Empirical Studies of Software Design: Implications for SEEs

Herb Krasner
Manager, Software Process Research
Lockheed Software Technology Center
Austin, Texas

Lockheed
Missiles & Space Company, Inc.
Software Technology Center
#11758
Empirical Research on the Software Process

Individual level
- LIFT experiment
 8 experienced programmers designing the control structure for a set of elevators during an intense 2 hr. session

Team level
- Object server exp.
 Videotaped team meetings from a 7 mo. effort to design and build a tool to support object oriented programming

Project level
- Field study
 Detailed interviews with key members of 18 large development projects to model their decision-making and communication process

Particpant
- Experimentor

Project team
- Customer team
- Observers

Field study team
- Shareholder project member

Lockheed
Missiles & Space Company, Inc.
Software Technology Center
Results of the Field Study

- Observations about commonality/difference of projects
- Identification of five areas of organizational breakdown (within that sixteen specific problems)
- Implications for process modeling
- Mapping of problems onto lower-level phenomena

"You need to understand, this project isn't the way we develop software at our company."
Characteristics of Projects Studied

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Terminated</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Support Software</td>
</tr>
<tr>
<td>2</td>
<td>Development</td>
<td>24</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>Radio Control</td>
</tr>
<tr>
<td>3</td>
<td>Development</td>
<td>50</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>Process Control</td>
</tr>
<tr>
<td>4</td>
<td>Development</td>
<td>50</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>Operating System</td>
</tr>
<tr>
<td>5</td>
<td>Design</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CAD</td>
</tr>
<tr>
<td>6</td>
<td>Development</td>
<td>130</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>CAD</td>
</tr>
<tr>
<td>7</td>
<td>Development</td>
<td>150+</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>Avionics</td>
</tr>
<tr>
<td>8</td>
<td>Maintenance</td>
<td>194</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>C⁴</td>
</tr>
<tr>
<td>9</td>
<td>Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Compiler</td>
</tr>
<tr>
<td>10</td>
<td>Maintenance</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Run-time Library</td>
</tr>
<tr>
<td>11</td>
<td>Development</td>
<td>350+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Compiler</td>
</tr>
<tr>
<td>12</td>
<td>Maintenance</td>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transaction Proc.</td>
</tr>
<tr>
<td>13</td>
<td>Design</td>
<td>500</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>Telephony</td>
</tr>
<tr>
<td>14</td>
<td>Maintenance</td>
<td>725</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>Operating System</td>
</tr>
<tr>
<td>15</td>
<td>Development</td>
<td>1000</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>Telephony</td>
</tr>
<tr>
<td>16</td>
<td>Maintenance</td>
<td>50k+</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>Radar, C⁴</td>
</tr>
<tr>
<td>17</td>
<td>Requirements</td>
<td>100k+</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>C³, Life Support</td>
</tr>
</tbody>
</table>

Lockheed Missiles & Space Company, Inc.
Software Technology Center
11761
Summary of Results from MCC Field Study*

- Analysis of three significant problems
- Layered behavioral model of software processes
- Conclusions and implications

* Paper appearing in this months CACM
Analysis of Three Significant Problems in Software Design for Large Systems

- Application Knowledge Acquisition
- Fluctuating and Conflicting Requirements
- Communications Breakdowns

Effect on productivity and quality through behavioral processes
Layered Behavioral Model of Software Processes

- Business Milieu
- Company
- Project
- Team
- Individual

Cognition and Motivation
Group Dynamics
Organizational Behavior
Implications of Field Study Results

- For Software Technology
 - Environment support needed for:
 = Knowledge integration
 = Change facilitation
 = Broad communication and coordination
 - Beginnings of an empirical model to measure improvement for a tool/practice

- For Project Management
 - Expertise is the primary determinant, new ways of effectively organizing should be pursued
 - Key role players identified and described:
 superconceptualizer, diagnostician, gatekeeper, boundary spanner
 - Coordination by shared model of process, product

- For Software Process Models
 - Difference between prescriptive and actual processes
 - Current process models do not reflect:
 learning, technical communication, requirements negotiation, and customer interaction
 - Framework for an "ideal" process model emerging

