cone surface of the head-cutter and it must be chosen 

for a head-cutter with a surface of revolution. Then, the number of remaining parameters to-be 

determined becomes equal to five and they are: niF), Em,, Xol , mlF and mkl. 

It will be shown below that we can derive only four equations for determination of the unknowns 

of the output data. Therefore one more parameter has to be chosen, and this is mkl-the modified 

roll. Usually, it is sufficient to choose rnkl = 0, but the more general case with m;, # 0 is 

considered in this report as well. 

The to be derived equations are as follows, 

Equation (5.4.4) is the equation of meshing of the pinion and head-cutter that is applied at 

the mean contact point. Equations from (5.4.5) to (5.4.7) come from the conditions of existence of 

instantaneous line contact between C1 and E F .  The coefficients a;j in equation (5.4.5)-(5.4.7) are 

represented as follows, 



( 1 )  K p '  - K z I  
a12 = a 2 ~  = 

2 
sin 2cr(lF) 

Vectors in equation of meshing (5 .4 .4 )  can be represented as follows 

4 1 )  = uml [COS 71 0 sin y1 jT ( ] ; ( ' ) I  = 1 )  

1 
where R,, which is equal to -, is the ratio of roll. 

~ F I  



I -Yml sin yl 
4 )  - + -jM) = xml sin71 - zrn1 cos yl vtr -urn1 X Tm1 1 

5.5 Determinat ion of C u t t e r  Point Radius 

i F )  Step.1: Equations (5.4.3), (5.4.6) and (5.4.7) yield the following expression for nI 

Step 2: According to Meusnier's theorem, the cutter radius R, at the mean contact point is 

(Fig.5.5.1) 

As shown in Fig.5.2.1. the cutter point radius can be determined for a straight blade cutter as 

follows , 

Rep = Rm - s$ sin a p  

For the arc blade, the location of the center of the arc can be determined in So by following 

equations, 



~ c j C )  = R, - p cos aF 

z?) = R, - p sin aF (5.5.5) 

Knowing x?) and z?), we can determine the point radius for the arc blade by equation (5.2.14). 

In order to find the position vector of the center of the head cutter, we define the following two 

vectors in Sml as shown in Fig. 5.5.1. 

,do) = 5 cos a* - sin aF 

where, p(") is a unit vector directed from the blade tip Mo to the cutter center OF, and p(C) is 

a position vector directed from OF to the arc center C. Referring to Fig.5.2.2 and Fig.5.5.2, the 

position vector of the cutter center OF with respect to Oh, qF) can be determined in system Sml 

as follows, 

For straight blade: 

- ~ ' 2 )  cos eF - 

Xic)  sin eF 

22) 
1 - - 

- - 

- xiC) - 

0 

zy 

1 - - 

$4 = 

- cosoF -sineF o o 

sinBF cos OF 0 0 

0 0 1 0 

0 0 0 1 - - 



For arc blade : 

It can be verified that the Zm1 component of cF' is zero, since equations (5.4.3) and (5.5.5) 

are observed. It is worth to mention that 03, and ST, are the surface coordinates where the contact 

is at mean point. The values of 0; and s p i l l  serve as the initial guess in tooth contact analysis. 

5.6 Determination of mF1 = &, EMl and XGI 

The determination of cutting ratio Rap, settings Eml and xG1 is based on application of equations 

(5.4.2), (5.4.4) and (5.4.5). 

Initial Derivations 

It is obvious that equation of meshing (5.4.4) is satisfied at point M if the relative velocity idF1) 

lies in plane that is tangent to the contacting surfaces at M. Thus, if velocity dF1) satisfies the 

equation, 

it means that equation of meshing (5.4.4) is also satisfied. Assuming that vectors of equation 

(5.6.1)) are represented in coordinate system Sml, we obtain 



For further derivations we will use the following expressions for a13 and ~ 2 %  

4 F 1 )  = 
vm1 

Here, 

- ( F l ) e ( F )  ( F l I e ( F )  - 
' I  I m l X  + ' I I  I I m l X  

vyl)eK)ly + v g l ) e ( F )  I I m l Y  

( F l I e ( F )  ( F l I e ( F )  - ' I  I m l Z  + ' I I  I I m l Z  - 

Using equations (5.6.2), (5.6.3) and (5.4.16), we obtain 

Followine: Derivations 



Step 1: Expressions for v r l )  and uK1).  Equations (5.6.6) and (5.4.4) represent a system of 

two linear equation in unknowns v r l )  and v!:'). The solution of these equations for the unknowns 

yields: 

Here, 

Step 2: Expression for idF1) 

Substituting the above equation in equation (5.6.2) , we obtain 



Here: 

4F1) Step 3: Expression for v,, 

Equations (5.4.16) and (5.4.18) yield 

Here, 

X13 = X12 - Yml sin 7 

X23 = X22 $ Xml sin y - Zml cos 7 

x33 = X32 + y m l  cos 7 
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Step 4: Expressions for triple products in equation (1.2.2) for a33 

[n' dF1) dF1)] = ~ ~ ~ t :  + E12tl + E13 

where 

where 

Y21 = -nrn1xX21 sin71 + ~,IY(XII  sin71 - X31 cos 71) + nrnlzXsl cosrl 
(5.6.20) 

Y22 = -nrn1xX23 sin71 + nrnlu(X13 sinyl - X33 cos 71) 

where 

Yli = -nmly(Xml sin 71 - Zml cos 71) - nrnlyYml sin yl i (5.6.22) 
Y12 = sin71Y11 

Step 5: Expression for the last term in equation (1.2.2) for ass. 

We have to differentiate between two derivatives: mil and m;,. The first one, mi,, is applied 

to provide a parabolic function of transmissions errors for the case of meshing of the generated 



pinion and the gear. Such a function is very useful because it will allow to absorb linear functions 

of transmission errors caused by the gear misalignment. The other derivative, m;,, means that 

the cutting ratio in the process for pinion generation is not constant and it is just an additional 

parameter of machine-tool settings. 

In the approach proposed in this research project it is not required to have modified roll. 

However the use of such parameter in the more general case with mkl # 0 is also included to offer 

an extra choice. After some derivations, we obtain 

Here 

where 

Step 6: Final expression for ass. 

Using the expressions received in steps 4 and 5, we obtain the following expression for a33 



where, 

Step 7: New representations of coefficients a13 and a23. 

Equations (5.6.3), (5.6.7) and (5.6.8) yield 

Here; 

Step 8: Derivation of squared equation for tl 

Equations (5.6.30) and (5.4.5) yield 



where, 

Solving equation (5.6.32)) we obtain 

There are two solutions for tl and we can choose one of them. If the tilt and the modified roll 

are not used, it can be proven that in this case a1 becomes equal to zero and equation (5.6.32) 

yields 

knowing tl, the ratio of roll may be easily determined as 

According to equations (5.4.19) and (5.6.15), the blank offset and machine center to back can 

be determined by 



Knowing Eml and XGl, we may represent the position vector of the center of head-cutter with 

respect to the cradle center as follows, 

In practice, the position of the center of the head cutter is defined by radial setting ST1 and 

cradle angle q l ,  which may be determined by the following equations, 

Since the cutter center OF must lie in the machine plane, the component 2 2 )  must be zero. 

Thus, the sliding base Xsl may be determined as, 

XB1 = -XG1 sin 71 



6 Tooth Contact Analysis 

6.1 Introduction 

The tooth contact analysis (TCA) is directed at simulation of meshing and contact for misaligned 

gears and enables to determine the influence of errors of manufacturing ,assembly and shaft deflec- 

tion. The basic equations for TCA are as follows: 

Equations (6.1.1) and (6.1.2) describe the continuous tangency of pinion and gear tooth surfaces 

C1 and Cz. The subscript h indicates that the vectors are represented in fixed coordinate system 

Sh. The superscripts 1 and 2 indicate the pinion tooth surface C1 and gear tooth surface C2, 

respectively. Vector equation (6.1.1) describes that the position vectors of a point on C1 and a 

point on C2 coincide at the instantaneous point of contact M; vector equation (6.1.2) describes 

that the surface unit normals coincide at M. 

Parameters OF and $F represent the surface coordinates for C1; BG and 4, are the surface 

coordinates for C2. Parameters 4: and 4'2 represent the angles of rotation of the pinion and gear 

being in mesh. 

Two vector equations (6.1.1) and (6.1.2) are equivalent to  five independent scaler equations in 

six unknowns, which are represented as 



The continuous solution of equations (6.1.3) means determination of five functions of a param- 

eter chosen as the input one, say 4;. Such functions are: 

In accordance with the theorem of Implicit Function System Existence [4], solution (6.1.4) exists 

if at any iteration the following requirements are observed: 

(i) There is a set of parameters 

that satisfies equations (6.1.1) and (6.1.2) 

(ii) The Jacobian that is taken with the above mentioned set of parameters and with 4; as an 

independent variable, differs from zero, i.e. 

The solution of the system (6.1.3) of nonlinear equations is based on application of a subroutine, 

such as DNEQNF of the IMSL software package. The f i s t  guess for the starting the iteration process 

is based on the data that are provided by the local synthesis. 

The tooth contact analysis output data, functions (6.1.4), enable to determine the contact path 

on the tooth surface, the so called line of action, and the transmission errors. 

The contact path on pinion tooth surface is determined in S1 by the following functions 
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Similarly, the contact path on gear tooth surface is represented by functions 

Function &(&;) relates the angles of rotation of the gear and the pinion being in mesh. Devi- 

ations of q$(+;) from the theoretical linear function represent the transmission errors (see section 

6.4). TCA is accomplished by the following procedure: (i) derivation of gear tooth surface, (ii) 

derivation of pinion tooth surface, (iii) determination of transmission errors, and (iv) determination 

of bearing contact as the set of instantaneous contact ellipses. 

6.2 Gear Tooth Surface 

The gear tooth surface C2 and the surface unit normal have been represented in S2 by equations 

(3.1.5) and (3.2.10), where BG is the parameter of generating cone and 4, is the rotational angle 

of the cradle. Coordinate system S2 is rigidly connected to the gear. To represent the gear tooth 

surface C2 and its unit normal in fixed coordinate system Sh we can use the following matrix 

equations: 



6.3 Pinion Tooth Surface 

We will consider two cases for generation of pinion tooth surface: (i) by a cone, and (ii) by a surface 

of revolution that is formed by rotating curved blades. 

Generation by a Cone Surface 

Step 1: We recall that the generating cone surface and the surface unit normal has been repre- 

sented in SF by equations (5.2.1) and (5.2.3). 

(R ,  + S F  sin a F )  cos OF 1 
- 
r F  = 

where SF and %* are the surface coordinates. 

Step 2: During the process for generation the cradle with the mounted cone surface performs a 

rotational motion about the Zml -axis and a family of cone surfaces with parameter (bF is generated 

in Sml. This family is represented in SmI by the matrix equation 

(R ,  + S F  sin a F )  sin OF 

+ 
n F  = 

- Cos a p  cos O F  

- cos aF sin OF 

- S F  COS C ~ F  - - 



where 

T771 = FF + [ Stl cos ~1 - Stl sin ql o lT 

The position vector r',l represents a point of the cone surface in coordinate system Scl; Srl and 

ql are the settings of the head-cutter center OF in Sml. 

Matrix [MrnlC1] is (Fig.2.1.1) 

[Mrnlc~] = 

cos 4F sin4F o o - 

- sin4p cos 4F 0 0 

0 0 1 0  

0 0 0 1  - - 

where ZCl 5 ZF. 

We recall that the generating cone surface is a ruled developed surface and the surface unit 

normal does not depend on SF (Parameter SF determines the location of a point on the cone 

generatrix.) Matrix [LrnlC1] is the 3 x 3 rotational part of [LrnlC1] and is represented as follows, 

The unit normal at  a point of the generating surface XF is represented in Sml by 

[LrnlC1] = 

- cos 4p sindp 0 - 
- sin 4~ cos dF 0 

0 0 1 - 

(6.3.7) 



Step 3: Equation of meshing of the head-cutter cone with the pinion tooth surface. The equation 

of meshing is considered with vectors that are represented in Sml. Thus: 

Here: idF1) is the sliding (relative) velocity represented as follows 

While deriving equation (6.3.9), we have taken into account that vector of angular velocity 3(') 

of pinion rotation does not pass through the origin Oml of Sml; gml represents the position vector 

that is drawn from Oml to a point of line of action of d l ) ;  can be represented as (Fig.2.1.2): 

= [ X G ~  cos yl - Eml XGl sin ?1lT (6.3.10) 

vectors w'(l) and dF) are represented in Sml as follows 

d!,? = [COS 71 o sin yllT (/;(I) = 11) 

Equations from (6.3.8) to (6.3.12) yield 



Here: 

TI = Xnm1 (-Eml sin yl - Al(sin yl - m ~ 1 ) )  + Ynml(X~1 cos y1 + A2(sin yl - mpl)) 

+ Zml (Eml cos yl t A1 cos yl) (6.3.14) 

T2 = Xnml(sinyl - mFl) sin c u ~  sin(OF + 4 ~ )  - Ynml[(sinyl - mFl) sin cuF cos(BF + #JF) 

- cos CYF cos yl] - Znml cos yl sin cup sin(OF + dF) (6.3.15) 

where 

Step 4: Two-parametric representation of surface of action 

The surface of action is the set of instantaneous lines of contact between the generating cone 

surface and the pinion tooth surface that are represented in the fixed coordinate system Sml. The 

surface of action is represented by equations (6.3.3) and (6.3.13) being considered simultaneously. 

These equations represent the surface of action by three related parameters. Taking into account 

equation (6.3.13) , we can eliminate SF and represent the surface of action in two-parametric form 

by 



The common normal to contacting surfaces has been already represented in two-parametric 

form by equations (6.3.6). 

Generation by a Surface of Revolution 

Step 1: The shape of the blades is a circular arc (Fig.5.5.1) and such blades generate a surface 

of revolution by rotation about the head-cutter axis. 

The position-vector of the center of the generating arc is represented in Sml by the equation 

where, 

cos 4~ sinBF 0 0 1 

and $c) has been expressed by equation (5.5.7). 

Step 2: We will need for further transformations the following equations 



and 

4 F )  Here: eIml is the unit vector of principal direction I on the head- cutter surface and Tml is a unit 

vector that is perpendicular to e'l,, and the axis of the head-cutter (Fig. 6.3.1) 

Step 3: To simplify the equation of meshing we will represent it by the following equation 

41F'C) is the relative velocity of the center of the circular arc that generates the head-cutter where vml 

surface of revolution. The proof that (6.3.22) is indeed the equation of meshing is based on the 

following considerations: 

(i) The relative velocity for a point of the head-cutter surface is represented by equation (6.3.9), 

given as 

We can represent position vector r',l for a point M as 



where p is the radius of the arc blade. 

While deriving equation (6.3.24), we have taken into account that a normal to the head-cutter 

surface passes through the current arc center C; the sign of p depends on how the surface unit 

normal is directed with respect to the surface. 

Then, we may represent the equation of meshing as follows 

Thus, equation (6.3.22) is proven. 

Step 4: It follows from equation (6.3.22) that vector d;FC) belongs to a plane that is parallel 

41FYC) is to the tangent plane T to the head- cutter surface (Fig.6.3.2). This means that if vector vml 

translated from point C to M it will lie in plane T. The unit vector 4z1 lies in plane T already. 

Then, we may represent the unit normal Gml by the equation 

where d!FC) is represented as follows, 



'('I = dl) x {b,"? + [-xol cos 71 E~~ - xcl sin 71]T) vml 

The advantage of vector equation (6.3.26) is that the surface unit normal at the point of contact 

is represented by a vector function of two parameters only, OF and cbF;  this vector function does 

not contain the surface parameter A. 

The order of co-factors in vector equation must provide that the direction of Zrnl is toward the 

axis of the head-cutter. The direction of Zml can be checked with the dot product 

The surface unit normal has the desired direction if A > 0. In the case when A. < 0, the desired 

direction of Zrnl can be observed just by changing the order of co-factors in equation (6.3.26). 

To determine parameter X for the current point of contact we can use the equation, 

-. -, cos X = nrnl rml (6.3.31) 

Step 5: Our h a 1  goal is the determination in Sml of a position vector of a current point of 

contact of surfaces C F  and E l .  This can be done by using the equation, 



where p is the radius of the circular arc. 

Finally, the pinion tooth surface may be determined in S1 as the set of contact points. Thus: 

The unit normal to surface X1 is determined in S1 with the equation 

Here: kl (OF, + F )  and Eml (OF, 4 ~ )  have been represented by equations (6.3.17) and (6.3.6) for 

straight blade cutter and by equations (6.3.26) and (6.3.32) for curved blade cutter. Here (Fig.2.1.2): 

cosy1 0 sinyl - XGl sin y 1 

[MlPl = 
0 c0sq5~ sin& 0 

0 - sin41 cos $1 0 



where dl is the angle of the pinion rotation in the process for generation. Angles (61 and dF (the 

angle of rotation of the cradle) are related as follows: 

(i) in the case when the modified roll is not used and Rap is constant, we have 

(ii) when the modified roll is used, 4l is represented by the Taylor's series 

where C, D, E and F are the coefficients of Taylor's series of generation motion (see Appendix 

B) .  

Step 7: The tooth contact analysis, as it was mentioned above, is based on conditions of tan- 

gency of the pinion and gear surfaces that are considered in the fixed coordinate system Sh (see 

section 6.1). To represent the pinion tooth surface and the surface unit normal in Sh we use the 

matrix equations 

Here: 



where 4; is the angle of rotation of the pinion being in mesh with the gear. 

W h l l  = 

6.4 Determinat ion of Transmission Errors  

The function of transmission errors is determined by the equation 

- - 
1 0  0 0 

0 cos 4; - sin$; 0 

0 sin+; cosm; 0 

0 0 0 - 1 - 

Here: (4;)' (i = 1,2)  is the initial angle of gear rotation with which the contact of surfaces XI  

and Ez at the mean contact point is provided. Linear function 

provides the theoretical angle of gear rotation for a gear drive without misalignments. The 

range of 4'2 is determined as follows 



The function of transmission errors is usually a piecewise periodic function with period equal 

27r 
to 4; = - (i = 1,2) (Fig.6.4.1). The purpose of synthesis for spiral bevel gears is to  provide that 

Ni 
the function of transmission errors will be of a parabolic type and of a limited value 6' (Fig.6.4.1). 

The tooth contact analysis enables to simulate the influence of errors of assembly of various 

types, particularly, when the center of the bearing contact is shifted in two orthogonal directions 

(see section 7). 

6.5 Silnulation of Contact 

Mapping of Contact Path into a Two-Dimensional Space 

It was mentioned above that the contact path on the pinion and gear tooth surfaces is determined 

with functions (6.1.7) and (6.1.8), respectively. For the purpose of visualization , the contact path 

on the gear tooth surface is mapped onto plane (XC,Jrc) that is shown in Fig.6.5.1. The &-axis 

is directed along the root cone generatrix and Y, is perpendicular to the root cone generatrix and 

passes through the mean contact point (Fig. 6.5.1). 

Consider that a current contact point N* is represented in S2 (Fig.6.5.2) by coordinates: 

X2(4;), R Li(Q;) where 4; is the angle of rotation of the gear and RL' = /mI = (Y,? + 2;)).  

