HOW WE STAND NOW

- OK For Small Projects, Not So Good For Large Projects
- Not Good For Addressing Iterative Nature Of Requirements Resolution & Implementation (Mostly Based On Waterfall)
- Does Not Address Complexity Issues Of Requirements Stabilization (Based On Functional Decomposition)
- Does Not Explicitly Address Reuse Opportunities
- Does Not Help With People Shortages

NEED TO DEFINE AND AUTOMATE IMPROVED SOFTWARE ENGINEERING PROCESSES
REUSE AND PROTOTYPING - TWO SIDES OF THE SAME COIN

- Reuse Library Parts Are Used To Generate Good Approximations To Desired Solutions, i.e., Prototypes
- Rapid Prototype Composition Implies Use Of Pre-existent Parts, I.E., Reusable Parts
 - Prototype Quality Depends On Fit Of The Available Parts
 - The Parts Will Often Require Some Adaptation
 - As The Set of Parts Available Becomes Richer The Prototypes Will Better Approximate Acceptable Pieces of Final Systems
REUSE PAY-OFF

- Big Gains In Productivity Will Come From Reusing Fewer Larger Parts Or Assemblies Of Smaller Parts, Not From Many Unassembled Small Parts.

- Productivity Gain vs Cost Is Acceptable If Assemblies Of Parts Are Reused Frequently.
SYNTHESIS MOTIVATED BY AND ORIENTED TOWARD

- Reuse: Exploit Similarities Across Systems
- Iteration: Feedback and Enhancement
- Composition and Adaptation: Using Standard Schemes, Parts, and Designs
- Specialists: Incorporate Expertise, and Facilitating and Coordinating
- Systems View: Engineering Process
- Applying Synthesis to "Synthesizer"
THREE MAJOR SYNTHESIS SUBPROCESSES

Domain Analysis

Reuse Libraries

Application System Modeling Toolset

Domain Independent Toolsets

System Development & Evolution

Project Library & Work Areas

Scavenging or Re-Engineering

Reusable Work Products
Single System Work Products
Developed Toolset
TARGET APPLICATIONS FOR
DOMAIN ANALYSIS -
AIRPLANE EXAMPLE

Systems

Avionics
- Instrumentation
- Navigation
- Communications

Sensors
- Radar
- IR EO
- Laser

Electronic Warfare System
- ESM/ELINT
- ECM
- TWS

Command & Control System
- Fire Control System

Subsystems

Assemblies

- Processor
- Flight Instrument
- Engine Instrument
- Nav Radio Receiver
- Inertial Navigation
- Processor
- Flight Data Sensor
- Intercom
- Transmitter
- Receiver
- Antenna

- Transmitter
- Receiver
- Antenna
- Signal Processor
- Control Processor
- Display
- Detector
- Designator
- Signal Processor
- Display

- Receiver
- Antenna
- Signal Processor
- Control Processor
- Antenna
- Transmitter
- Signal Processor
- Control Processor
- Antenna
- Receiver
- Signal Processor
- Control Processor
- Display

- Processor
- Designator
- Tracker
- Display

SOFTWARE
PRODUCIVITY
CONSORTIUM
ESSENCE OF DOMAIN ANALYSIS

- Each application area must be analyzed and characterized by standard designs or architectures that capture the way that many systems in that area could reasonably be built.

- The application engineer must be able to state his needs in application terms and have those needs mapped appropriately to an instance of the standard design.

- The design instance can be realized by specification of a set of parts from a reuse library and a set of rules for combining those parts.
SYNTHESIS SUBPROCESS – SCAVENGING

- Many systems with software have portions amenable to adaptation for reuse.
- Scavenging these systems for reusable parts involves:
 - Extraction
 - Generalization
 - Standardization
 - Certification
 - Cataloging and storing in reuse libraries.
A MISSILE GUIDANCE SYNTHESIS PROTOTYPE TOOL

An example of the application of reuse, prototyping, and synthesis using a reuse library in a specific domain

- Based on U.S. Air Force "Common Ada Missile Packages" (CAMP) parts
- Initially demonstrates a longitudinal autopilot control system
- Aids understanding of the economics of reuse
A METHODOLOGY FOR PARTS SPECIFICATION AND MODEL ASSEMBLY IS EVOLVING

- Based On NRL Software Cost Reduction Methodology
 - Information Hiding Module Families
 - Abstract Interfaces

- Accommodates Ada Packaging And Tasking Concepts
 - Tasking Guidelines Evolved (ADARTS)

- Initial Guidebooks Written And In Use
DYNAMICS ASSESSMENT TOOLSET COMPONENTS

- Symbols
- AML Compiler
- SPNDL Compiler
- Model
- SPNM Analyzer
- Results
- Results Displayer
- TO SPNDL
- Graphic Editor
- Transition set: immediate, timed, etc.
UIS ARCHITECTURE

Tool

- User Interface Code
- Computation Code

User Interface services

- Widget Instantiation Calls
- Tool Computation Callbacks

X Window System

- X Toolkit
- X Library

- Ada Bindings
- HP Widgets
- SPC Widgets

- X Protocol Network Messages
- X Display Server

(or Integrated Server for X and Native Window System)
THE LAYERED REPOSITORY CONCEPT

ONE FOR EACH MEMBER COMPANY NETWORK LOCATION

ONE FOR EACH PROJECT

ONE OR MORE FOR EACH DATABASE LOCATION

CREATED BASED ON PROJECT NEEDS

(COLLECTIONS CAN CONTAIN DATA OBJECTS AND/OR OTHER COLLECTIONS)

ACTUAL DATA OBJECTS.