- For Further Empirical Research on Professional Software Engineering
 - Much more to do
 - Focus on "variation" and its effect on the difference in productivity and quality outcomes among people, situations, and their interaction
The Software Project as an Ecological System

Changing World
- External Technology

Project
- Internal Processes of Interest
 - Assimilation of knowledge
 - Communication and coordination
 - Managing change
 - Issue resolution and decision making
 - Technical design
 - Organizational bureaucracy

Application Knowledge

Specific Needs of Customers

Contracting Mechanisms

Lockheed Missiles & Space Company, Inc.
Software Technology Center 11766
Five Crucial Problem Areas in Large Software Projects*

External Context
- Change & Uncertainty

Project
- Communication
- Technology Transfer
- Design Evolution and Analysis
- Communication and Coordination
- Application Knowledge

* see STP-390-86p

Missiles & Space Company, Inc.
Software Technology Center
Overall Conclusion

The Greatest Leverage Is in Supporting the Intersection of:

The Technical Task

- Assessing customer needs
- Assimilating application knowledge
- Negotiating requirements, technology, and resources
- Identifying and exploring design assumptions/alternatives
- Decomposing and recomposing functionality
- Defining and controlling component interfaces

The Management Task

- Strategically managing system features and attributes
- Assessing and controlling risks
- Ensuring developers work from the same models
Results of the "LIFT" Study

- Observations on relative effort distribution
- Observations about individual differences
- Identification of six process breakdowns
- A cognitive model of design problem solving
Information Model of Design Exploration

Problem Models
- essential aspects

Exploration Process
- commitments
- assumptions
- scenarios of use
- test cases
- simulations
- trade-off analysis

Solution Models
- focal points
- issues
- constraints
- evaluation criteria
- discarded alternatives

Missiles & Space Company, Inc.
Software Technology Center
11770
Individual Differences in Software Design Strategies

- Domain-Specific Strategies
 - Exemplar driven
 - Method (process) driven
 - Computational paradigm driven
 - Trial and error driven

General computation strategies
Results of the Team Design Study*

- Identification of conflict behavior as key to achieving shared models
- Observations on the limitations of "documents"
- Observation of ombudsman to facilitate communication between customer and design teams
- Observations on the effect of midnight prototype creation
- Videotape identified as history capture mechanism

* being completed at U.T. - D. Walz, 1988
Future SSEs Should Contain Facilities For

1) Focus on Productivity and Quality
 - Statistical QC
 - Reduce waste and redundancy
 - Institutionalized reuse process yields component parts (via standards)

2) Process Engineering
 - Introduction of good practices, tools, etc.
 - Process definition, tailoring, monitoring, analysis, and improvement
 - Embodiment in education programs

3) Process Efficiency through Teamwork and Communication
 - Revocation of Brook’s Law
 - High performance teamwork
 - "Groupware"

4) Flexible Organization Evolution
 - Coordinated technology, policy and organizational structure
 around process management concerns
 - Commitment to improve (facilitation of change)
 - Capture of corporate domain knowledge (via issue-oriented domain analysis)
 - Negotiation-based requirements technology

5) Liveware Support
 - Variety of "experts" (stakeholders)
 - Significant variation in abilities
PUBLICATIONS

Field Study Papers

Team Study Papers

Individual Study Papers

In a study of 38 U.S. and Japanese Companies a wide variety of software management strategies were observed (Cusumano, 1987). It was concluded that Japanese firms are significantly ahead in applying a disciplined and flexible factory approach, as evidenced by:

<table>
<thead>
<tr>
<th>Country</th>
<th>Bugs per 1000 SLOC</th>
<th>Projects late</th>
<th>Reuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>.26</td>
<td>5%</td>
<td>34%</td>
</tr>
<tr>
<td>U.S.</td>
<td>8.3</td>
<td>43%</td>
<td>15%</td>
</tr>
</tbody>
</table>

Lockheed Missiles & Space Company, Inc.

Software Technology Center 11790