Axis X2 belongs to plane (X,, Y,) (Fig.6.5.2). While mapping the contact path onto plane (X,, Y,), 

we will represent its current point N* by N  that can be determined by coordinates X2 and RL', 

- 
where RL' = \ E N [  = / E N * /  (Fig.6.5.3). The coordinates of mean contact point M, X L  and R, 

have been previously determined by equations (3.2.1) and (3.2.2). Drawing of Fig.6.5.3 yield 

Here: 



= -EL cos(rk - 7 2);. 

where yr, is determined by: 

Equations from (6.5.1) to (6.5.8) yield 

O,K = -)On021 sin 72TC 

l7J3 = x2 cos 72iC - x2 sin ?2iC 

EN =  sin y2Tc + cos 72jC) 

Xc = ~ 2 ( 4 ; )  cos 72 + R L ' ( ~ ; )  sin 72 - [(XL)' + ( R L ) ~ ] ~  cos(yk - 72) I 
Yc = XZ(&) sin72 + EL'(&) cos y2 - ZR siny2 J 

Contact Ellipse 



Theoretically, the tooth surfaces of the pinion and the gear are in point contact. However, due 

to the elastic deformation of tooth surfaces their contact will be spread over an elliptic area. The 

dimensions and orientation of the instantaneous contact ellipse depend on the elastic approach S of 

the surfaces and the principal curvatures and the angel dl2) formed between principal directions 

$) and $) of the surfaces. The elastic approach depends on the magnitude of the applied load. 

The value of S can be taken from experimental results and this will enable us to consider the 

determination of the inst ant aneous contact ellipse as a geometric problem. Usually, the magnitude 

6 is taken as 6 = 0.00025 inch. 

In our approach the curvatures and principal directions of the pinion and the gear are determined 

with the principal curvatures and directions of the generating tools and parameters of relative 

motion in the process for generation. 

Gear Tooth Principal Curvatures and Directions 

The procedure for determination of gear tooth principal curvatures and directions was de- 

scribed in section 1.2. Knowing functions gp(q5;), q5P(4&) from the TCA procedure of computa- 

tion, we are able to determine the position vector T-,2(Op(t$;), &(&)) and the surface unit normal 

Zm2(OP(4',), q5p(4k)) for an instantaneous point of contact. The principal directions and curvatures 

for the generating surface can be determined from equations (5.2.4), (5.2.5) and (5.2.6). The pa- 

rameters of relative motions in the process for generation can be determined with equations (3.1.12) 

and (3.1.13). 

Pinion Tooth Principal Curvatures and Directions 

As it was mentioned above, the pinion tooth surface can be generated by a cone or by a surface 

of revolution. The derivation of principal curvatures and directions on the pinion tooth surface 

is based on relations between principal curvatures and directions between mutually enveloping 

surfaces EF of the head- cutter and C1 of the pinion. The procedure of derivation is as follows: 

Step 1: We represent in Sml the principal directions on the head- cutter surface EF using the 

following equations 



Step 2: Parameters of relative motion in the process for pinion generation have been represented 

by equations (5.4.14) to (5.4.19). The derivative of cutting ratio, mbl,  is equal to zero for the case 

when the modified roll is not used, and can be determined when the modified roll is applied as 

follows (see the Appendix) 

where, 

Step 3: Now, since the principal curvatures and directions on CF are known and the relative 

motion is also known, we can determine for each point of contact path the principal curvatures K r  

and 611 of the pinion tooth surface El, the angle o ( ~ ' )  and the principal directions $Al, &jml on 

El. We use for this purpose equations (1.2.6) to (1.2.10). The principal directions on C1 can be 

represented in coordinate system Sh by the matrix equation (Fig.5.2.2), 



Orientation and Dimensions of the Instantaneous Contact Ellipse 

Knowing the principal directions and principal curvatures for the contacting surfaces at each 

point of contact path, we can determine the half-axes a and b of the contact ellipse and angle a(') 

of the ellipse orientation (Fig.6.5.4). The procedure of computation is as follows [4]: 

Step 1: Determination of a and b 

where, 

A = 1 [Rg)  - I C ~ )  - Jg: - 29192 cos 2 0  + gi 
4 I 

K g )  - K F )  + Jg:  - 29192 cos 2 0  + g: I 

Step 2: Determination of dl2) (Fig.6.5.4) 
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Step 3: Determination of a(') 

41) Angle a(') determines the orientation of the long axis of the contact ellipse with respect to e,,I 

(Fig.6.5.4) and is one of the angles determined by the following equations, 

g2 sin 2a(12) 
tan 2a(') = 

g l  - g2 cos 2a(12) 

Step 4: The orientation of unit vectors i j  and ( of long and short axes of the contact ellipse 

(Fig.6.5.4) with respect to  the pinion principal directions is determined with the equations 

Step 5: In order to visualize the contact ellipse we represent its axes of contact ellipse in plane 

(X,, Y,) (Fig.6.5.1), using the following equations 

where 



The unit vectors of axes of contact ellipse form in plane (X,, 1;) the following angles with the 

X,-axis (the generatrix of the root cone) : 

-cosI '  0 -sinI '-  

0 1  o 

- sinI' 0 cosr 

[L2h] = 

Axes of the contact ellipse form with the gear axes the following angles 

- 1 0 0 - 
o - cos 4; - sind; 

- o sin 4; - cos 4; - 



7 V and W check 

The purpose of the so called V and H check is the computer aided simulation of the shift of 

the bearing contact to the toe and to the hill of the gear. The gear quality is judged with the 

sensitivity of the shape of the contact pattern and the change in the level of transmission errors to 

the above-mentioned shift of contact. 

7.1 Determination of V and H values 

Fig.7.1.1 shows the initial position M of contact point (it is the mean contact point), and the new 

position M* of the contact point). The shift of the contact pattern was caused by the deformation 

under the load. Coordinates x L  and RL determines the location of M. For the following derivations 

we will use the following notations. 

(i) PF = A - A* is the shift of the center of bearing contact, where F is the tooth length 

measuring along the pitch line; p is an algebraic value, that is positive when A* < A and the shift 

is performed to the toe as shown in Fig.7.1.1. Usually, p is equal to  0.25. 

(ii) dG and aG' are the gear dedendum and addendum angle. 

(iii) PD = bG and P*D* = b7; are the gear dedendums that are measured in sections I and I*. 

(iv) h, = BD and h* = B*D* are the gear tooth heights. 

(v) r2 is the pitch cone angle 

The determination of V and H for point contact M* is based on the following procedure. 

Step 1: Determination of XL* and RL*. 

Fig.7.1.1 results in : 

h* = h, - pF(tanbG + tan aG) 



where b& = P*D* and bG = P D  

h* f c 
We assume that M*D* = --- h t c  

2 
and M D  = - 

2 
, where c is the clearance. 

Taking into account that 

we obtain 

h* + c 
XL* = A*cosr2+ P * M * s i n ~ 2 = A * c o s ~ 2 + ( b >  - 

2 
) sin F2 

h* -I- C 
RL* = A* s in r2  + P*M* cosr2 = A* s in r2  - ( b z  - ---- 

2 
) cos I'2 (7.1.5) 

The surface coordinates (O&, 4:) can be determined by solving the following two equations, 

X2(9&, 6) = XL* (7.1.6) 



Step 2: Determination of V and H 

We introduce the shift of the bearing contact in coordinate system Sh by V and H that are 

directed along the shortest distance between the pinion and gear axes, and the pinion axis, respec- 

tively (Fig.7.1.2). V is positive when the gear is shifted apart from the pinion in 'I5 direction, H is 

positive when the pinion is withdrawn. It is obvious that 

44 * Here: $) (i = 1,2) is the position vector for the initial point of contact, [rh ] (i = 1,2) is the 

position vector for the shifted contact point; z,,, yfl and ill are the unit vectors of coordinate axes 

Sh 

Equations of tangency at the new contact point provide 

Gear surface coordinates 05 and 4; can be determined from equations (7.1.6) and (7.1.7). 

Equations (7.1.10) and (7.1.11) yield 

v = [yi2)(@2., 4;, d,)l* - [Y,(')(@;, d;, +;)I* 
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(2)  (1) (2)  (1) 
- n h ~  n l ~  + n h ~ n l ~  

(2)  (1) (2 )  (1) 
n l i ~ n l ~  + n h ~ n l ~  cos = 

(1) 2 (1) 2 
(n1y) + (n1z) 

Equations from (7.1.12) to (7.1.16) represent a system of five independent equations in six 

unknowns: V, H, q5i,4:,0F and 4F. The sixth independent equation, that is required for the 

solution of unknowns, can be derived based on the condition that the equation of meshing must be 

satisfied with the designed gear ratio, i.e., 

In solving the above system, we first solve a sub-system composed of equations (7.1.14), (7.1.16) 

and (7.1.17) for $12, (PF and OF, and then calculate the values of +:, V and H directly, by equations 

(7.1.12), (7.1.13) and (7.1.15). 



7.2 Tooth Contact Analysis for Gears with Shifted Center of Bearing Contact 

After the determination of parameters V and H, the tooth contact analysis for gears with shifted 

center of bearing contact can be performed similarly to the analysis described in sections 6.4. and 

6.5. The initial guess for the first iteration in the procedure of computations is provided by the set 

of six unknowns obtained in section 7.1. 



Appendix A 

Generation with Modified Roll 

1 Introduction 

Modification of roll or sometimes called modified roll means that the cutting ratio is not constant 

but varied in the process for generation. The variable cutting ratio-the variable ratio of roll- can 

be provided by a cam mechanism of the transmission of the cutting machine or by the servo-motors 

of a computer controlled cutting machine. According to the developments of Gleason, the TCA 

program can analyze the process for generation up to members of the fifth order. However, due to  

the limitations caused by application of cam mechanisms only the parameters up to  the third order 

are controllable in the process for generation. 

The modified roll is an additional parameter for the synthesis of spiral bevel gears. In our 

approach the synthesis of spiral bevel gears can be performed, as it was mentioned above, with a 

constant cutting ratio. However, we consider in this section the application of modified roll as well 

to provide a broader point of view on synthesis of spiral bevel gears. 

2 Tavlor Series for the Function of Generation Motion 

According to the practice of Gleason, the kinematic relation between the angles of rotation of the 

workpiece and the cradle is represented by a Taylor's series up to fifth order. To the knowledge of 

the authors, Gleason has never published any materials related to the kinematics of the modified 



roll. However, Professor Zheng had done a good job in deciphering Gleason's mechanisms for 

modified roll and represented the kinematic relations in his valuable book [5 ] .  

Consider that the angles of rotation of the pinion and the cradle are related by a nonlinear 

function 

We assume that dl  = 0 at mF = 0 and represent f ( 4 ~ )  in the neighborhood of mF = 0 by the 

Taylor series as follows, 

Taking into account that 

We obtain 

where Rap is the ratio of roll. 

Without loosing generality of the solution, we can take w(') = 1 and then obtain 



Differentiation of equation (A.5) yields 

Equation (A.6) yields 

d2 4~ where a2 = - 
d2t2 

is the angular acceleration of the cradle. 

Equation (A.7) with new designations can be represented as follows 

Similar differentiation of higher order of equation (A.3) yields: 

Here: 



Unfortunately, function f($F) cannot be represented in explicit form for certain cutting ma- 

chines, for instance, for the Gleason spiral bevel grinder. For such a case we will consider the 

following auxiliary expressions 

Then, differentiating equation (A.6) and taking 4F = 0, we may obtain the following equations 



The procedure for determination of coefficients C, D, E and F for the Taylor's series (A.9) when 

function f1(dF) cannot be represented in explicit form is as follows: 

Step 1: Differentiate the implicit equation that relates dF and 41 up to five times and then find 

WF, a2, as, a4, a5 in terms of and +z at = bF = 0. 

Step 2: Considering $1 = dF = 0, find 6CX,24DX, 120EX by equations (A.lO) - (A.12). 

Step 3: Find 2C, 6D, 24E, 120F by equation (A.8),(A.13)- (A.15). 

3 Synthesis of Gleason's Cam 

Introduction 

Gleason's cam mechanism,as shown schematically in Fig. A.3.1, is an ingenious invention that 

has been proposed and developed by the engineers of the Gleason Works. The mechanism trans- 

forms rotation of the cam about Oq into rotation of the cradle about 0,. The rotation of the cam 

about 0, is related with the rotation of the pinion being generated, but the angles of cam rotation 

and pinion rotation, 4q and 41, are related by a linear function when there is no cam settings. 

To authors' knowledge, the engineers of the Gleason Works have not published the principles 

of synthesis and analysis of this mechanism. However, H.Cheng 161, Zheng [5] have made good 

contributions to the deciphering of this mechanism. The following is a systematic representation 

of synthesis and analysis of Gleason's mechanism. 

The purpose of cam synthesis is to obtain the shape of the cam, considering that the angles of 

rotation of the cam and the cradle are related by a linear function, 4,(42). However, this function 



can be modified into a nonlinear function by changing the location of the designed cam with respect 

to 0, and the orientation of the cam guides that are installed on the cradle. Fig. A.4.1 shows the 

settings of the cam mechanism with the designed shape : (i) the cam is translated along the line 

0,0, an amount AT ; (ii) and then, the cam guides are rotated about the cam rotation center 

and formed angle a with 0,0,. It is obvious that the cam mechanism with the settings AT and 

a will transform rotation about 0, to 0, with a nonlinear function between the angles of rotation 

of the cam and the cradle. The deviation of this function from a linear one depends on settings of 

the cam mechanism and will be discussed in section A.4. 

Coordinate Systems 

While considering the synthesis of the cam mechanism, we will use three coordinate systems: 

the movable coordinate systems Sc and Sq that are rigidly connected to the cradle and the cam, 

and Sf that is the fixed coordinate system (Fig. A.3.2). 

Equation of Meshing, Contact Point in S, 

Assuming that the transformation of motion is performed with constant ratio of angular veloc- 

ities and in the same direction, we can determine the location of instantaneous center of rotation, 

I, in coordinate system Sf by using the equation (Fig. A.3.2) 

Where, E in the distance between the cradle center 0, and the cam rotation center O,, r, is the 

so-called pitch radius of the cam. 

The location of instantaneous point of contact M on the guides can be determined by using 

the theorem of planar gearing [4]. According to this theorem the common normal to the guides 

and the cam at the point of their contact must pass through the instantaneous center of rotation 

I. Thus, contact point M and the unit normal at M are represented in Sc as follows 



Here: b is an algebraic value (b is positive if the left side of guides is considered and b is negative 

if the right side of guides is considered); u is a variable parameter that is determined with the 

equation 

u = (E + T,) cos 8, - E 

Equations (A.17) and (A.20) yield 

.'C(@C) = [ - b  f(6c) 0 1 IT 

where 

f (8,) = E - ( E  + r,) cos 8, 

Shape of the Cam 

The shape of the cam is a planar curve that is represented in S, by the matrix equation 



Here: coordinate system Sp is an auxiliary fixed coordinate system (Fig. A.3.2). Matrices in 

equation (A.23) are represented as follows 

cos 8, - sineq 
O O l  

cos 0, sin 8, 0 0 1 

The normal to the cam shape is represented by the matrix equation 

W f c l  = 
- sine, cos 8, 0 0 

0 0 1 0  

0 - 0 0 1 -  



Here: [ L p f ]  is the identity matrix and is the (3 x 3) submatrix of the respective matrix [MI. We 

consider that the shape of the cam and its normal depend on the generalized parameter Oq only 

since 

The final equations of the cam and its normal are represented as follows 

4 Cam Analysis 

The cam analysis is directed at the determination of function 0,X(0,*) for a cam and guides with 

modified settings. The analysis is based on simulation of tangency of the designed cam with the 

cradle guides taking into account the settings of the cam and the guides. 

Coordinate Systems and Coordinate Transformation 

Coordinate systems Sd, S, and S, are rigidly connected to the guides and the cradle (Fig. 

A.4.l(a)). The guides after rotation about 0, form angle a with the yc-axis. 

d 

rq = 

- -bco~(&0~)  + (T, + E )  c o s ( a 0 , )  sin(&0,) - E sine, - 

-bsin(&oq) - (T, + E) cos($&~~) cos(&0,) - E cos Oq 

0 
1 - 



Coordinate systems Sq, Sn and S, are rigidly connected to the cam. The settings of the cam 

with respect to Sm are determined by AT and angle a. 

The cam and the cradle perform rotations about 0, and Of, respectively (Fig. A.4.2). The 

conditions of continuous tangency mean that the designed cam and the guides have a common 

normal and a common position vector at every instant in Sf. 

A current point N of the guide is determined in Sf with the equation (Fig. A.4.1 and Fig. 

A.4.4): 

where 

F p [ - b  - A  0 l l T  

The unit normal is determined in Sf as follows 

where 

Here: 



[ q c l  = 

A current point of the cam and the unit normal at this point are represented in Sf by the 

equations (Fig. A.4.l(b), Fig. A.4.2). 

F - 
cos 6: - sine: 0 0 

sine: cos 8: 0 0 

0 0 1 0  

0 0 0 1  - - 

[ M e d ]  = 

- - 
cos a s ina  0 0 

- sina cos a 0 0 

0 0 1 0  

0 0 0 1  
L - 



Equations (A.38) and (A.23) yield 

T:a' = [Mipl[M&l[MAnl IM,*qllMqPl [Mpjl [Mjclr'c 

where 

Matrices [Mqp], [MPf] and [Mj,] have been represented by equations (A.24), (A.25) and (A.26), 

respectively. Matrices [Mjp], [MA], [Mk,] and [M;q] are represented as follows (Fig. A.4.l(b), 

Fig. A.4.2): 

= 

- 
cos 9," - sin 9," 0 0 - 

sinOg* cos Oq* 0 0 

0 0 1 0  

0 0 0 1  - 



cosa 0 0 

0 1 0  

0 0 1  - 

[ M e d ]  = 

Equations (A.39) and (A.27) yield 

- 
COS a 

- sin a 

0 

0  - 

Here: 

Matrices [L*] and [L] are 3 x 3 submatrices of matrices [M*] and [MI. 

Equations of Tangency 

The tangency of cam and guides with modified settings is represented by equations 



We recall that vector equations (A.48) and (A.49) yield a system of only three independent 

equations in four unknowns: 8,*, 9,*, 0, and A; setting parameters AT and a are considered as given; 

9, and 9, are related with equation (A.28) and 0, is considered as a generalized parameter. Our 

goal is to determine the function that relates angles of rotation of the cam and the cradle, 4: and 

4,*, and the parameters of settings a and AT, i.e. the function 

Equality of Contact Normal-Satisfaction of Equation (A .49) 

Equations (A.49), (A.33) and (A.46) yield 

Then we obtain 

Here: 



[ B ]  = [L>,][L&] = 

Matrices (A.52) are rotational matrices that describe rotation about axes of the same orienta- 

tion. This means that we can change the order of co-factor matrices and 

- cos(8,* - 8:) sin($,* - 8:) 0 

- sin($,* - 8:) cos(8,* - 0;) 0 

0 0 1 - 

[A]  = [Led] = [L:,] = 

This yields that 

- cosa s ina 0 - 

- sin a cos a 0 

0 0 1 -  - 

where [ I ]  is a unitary matrix and 
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Equation (A.59) yields 

e; - e; = -(e 
E 

q - 9 , )  = -- 
E + r ,  0s 

since 

Equality of Position Vectors-Satisfaction of Equation (A.48) 

Equations (A.48), (A.31) and (A.38) yield 

After transformations we obtain 

Here: 



The rotational 3 x 3 submatrices of [Q] and [S] are equal due to the equality of contact normals 

(see equation (A.52). The elements of [Q] and [S] are represented by 

all = cos 7 a12 = sin7 a21 = -a12 a22 = all (A.66) 

where 7 = Bq* - 8; + a , and 

all = E[- sin(@: - 0:) + sin 8,*] , a24 = E [- cos(8,* - 8:) f cos Bq] (A.67) 

a;4 = -E[sin(Bq - a )  - AT sina] , a$4 = E[cos(B, - a )  - AT cos a] (A.68) 

Matrix equation (A.62) yields the following system of two linear equations 



Eliminating (a - A), we obtain 

(a14 - ai4)a22 - (a24 - ag4)all = 0 

Equations (A.70), (A.66), (A.67) and (A.68) results in 

AT 
F(O:, O:, AT, a) = sin(S(0; - OD)] + - sin(C - O f )  - sin(0; - a) - sin a = 0 

E E 
(A.71) 

Equation (A.71) represents in implicit form the displacement function for the cam mechanism 

with settings a and AT. It is easy to be verified, that equation (A.71) with AT = 0,a = 0 

represents the linear function , 

(A. 72) 

For Gleason's grinder, E is equal to 15 inch. According to Gleason's practice, the sense of 

rotation of the cradle and the cam is opposite to the assumption in the derivation in this report. 

