Tool and Data Interoperability in the SSE System

Chuck Shotton
PRC
11/10/88
Overview

- Industry Problems with Program and Data Interoperability
- SSE System Interoperability Issues
- SSE Solutions to Tool and Data Interoperability
- Attaining Heterogeneous Tool/Data Interoperability
Software Development Methods

- Representations
- Deriving the representations
- Examining the representations
Goals

- Maintain separation of methods from tools supporting the methods
- Point of view of methods and tool users, not tool-builders
- Separate classification from evaluation
- Repository for information
- Determine "gaps" in methods and tools
SPIRAL MODEL OF SOFTWARE PROCESS
Maturity Level / Key Issues

<table>
<thead>
<tr>
<th>Level</th>
<th>Characteristic</th>
<th>Key Problem Areas</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimizing</td>
<td>Improvement feedback into process</td>
<td>Automation</td>
<td>Productivity & Quality</td>
</tr>
<tr>
<td>Managed</td>
<td>(quantitative) Measured process</td>
<td>Changing technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Problem analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Problem prevention</td>
<td></td>
</tr>
<tr>
<td>Defined</td>
<td>(qualitative) Process independent of individuals</td>
<td>Process measurement</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Process analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quantitative quality plans</td>
<td></td>
</tr>
<tr>
<td>Repeatablle</td>
<td>(intuitive) Process dependent on individuals</td>
<td>Training</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technical practices</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• reviews, testing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Process focus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• standards, process groups</td>
<td></td>
</tr>
<tr>
<td>Initial</td>
<td>(ad hoc / chaotic)</td>
<td>Project management</td>
<td>Risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project planning</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Configuration management</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Software quality assurance</td>
<td></td>
</tr>
</tbody>
</table>
Process Definition

- A sequence of life cycle tasks, which when properly executed produces the desired result

- An effective process must consider
 - the relationships of all the required tasks
 - the tools and methods used
 - the skills, training, motivation, and management of the people involved
Waterfall

CONCEPT
FEASIBILITY STUDY
INTERNAL SYSTEM REQUIREMENTS REVIEW
SYSTEM REQUIREMENTS REVIEW
REQUIREMENTS DEFINITION
DESIGN
PRELIMINARY DESIGN REVIEW
CRITICAL DESIGN REVIEW
CODING AND CHECKOUT
TESTING
INTEGRATION
PROGRAM PERFORMANCE TEST
OPERATIONAL TEST AND EVALUATION
FUNCTIONAL CONFIGURATION AUDIT
SYSTEM PERFORMANCE TEST
DEPLOYMENT MAINTENANCE
DEPLOYMENT
MILESTONE I:
PROGRAM INITIATION
MILESTONE II:
PROGRAM DECISION
MILESTONE III:
RATIFICATION DECISION
MILESTONE IV:
DEPLOYMENT DECISION
MILESTONE V:
CONFIGURATION AUDIT
MILESTONE VI:
FORMAL QUALIFICATION REVIEW
MILESTONE VII:
OPERATIONAL TEST AND EVALUATION
MILESTONE VIII:
FUNCTIONAL DESIGN REVIEW
MILESTONE IX:
PRELIMINARY DESIGN REVIEW
MILESTONE X:
SYSTEM REQUIREMENTS REVIEW
MILESTONE XI:
INTERNAL SYSTEM REQUIREMENTS REVIEW
MILESTONE XII:
FEASIBILITY STUDY
MILESTONE XIII:
CONCEPT
Promote the evolution of software engineering from an ad hoc, labor-intensive activity to a managed, technology-supported discipline.
Implementation of Strategy

- Put process under management control
 - define
 - measure
 - optimize
- Adopt appropriate methods
- Insert technology that provides automated support for the process and methods
- Collect automated tools into an integrated environment
- Educate people
Currently the engineers are the essential integrating factors tying all these components together.

The engineers today empower the tools versus the tools empowering the engineers.