INCLUDES BOTH RDBMS STORAGE AND COTS CM STORAGE
TYPICAL PROJECT LIBRARY ACCESS

APPLICATIONS CODE
- DESIGN TOOL
- ASSESSMENT TOOL
- TRACEABILITY
- HARNESS TOOLS
- MC DEVELOPED TOOLS

TOOL K

TYPICAL COMMANDS
DATA OBJECT RELATED
- CREATE DATA OBJECT
- DELETE DATA OBJECT
- CHECK OUT DATA OBJECT BODY
- CHECK IN DATA OBJECT BODY
- GET ATTRIBUTE
- SET ATTRIBUTE
- GET CONTENTS LIST

RELATIONSHIP RELATED
- CREATE RELATIONSHIP
- DELETE RELATIONSHIP
- GET ATTRIBUTE
- SET ATTRIBUTE

UNIQUE ID RELATED
- PATHNAME TO UID
- RELATIONSHIP TO UID

QUERY RELATED
- FETCH BY ATTRIBUTE VALUE
- GET RELATIONSHIP TYPES
- GET RELATIONSHIPS

DMS CODE
DAS/DMS

COTS PRODUCTS
RDBMS
- ATTRIBUTES
- RELATIONSHIPS

SOFTWARE
- TAILORED CODE INTERFACE
- DYNAMIC SQL INTERFACE

OBJECT BODIES
COTS CM

SOFTWARE PRODUCTIVITY
Tracing relationships to a set of related objects

Requirements objects in /xyz/abc/def/jkl
Subset: date > 880325, owner = Johnson

<table>
<thead>
<tr>
<th>Name</th>
<th>Rev</th>
<th>Para number</th>
<th>Type</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>jlljkljlk</td>
<td>5</td>
<td>3.1.1.2</td>
<td>cap</td>
<td>12Sep88</td>
</tr>
<tr>
<td>jllkldfsj</td>
<td>4</td>
<td>3.1.1.2.1</td>
<td>in</td>
<td>21Sep88</td>
</tr>
<tr>
<td>jklojfkmk</td>
<td>5</td>
<td>3.1.1.2.2</td>
<td>out</td>
<td>21Sep88</td>
</tr>
<tr>
<td>djlomknkn</td>
<td>2</td>
<td>3.1.1.2.3</td>
<td>cap</td>
<td>17Aug88</td>
</tr>
<tr>
<td>jlljkljlk</td>
<td>2</td>
<td>3.1.1.3</td>
<td>cap</td>
<td></td>
</tr>
<tr>
<td>jllkldfsj</td>
<td>8</td>
<td>3.1.1.3.1</td>
<td>in</td>
<td></td>
</tr>
<tr>
<td>jklojfkmk</td>
<td>4</td>
<td>3.1.1.3.2</td>
<td>out</td>
<td></td>
</tr>
<tr>
<td>djlomknkn</td>
<td>12</td>
<td>3.1.1.3.3</td>
<td>cap</td>
<td></td>
</tr>
<tr>
<td>jjkfk*</td>
<td>6</td>
<td>3.1.1.4</td>
<td>cap</td>
<td></td>
</tr>
<tr>
<td>jllkldfsj</td>
<td>3</td>
<td>3.1.1.4.1</td>
<td>in</td>
<td></td>
</tr>
</tbody>
</table>

17 total
IMPACT ANALYSIS TOOLSET OVERVIEW

Modification Request → Person → Initial Impact Set → Impact Analysis Tool → Estimated Impact Set

OBJECT CHANGE LIST:
List of impacted objects to examine

Verify that person inspected/changed all objects in the change list

Yes → Perform Change?

Manager/Config. Control Bd.

No → Forget it!

Impacts on Project Schedule
CANDIDATE USER INTERFACE FOR RLT

X-WINDOW System

Tool Display Windows

Types of Life Cycle Objects
- Documentation
- Source Code
- Requirements
- Design
- Executable code
- Miscellaneous

LCO Information Display

General Attributes
- Part ID
 - 1087
- Name
- OFF Structure
- Description
 - The F15 OFF structure ...

Selection Criteria

SOFTWARE PRODUCTIVITY

Part ID: 1087
Name: OFF Structure