Without loss of generality, by substituting 9; = -9; and 9: = -8: with E = 15 in equation (A.71) 

we obtain the final expression of the relation between 9: and 8; as follows, 

AT "u 
sin(B,X + a) - sin a + - sin(9: - 8;) + sin -(8: - 0:) = 0 

15 15 



5 Determination of Coefficients of the Taylor's Series 

The determination of the coefficients of the Taylor's Series for generation motion with modified 

roll is a lengthy process. Gleason provides its customers with computer program which can select 

the cams with settings and analyze the effects of the modified roll. However Gleason's program 

is a black box with no explanation for the determination of the coefficients of the Taylor's Series. 

Valuable contribution to the understanding of Gleason's program has been made by C.Q. Zheng 

[5]. For reader's convenience, a series of derivations are represented in this section, which coincide 

with the equations in [5] except some printing errors. 

In the process of generation, the cam rotates at a constant angular velocity . Without loss of 

dB* 
generality, we assume that the cam rotates with unitary velocity, i.e. -2 = 1. Using the procedure 

dt 

discussed in section A.2, we differentiate equation (A.73) five time as follows, 

AT Tu Tu 
w: cos(8," + a) + (w,* - I)[- cos(0,* - 0:) + - cos - sin($,* - @,*)I = 0 

15 15 15 
(A.74) 

AT 
+a2[% cos %(0: - 8;) + - cos(8," - 8;)] 

15 15 15 

Tu AT 
-3az(w; - 1.)[(;)2 sin --(BE - 0;) t - sin(8: - 

15 15 
AT 

-(w: - 1 ) ~ [ ( 2 ) ~  cos S(0 :  - 8:) + - cos(0~ - #;)I = 0 
15 15 



Tu AT -4a3(wf - l)[($)' sin -(Of - 8,") + - cos(8f - 831 
15 15 

Tu AT - 3ai [(g)' sin - (8; - 8,") + - sin(8,* - B;)] 
15 15 

Tu Tu AT 
+ad[, cos - (8; - 8;) + - C O S ( B ~  - e;)] 

15 15 
Tu 3 Tu AT -6az(w,* - I)'[(-) cos -(Of - 8;) + - cos(8; - 8,*)] 
15 15 15 

Tu AT (w," - I ) ~ [ ( $ ) ~  sin -(B; - 8,") + - sin(8; - B;)] = 0 
15 15 (A. 77) 

a5 cos(8f + a )  - [10a3(w,*)' + 15aiwf - ( ~ f ) ~ ]  cos(8f + a )  

-[5a4w,* + lOaza3 - 10a~(w,*)~]  sin(8,* + a) 

Tu Tu AT 
+as[- cos -(Of - 8;) + - C O S ( ~ ;  - $)I 

15 15 15 
AT - 5a4(wf - l)[(%)' sin 2 (8; - 8,") + - sin(8; - 8;)] 

15 15 
Tu 3 Tu AT 

-lOa3(w; - I ) ' [ ( ~ )  cos -(or - 8;) + - COS(~;  - e;)] 
15 15 

AT 
-loaza3[($)'sin s ( 8 f  - 8;) + - sin(8; - e;)] 

15 15 
AT -15a$(u; - 1 ) [ ( 3 ) ~  cos s ( e f  - 8;) + - cos(ef - e;)] 

15 15 15 
AT 

+ 1 0 a ~ ( ~ f  - 1 ) ~ [ ( 1 ) ~  sin Tlf(f?,* - 8;) + - sin(8f - 8;)) 
15 15 15 

Tu AT 
+(w: - cos -(of - 8;) t - cos(e; - 8;)) = o 

15 15 (A.78) 

At 8: = $ = 0, we can determine wt, a2, a3, a4, a5 from above expressions as follows, 

w,* = ~u + AT 
15 cos a + ru + AT 



15 sin a 
a2 = 

15cosa + T, + A T  ( w : ) ~  

T A T  
3a2w* sina + ( ~ 0 ) ~  cos a + (wz - I ) ~ ( s  + --&) 

a3 = 
T,, + A T  

cos a + - 
15 

r A T  
6 a ? ( w ~ ) ~  cos a + [4a3wt + 3ai - (w:)'] sin a + 6a2(w; - I)?(= + a5) 

a4 = (A.82) 
T,. + A T  - .  cos a + 

15 

1 
a5 = 

~u + A T  
{ [ ~ o u , ( w , " ) ~  + 15a:w: - ( w , * ) ~ ]  cos a 

cos a + 
15 

+[5a4w,* + 10a2a3 - 1 0 a ~ ( w ; ) ~ ]  sin a + [10a3(w," - 

Using equation (A .8 )  and (A.lO) - (A.12),  we obtain 

1 - = 15 cos a 
Rac  = 

wc* '+T.+AT 

Rac - 1 2C = ---- tan a 
R a c  

3 ( 1  - Rac)3 T u  
1 + 3(2C)  tan a + 15 COs a (5 + A T )  

6 C X  = 
T., + A T  

1 
24DX = 

yu + A T  
{6(2C)  cos a + [ 4 ( 6 C X )  + 3 ( 2 ~ ) ?  - 1] sin a 

cos a + 
15 

T A T  
+ 6 ( 2 c ) ( 1 -  R ~ c ) ~ ( ~  + %)I (A.87)  



120EX = 
1 
~u + {[10(6CX) + 15(2C)~ - 11 cos a 

cos a + 
15 

+[5(24DX) + 10(2C)(6CX) - 10(2C)] sin a 

Knowing Rat, 2C, 6Cx, 24DX and 120EX, we can determine 6D, 24E and 120F by equations 

(A.13) - (A.15). 

6 Selection of Cams and  Cam Settings 

In order to provide the desired low transmission errors and bearing contact, the ratio of roll Rap 

and second ratio of roll (2c), which are determined by the local synthesis, must be applied for the 

grinder. Due to the structure of Gleason's grinder, the ratio of roll, Rap is related to R,, as follows, 

Here, Rac is the transmission ratio between the cam and the cradle, as determined by equation 

(A.84). m, is a fixed gear ratio and is equal to 1 in Gleason's grinder; mi is the gear ratio from the 

workpiece to the cam and is determined as, 



here, n is the number of teeth of the workpiece and n; is the index internal, i.e. the gear tooth 

number skipped over in indexing. 

&om equation (A.80) and (A.89), we obtain 

15 cos a 
Tu$AT = 

Rac - 1 

The cams and their pitch radii ru are tabulized. A cam with pitch radius closest to (T, + AT) 

calculated by equation (A.92) should be selected. After the cam with pitch radius r,  is selected 

the corresponding setting, AT,  can then be determined as: 

15 cos a 
A T  = - Tu 

Rae - 1 

In some cases, it is also necessary to control 6CX. In order to satisfy Ra,,2C and 6CX, the 

value of n; can be used together with A T  and a. Since n; must be an integral number it is difficult 

to obtain an accurate solution. But by careful selection of cams and index interval ni, a practical 

engineering solution is often achievable. 

When the cam and its settings are selected, it is then necessary to determine the coefficients of 

the Taylor's Series of the generation motion and carry out the TCA to see how the higher order 

coefficients (i.e., 6D, 24E and 120F) affect the transmission errors and bearing contact. If the result 

of TCA are satisfactory, then the gears can be ground by the selected cam and cam settings. 



Appendix B 

Description of Program and Numerical Example 

Input and Output of Program 

The research project is complemented by a computer program, which can be used for the 

determination of machine tool settings through the method of local synthesis and simulate the 

transmission errors and bearing contact through TCA. The input data to the program include four 

parts. 

Part I. Blank Data 

TN1 : pinion number of teeth 

TN2 : gear number of teeth 

C : shaft offset ( zero for spiral bevel gear ) 

FW : width of gear 

GAMMA : shaft angle 

MCD : mean Cone distance 

RGMAl : pinion root cone angle 

B1 : pinion spiral angle 

B2 : gear spiral angle 

RGMA2 : gear root cone angle 

FGMA2 : gear face cone angle 

PGMA2 : gear pitch cone angle 



D2R : gear root cone apex beyond pitch apex 

D2F : gear face cone apex beyond pitch apex 

ADD2 : gear mean addendum 

DED2 : gear mean dedendum 

WD : whole depth 

CC : clearance 

DEL : elastic approach (experiment datum) 

Part 2. Cutter Specifications 

RU2 : gear nominal cutter radius 

PW2 : point width of gear cutter 

ALP2 : blade angle of gear cutter 

Part 3. Parameters of Synthesis Condition 

FI21 : derivative of transmission ratio, negative for gear convex side and positive for gear concave 

side. The range is -0.008 < FI21 < 0.008 . 
KD : percentage of the half long axes of contact ellipse over face width. KD = 0.15 - 0.20 . 

ETAG : direction angle of contact path. For right hand gear, -80' 5 ETAG _< 0' for gear convex 

side and -80' _< ETAG _< O0 for gear concave side; For left hand gear, 0' < ETAG _< 80' for 

gear convex side and -SO0 < ETAG < 0 for gear concave side. When ETAG is close to zero, the 

contact path is along the tooth height, when the magnitude is increased, the contact path will have 

bias in and reach almost longitudinal direction if ETAG is close to 90 degrees. 

GAMA1 : pinion machine root angle, which is the same as the pinion root angle if no tilt is used. 

RHO : radius of the arc blade if curved blade is used, which can be any values when curved blade 

is not used. 

C2 : second order ratio of roll if modified roll is used. C2 is zero without modified roll. 



ALPl : pinion cutter blade angle. ALPl is positive for gear convex side and negative for gear 

concave side. ALPl can be the same as ALP2. For better result, it is suggested for pinion concave 

side the magnitude of ALPl is smaller than ALP2 and for pinion convex side, the magnitude of 

ALPl is larger than ALP2.(As shown in the example). 

TNlI  : number of teeth skipped over indexing. TNlI  is only used in modified roll, the ratio between 

TNlI  and TN1 must not be an integer. 

Part 2. Control Codes 

JCL : JCL control V and H check, JCL = 1 means no V-H check. 

JCH : For right hand gear, set JCH = 1, for left hand gear set JCH = 2. 

JCC : For straight blade, set JCC = 1, for curved blade set JCC = 2. 

TL1, TL2 : Extra points on contact path, both should be less or equal than 2. 

The program output includes: (1) the machine-tool settings for gear and pinion; (2) the trans- 

mission error; (3) the contact path; (4) the length and orientation of the long axes of the contact 

ellipse; and bearing contact at toe and heel position. 

Numerical Example 

The model used in this report is the spiral bevel drive with the shaft angle of 90 degrees. In 

the numerical example, modified roll and curved blade for generation of gears were not used since 

favorable results were attained without them. The list of the blank data and machine tool settings 

are tabulized in the attached tables. 

The TCA results with V-H check are shown through Fig. B.l  through Fig. B.6. The V and H 

values shown in the figures are of & inch. It is shown also that the transmission errors are very 

small and the bearing contact is stable for both side at the three positions, toe, mean and heel. 



B DATA 

NUMBER OF TEETH: 

PRESSURE ANGLE: 

SHAFT ANGLE: 

MEAN SPIRAL ANGLE: 

HAND OF SPIRAL: 

OUTER CONE DISTANCE: 

FACE WIDTH: 

WHOLE DEPTH: 

CLEARANCE : 

ADDENDUM : 

DEDENDUM : 

PITCH ANGLE: 

ROOT ANGLE: 

FACE ANGLE: 

BLADE ANGLE: 

CUTTER DIAHETER: 

POINT WIDTH: 

PINION 

11 

20 O 

90 O 

35. 0 °  

LF 

GEAR 

4 1 

GEAR CUTTER SPECIFICATIONS 



GEAR MACHINE TOOL SETTINGS 

RADIAL SETTING (8) : 70.43577 

CRADLE ANGLE (q) : 62.3981° 

MACHINE CENTER TO BACK (xG) : 0.00 

SLIDING BASE (XB) : 0.00 

RATIO OF ROLL (R,) : 1.032397 

BLANK OFFSET (Em) : 0.0 

MACHINE ROOT ANGLE (7,) : 70.65O 

PINION MACHINE TOOL SETTINGS 

CONVEX CONCAVE 

CUTTER BLADE ANGLE: 

CUTTER POINT RADIUS: 

RADIAL SETTING (s) : 

CRADLE ANGLE (q) : 

MACHINE CENTER TO BACK (XG) : 

SLIDING BASE (xB) : 

RATIO OF ROLL (R,) : 

BLANK OFFSET(E,) : 

MACHINE ROOT ANGLE (y,) : 

2.19033 (Down) 
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Fig. 1.2.1 Unit Vectors of Principal Directions 



Fig. 1.2.2 The two Solutions for 0(12) 



Cycle of Meshing 

Fig. 1.2.3 Piecewise Linear Function of Transmission Errors 



Cycle of Meshing 

Fig. 1.2.4 Parabolic Type of Transmission Errors 
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Fig. 1.2.5 Tangents of Contact Paths 



Fig. 1.2.6 Orientation and Dimension of Contact Ellipse 



Fig. 2.1.1 Coordinate Systems and Pinion and Cradle Settings 



Fig. 2.1.2 Pinion Generation: Additional Coordinate Systems 



Fig. 2.1.3 Tilt of Pinion Head-Cutter 



Fig. 2.2.1 Coordinate Systems and Gear and Cradle Settings 
112 



Fig. 2.2.2 Gear Generation: Additional Coordinate Systems 
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Fig. 2.3.1 Mean Contact Point 



Fig. 2.3.2 Gear Generation: Instantaneous Axis of Rotation 



Fig. 2.3.3 Gear Head-Cutter Installments 
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Fig. 3.1 .I Gear Head-Cutter 



Fig. 3.1.2 Point Diameter 



Fig. 4.2.1 Coordinate Systems for Simulation of Meshing 
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Fig. 5.2.1 Pinion Head-Cutters 



Fig. 5.5.1 Pinion Head-Cutter Blades 



Fig. 5.2.2 Determination of dh 



Fig. 6.3.1 Principal Directions of Pinion Head-Cutter Surface with 
Circular Arc Blades 



Fig.6.3.2 Visualization of Orientation of Vectors in Plane 
Tangent to 



Fig. 6.4.1 Parabolic Function of Transmission Errors 



Fig. 6.5.1 Coordinate Systems Used for Visualization of Contact Path 



Fig. 6.5.2 Mapping of Contact Point M* 



Fig. 6.5.3 Coordinates of Points of Contact M and N 



Fig. 6.5.4 Orientation of Contact Ellipse 



Fig. 7.1.1 Location of Mean Contact Point of Shifted Bearing Contact 



Fig. 7.1.2 Gear-Pinion Misalignment 



CAM PROFILE AND ITS MOTION 
b = 5.5, E =IS, T~ = 3.6230 

Fig. A.3.1 Cam Profiles and Guides 



Fig. A.3.2 Schematic of Motions of Cam and Guides 
without Modified Settings 



Fig. A.4.1 Coordinate Systems for Cam Mechanism 
with Modified Settings 



o,, o: 

Fig. A.4.2 Transmission of Cam Rotation into Cradle Rotation 
by Modified Settings 
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Transm;ssion Error in Meshing P e ~ o d  
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of Convex Side 
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Fig. 8.3 Contact Pattern and Transmission Errors at Gear Heel Position 
of Convex Side 
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Fig'. B.4 Contact Pattern and Transmission Errors a t  Gear Mean 
Position of Concave Side 
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Fig. B.5 Contact Pattern and ~ansmiss ion  Errors a t  Gear Toe Position 

of Concave Side 
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Fig. B.6 Contact Pattern and Transmission Errors at Gear Heel 
Position of Concave Side 



C.. . 
C.... THIS PROGRAM IS TO DERIVE THE MACHINE TOOL SETTINGS 
C.... FOR PINION GENERATION & TEST THE RESULTS 
C... 

IMPLICIT  REAL"^ (A-H , 0-Z) 
 REAL*^ K S , K Q , K ~ I , K ~ I I , K ~ I , K ~ I I , K F I , K F I I , K D , K F , K , ~ ~ ~  
 REAL^:^ M l l , M 1 2 , M 1 3 , ~ l ~ , ~ 1 2 , ~ 1 3 , ~ 1 4 , ~ 2 ~ , ~ 2 2 , ~ 2 3 , ~ 2 1 , ~ 2 2 , ~ 2 3 , ~ 2 4 ,  
&~ll,~12,N21,N22 
real"8 xi ( 5 )  , x (5) , f (5) 
EXTERNAL FCN~,FCN~,FCN,FCNM,FCNR,FCNMR 
DIMENSION CH (3) , P (3) , ElEF (3) , ESN (3) , EQN (3) W ~ V T ~  (3) ,wvl2(3) 3 

$W2VT1(3) ,EFIH (3) , EFIIH (3) ,RH (3) , GNH (3) , E I H  , E~IIH(~) , P I ~ P  (20) , 
&E~IH(~) ,E~IIH(~) ,EFI (3) ,EFII (3) , E ~ I  (3) ,E~II (3) ,GN(3) ,EFE~ (3), 
&ERR (20) , xcp (20) , ycp (20) , AX1 (20) , AX2 (20) , ANGl(20) ,mG2 (20) 
C O M M O N / A ~ / C N S T , T N ~ , T N ~ , C , F W , G A M M A , ~ ~ , ~ ~ , ~ ~ ~  
C O M M O N / A ~ / B ~ , R G M A ~ , F G M A ~ , P G M A ~ , D ~ R , D ~ F , ~ D ~ , D E D ~  
COMMON/A~/B~,RGMA~,FGMA~,PGMA~,D~R,D~F,AD~,DED~,WD,CC,D~P 
C O M M O N / A ~ / S R ~ , Q ~ , R C ~ , P W ~ , X B ~ , X G ~ , E M ~ , G ~ M ~ , C R ~ , A L P ~ , P H I ~ , P H I ~ P  
COMMON/A~/SG,XM,YM,ZM,XNM,YNM,ZNM,X~M,Y~M,Z~M,XN~M,YN~M,ZN~M, 

$~12(3) ,KS,KQ,KF,KH,EF(~) ,EH(~) ,SIGSF,PI21 
C O M M O N / A ~ / S R ~ , Q ~ , R ~ ~ , P W ~ , X B ~ , X G ~ , E M ~ , G ~ M ~ , C R ~ , A L P ~ , P H I ~ , P H I ~ P  
C O M M O N / A ~ / S E , X M ~ , Y M ~ , Z M ~ , X N M ~ , Y N M ~ , Z N M ~ , X ~ M , Y ~ M , Z ~ M ,  

&XNlM,YNlM,ZNlM,XNHl,YNHl,ZNHl,XH1,YH1,ZHl 
COMMON/A~/PHI~PO,OX,OZ,XO,ZO,RHO,ALP,V,H,CR~T,PCR~~ 
COMMON/A~O/K~I,K~II,K~I,K~II,DEL,E~IH,E~IIH,E~IH,E~IIH,GNH, 

& A ~ P , B ~ P , T A U ~ R , T A U ~ R , . ~ ~ L , B ~ L  
C O M M O N / A ~ ~ / R A M , P S I ~ , C ~ , D ~ , E ~ ~ , F ~ ~ ~ , C X ~ , D X ~ ~ , E X ~ ~ O , R U ~ , D E L T , R U P ,  
$RAl,CPF,DPF,EPF,FPF 
CNST=DARCOS (-1. ODOO) / 180.0DOO 

C 
C... 
C.. . INPUT THE CONTROL CODES 
L.. . 

IF V AND H CHECK IS NOT DESIRED, SET JCN = 1 
DO NOT SET JCN TO BE 3 

C 
C... 
C 

C 
C... 
C 

FOR RIGHT HAND GEAR JCH=l, FOR LEFT HAND GEAR JCH =2 

FOR STRAIGHT BLADE JCC=l, FOR CURVED BLADE JCC=2 

TL1 AND TL2 ARE NUMBER OF EXTRA POINT ON CONTACT PATH 
WHICH SHOULD NOT BE LARGER THAN 2 

C.. . 
C.. . 
C... 

INPUT BLANK DATA OF GEAR AND PINION 



C... INPUT NORMINAL RADIUS OF GEAR CUTTER AND POINT WIDTH, BLADE ANGLE 
C 

RU2= 152.4000/2.0 
PW2=2.79 
ALP2=2O.O"CNST 
DC2=2.O:':RU2 

C 
C... INPUT THE SYNTHESIS CONDITION PARAMETERS AND PINION CUTTER BLADE 
C ANGLE, ALP 1 (FOR GEAR CONVEX, ALP1>0, FOR GEAR CONCAVE ALP1<0) 
C 
C .#. .*. -0. .a- ,. ,. ,$ ,% GEAR CONVEX SIDE 
C 

FI21=-0.0008 
KD=O. 180 
ETAG=-~~.O*CNST 
GMl=l3.3333"CNST 
RHO= 250.0 
C2= 0.00 
ALP1=18 .500'kC~ST 
TN11=8.0 

C.. . 
SGN=DSIN(ALP~) /DABS (DSIN   ALP^)) 
KSIDE=O 

C 
C.. . 
C 

GOT0 1989 
C 
C * 9: ;*: $: GEAR CONCAVE SIDE 
C 
1990 CONTINUE 

FI21= 0.0008 
KD=0.180 
ETAG= 65. 09:CNST 
G~Mti1=13.3333"CNST 
RHO= 200.0 
C2= 0.00 
ALPl1-21. 50"CNST 
TN1 I=8.0 

C... 
SGN=DSIN(ALP~) /DABS (DSIN (ALPI)) 
KS IDE= 1 
jcl=2 



C 
C 
C... INPUT GEAR MACHINE TOOL SETTINGS 
C 
c1989 Q2= 52.658g9:CNST 
c S~2=3.8872*25.4 
c XG2=0.0 
c XB2=-0. 0333;t25. 4 
c CR2=.9772974 
C RAG=l.O/CR2 
c GAMA2=RGM.42 
c EM2=0.0 
c RC2=RLJ2-SGN*PW2/2.0 
c ALP2= SGN+:ALP2 
C 
L 

C... CALCULATE GEAR MACHINE TOOL SETTINGS 
C 
1989 hg=mcdkdc os (pgma2-rgma2) -ru2"ds in (b2) 

vg=ru2*dcos (b2) 
q2=dat an (vg/hg) 
r2=dsqr t (hg9:"2+vg""2) 

xg2=0.0 
GAMA2=RGMA2 
xb2=d2rhds in (gama2) 
EM2=0.0 
rag=dcos (pgrna2-rgma2) /ds in (pgma2) 
cr2=l. 0/rag 
RC~=RU~-SGN*PW~/~.O 
ALP2= S G N ~ A L P ~  

C 
C... DELT IS THE CAM SETING 
C 

DELT=O . 0 
C 
C... DEFINE THE MEAN CONTACT POINT 
C 

v=o. 000 
H=0.000 
FA=FGMA2-PGMA2 
RA=PGMA2-RGMA2 
HMzCC+WD-0. 5"FW" (DTAN (FA) +DTAN (RA) ) 
DED2R=DED2-0. 5':FW9'DTAN (RA) 
XL=MCD*DCOS (PGMA2) + (DED~R-HM/2. 0) {'DSIN (PGM.42) 
RL=MCD"DSIN (PGMA~) - (DED~R-HM/2. 0) "DcOS (PGMA2) 

C... 
AGL=DATAN (RL/XL) 
OX=-DSQRT (xL**~+RL>~"~) ':DCOS (AGL-RGMA~) 
OY=-D~R~DSIN (RGMA~) 

C wRIT~(9,ll) OX,OY,XL,RL 
C 
C 
C 
C... FIND SURFACE COORDINATES OF THE MEAN CONTACT POINT 
C 

ERRREL=O.lD-10 
N= 2 
ITMAX=200 
IF (JCH. EQ. 1) THEN 
42-42 



C 
C 
C 
c... 

10 
C 
C.. . 
C 

XI (1) =270. O:CNST+B~ 
ELSE 
XI (1) =B2 
END IF 
XI (2) =o. 0 
CALL DNEQNF(FCN~,ERRREL,N,IT~.LAX,XI,X,FNORM) 
TH=x(~) 
PH=X (2) 
ST=DS IN (TH) 
CT=DCOS (TH) 
SH=DS IN (PHI 
CS=DCOS (PH) 
SP=DSIN  ALP^) 
CP=DCOS  ALP^) 
SM=DS IN (GAMA~) 
CM=DCOS (GAMA2) 
THIG=TH 
 WRITE(^,^^) Xn2M,Yn2M,Zn2M,ZNM,YNM,ZNM 
WRITE(9,ll) XM,YM,ZM,sg,hm 

DEFINE VECTORS TO COMPUTER THE SECOND ORDER PROPERTY OF GEAR 

ES (1) =-DSIN (TH-PH) 
ES (2) = DCOS (TH-PH) 
ES(3)= 0.0 
EQ (1) =-SP*DCOS (TH-PH) 
EQ (2) =-SP*DSIN (TH-PH) 
EQ (3) =-CP 
CN(1) =XNM 
CN (2) =YNM 
CN (3) =ZNM 
KS=CP/ (RC2-SG"SP) 
KQ=O. 0 
W1 (I)=-CM 
W1(2)= 0.0 
Wl(3) =-SM 
W2(1)= 0.0 
W2(2)= 0.0 
W2 (3) =-CR2 
VTl(1) = YM"SM+EM~"SM 
VT 1 (2) =-XM"'SM+ (ZM-XB~) "CM 
VT1(3) =-YM$:CM-EM~"CM 
VT2 (1) = YM'~CR~ 
VT2 (2) =-XM'':CR~ 
VT2(3)= 0.0 
DO 10 I=1,3 
W12 (I) =W1 (I) -W2 (I) 
V12 (I)=vT~ (I) - V T ~  (I) 
CONTINUE 

FIND THE PRINCIPAL DIRECTION AND CURVATURES AT MEAN POINT 

PI21=0.0 
CALL CURVAl 
WRITE@, 12) KF,KH,SIGSF 
FORMAT(~X,~(G~~.~,~X)) 
K2 I=KF 
K2II=KH 
PHI~=PH/CR~ 
sh2=ds in (phi2) 



ch2=dcos (phi2) 
xX= CMsref (1) +SM;kef (3) 
yY= ef(2) 
zZ=-SMfref (1) +CMsref (3) 
ef (1) =xx 
ef (2) = CH2"yY-SH2"zZ 
ef (3) = SH2*yY+C~2hzZ 
WRITE(9,ll) xx, yy,zz 

ERRREL=O.lD-10 
N= 1 
I TMAX=2OO 
XI (1)=0.0 
CALL DNEQNF(FCN~,ERRREL,N,ITMAX,XI,X,FNORM) 
PHI2PO=X (1) 
WRITE(9,ll) X(1) 
WRITE (9,ll) XH2, YH2,ZH2 
WRITE (9,ll) XNH2, YNH2,ZNH2 

CHP=DCOS (X (1) ) 
SHP=DSIN (X (1) ) 
CMM=DCOS (GAMMA) 
SMM=DS IN (GAMMA) 
XX= ef (1) 
YY=-~£ (2)*C~P+ef (3) "shp 
ZZ=-ef (2) "SHP-ef (3) "chp 
EF (1) = XX*C.MM+ZZ*SMM 
ef (2)= YY 
EF (3) =-XX?rSMM+ZZ*CMM 

C... 
XX= eh(1) 
YY=-eh (2)>';CH~+eh (3) "shp 
ZZ=-eh (2) %HP-eh (3) "chp 
EH (1) = XX":CMM+ZZ'~SMM 
eh(2)= YY 
EH (3) =-XX*SMM+ZZ*CMM 
WRITE (9,ll) EF (1) , EF (2) , EF (3) 
WRITE (9,ll) EH (1) , EH (2) , EH (3) 
ETAG=~O.O"CNST+SIGSF+ETAG 

C 
C 
C... 

LOCAL SYNTHESIS AT MEAN CONTACT POINT 

RH (1) =XH2 
RH (2) =YH2 
RH (3) =ZH2 
GNH (1) =XNH2 
GNH (2) =YNH2 
GNH (3) =ZNH2 



C.. . 
C.. . 
C... 

C 
C 3 
C... 
C.. . 
C..  . 

C... 

C... 

C.. . 

C... 

C... 

RELATIVE MOTION PARAMETERS IN GEAR & PINION MESHING PROCESS 

R12=TNl/TN2 
wl (l)=-1.OD00 
W 1 (2) =O. OD00 
Wl(3) =O. ODOO 
W2 (1) = R12"CMM 
W2 (2) =O. ODOO 
W2 (3) =-R 12"SMM 
W12 (l)=Wl(l) -w2 (1) 
W12 (2) =W1(2) -W2 (2) 
W12 (3)=W1(3) -W2 (3) 
V T ~  (I)= O.ODOO 
VTl(2) = ZH2 
VTl(3) =-YH2 
VT2 (1) = R~~"(YH~-C) "SMM 
VT2 (2) =-~12" (xH~"SMM+ZH~~'CIHM) 
VT2 (3) = ~ 1 2 "  (yH2-C) "CMM 
V12 (I)= VTl(1)-VT2 (1) 
V12 (2) = VTl(2) -VT2 (2) 
v12 (3)= VTl(3)-VT2 (3) 
 WRITE(^,^) ~ 1 2  (1) ,V12 (2) ,v12 (3) 
FORMAT(~X,~G~~,~,/) 

CALCULATE THE COEFFICIENT .413,A23,A33 

ESN (I)= GNH (2) "E2IH (3) -GNH (3) "E2IH (2) 
ESN (2)=- (GNH (1) " ~ 2 1 ~  (3) -GNH (3) "E2IH (1)) 
ESN (3)= GNH (1) "E2IH (2) -GNH (2) "E2IH (1) 

EQN (I) = GNH (2) "E2IIH (3) -GNH (3) "E2I IH (2) 
EQN (2) =- (GNH (1) '?E~IIH (3) -GNH (3) " ~ 2 1 1 ~  (1)) 
EQN(3)= GNH(~)~E~IIH(~)-GNH(~)"E~IIH(~) 

V12S=O,OD00 
Vl2Q=O.ODOO 
WNES=O. ODOO 
WNEQ=O.ODOO 
VWN= O.ODO0 



C.. . 

1 
C 
C 6 
C.. . 
C... 
C.. . 

C... 
C.. . 
C... 

DO 1 I=1,3 
V12S= ~ 1 2  (1)*E2IH(I)+V12S 
Vl2Q= V~~(I)*E~IIH(I)+V~~Q 
WNES= W12 (I) "ESN (I) +WNES 
WNEQ= W12 (I) "EQN (I) +WNEQ 
VWN =GNH (I) "WV12 (I) +VWN 
W~TN=GNH(I)*WIVT~ (I) +WlTN 
W2TN=GNH (I) fcW2VT1 (I) +W2TN 
VT2N= GNH (I) ;':VT2 (I) +VT2N 
CONTINUE 
 WRITE(^,^) V12S,V12Q 
FORMAT ( 5 ~ ,  2G14.7, /) 

COMPUTER THE COEFFICIENTS A13,A23,.433 

LOCAL SYNTHESIS OF MESHING AT MEAN CONTACT POINT 

C.. 
C.. 
C.. 
C  WRITE(^, 11) ETAP,KlI,KlII 
C  WRITE(^,^^) SIGK,SIG12,SIGKl,SIGGl 
C WRITE (9,8) TI, T2 
C 8 FORMAT (5X, 3G14.7) 
C.. 
L . .  
C.. . 
C... PRINCIPLE DIRECTIONS OF PINION SURFACE AT POINT M 
L . . .  

148 



15 
C 
C 
C. .  . 
c . . .  
C . . .  

C 
C 
c . . .  
C 

C 
C 
C 
C . . .  
C 

C 
C . . .  
C 

DO 15 IE1,3 
E 1 1 H ( I ) =  DCOS (SIG12)9~~21H(I)-DSIN(SIG12)"E211H(~) 
E l I I H  (I) = D S I N ( S I G ~ ~ >  $:E21H (I) +DCOS ( ~ 1 ~ 1 2 )  " ~ 2 1 1 ~  (I) 
CONTINUE 
 WRITE(^,^^) E ~ I H ( ~ )  , E ~ I H ( ~ )  , E ~ I H ( ~ )  
WRITE ( 9 , l l )  E 1 1 1 H ( l )  , E l I I H ( 2 )  , E 1 1 1 ~ ( 3 )  

C O I N C I D E  THE NORMALS O F  CUTTER AND THE P I N I O N  SURFACES 

S M l = D S I N  (GAMA1) 
CMl=DCOS (GAMA1) 
S P = D S I N  (ALP 1) 
CP=DCOS ( A L P 1 )  
T I = -  (XNH2+SP>':SMl) 
T 2 =  CPkCM1 
I F  ( J C H .  EQ. 1) THEN 
THF=DARCOS ( ~ l / T 2 )  
ELSE 
THF=DARCOS ( ~ 1 / ~ 2 )  
T H F X 3 6 0 .  ~ " C N S T - T H F  
END I F  
BA~=-CP*DS IN (THF) 
BA2= CP'?DSIN ( G A M A ~ )  "DCOS (THF) -SP9rDCOS (GAMA1) 
TTP- ( Y N H ~ * " ~ + z N H ~ > ' : $ : ~ )  

CSH=- ( B A ~ " Y N H ~ + B A ~ ~ ~ z N H ~ )  /TT 
SNH= ( B A ~ " Y N H ~ - B A ~ * Z N H ~ )  / T T  
P H I H = ~ .  O"DATAN~ (SNH, (l.ODOO+CSH)) 
W R I T E  ( 9 , 8 )  THF,  P H I H  

F I N D  THE P R I N C I P A L  DIRECTIONS O F  P I N I O N  GENERATING SURFACE 

E F I  ( 1 )  =-DSIN (THF) 
E F I  ( 2 )  = DCOS (THF) 
E F I  (3) = O.ODOO 
E F I I  (1) = SP"DCOS (THF) 
E F I  I (2) = S P ' ~ D S I N  (THF) 
E F I  I (3) =-CP 
W R I T E ( 9 , l l )  E F I  (1) , E F I  ( 2 )  , E F I  (3) 
 WRITE(^, 11) E F I I  (1) , E F I I  (2) , E F I I  (3) 

F I N D  THE P I N I O N  P R I N C I P A L  D I R E C T I O N S  I N  SYSTEM SM1 

xx= E ~ I H ( ~ )  
YY= DCOS ( P H I H )  " E ~ I H  (2) + D S I N  (PHIH)  * E l I H  (3) 
ZZ=-DSIN (PHIH) ' " E 1 1 ~ ( 2 )  +DCOS (PHIH)  * E l I H  (3) 
~ 1 1 ( 1 ) =  CM~*XX-SM~+:ZZ 
E 1 1 ( 2 ) =  YY 
E I  I (3) = SMI*XX+CM~*ZZ 

xx= EI I IH( I )  
YY= DCOS (PHIH) ' :ElIIH (2)  + D S I N ( P H I H )  > : E l I I H ( 3 )  
ZZ=-DSIN (PHIH)  " E l  I I H  ( 2 )  +DCOS (PHIH)  " E l I I H  (3) 
EII I  (1) = CM~'~XX-SMI*ZZ 
E 1 1 1 ( 2 ) =  YY 
~1 11 (3) = S M ~ * X X + C M ~ + ~ Z Z  

F I N D  THE U N I T  NORNMAL I N  SYSTEM SM1 

XX= XNH2 
YY= DCOS (PHIHI "YNH~+DSIN (PHIH) "ZNH2 



C 
C... 

C 
C 
C... 
C 
C 
C 
C 
C 
C... 

C 
C... 
C 

EXPRESS THE POSITION VECTOR IN SM1 

XX= XH2 
YY= DCOS (PHIH) : ' f ~ ~ 2 + ~ S ~ ~  (PHIH) "ZH2 
ZZ=-DSIN (PHIH) "YH~+DCOS (PHIH) +:ZH2 
RX= CM~*XX-SM~*ZZ 
RY= YY 
RZ= SM~+~XX+CM~*ZZ 
XX=-CP*DCOS (THF) 
YY=-CP+:DSIN (THF) 
ZZ=-SP 

DO 20 I=1,3 
XX=-EFI (I) 
EFI (I) = EFII (I) 
EFII (I) =XX 
CONTINUE 

FIND THE ANGLE FORMED BETWEEN PRINCIPAL CURVATURES 

EFE1 (I)= EFI (2)"ElI (3) -EFI (3) "E11(2) 
EFE1(2)=-EFI (1)"~lI (3) +EFI (3) "E11(1) 
EFE1(3)= EFI (1)"~lI (2) -EFI (2) "E11 (1) 
Tl=O.ODOO 
T2=0.0D00 
DO 30 1=1,3 
T2=EFI (I) "El I (I) +T2 
T~=GN(I)*EFE~ (I) +T1 
CONTINUE 
S I G F ~ = ~ .  O*DATAN~ (TI, 1.0+T2) 

FIND THE CURVATURE OF PINION GENERATION SURFACE AT MEAN POINT 

IF (JCC. EQ. 1) THEN 
KFI=O. 0 
B12=0.5DOO*(KlI-K111) %IN (-2.ODOO"SIGFl) 
B1 ~=KFI-K~I"DCOS (SIGF~) ""2-K111"DSIN (S1GFl) ""2 
TKK= K~I"DSIN(SIGF~) $f~k2+K1~~+c~COS (sIGF~)""~ 
KFII= (B12fc"c2+B11'k~~K) /B11 
 WRITE(^, 11) SIGF1,KFII 

FIND THE CUTTER POINT RADIUS AND ITS CENTER 



C 
C 
c.. . 

C 
C 
C 
C 
C... 
C... 
C... 

DO 40 I=1,3 
P (I) = GN (I) "CP-EFI (I) *SP 
CONTINUE 
RCX= RX-SF~EFI (~)+RcF*P (1) 
RCY= RY-SF"EF1 (2) +RCF*P (2) 
RCZ= RZ-SF;'EFI (3) +RCF9<P (3) 
WRITE (9,111 RCF, SF 
WRITE (9,11) RCX, RCY, RCZ 
ELSE 
KFI=~. O/RHO 
B12=0.5DOO"(K1I-K1II) +:DSIN (-2.ODOO"SIGFl) 
B1 1=KFI-K~I"DCOS (SIGF1) "9c2-K111"DSIN (SIGFl) >'+:2 
TKK= KlI*DSIN (SIGF~) **2+K111;'iDCOS (SIGF1) ""2 
KFII=(B~~*"~+B~~'~TKK) /Bll 
 WRITE(^, 11) SIGF1,KFII 
DBT=-RZ 
RM=CP/DABS (KFII) 
ZO=- (DBT+RHO*SP) 
XO=RM-RHO*CP 
RCF=XO+RHO+~DSQRT (1.0- (ZO/RHO) ""2) 
RCX=RHO+:GN (1) -XO;~DCOS (THF) +RX 
RCY=RHO*GN (2) -XO"DSIN (THF) +RY 
RCZ=RHO*GN (3) -ZO+RZ 
WRITE (9,777) X0,ZO 
FORMAT(~X,' XO, XO =',2(2X,G14.7)) 
WRITE(9,ll) RCF,RM,DBT 
WRITE (9,111 RCX,RCY ,RCZ 
END IF 

THE FOLLOWING IS TO FIND THE CUTTING RATIO 

WRITE (9,111 RCX, RCY, RCZ 
 WRITE(^, 11) TlX,TlY ,TlZ 
WRITE (9,111 T2X, T2Y, T2Z 
 WRITE(^,^^) XN,YN,ZN 
 WRITE(^, 11) RXC,RYC,RZC 

THE FOLLOWING IS TO DETERMINE DELTA,EM,AND IFM 



L . .  . 
C L~~=-T~z/T~Z$:L~ 1 
C L ~ ~ = - T ~ z / T ~ z " L ~ ~ - R Y C ~ : C S M ~ / T ~ Z  

DTT=B ~ ~ * K F I + ~ T ~ z + B ~  ~$:KFI 1% 
~ 1 1 = - ~ 1 ~ " ( ~ 1 1 " M 2 1 - ~ 1 2 ' ~ M 1 1 )  /DTT 
L ~ ~ = ( - B ~ ~ " K F I * R Y c " c s M ~ - T ~ z ~ ' ~ ( B ~ ~ ~ ~ M ~ ~ - B ~ ~ " M ~ ~ ) )  /DTT 
~ 2 1 = ~ 2 ~ " ( ~ l l " M 2 1 - ~ 1 2 ~ ' : ~ 1 1 )  /DTT 
L ~ ~ = ( - B ~ ~ " K F I I " R Y C " C S M ~ + T ~ Z " ( B ~ ~ M ~ ~ - B ~ ~ ~ ~ M ~ ~ ) ) / D T T  

C  WRITE(^,^^) Ll19L12,L21,L22 
~ll=L2l'~Tl~+Ll lkT2X 
~12=~22~'~Tl~+L12~~T2X 
~21=L21*Tl~+Lll*T2Y 
~22=~22*Tl Y+L12$:T2Y 
~31=~21~~Tl~+~ll$~T2Z 
~32=~22*T1~+~12~:T2Z 
E ~ ~ = Y N " X ~ ~ - X N " X ~ ~  
E ~ ~ = Y N * x ~ ~ - x N * x ~ ~ - z N ~ ' : x ~ ~ ~ ~ ~ s M ~ + Y N ~ ' : x ~ ~ ~ : c s M ~  
E13=- (zNf:X22-YN"X32) $:CSM1 
Y 1 I=-XN* (RXC*SNM~-RZC+:CSM~) -YN~:RYC$:SNM~ 
~12=~11*SNMl 
x ~ ~ = x ~ ~ - R Y C " S N M ~  
x~~=x~~+RxC"SNM~-RzC"CSM1 
x ~ ~ = x ~ ~ + R Y C " C S M ~  
Y ~ ~ = - x N " x ~  ~"SNM~+ZN"X~ liiiCSM1+YN$: (XI lfiS~Ml-X3 lf'CSM1) 
Y ~ ~ = - X N " X ~ ~ " S N M ~ + Y N " ( S N M ~ ~ ~ - C S M ~ " X ~ ~ ) + Z N $ : X ~ ~ " ~ ~ M ~  

C 
L . .  . 
C 
C.. . 
C... THE EFFECT OF SECOND ORDER RATIO OF ROLL ON A33 

T M ~ = x N * x ~ ~ + Y N * x ~ ~ ~ z N " X ~ ~  
T M ~ = x N " x ~ ~ + Y N * x ~ ~ + z N X ~ ~  

C WRITE (9,163) TM1, TM2 
C163 FORMAT(~X,'TM~,TM~ ',2(2X,G14.7)) 

ZZL=C~*TM~ 
Z Z ~ = C ~ *  (TM~+SNM~*TM~) 
ZZ~=C~*SNM~*TM~ 

C.. . 
c Z ~ = K F I I " L ~ ~ " " ~ - E ~ ~  
C z ~ = ~ . O D O O " K F I I " L ~ ~ " L ~ ~ - E ~ ~ - Y ~ ~ + Y ~ ~  
C ~3=KFII"~12""2-~13-~22+Y12 

Z ~ = K F I " L ~ ~ " ~ ~ + K F I I " L ~ ~ + : ; ' < ~ - E ~  1+ZZ1 
Z ~ = ~ . O ~ ~ K F I " L ~ ~ " L ~ ~ + ~ , O D ~ ~ ~ K F I I L ~ ~ " L ~ ~ - E ~ ~ - Y ~ ~ + Y ~ ~ + Z Z ~  
Z ~ = K F I * L ~ ~ * * ~ + K F I I * L ~ ~ + : ~ : ~ - E ~ ~ - Y ~ ~ + Y ~ ~ + Z Z ~  
N ~ ~ = K F I I * L ~ ~ + M ~ ~  
N ~ ~ = K F I I ~ : L ~ ~ + M ~ ~  
N21=KFIkL21+M1 1 
N22=KFI*L22+M12 

C  WRITE(^,^^) B12,Zl,Mll,Nll 
A A = B ~ ~ " Z I - N ~ ~ " N ~ ~  
~ ~ = ~ 1 2 " ~ 2 - ~ 2 1 * ~ 1 2 - ~ 2 2 " N l l  
CCC=~12"Z3-N22':N12 

C WRITE (9,ll) AA,BB,CCC 
IF (AA.GT. 0.000001) GOT0 1949 
TI=-CCC/BB 
GOT0 1950 

1949 TI= (-BB+DSQRT (BB""~-4. ODOO*&I"CCC) ) / (2.0~00"AA) 
1950 FMl=Tl+SNMl 



CRl=FMl 
 RAP=^. O/CR~ 
V F ~ = X ~ ~ * T ~ + X ~ ~ + R Y C ' : C S M ~  

C.. . 
C... 
C.. . 
C... THE DETERMINATION OF EM AND DELTA 
C.. . 

 EM^= (XI l$:Tl+RYC*FMl+X13) /FM1 
XG1= ( x ~ ~ " T ~ - R X C " F M ~ + X ~ ~ )  / (FMIJCCSM1) 

C.. . 
RCX=RCX+XG~~~CSM~ 
RCY=RCY-EM1 
RCZ=RCZ+XG~*SNM~ 

C.. . 
Vl=RCY 
Hl=RCX 
XBl=RCZ 
~ p ,  ~=DSQRT (~1?:"2+~12) 
Q1=-DARSIN (Vl/SRl) 
XB1=-XBl 

C 
C.... DETERMINE THE CAM SETTING 
C 

R~l=l.o/CRl 
RAM=TN~/TN~I*RA~ 
PSI l=DATAN (C2"RAM/ (R.4M- 1.0) ) 
REP=l5. OQDCOS (PSI1) i (RAY-1. 0) 
RUl=RUP 

C DELT=O . 0 
C 

CALL CAM 
C WRITE(9,191) RUP 
C WRITE (9,191) RU1 
C191 FORMAT(ZX,'RUl DELT = ',2(2X,G14.7)) 
C  WRITE(^, 199) RA1 ,C2,D6,E24,F120 
C  WRITE(^, 199) RA1 ,CPF,DPF,EPF,FPF 
C 199 FORMAT(~X, 'CAM1 ,2X,5(2X,G14.7)) 
C 
C.. . 
C 
C WRITE (9,25) FM1 
C 25 FORMAT(~X,' FM1 = ',G14.7) 
C WRITE (9,44) EM1 , SR1, Q1 
C44 FORMAT(2X,'EMl,SR1,Qlt,3(3X,G14.7)) 
C WRITE(9,45) XGl,XBl,Vl,Hl 
C45 FORMAT(2X, 'XGl,XBl,Vl,Hl' ,4(2X,G14.7)) 
C... 

IF (KSIDE.EQ.O.0) THEN 
WRITE(9,131) 
FORMAT (/2x, ' ;~;""""$:"$:$:,~;~$:$:$:$:$r$:$i$i"$:J;;';$:$:*;i:$:$;$<,*$:**$:;~:$;$:$:$:$; 1 , 1 

$ 2X, I *  OUTPUT FOR GEAR CONVEX SIDE * I  ,/ 
& 

2X, .................... - . ' ' ' 'r ' ' ' ' ' .' ....*.. '... .....-- I$:b:.:.:.:.:.:.:.:.:.:,:.:.,..i .... :.i;k:....,>:;;:::.::;:;:;::r.r, ....... :.:.:.*I , 1) 
ELSE 
WRITE (9,331) 

33 1 FORMAT (/2x, 1 ;~ ;k~J:~~~k;k;k$~~: ;k~ . ' -~Jr~$:$ :~$:J ;~ :~r ;k~k;k;k;k; ' :~k$r$;~$: ;k$:$ :$ :$ :$ :  I $1  
$ 2X,'" OUTPUT FOR GEAR CONCAVE SIDE $:I , /  
& 

2X, t,nC;k";k"*"**"&.@.&~.* ,, ,. ,. ,. ,:$::. . . . . .-A"" :. :. ,.;,;;::;:,:;:;c;::r:c;:,. ' 3  , a  " ".L.%.L.-..*.L.P-.~ ,. ,. ,. ,:,. ,. ,:,.;: -8.s I , 1) 
END IF 
WRITE (9,13) 



13 FORHAT (/2x, I ~ ~ ~ ~ ~ ~ ; k ; k ~ - ' . ~ e ; k ; ' : $ : ~ ; t ; k $ r ~ r ; ' c ; ' c A ; k ; k J c ; . i : ~ ; k $ : ; k $ : ~ c $ : ; ~ $ c ~ ~ : $ : ~ ~ ; k $ c  9 ,I 
$ 2X, GEAR CUTTER SPICIFICATIONS ,/ 
& 2x, I $:$:;k;k;'c$c~'r$:;k$:;t;k;k$c9rJc9:$:;k~'c~;~;k;k$:~*~$:k;'c~k~r~~:~;':~;kf:k 1 , /) 
WRITE (9,115) DC2, PW2  ALP^ 

115 FORHAT(/~X,' GEAR CUTTER DIAMETER : DC2 = '  ,G14.7,/ 
$ 2X,' CUTTER POINT WIDTH : PW = '  ,G14.7,/ 
& 2X,' CUTTER BLADE ANGLE : PHI2 = '  ,G14.7,//) 
WRITE (9,3) 

3 FORMAT (/2~, 1 ~~~$:~;kS:;':~~S:S:;kS:;k;k;k;k;'c;':;~c;t;k$:$r?:?r;k;k;k~k;~:;k;k;k;':;k-'.;~;k;t;k 1 , / 
s 2X. ' * BASIC GEAR MACHINE-TOOL SETTINGS "' , / 
& ax, I ~~~~":k~~;'~StB;'r;k;~:~':3:$:;t$:$:$rf $:;tt~;':$:$:;t;i:~t;'i;k;t$r$:;': ., .. """ ' , 1) 
 WRITE(^,^) Q2,SR2,XG2,XB2,EM2,GAMA2,RAG 

4 FORKAT (/2X, ' BASIC CRADLE ANGLE : 42 = '  ,G14.7,/ 
61 2X,' RADIAL SETTING : SR2 = '  ,G14.7,/ 
f 2X,' MACHINE CENTER TO BACK : XG2 = '  ,G14.7,/ 
{I 2X,' SLIDING BASE : XB2 = '  ,G14.7,/ 
$ 2X,' BLANK OFFSET : EM2 = '  ,G14.7,/ 
d 2X,' MACHINE ROOT ANGLE : GAMA2 = '  ,G14.7,/ 
f 2X,' RATIO OF ROLL : RAG = '  ,G14.7,//) 
WRITE (9.6) FORMAT (/ / 2X , # ~ $ ~ $ ~ ~ ~ ~ ~ ~ ; ~ i $ i $ ~ ; ' i $ i ; ~ ; ~ $ i ; ~ $ e $ ~ ; i i $ i $ i ; ~ : $ ~ ; ~ r ; ~ i ~ ~ i $ ~ ; ~ ; ~ ~ ; ~ ~ ~ c ; ~ ~ $ : $ ~ ; ~ ; ~ ~ ~ ; ~ ~ $ ~ ; ~  1 , / 

& 2 ~ , ' "  BASIC PINION MACHINE-TOOL SETTINGS ":',/ 
& 

zx , 1 &-~-.~-.~-.~-.'.-'..'..CcCc$ ...--.-.-.. .* .- J .h..,L..-L..... .. .. .. .. .. ., .. .. .. ., . :, :. ;. ;. ;, .r;. .:.. .. :, ..;, ..~k~;':k$:A-'.*;':$~Jc$c$:~:$:;':;': I , /) 
 WRITE(^,^) ALP1, RCF, Q1,SRl,XGl,XBI,EMl,GMl,RAP 

7 FORMAT(/~X, ' BLADE ANGLE : ALP1 = '  ,G14.7,/ 
& 2X,' POINT RADIUS : RCF = '  ,G14.7,/ 
& 2X, ' BASIC CRADLE ANGLE : Ql = '  ,G14.7,/ 
$ ZX,' RADIAL SETTING : SRI = '  ,G14.7,; 
& 2X,' MACHINE CENTER TO BACK : XG1 = '  ,G14.7,/ 
$ 2X,' SLIDING BASE : XBl = I  ,G14.7,/ 
& 2X,' BLANK OFFSET : EM1 = '  ,G14.7,/ 
$ 2X,' MACHINE ROOT ANGLE : GMA1 = '  ,G14.7,/ 
& 2X,' RATIO OF ROLL : RAP = '  ,G14.7,//) 
IF (JCC.EQ.2) THEN 

& ZX,'" COORDINATES OF THE CENTER OF THE ARC " ' , /  
& 

2x , 1 .*. -0- .$..a. .% .*. 2. d. .k -9. .,. .*b.L -8- .a- -8 4. .t. ... .'. .n-.b. .*. .%. -0. .a. -8- --. -4. -* d. .L .*-.+- .+- d. .,. .*. .'- .L , ,. ,. ,\ 3. ., ,< ,.,. , ,. ,... ,\ ,, ,\ ,, ,:,. ,. ,. ,. ,. ,,,\ ,\ ,, 2 ,  ,.,. ,, ,. nc,. ,$ ,, ,. ,% ,, z .  #, ,* , /) 
 WRITE(^,^^) X0,ZO 

71 FORMAT(/~X,' RADIAL COORDINATE : XO = '  ,G14.7,/ 
& 2X,' AXIAL COORDINATE : ZO = '  ,G14.7,//) 
ELSE 
GOT0 1919 
END IF 

1919 CONTINUE 
WRITE (9,16) 

16 FORMAT (/12X , , $:$:~$r$c~k$c~C j'r$r$r$iikt~ttt ttttt ,: .ttttt.L.Cd. ,.,. ,.,. ... J:-~..s-.~..~-.a..s-.+-.*.~~.s--.+.~ ,.,... ,..... .. .. .. ,.,. ;:;:;. * a..~-.8..~-.c. .. ,,.. ,.$:+~aa.l;a I , / 
& ZX,'"CAM SETTINGS AND COEFFICIENTS OF TAYLOR SERIES??',/ 
& ; , , , $ $ , ; ; $  $ 2 .. . . . . L .  '- .'." -5." "A 1% 4." .'-''2 2X.l..~~> . L % S * * *  .. ,. ,. ,. ,. .. ,, ,. . ;, ,. .. .. .:;, .. ,c,. ,. ,. ,. .. ,.;t ,, .. .. .. .\ .:A 1 , /I 

C 
C.. 

 WRITE(^,^^) PSI1, RUP, DELT, RAl,C2,D6,E24,F120 
FORMAT (/2~, ' GUIDE ANGLE : PSI1 = '  ,G14.7,/ 

& ZX,' CAM PITCH RADIUS : RUP = '  ,G14.7,/ 
& 2X,' CAM SETTING : DELT = '  ,G14.7,/ 
& 2X,' 1ST ORDER COEFFICIENT : RA1 = '  ,G14.7,/ 
& ZX,' 2ND ORDER COEFFICIENT : C2 = '  ,G14.7,/ 
& 2X,' 3RD ORDER COEFFICIENT : D6 = '  ,G14.7,/ 
& 2X,' 4TH ORDER COEFFICIENT : E24 = '  ,G14.7,/ 
& 2X,' 5TH ORDER COEFFICIENT : F120 =' ,G14.7,//) 

CALL TCA 



C 
C.. . 
C... DEFINE THE INITIAL POINT 
C... 
C... 

XI (1) =THIG 
XI (2) = 0.000000 
XI (3) =THF 
XI (4) =O. 0 
XI(5)= 0.00 

C 
C... FIND THE INITIAL CONTACT POINT 
C 
5555 N=5 

ERRREL=O.lD-10 
ITMAX=200 
PHI2P=PHI2PO 
IF (JCC.EQ. 1) THEN 
CALL DNEQNF (FCN, ERRREL , N , I T W ,  XI, X ,  FNORM) 
ELSE 
CALL DNEQNF (FCNR , ERRREL , N , ITMAX, XI, x , FNORM) 
END IF 
PHI lPO=X (5) 

C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C.. . 
C 
C 

C 
C... 
C 

?~12~1=PH12PO-180. 0~cCNST~TN2-TL1?~180. O*CXST/ ( 6 .  G $ c ~ ~ 2 )  
P H I ~ P ~ = P H I ~ P O + ~ ~ O .  0~~CNST/TN2+TL2*18O0 O?:CNST/ (6. O'*:TN~) 
KK= 1 
PHI2P=PHI2Pl 
CONTINUE 
IF (JCC.EQ.~) THEN 
CALL DNEQNF(FCN,ERRREL,N,ITW,XI,X,FNORM) 
ELSE 
CALL DNEQNF (FCNR , ERRREL , N , ITMAX, XI, X , FNORH) 
END IF 
XI (1) =X (1) 
XI (2) =X (2) 
XI (3) =x (3) 
XI (4) =X (4) 
XI (5) =X (5) 

find the transmission error 

computer the contact path 

xlc= x2m 
r 1 c= dsqr t (y2m**2+z2msr*2) 
xcp (KK) = xlc*dcos (rgma2)+rlcfrdsin (rgma2) +ox 
ycp (KK) =-xlc*dsin (rgma2) +rlc*dcos (rgma2) +oy 

C 
C... 
C 

COMPUTER THE PRINCIPAL DIRECTIONS AND CURVATURES OF GEAR 



C . . .  DEFINE VECTORS TO COMPUTER THE SECOND ORDER PROPERTY OF GEAR 
C 

ES (1) =-DSIN (TH-PHI 
ES (2) = DCOS (TH-PHI 
ES(3)= 0 . 0  
EQ (1) =-SP"DC0S (TH-PH) 
EQ (2) =-SP*DSIN (TH-PHI 
EQ (3) =-CP 
CN (1) =XNM 
CN (2) =YNM 
CN (3) =ZNM 
KS=CP/ (RC~-SG'?SP) 
KQ=O. 0 
W1 (I)=-CM 
w1(2)= 0 .0  
Wl(3)=-SM 
W2(1)= 0 .0  
w2(2)= 0 .0  
W2 (3) =-CR2 
VTl(1) = YM':SM+EM~~:SM 
VTl(2) =-XM*SM+ (ZM-XB2) C M  
VT 1 (3) =-YM"CM-EM~"CM 
VT2 (1) = YM$<CR2 
VT2 (2) =-XMiCC~2 
VT2(3)= 0 .0  
DO 110 I = 1 , 3  
w12 ( I )  =Wl(I)-w2 (1) 
V12 (1)=VTl ( I ) - V T ~  ( I )  

110 CONTINUE 
C 
C 

PI21=0.0 
CALL CURVAl 
K2I=KF 
K2II=KH 
PHI2=PH/CR2 
sh2=ds in  (phi21 
ch2=dcos (phi2)  
xX= CMSref (l)+SM'?ef (3) 
yY= e f  (2) 
ZZ=-SM*ef (l)+CMkef (3) 
ef  (1) =xx 
ef  (2) = C H ~ ' ~ ~ Y - S H ~ < ~ Z Z  
ef (3) = SH2"yY+CH2ytz~ 

C 

xX= CM*eh (1) +SMyteh (3) 
yY= eh(2)  
ZZ=-SMkeh (1) +C~'?eh (3) 
e h ( l ) = x x  
eh (2) = CH~"~Y-SH~"ZZ 

156 



C... 
CHP=DCOS (PHI~P) 
SHP=DSIN (PHI2P) 
CMM=DCOS (GAMMA) 
SMM=DS IN (GAMMA) 
XX= ef (1) 
YY=-ef (2)*C~P+ef (3)$(shp 
ZZ=-ef (2) "SHP-ef (3) $:chp 
E2IH (1) = XX*CMM+ZZ*SMM 
E2IH(2)= YY 
E2IH (3) =-xx"SMM+ZZ>~CMM 

C.. . 

C 
C... 

C 
C... 
C 

COMPUTER THE PRINCIPAL DIRECTIONS AND CURVATURES OF PINION 

THl=X (3) 
PHl=X (4) 
STP=DSIN (TH~+PH~) 
CTP=DCOS (THl+PHl) 
IF(JCC.EQ.~) THEN 
SPI=DSIN (ALPI) 
CP l=DCOS (ALP 1) 
ELSE 
SGN=ALP  DABS   ALP^) 
ALP=SGN*ALP 
SP~=DSIN (ALP) 
CPl=DCOS (ALP) 
END IF 
SMl=DSIN (GAMA1) 
CHl=DCOS (GAMA1) 

DEFINE VECTORS TO COMPUTER THE SECOND ORDER PROPERTY OF PINION 

ES (I)=-STP 
ES(2)= CTP 
ES(3)= 0.0 
EQ (1) = SP 19:CTP 
EQ (2) = SP 1"STP 
EQ (3) =-CP 1 
CN (1) =XNMI 
CN (2) =YNM1 
CN (3) =ZNMl 
IF (JCC.EQ. 1) THEN 
KS=CP~/ (RCF+SF~~SP~) 
KQ=O. 0 
ELSE 
KS=DCOS (ALP) / (RHO~DCOS (ALP) +XO) 
KQ=I.O/RHO 
END IF 
~1(1)= CM1 
W1(2)= 0.0 
Wl(3) = SM1 
W2(1)= 0.0 



W2(2)= 0.0 
W2(3)= CRlT 
V T ~  (1) =-YM~+~sM~-EM~"SM~ 
V T ~  (2) = XMT*SM~- (zM~-xB~)~~cM~ 
V T ~  (3) = YM~*CM~+EM~+:CM~ 
VT2 (1)=-YM19cCR1T 
VT2 (2) = XM1'kCRIT 
VT2(3)= 0.0 
DO 210 I=1,3 
w12 (I) =Wl (I) -w2 (1) 
V 12 (I) =VT1 (I) -VT2 (I) 

210 CONTINUE 
C 
C 

PIZl=PCRlT 
CALL CURVAl 

C  WRITE(^, 12) KF,KH,SIGSF 
KlI-KF 
Kl I I=KH 

c PHI I=PH~/CRI 
SHI=DSIN (PHII) 
CHl=DCOS (PHI 1) 
XX= CM1''cEF (1) +SMlhEF (3) 
yY= ef(2) 
ZZ=-SM1"EF (1) +CMl*EF (3) 
ef (l)=xx 
EF (2) = CHI":YY+SHl*ZZ 
EF (3)=-SH1f:YY+CH15cZZ 

C 

XX= CM~*EH (1) +SM~*EH (3) 
yY= eh(2) 
ZZ=-SM1"EH (1) +CM17\EH (3) 
eh (1) =xx 
EH (2) = CH~>':YY+SH~~~ZZ 
EH (3) =-SHl*YY+CHl"ZZ 

C... 
CHlP=DCOS (X (5) ) 
SH1PEDSIN (X (5) ) 
EIIH(I)=EF(~) 
El IH (2) = CH~P*EF (2) -SHlP"EF (3) 
E 1 IH (3) = SH~P*EF (2) +CH~P*EF (3) 
EIIIH(I)=EH(~) 
El IIH (2) = CH~P*EH (2) -SHlP*EH (3) 
~111~(3)= SH~P*EH(~)+CH~P~~EH(~) 
DO 109 I=1,3 
E~IH(I)=-EIIH (11 
E~IIH(I) =-E~IIH(I) 

109 CONTINUE 
C 
C . .  COMPUTER THE DIMENSION AND ORIENTATION OF THE CONTACT ELLIPSE 
C 

GNH (1) =XNH2 
GNH (2) =YNH2 
GNH (3) =ZNH2 
CALL ELLIP 
AX1 (KK) =A2L 
AX2 (KK) =B2L 
ANG1 (KK) =TAUlR 
ANG2 (KK) =TAU2R 

C 



KK=KK+ 1 
P H I ~ P = P H I ~ P + ~ ~ O .  O"CNST/ (TN2"6.0) 
IF (PHI~P. LE. (PHI2P2+0.0001) ) GOT0 333 

C... 
C.. . 

WRITE (9,441) 
441 F O R ~ T ( / , ~ ~ ~ k ~ ' : ~ ~ ' ~ ~ k ~ ~ $ ~ $ ~ $ ~ ? < $ ~ $ ~ $ i ; k ~ ' ~ ; ' ~ ~ ' i ~ ' ~ $ ~ $ : $ ~ $ : $ : $ : ~ ' i $ ~ ~ ' ~ ~ ~ ~ ~ ' ~ ~ $ : ~ t $ ~ ~ ' ~ ~ ' < $ : ? : ~ k ~ : ; k & ; k $ : ? ; ; k & ; k $ ; I  

9 

& , ' TRANSMISSION ERROR IN 4 MESHING PERIOD .,. 1 9 

$ 
/ , I ft ;k A ,k fr $: k +: k $: $: $:;': $: k ;k ;k ;t $: $: $: $: ;k ;j: $: $: ;-: $: ;.: $: +: ;k $: 3: $: $: ;*: ft fC $: ;*: $: $:$: ;$: ;k st 9: fC $: t , /) 

C 
DO 444 I=l,KK-1 
P I ~ P  (I)=PI~P (I) /CNST 
 WRITE(^,^^^) P I ~ P  (I) ,ERR (I) 

555 FORMAT(~X,~(G~~.~,~X)) 
444 CONTINUE 
C 

WRITE (9,55 1) 
FORMAT (/ , I .~-.r-*.~-.s..~~.~..~-.a..9. -~.-~tttttt.tt.tttttttt.'..'ttttttttttt~.t'r'r'r.'r'r'r.'.~~.'~.~.~~. . ...- .* --.....-...-. . -...--..--...., I ,.,, ,.,., ...,.,...... ... .,., .,....,..,,,., .,.,. ...., ...... ~..$.:.;.;.:,:.:,:,;.:\..;,;.:.:.;.;.:. 

9 

& , * CONTACT PATH FOR A PAAIR OF TEETH IN MESH .*- 1 

9 

$ 
/ , f $: * $:$:;k $: * * * $: 5: ;.: :: ;': $: *$:;':$:;': * $:$:;-: ;#: ;+ ;': ;,:$: $:;*:;*:;i< ;*: ,.: $: $: ;-: $:;.: ;.: ;.: $:;*:;s: $:$: * fC f: 1 , /) 

DO 666 I=l,KK-1 
WRITE (9,747) XCP (I) , YCP (I) 

747 FORMAT(3X,2(G14.7,3X)) 
666 CONTINUE 
C 

WRITE (9,661) 
661 FORMAT(/, ' "  "'""""""""""".~.""""".~."...'-.~..~-~~--~~.~ -..... L-.".."'".%.".*."".~."".a.".a ,.,., r ,.,.,$,.,.,.,.,.,,,.,.,,..,. , .,.,.,,..; .,.,.,.....,. ;<:... ::..: .,,,: ....................... r:': I 

, DIMENSION .4ND ORIENTATION OF C3NT.iCT ELLIPSE " I ,  
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DO 888 I=1 ,KK-1 
WRITE (9,889) AX1 (I) ,ANG1 (I) ,-4X2(1) ,..LYG~ (1) 

889 FORMAT(~X,~(G~~.~,~X)) 
888 CONTINUE 
C 

L 

IF(JCL.EQ. 1) GOT0 1111 
IF(JCL.EQ.~) GOT0 1113 

C 
C... V AND H CHECK FOR TOE POSITION 
C 

HMT=WD+CC-3.0/4.O"'FW* (DTAN (FA) +DTAN (RA) ) 
DED~T=DED~-~. 0/4.0"FW"DTAN (RA) 
TMCD=MCD-0.25"F~ 
XL=TMCD"DCOS (PGMA2) + (DED2T-HMT/2.0) ':DSIN (PGMA2) 
RL=TMCD*DSIN (PGMA~) - (DED2T-HMT/2.0) ':DCOS (PGMA2) 

L 

C... FIND THE MEAN CONTACT POINT ON THE GEAR SURFACE 
C 

ERRREL=O.lD-7 
N=2 
ITMAX=200 
IF (JCH.EQ.~) THEN 
XI (1) =270.0$rCNST+B2 
ELSE 
XI (1) =B2 

C XI (1) =90.0"CNST-B2 
END IF 
XI(2)=0.0 
CALL DNEQNF(FCNl,ERRREL,N,ITMAX,XI,X,FNORM) 



TH=x(~) 
PH=X (2) 
ZYl=X(l) 
ZY2=X (2) 
N= 3 
ERRREL=O.lD-10 
ITMAX=200 
XI (1)=0.0 
XI (2) =THF 
XI(3)= 0.0 
IF (JCC.EQ.l) THEN 
CALL DNEQNF(FCNM,ERRREL,N,ITMAX,XI,X,FNORM) 
ELSE 
CALL DNEQNF(FCNMR,ERRREL,N,ITMAX,XI,X,FNORM) 
END IF 
PHI2PO=X(l) 
XI (1) =ZY 1 
XI (2) =ZY2 
XI (3) =X (2) 
XI (4) =X (3) 
XI (5) =PHIlP 
WRITE (9,149) 

49 FORMAT (/ / 6X , ' ".--"""".+-.~.-~..~.-~........~-.~-.~..~-.~*.~..~..~..~-.~..-..--.~-.--.~..~..~.-~-.~--~..~..~-.*-.s.-~.d~.--.~.-~..~. ' ,. ,. ,. ,. ,. ,... ,. ,. ,. ,. ,% ,.,. ,. ,. ,. ,. ,. ,\ ,\ ,. ,.,.,. .. ,, ,. .. .% ,. ,. ,\ ,s ,.,. ,. 2. ,. ,. ,\ .. ,. 
6X, 1 "  

, 1 
& V AND H CHECK AT TOE POSITION ::I ,/ 
& 

, 1 -0. -8- ... -9. 2. ..-.a....-*....-n. ... ... -0. .*. .*. -2. .% .%. .a- -.. .-. .+- -.. -0- -*. -.. --. 2- 2. -.- .p--,. -s.....%- -8. .L .,. 2- .b ' ,. ,. ,, ,. ,, ,.,, ,. ,, ,, ,.,% ,\ ,,,. ,. ,. ,. .. ,. ,.,. ,. ,. ,, ,. .. ,. ,. ,. ,, ,. ,, ,. ,. ,. ,. ,. ,. ,. ,. ,. ,. , /) 
 WRITE(^,^^^) V,H 

139 FORMAT (//4~, 1 V = '  ,G14.7,'*** H =',G14,7//, 
,- b . .  . 

JCL=3 
GO TO 5555 

C 
C... V AND H CHECK FOR HEEL POSITION 
C 
C1113 HMHxWD+CCC- 1.0/4. ~"Fw"(DT.~N (FX)+DTPLN (RA) ) 
C DED2HZDED2- 1.014. 0"FW':DTAN (RA) 
c HMCD=MCD+~.~~*FW 
11 13 HMH=WD+CC-0.16"FW" (DTAN (FAbDTAN (Rx) ) 

DED2H=DED2-0.16"FW"DTAN (Rx) 
HMCD=MCD+O.~~"FW 
XL=HMCD"DCOS (PGMA~) + (DED~H-HMH/2. 0) $:DSIN (PGMA2) 
RL=HMCD*DS IN (PGMA~) - (DED2H-HMH/~. 0) *DCOS (PGMA~) 
ERRREL=O.lD-7 
N= 2 
ITMAX=200 
IF (JCH.EQ.l) THEN 
XI (1)=270. 0kCNST+B2 
ELSE 

C XI (1) =90.0ACNST-B2 
XI (1) =B2 
END IF 
XI (2) =o. 0 
CALL DNEQNF(FCN1,ERRREL,N,ITMAX,XI,X,FNORM) 
TH=x(~) 
PH=X (2) 
ZYl=X(l) 
zy2=x (2) 

C.. . FIND THE V AND H VALUE FOR HEEL POSITION 
N= 3 
ERRREL=O.lD-10 
ITMAX=200 
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XI (1)=0.00 
XI (2) =THF 
XI(3)= 0.0 

C XI (2) =THF+O. 2 
C XI (3) =-0.2 

IF (JCC.EQ.l) THEN 
CALL DNEQNF (FCNM, ERRREL , N , ITMAX , XI, x , FNORM) 
ELSE 
CALL DNEQNF(FCNMR,ERRREL,N,ITMAX,XI,X,FNORM) 
END IF 
PHI2PO=X (1) 
XI (1) =ZY 1 
XI (2) =ZY2 
XI (3) =x (2) 
XI (4) =X (3) 
XI (5) =PHI 1P 

C WRITE (9,ll) PHI2P0, PHI 1P 
WRITE (9,159) 

159 FORmT (//6X, ' """"""""<~"""""""""i~i$:$i$i~:$i$i~~;~~;~:~:<i$c$:$c$i>.:;~~>~:;;$$ ' 
6X, f k 

9 / 
& V AND H CHECK AT HEEL POSITION * I  , /  
& 

, ' .. -3. -8- --...-...L. -*. ..- ... J. .* ...--a. .*. .#. .- .. -* .,- --- -,- -7- .'..,..*..c- .*- -,. .'. -L.L -4- .*. .*. .L.b. .*. ' 
\ .. .. :. :. ' ;. ,. .. .. .. .. ,: :. :. .. .. .. :. :, :. .. 2. .. .. .. .. ., ,. .. .. .. .. .. ., .. .. ,. ,. ,, ,. ,. ,. , / I  

WRITE (9,169) V,  H 
169 FORMAT (//OX, 1 """ v = I ,G14.7, I">-" ,*,.,. H = '  ,G14.7//) 

C.. . 
JCL= 1 
GOT0 5555 

1111 CONTINUE 
IF (KSIDE. EQ. 0 )  GOT0 1990 
STOP 
END 

C 
C.. . FCNl IS TO FIND THE ME.M CONTACT POIXT 
L 

SUBROUTINE FCNl (X , F , N) 
IMPLICIT REAL"8 (A-H,O-Z) 
INTEGER N 
 REAL"^ X (N)  , F (N) , mcd 
C O M M O N / A ~ / C N S T , T N ~ , T N ~ , C , F W , G A M M A , ~ ~ , ~ ~ , ~ C ~  
C O M M O N / A ~ / B ~ , R G M A ~ , F G ~ Y A ~ , P G M A ~ , D ~ R , D ~ F , - ~ D ~ , D E D ~ , W D , C C , D ~ P  
C O M M O N / A ~ / S R ~ , Q ~ , R C ~ , P W ~ , X B ~ , X G ~ , E M ~ , G ~ ~ ~ , C R ~ , A L P ~ , P H I ~ , P H I ~ P  
COMMON/A~/SG,XM,YM,ZM,XNM,YNM,ZNM~X~H,Y~M,Z~M,XN~M,YN~M,ZN~M, 
&XNH2,YNH2,ZNH2,XH2,YH2,ZH2 
TH=X (1) 
PH=X (2) 
SP=DSIN (ALP21 
CP=DCOS (ALP21 
SM=DSIN (GAMA2) 
CM=DCOS (GAMA2) 
STP=DS IN (TH-PH) 
CTP=DCOS (TH-PH) 
XNM=-CP*CTP 
YNM=-CP*STP 
ZNM= SP 
AA~=RC~*STP+SR~"DS IN (-Q2-PH) 
AA~=RC~"CTP+SR~"DCOS (-Q2-PH) 
~ = - E M ~ * s M  
AY= XB~*CM 
AZ= EM2"CM 

C 
C... FIND SG 



C 
T I =  XNM" (AX-AA~" (SM-CR2) ) +YNM" (AY+AA~" (SM-CR2) ) + Z N M ; ~  (AZ+M19:cM) 
T ~ = - x N M ' ~  (SM-CR2) " S P 7 t S T P + Y N ~ *  ( (SM-CR2) "SP*CTP-CP'~CM) + Z N M ' ~ C M ; ~ S P ~ ~ S T P  
S G = T l / T 2  
XM= (RC2-SG"SP) "CTP+SR2;kDCOS (-Q2-PH) 
YM= ( R C ~ - S G " S P )  ' k S T P + S ~ 2 9 c D S ~ ~  (-Q2-PH) 
ZM=-SG*CP 

C XM=-SG"SP"CTP+AA~ 
C YM=-SG;'~SP*STP+AA~ 
C ZM=-SG7':CP 

xX= C M ~ ~ X M + S M ~ ~ Z M - X G ~ - X B ~ " ~ S M  
yY= YM+EM2 
z ~ = - ~ ~ ~ c ~ + ~ ~ " ~ ~ - ~ ~ 2 " C ~  
XN= CM~:XNM+SM*ZNM 
YN= YNM 
ZN=-SM;':XNM+CM*ZNM 
P H I 2 = P H / C R 2  
s h 2 = d s i n ( p h i 2 )  
c h 2 = d c o s  ( p h i 2 )  
X2M= x X  
Y2M= CH2"yY-SH2"zZ 
Z2M= S H ~ * ~ Y + C H ~ * Z Z  
XN2M= XN 
YN2Mc CH~~:YN-SHZ"ZN 
ZN2M= S H ~ > " Y N + C H ~ * Z N  
F (1) =X2M-XL 
F ( 2 )  = y y k k 2 + z z " " 2 - ~ ~ f i 2  

c F (2 )  = Y ~ M " " ~ + z ~ M " ? C ~ - R L " " ~  
RETURN 
END 

L. 0 .  

C . . .  SUBROUTINE CURVAl I S  TO COMPUTER THE CURVATURE OF THE 
C . . .  GENERATED SURFAFE 
c..  . 

SUBROUTINE CURVAl 
I M P L I C I T   REAL"^ (A-H, 0-Z) 
 REAL"^ KS , KQ, K F ,  KH 
DIMENSION ESN (3) , EQN (3) , W ~ V T ~  (3) , ~ ~ 1 2  (3) , ~ 2 V T 1 ( 3 )  
COMMON/A~/ES (3) , EQ (3) , CN (3) , Wl(3) , W2 (3) , 1 2 3  , V T l ( 3 )  , VT2 (3) , 

$ v l 2 ( 3 )  , K S , K Q , K F , K H , E F ( ~ )  , E H ( ~ )  , S I G S F , P 1 2 1  
C . . .  

ESN (1) = CN ( 2 )  "ES (3) -CN (3) "ES ( 2 )  
ESN (2)  =- (CN (1) "ES (3) -CN (3) ':ES ( 1 ) )  
ESN (3) = CN (1) "ES ( 2 )  -CN (2)  "ES (1) 

C . . .  
EQN (1) = CN ( 2 )  *EQ (3) -CN (3) *EQ (2)  
EQN (2)  =- (CN (1) *EQ (3) -CN (3) "EQ (1) ) 
EQN (3) = CN (1) "EQ (2) -CN (2)  "EQ (1) 

C . . .  
WlVT2 (1) = W l ( 2 )  *VT2 (3) -W1(3) "VT2 (2) 
w l v ~ 2 ( 2 ) = -  (wl(1) " v T 2  ( 3 ) - W 1 ( 3 ) " ~ T 2 ( 1 ) )  
WlVT2 (3) = W l ( 1 )  ;':VT2 ( 2 )  -W1(2) "VT2 (1) 

C . . .  
W2VT1 ( I )=  W2 (2) " v T l ( 3 )  -W2 (3) " V T l ( 2 )  
W 2 V T l ( 2 ) = -  ( ~ 2  ( 1 )  * V T 1 ( 3 )  -w2 (3) ; ? V T l ( l ) )  
W2VT1(3) = W2 (1) " V T l ( 2 )  -W2 (2) + c V T l ( l )  

C . .  . 
wv12(1)= W l 2 ( 2 ) ~ ~ ~ 1 2 ( 3 ) - ~ 1 2 ( 3 ) ~ ~ V 1 2 ( 2 )  
wv12(2)=- (w12( l )~~v12(3) -w12(3)~rv12(1) )  
w v 1 2 ( 3 ) =  ~ 1 2 ( 1 ) ~ ~ 1 2 ( 2 ) - ~ 1 2 ( 2 ) ~ : ~ 1 2 ( 1 )  
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C... 
V12S=O.O 
V12Q=O. 0 
WNES=O. 0 
WNEQ=O . 0 
VWN= 0.0 
WlTN=O. 0 
W2TN=O. 0 
VT2N=O. 0 

C... 
DO 1 I=1,3 
V12S= V12(I)"ES(I)+V12S 
Vl2Q= V12 (I) 'kEQ (I) +V12Q 
WNES= W12 (I) *ESN (I) +WNES 
WNEQ= W 12 (I) $:EQN (I) +WNEQ 
VWN = CN (I) >kWV12 (I) +VWN 
WlTN= CN(I)$cW1VT2(I)+W1TN 
W2TN= CN(1) +cW2VT1 (I) +W2TN 
VT2N= CN (I) *VT2 (I) +VT2N 

1 CONTINUE 
C... 
C... COMPUTER THE CURVATURE OF THE GENERATED SURFACE 
C... 

A ~ ~ = - K S + ~ V  12s-WNES 
~23~-KQ+:V 12Q-WNEQ 
A ~ ~ = K s ~ ~ v ~ ~ s * * ~ + K Q " v ~ ~ Q + : * ~ - v w N - w  ~ T N + W ~ T N + P I ~  19:VT2N/W2 (3) 
~1=2. 0DOO+c~13*~23 
~2=~23""2-~13"7?2+ (KS-KQ) * ~ 3 3  
SIG1F=0.5DO09cD~TAN2 (TI, T2) 
KF=O. 50~00" (KS+KQ) - 0 . 5 ~ 0 0 ~  (~13$:"2tA23""2) /A33 
&+~13"~23/ (A33"DSIN (2. ODOOSIG~F) ) 
KH= KF-~.ODOO"A~~"A~~/ ( ~ 3 3 m I N  (2.0DOo"SIG1F)) 
SIGSF=SIGlF 
DO 2 I=1,3 
EF (I) = DCOS (SIG~F) "ES (I) -DSIN (SIG~F) "EQ (I) 
EH(I)= DSIN(SIG~F)~ES(I)+DCOS(SIG~F)"EQ(I) 

2 CONTINUE 
RETURN 
END 

C 
C... FCN2 IS TO FIND THE INITIAL GEAR ROTATIONAL ANGLE 
C 

SUBROUTINE FCN2 (X, F , N) 
IMPLICIT  REAL^:^ (A-H,O-Z) 
INTEGER N 
REAL"8 X (N) , F (N) 
COMMON/A~/CNST,TN~,TN~,C,FW,GAMMA,XL,RL,MCD 
COMMON/A~/SG,XM,YM,ZM,XNM,YNM,ZNM,ZNM,X~M,Y~M,Z~M,XN~M,YN~M,ZN~M, 
&XNH2,YNH2,ZNH2,XH2,YH2,ZH2 
CM=DCOS (GAMMA) 
SM=DS IN (GAMMA) 
CHP=DCOS (X (1) ) 
SHP=DSIN(x(l)) 
XX= X2M 
YY=-Y~M*CHP+Z~M"SHP 
ZZ=-Y~M~:SHP-Z~M$~CHP 
XH2= XX*CM+ZZ$~SM 
YH2= YYtC 
ZH2=-XX"SM+ZZ9:CM 

C... 



XX= XN2M 
YY=-YN2M"CHP+ZN2M"SHP 
ZZ=-YN~M"SHP-ZN2M"CHp 
XNH2= XX*CM+ZZ;kSM 
YNH2= YY 
ZNH2=-XX'kSM+ZZ;kCM 

C... 
R12=TNl/TN2 
V12X=- (YH2-C) f:SM*R12 
V12Y= XH2f:SM*R12+ (1.O+R12CM) %?H2 
Vl2Z=-YH2$: (1. O+R~~*CM) +C$iCM9C~12 
F (1) =XNH2*V 12X+YNH2fiV 12Y+ZNH2f:V12~ 
RETURN 
END 

C... 
C... THE FOLLOWING IS THE TCA SUBROUTINE FOR CURVED BLADE 
C.. . 

SUBROUTINE FCNR (X, F , N) 
IMPLICIT REAL"8 (A-H, 0-2) 
real"8 x(N), f (N) 
DIMENSION CH(3) ,P (3) , ElEF(3) ,ESN(3) ,EQN(3) ,WlVT2 (3) , WV12 (31, 
$W2VT1(3) , EFIH (3) , EFIIH (3) , RH (3) , GNH (3) , E21H (3) , E211H (3) , 
&E~IH(~> ,ElIIH(3> ,EFI(3) ,EFII(3) ,E11(3) ,E111(3) ,GN(3) ,EFEl(3), 
&ERR (20) , XP (20) , YP (20) 
C O M M O N / A ~ / C N S T , T N ~ , T N ~ , C , F W , G A M M A , X ~ , ~ ~ , ~ C ~  
C O M M O N / A ~ / B ~ , R G M A ~ , F G M A ~ , P G M A ~ , D ~ R , D ~ F , A D ~ , D E D ~  
C O M M O N / A ~ / B ~ , R G M A ~ , F G K ~ ~ , P G M A ~ , D ~ R , D ~ F , A D D ~ , D E D ~ , W D , C C , D ~ P  
C O M M O N / A ~ / S R ~ , Q ~ , R C ~ , P W ~ , X B ~ , X G ~ , E M ~ , G ~ ? ~ , C R ~ , A L ? ~ , ? H I ~ , F X I ~ ?  
COMMON/A~/SG,XM,YM,ZM,XXM,YNM,ZNM,X~M,Y~M,Z~M,XN~M,YN~M,ZN~M, 

&XNH2,YNH2,ZNH2,XH2,YH2,ZH2 
COMMON/A6/ES (3)  , EQ (3) , CN (3) , Wl(3) , W2 (3) , W12 (3) , VTl(3) , VT2 (3) , 
$vl2 (3) ,KS,KQ,KF,KH,EF(3) ,EH(3) ,SIGSF,PI21 
C O M M O N / A ~ / S R ~ , Q ~ , R ~ ~ , P W ~ , X B ~ , X G ~ , E M ~ , G ~ M ~ , C R ~ , A L P ~ , P H I ~ , P H I ~ P  
COMMON/A8/Sf,XM1,YM1,Z?ll,XNM1,YNM1,ZNM1,XlM,YlM,ZlX, 

&XNlM,YNlM,ZNlM,XNH1,YNH1,ZNHl,XHl,YH1,ZHl 
COMMON/A~/PHI~PO,OX,OZ,XO,ZO,RHO,ALP,V,H,CR~T,PCR~T 
C O ~ O N / A ~ ~ / R A M , P S I ~ , C ~ , D ~ , E ~ ~ , F ~ ~ ~ , C X ~ , D X ~ ~ , E X ~ ~ O ~ R U ~ , D E L T , R U P ~  
$RAl,CPF,DPF,EPF,FPF 
TH=X (1) 
PH=X (2) 
SP=DSIN (ALP2) 
CP=DCOS (ALP2) 
SM=DS IN (GAMA2) 
CM=DCOS (GAMA2) 
STP=DSIN (TH-PHI 
CTP=DCOS (TH-PHI 
XNM=-CP*CTP 
YNM=-CP*STP 
ZNM= SP 
AA~=RC~"STP+SR~"DSIN (-Q2-pH) 
AA~=RC~*CTP+SR~"DCOS(-Q~-PH) 
AX=-EM~*SM 
AY= XB~<:CM 
AZ= EM2"CM 

C 
C... FIND SG 
C 

TI= XNM" (AX-AA1" (SM-CR2) ) +YNM>? (AY+AA~~: (SM-CR2) ) +ZNMfc (AZ+AAl"CM) 
T~E-XNM;': (SM-CR~) *SP~:STP+YNM"((SM-CR~) "SP*CT?-CP?:CM) +ZNM~:CM*SP~:STP 
SG=Tl/T2 
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XM= (RC2-SG"SP) f:CTP+SR2"rDCOS (-Q2-PH) 
YM= (RC2-SG"SP) fcS~P+SR2'kDSIN (-Q2-PH) 
ZM=-SG~:CP 
XM=-SG$:SPf<CTP+AA2 
YM=-SG*SP~:STP+AA~ 
ZM=-SG~CP 
xX= CM$:XM+SM"ZM-XG~-XB~"SM 
yY= YM+EM2 
z Z = - ~ ~ * ~ ~ + ~ ~ * z ~ - ~ ~ 2 " C ~  
XN= CM;':XNM+SM>':ZNM 
YN= YNM 
ZN=-SM*XNM+CM$:ZNM 
PHI2=PH/CR2 
sh2=dsin (phi2) 
ch2=dcos (phi2) 
X2M= xX 
Y2M= CH~*~Y-SH~*ZZ 
Z2M= SH~*~Y+CH~*ZZ 
XN2M= XN 
YN2M= CH2"YN-SH2"ZN 
ZN2M= SH2?<YN+CH2*ZN 
CMM=DCOS (GAMMA) 
SMM=DSIN (GAMMA) 
CHP=DCOS (PHI2P) 
SHP=DSIN (PHI2P) 
XX= X2M 
YY=-Y~M"CHP+Z~M*SHP 
zZ=-Y~M*SHP-Z~M*CHP 
XH2= XX*CMM+zZ"SMM 
YH2= YY+C+V 
ZH~=-XX"SMM+ZZ*CMM 

C.. . 

C.. .. 
C 

C... 
C 

DEFINE THE PINION SURFACE 

FIND CRlT,PF,PPF,PCRlT 



CRlT=CRl 
PCRlT=2. OfcCPF/ (RA1**2) 

7 CONTINUE 
C CR 1 T=CR 1 
C PCRlT=O. 000 
C 
C FIND THE NOMAL OF THE EQUIDISTMCE SURFACE 
C 

XMO= XO~~CTP+SR~~~DCOS (-Q~+PH~) 
YMO= XO*STP+SR~"DSIN (-Ql+PHl) 
ZMO= ZO 
v~x=-YMO*SM~-EM~'~SM~ 
V ~ Y -  XMO:~SM~- (ZMO-XB 1) * C M ~  
V ~ Z =  Y M O ~ ~ C M ~ + E M ~ ~ ~ C M ~  
V2X=-YMO"CR1T 
V2Y= XMO"CR1T 
v2z= 0.0 
VX=VlX-v2x 
VY=VlY-VZY 
VZ-VlZ-v2z 
TX=-CTP 
TY=-STP 
TZ=O . 0 
FX= STP 
FY=-CTP 
FZ=O. 0 
XNN= FY*vz-Fz~'~vx 
YNNP FZ*VX-FX*VZ 
ZNN= FX"VY-FY*VX 
DDD=DSQRT ( x N N " " ~ + Y N N ~ : $ c ~ + ~ N N > ' : ~ ? ~ )  

XNMI=XNN/DDD 
YNMl=YNN/DDD 
ZNM~=ZNN/DDD 
DT=TX*XNM~+TY+~YNM~+TZ~':ZNM~ 
IF(DT.GE.O.O) GOT0 10 
XNMl=-XNM1 
YNMl=-YNM1 
ZNMl=-ZNM1 

10 CONTINUE 
X M ~  = XMO-RHO+:XNMI 
YM1= YMO-RHO"YNM1 
Z M ~ =  ZMO-RHO*ZNM~ 
ALP=DARCOS (TX*XNM~+TY*YNM~+TZ"ZNM~) 
XX= C M ~ ~ ~ X M ~ + S M ~ * Z M ~ - X G ~ - X B ~ ~ ~ S M ~  
yY= YMl+EMl 
Z Z = - S M ~ ~ ~ X M ~ + C M ~ * Z M ~ - X B ~ " C M ~  
X N ~ = C M ~ * X N M ~ + S M ~ ~ ~ Z N M ~  
YNl=YNMl 
ZNI=-SM~*XNM~+CM~*ZNM~ 

c PHI~=PHI/CRI 
shlZdsin 
chl=dcos (phi 1) 
XlM= xX 
YlM= CHl*yY+SHl*zZ 
z~M=-SH~*YY+CH~*ZZ 
XNlM= XN1 
YNIM= CHI*YN~+SHI$:ZN~ 
ZN~M=-SH~*YN~+CH~*ZN~ 
PHI 1P=X (5) 
shlP=dsin (phi lP) 



chlP=dcos (phi lP) 
XH1= XlM+H 
YH1= C H ~ P ~ ~ Y ~ M - S H ~ P " Z ~ M  
ZHI= S H ~ P ~ ~ Y  ~M+CH~P*Z~M 
XNHl= XNlM 
YNH1= CH~P*YN~M-SH~P"ZN~M 
ZNH1= SH~P"YN~M+CH~P"ZN~M 
F (1) =XH2-XH1 
F (2) =YH2-YH1 
F (3) =ZH2-ZH1 
F (4) =XNH2-XNH1 
F (5) =zNH~-ZNH1 
RETURN 
END 

C.. . 
C... THE FOLLOWING IS THE SUBROUTINE FOR STRAIGHT BLADE 
C.. . 

SUBROUTINE FCN (x, F, N) 
IMPLICIT  REAL*^ (A-H, 0-Z) 
real"8 x(N) ,f(N) 
DIMENSION CH (3) , P (3) , E ~ E F  (3) , ESN (3) , EQN (3) ,WlVT2 (3) , wvl2 (3) , 
$W2VT1(3) , EFIH (3) , EFIIH (3) , RH (3) , GNH (3) , E21H (3) , E211H (3) , 
&E~IH(~) ,ElIIH(3) ,EFI (3) ,EFII (3) ,El1 (3) ,El11 (3) ,GN(3) ,EFE1(3), 
&ERR (20) , XP (20) , YP (20) 
C O M M O N / A ~ / C N S T , T N ~ , T N ~ , C , F W , G A M M A , X ~ , ~ ~ , ~ C ~  
C O M M O N / A ~ / B ~ , R G M A ~ , F G M A ~ , P G M A ~ , D ~ R , D ~ F , A D D ~ , D E D ~  
C O M M O N / A ~ / B ~ , R G M A ~ , F G M A ~ , P G M A ~ , D ~ R , D ~ F , A D ~ , D E D ~ , W D , C C , D ~ P  
C O M M O N / A ~ / S R ~ , Q ~ , R C ~ , P W ~ , X B ~ , X G ~ , E M ~ , G ~ L % ~ , C R ~ , A L P ~ , ? H ~ ~ , F E I ~ F  

FIND SG 



C 

C. . .  

C 
C.. . 
C 

C 
C... 

XM= (RC2-SG"SP) 'CTP+SR~~~DCOS (-Q2-PH) 
YM= (RC2-SG"SP) "STP+SR~~~DSIN (-Q2-PH) 
ZM=-SG~~CP 
XM=-SG;kSP;kC~~+~2 
YM=-SG*SP*STP+AA~ 
ZM=-SG~~CP 
xX= CM"XM+SM"ZM-XG2-XB~SM 
yY= YM+EM2 
z ~ = - ~ ~ $ ~ ~ ~ + ~ ~ ~ ' : ~ ~ - ~ ~ 2 " C ~  
XN= CM*XNM+SM*ZNM 
YN= YNM 
ZN=-SM~~XNM+CM*ZNM 
PHI2=PH/CR2 
sh2=ds in (phi2) 
ch2=dcos (phi2) 
X2M= xX 
Y2M= CH2*yY-SH2*zz 
Z2M= SH2*yY+CH2*zZ 
XN2M= XN 
YN2M= CH2*YN-SH2"ZN 
ZN2M= SH2"YN+CH2"ZN 
CMM=DCOS (GAMMA) 
SMM=DS IN (GAMMA) 
CHP=DCOS (PHI2p) 
SHP=DSIN (PHI2P) 
XX= X2M 
YY=-Y~M*CHP+Z~M"SHP 
zZ=-y2M"SHP-Z~M"CHP 
XH2= XX*C)Qf+ZZ*Spfpf 
YH2= YY+C+V 
YH2= YY+C-V 
ZH~=-XX*S)Q~+ZZ*CMM 

DEFINE THE PINION SURFACE 

FIND SF,CRlT,PF,PPF,PCRlT 
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C 
DDD=DABS (PHI) 
IF(DDD.LE.0.001) GOT0 6 
PHI 1 = ~ ~ 1 *  (PH~-CPF*PH~ ~ ~ * ~ - D P F $ c P H ~ $ c ~ c ~ - E P F ~ ~ ~ H ~ * $ : ~ - F ~ F ~ c ~ H ~  $:$:5) 
PF=RA~* (1.0-2. ~$CCPF$:PH~-~, of<~p~f:p~1ik:':2 
$-4. O ~ C E P F * P H ~ ~ ~ " ~ - ~ .  O-'.FPF$CPH~~C;~~) 
ppF=-R~l* (2. O*CPF+~, Oii:~p~+:p~1+ 12. O*~p~:':p~~>'cfc2+20. O~c~p~~cp~~;':;':3) 
CRlT=l.O/PF 
PCR~T=-PPF/PF*"3 
GOT0 7 

6 PH I ~ = R A ~ * P H ~  
CR 1 T=CR 1 
PCRlT=2. O*CPF/ (RAl""2) 

7 CONTINUE 
C CR 1 T=CR 1 
C PCRlT=0.000 

TI= XNM~>?(AXX-AB~*(sM~-CR~T) ) +  
&YNMlk(AYY+AB2* (SM1-CRlT) ) -zNMIfc (.4Zz*A~l~'~C?ll) 
T~=-XNM~"(SM~-CRLT) :cS~l$iS~~+ 

&YNM~*( (sxl-CR~T) ~ c ~ ~ l y c ~ ~ ~ - ~ ~ l * ~ ~ l )  + Z N M ~ * C M ~ ~ ~ S P ~ ~ ~ S T P  
SF=Tl/T2 

C 
X M ~ =  (RCF-SF*SP~) *CTP+SR~~~DCOS (-Q~+PH~) 
YM1= (RCF-SF*SP 1) "STPCSR~"DSIN (-Q~+PH~) 
ZM~=-SF*CP~ 
XX= C M ~ * X M ~ + S M ~ ~ Z M ~ - X G ~ - X B ~ " S M ~  
yY= YMl+EMl 
Z Z = - S M ~ ~ X M ~ + C ~ ~ * Z ? I ~ - X B ~ ~ C X ~  
XN~=CM~*XNM~+SM~*ZNM~ 
YNl=YNMl 
ZNI=-SM~*XNM~+CM~*ZNM~ 

c PHII=PH~/CRI 
shl=dsin (phi 1) 
chl=dcos (phi 1) 
XlM= xX 
Y IM= CH~*YY~SHI~:~Z 
ZIM=-SHI*YY+CHI*~Z 
XNlM= XN1 
YNIM= CHI*YNI+SH~*ZNI 
ZN~M=-SH~*YN~+CH~*ZN~ 

C WRITE(9,lll) XlM,YlM,ZlM 
PHIlP= X (5) 
shlP=dsin(philP) 
chlP=dcos (philP) 
XH1= XlM+H 
YH1= CH~P~~YLM-SH~P"Z~M 
Z H ~ =  SH~P*Y~M+CH~P*Z~M 
XNH1= XNlM 
YNH1= CH~P"YN~M-SH~P"ZN~M 
ZNH1= SH~P*YN~M+CH~P*ZN~M 
F (1) =XH2-XH1 
F (2) =YH2-YH1 
F (3) =ZH2-ZH1 
F (4) =XNH2-XNH1 
F (5) =YNH2-YNHl 
RETURN 
END 

C... .-.. ...-. L I.--.-. ..'..'+-.. a- ' --.--. '.-' .%., ............-. 0-.'..'-.'-...-......... *.- ~..~-.9..~..~..%-.~..*..*..**.*-.~..*-.-.....s-..--*..t--*..~..m. 
'4.4 00010 

C. .. :.:.$::.:...;.:.:.: ...,. ;,..>,:.: .... c ,.., :,:.:,:.:\: ,.,,.,.., ;,;,:.:,:,: ............................................... 
;\A 00020 

C... " SUBROUTINE ELLIP IS TO DETERMINE THE SIZE AND ORINTATION " AA 00030 
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C.. . 9: OF THE CONTACT ELLIPSE 9: 
... AA 00040 

C... A #t 9: 9: :'c :t :t 9: 9: " :': :*: :*: 9: ;t 7': >'c :t :': 9: 9: 9: >t 9: ?k :k >t 9: * >k 9; 7': 9: 9: 9: ;t :t 9: 9: 9: 9: k 9: * 9: ;': ;k :*: 9: :': 9: * :k :k 9: 9: * 9: 9: ;t AA 00050 - 
L . .  . 

SUBROUTINE ELLIP 
IMPLICIT REALfC8 (A-H, 0-Z) 
 REAL*^ KS,KQ,K1I,K1II,K2I,K211 
DIMENSION R0 (3) ,ETA2 (3) ,ZETA2 (3) ,E1E2 (3) , ETA(3)   ZETA(^) 
DIMENSION E~IH(~) ,E~IIH(~) ,E2IH(3) ,E~IIH(~) ,GNH(3) 
C O M M O N / A ~ / C N S T , T N ~ , T N ~ , C , F W , G A M M A , X ~ , ~ ~ , ~ C ~  
COMMON/A3/B2, RGMA2, FGMA2, PGMA2, D2R, D2F,  AD^, D ED~ , WD, CC, D2P 
C O M M O N / A ~ / S R ~ , Q ~ , R C ~ , P W ~ , X B ~ , X G ~ , E M ~ , G ~ M ~ , C R ~ , A L P ~ , P H I ~ , P H I ~ P  
COMMON/A~/SG,XM,YM,ZM,XNM,YNM,ZNM,X~M,Y~M,Z~M,XN~M,YN~M,ZN~M, 

&XNH2,YNH2,ZNH2,XH2,YH2,ZH2 
COMMON/A~/PHI~PO,OX,OZ,XO,ZO,RHO,ALP,V,H,CR~T,PCR~T 
COMMON/A~O/K~I,K~II,K~I,K~II,DEL,E~IH,E~IIH,E~IH,E~IIH,GNH, 

&A2P,B2P,TAUlR,TAU2R,A2L,B2L 
CNST=DARCOS (-l.OD00) / 180.00 

C.. . 
~ 1 ~ 2  (I)= ElIH (2) "E2IH(3) -ElIH (3) "E2IH (2) 
E~E~(~)=-(E~IH(~)*E~IH(~)-E~IH(~)"E~IH(~)) 
E1~2(3)= ElIH(1) "E~IH(~)-E~IH(~)"E~IH(~) 

C.. . 
T1=0.0 
T2=0.0 
DO 1 I=1,3 
T1= ElIH(I)*E2IH(I)+Tl 
T2= GNH (I) "ElE2 (I) +T2 

1 CONTINUE 
L.. . 

C... 

C... 

C... 

C... 
C... 
C... 
C 

TX=T2/T3 
TY=T~/T~+~.ODOO 
ALP 12=DATAN2 (TX, TY) 

THE DIRECTION AND LENGTH OF THE AXES OF CONTACT ELLIPSE 

C... 
C... 

DO 2 I=1,3 
ETA(I) = DCOS  ALP^^) "E~IH (I)-DSIN   ALP^^) "E~IIH (I) 



2 
C... 
C... 
C... 

ZETA(I)= DSIN(ALP12) "E~IH(I)+DCOS (ALPI~) WIIH(1) 
CONTINUE 

DETERMINE THE PROJECTION OF CONTACT ELLIPS IN AXIAL SECTION 

C... 
CMM=DCOS (GAMMA) 
SMM=DS IN (GAMMA) 

C.. . 

C... 

C... 

c... 
Tll=O.ODOO 
T12=0.OD00 

DO 3 I=1,3 
T12=  ETA^ (I)"RO (I) +TI2 
T ~ ~ = Z E T A ~  (I)"RO(I)+T~~ 
CONTINUE 

C... 
TAU~=DATAN~ (T11, ZETA2 (1) ) 
TAU2=DATAN2 (T 12, ETA2 (1) ) 

AA 00520 
AA 00530 
AA 00540 
AA 00550 
AA 00560 
AA 00570 
AA 00580 
AA 00590 
AA 00600 
AA 00610 
AA 00620 
AA 00630 
.U 00640 
AA 00650 
AA 00660 

00670 
Ah 00680 
XA 00690 
U 00700 
-4.4 00710 
AA 00720 
AA 00730 
AA 00740 
AA 00750 
tbi 00760 
iw 00770 
AA 00780 
fi nn7on 

V U  I , "  

kdi 00800 
k A  00810 
.U 00820 
.U 00830 
.X 00840 
.U 00850 
AA 00860 

C... A4 00900 
A~P=A~L*zETA~ (1) /DCOS   TAU^) .U 00910 
B~P=B~L*ETA~ (1) /DCOS  TAU^) AA 00920 

C... 00930 
TAU~R= (TAU1-RGMA2) /CNST AA 00940 
TAU2R=  TAU^-RGMA2) /CNST .L4 00950 
RETURN A4 00960 
END .L4 00970 

C... 
C... THE FOLLOWING IS THE V-H CHECK PROGRAM FOR CURVED BLADE 
C... 

SUBROUTINE FCNMR (X , F , N) 
IMPLICIT  REAL*^ (A-H, 0-Z) 
real"8 x(N) ,f (N) 
C O M M O N / A ~ / C N S T , T N ~ , T N ~ , C , F W , G A M M A , ~ ~ , ~ ~ , ~ ~ ~  
COMMON/A~/SG,XM,YM,ZM,XNM,YNM,ZNM,X~M,Y~M,Z~M,XN~M,YN~M,ZN~M, 
&XNH2,YNH2,ZNH2,XH2,YH2,ZH2 
C O M M O N / A ~ / S R ~ , Q ~ , R ~ ~ , P W ~ , X B ~ , X G ~ , E M ~ , G ~ M ~ , C R ~ , A L P ~ , P H I ~ , P H I ~ P  
COMMON/A~/PHI~PO,OX,OZ,XO,ZO,RHO,ALP,V,H,CR~T,PCR~T 
C O M M O N / A ~ ~ / R A M , P S I ~ , C ~ , D ~ , E ~ ~ , F ~ ~ ~ , C X ~ , D X ~ ~ , E X ~ ~ O , R U ~ , D E L T , R U P ,  
$RAl,CPF,DPF,EPF,FPF 
CM=DCOS (GAMMA) 



SM=DS IN (GAMMA) 
C CHP=DCOS (PHI2PO) 
C SHP=DSIN (PHI~PO) 

CHP=DCOS (X (1) ) 
SHP=DSIN(X(I)) 
XX= X2M 
YY=-Y~M"CHP+Z~M"SHP 
ZZ=-Y 2M*SHP-Z2M:kC~~ 
XH2= XX*CM+ZZ;~SM 
YH2= YY+C 
ZH~=-XX+:SM+ZZ>'~CM 

C.. . 
XX= XN2M 
YY=-YN~M"CHP+ZN~M*SHP 
ZZ=-YN2M;kSHP-ZN2~: ' :C~~ 
XNH2= XX*CM+ZZ~:SM 
YNH2= YY 
ZNH2=-XX"SM+ZZ"CM 

C... 
C 

C 
C.. . 
C 

DEFINE THE PINION SURFACE 

FIND CRlT,PF,PPF,PCRlT 

DDD=DABS (PHI) 
IF(DDD.LE.O.OO~) GOT0 6 
P H I ~ = R A ~ "  (PH~-CPF~PH~$:<:~~D~F~':~H~<:<:~~~~F<:?H~~:>':~-F~F~~H~$:;':~) 
PF=RA~~: (1.0-2. ~ * C P F * P H ~ - ~ ~  O9:~pF$:p~1<:$:2 
$-4.O"~p~kp~1+::':3-5. O~~FPF$:PH~+:;':~) 
PPF=-RA~" (2. OkCpF+6, O;':DPF<:PH~~~~~ o~:~p~?ip~l+:$:2&20. O;':FPF;':PH~ ;':<:3) 
C R ~ T = ~ .  O/PF 
PCR~T=-PPF/PF""~ 
GOT0 7 
PHI ~ = R A ~ * P H ~  
CR 1 T=CR 1 
pCRlT=2. 07kCPF/ (RAl""2) 
CONTINUE 

FIND THE NOMAL OF THE EQUIDISTANCE SURFXCE 



TZ=O . 0 
FX= STP 
FY=-CTP 
FZ=O. 0 
XNN= FY*VZ-FZ;~VX 
YNN- FZ'kVX-FX"VZ 
ZNN= FX':VY-FY"VX 
DDD=DSQRT (XNN>k*2+ YNN~:<:~+ZNN>~;~~) 
XNM~=XNN/DDD 
YNM~=YNN/DDD 
ZNM~=ZNN/DDD 
D T = T X * X N M ~ + T Y ~ ~ Y N M ~ + T Z ~ ~ Z N M ~  
IF(DT.GE.O.0) GOT0 10 
XNMl=-XNM1 
YNMl=-YNM1 
ZNMl=-ZNM1 
CONTINUE 
X M ~  = XMO-RHO~~XNM~ 
YM1= YMO-RH09'YNM1 
Z M ~ =  ZMO-RHO*ZNM~ 
ALPaDARCOS ( T X ~ ~ X N M ~ + T Y " Y N M ~ + T Z Z N M ~ )  
XX= C M ~ * X M ~ + S M ~ ~ ~ Z M ~ - X G ~ - X B ~ " S M ~  
yY= YMl+EMl 
ZZ=-SM~*XM~+CM~*ZM~-XB~"CM~ 
X N ~ = C M ~ ~ ~ X N M ~ + S M ~ * Z N M ~  
YNl=YNMl 
ZN~=-SM~~:XNM~+CM~*ZNM~ 
PHIL=PH~/CRI 
shl=ds in (phi 1) 
chl=dcos (phi 1) 
XlM= xX 
Y 1M= CHly:y~+SHl*zZ 
z~M=-SH~*YY+CH~*ZZ 
XNlM= XN1 
YNlM= CH1~'cYN1+S~l*~~l 
ZN~M=-SH~~:YN~+CH~~:ZN~ 

C... 

C... 
C... 

XH1= X1M 
YH1= CH1P"YlM-SHlP"Z1M 
Z H ~ =  SH~P;~Y ~M+CH~P*Z~M 
XNH1= XNlM 
YNH1= CH1P"YNlM-SHlP"zN1M 
ZNH1= SH~P*YN~M+CH~P'~ZN~H 
V=- (YH2-YH1) 
H=XH2-XH 1 

C.. . 

C 
C 
C 
C.. . 



C.. . 
C.. . 
C... 

V 12X=0. O-YH~"SM":R 12 
V 12Y= ZHl+R 12* (XH29:SM+~~2f:C~) 
V12Z=-YH1-R12"rYH2"C~ 
Vl2X=- (YH2- (C-V) ) >'rSM"R12 
V12Y= XH2'kSM;'rR12+ (1. 0+R12"rCM) "ZH~ 
V12Z=-YH29r (1.O+R12"CM) + (C-V) 9cC~5c~12 
F ( ~ ) = X N H ~ ~ ~ V ~ ~ X + Y N H ~ * V ~ ~ Y + Z N H ~ ~ ~ V ~ ~ Z  
RETURN 
END 

THE FOLLOWING IS THE V-H CHECK SUBROUTINE FOR STRAIGHT BLADE 

SUBROUTINE FCNM (X , F , N) 
IMPLICIT  REAL"^ (A-H, 0-Z) 
r ealfc8 x (N) , f (N) 
C O M M O N / A ~ / C N S T , T N ~ , T N ~ , C , F W , G A M M A , ~ ~ , ~ ~ , ~ C ~  
COMMON/A5/SG,XM,YM,ZM,XNM,YNM,ZNM,X2M,Y2M,Z2M,XN2M,YN2M,ZN2M, 
&XNH2,YNH2,ZNH2,XH2,YH2,ZH2 
C O M M O N / A ~ / S R ~ , Q ~ , R ~ ~ , P W ~ , X B ~ , X G ~ , E M ~ , G ~ M ~ , C R ~ , A L P ~ , P H I ~ , P H I ~ P  
COMMON/A~/PHI~PO,OX,OZ,XO,ZO,RHO,ALP,V,H,CR~T,PCR~T 
C O M M O N / A ~ ~ / R A H , P S I ~ , C ~ , D ~ , E ~ ~ , F ~ ~ ~ , C X ~ , D X ~ ~ , E X ~ ~ O , R U ~ , D E L T , R U P ,  
$RAl,CPF,DPF,EPF,FPF 
CM=DCOS (GAMMA) 
SM=DS IN (GAMMA) 
CHP=DCOS (X (1) ) 
SHP=DSIN (X (1) ) 
XX= X2M 
YY=-Y~M*CHP+Z~M"SHP 
ZZ=-Y2MkSHP-Z~M"CHP 
XH2= XX*CM+ZZ*SM 
YH2= YY+C 
ZH2=-XX"rSM+ZZ"CM 

C.. . 

C.. . 
C 
C.. . 
C 

DEFINE THE PINION SURFACE 



C.. . 
C 

FIND SF,CRlT,PF,PPF,PCRlT 

C... 

C 
C 
C 
C... 



F (3) = x N H ~ ~ ~ v ~ ~ x + Y N H ~ ; ' V ~ ~ Y + Z N H ~ ~ ~ V ~ ~ Z  
RETURN 
END 

C 
C SUBROUTINE CAM IS FOR THE COEFFICIENTS OF GENERATION MOTION 
C 

SUBROUTINE CAM 00070 
IMPLICIT  REAL"^ (A-H, 0-Z) -4.4 00080 
C O M M O N / A ~ ~ / R A M , P S I ~ , C ~ , D ~ , E ~ ~ , F ~ ~ ~ , C X ~ , D X ~ ~ , E X ~ ~ O , R U ~ , D E L T , R U P ,  
$RAl,CPF,DPF,EPF,FPF 
~ 1 = 1  .O+~.O;'T~*DTAN(PSI~) 

&+ (1. 0-RAM) "$:3" (~~1~:$~3/15. O""~+DELT) / (15.0"DCOS (PSIl)) 
T~=~.O+(RU~+DELT)/(~~.~~~DCOS(PSI~)) 
CX6=Tl/T2 
T1= 6. O*C~$:DCOS (PS11) + (4. 09'Cx6+3. O*C2""2-1.0) *DSIN(PSIl) 
&+6 O"c2" (1. ()-RAM) +CjS:2$: (~~1$:*3/15. 0;':$:3+~~~~/15. 0) 
T2= DCOS ( ~ ~ 1 1 )  + (RU~+DELT) /15.0 
DX24= Tl/T2 
Tl=(lO.O*Cx6+15 .0fiC2':"'2-1, 0) 9:DCOS (PSI1) 

& + ( ~ . O " D X ~ ~ + ~ ~ . O " C ~ " C X ~ - ~ O . O C ~ ) " D S I N ( P S I ~ )  
& + (10. O$:CX~;': (1. ()-RAM) ""2 
& +15. 0$:~29:"2" (1 JJ-RAM)) >'i (Ru1-'.$:3/15. O""~+DELT/~~ + 0) 
& - (1. O-RAM) ""5" (p,u1"$:5/15 O$:*~+DELT/~~. 0) 
T2=DCOS (PS11)+ (RU~+DELT) /15.0 
Ex120=Tl/T2 
D6=CX6-3,0"~2*"2 
~ 2 4 = ~ ~ 2 4 + ~ 2 *  (15, 0*C2fi;':2-100 Of~Cx6) 
~ 1 2 0 = ~ ~ 1 2 ~ - 1 5 . 0 * ~ 2 " ~ ; 1 2 4 +  105. Q"c~"""+ \LAO-LL,, '^'-' 

--"" ..2> -1;. 6 l i : ~ 6 ~ ~ ~ ~ ~ ~ ~  " " A  

CPF=C2/2.0 
DPF=D6/6.0 
~ ~ ~ = E 2 4 / 2 4 . 0  
~~~=F120/120.0 
RETURN 
END 
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