N91-20023
1990 NASA/ASEE SUMMER FACULTY FELLOWSHIP PROGRAM

JOHN F. KENNEDY SPACE CENTER
UNIVERSITY OF CENTRAL FLORIDA
FORMAL SPECIFICATION OF HUMAN-COMPUTER INTERFACES
PREPARED BY: Dr. Brent Auernheimer
ACADEMIC RANK: Associate Professor
UNIVERSITY AND DEPARTMENT: California State University - Fresno
Department of Computer Science
S NASA/KSC

DIVISION: Data Systems

BRANCH: Real Time Systems
NASA COLLEAGUE: Mr. Les Rostosky
DATE: August 10, 1990
CONTRACT NUMBER: University of Central Florida

NASA-NGT-60002 Supplement: 4

Xy



ik}

Acknowledgements

The support of my NASA colleagues Oscar Brooks, Steve Bryan, Bill Drozdick, Linda Koch,
Les Rostosky, Bill Sloan, Lynn Svedin, and Larry Wilhelm is gratefully acknowledged. Thanks
also to Steve Eckmann and Richard Kemmerer of the University of California, Santa Barbara
for providing helpful comments and ideas.

Abstract

This report describes a high-level formal specification of a human-computer interface. A
typical window manager is modeled. Previous work is reviewed and the ASLAN specification
language is described. Top-level specifications written in ASLAN for a library and a multiwindow
interface are discussed.




/m

\

11
1.2
1.3
1.4
L5
1.6

II

II.1
11.2
I1.3

III.
II1.1
II1.2
II1.3
1114
IIL.5
I11.6
IIL.7
II1.8
I11.8.1
111.8.2
111.8.3
I11.8.4
II1.8.5
I11.8.6
1I1.8.7
IT1.8.8

Table of Contents

Introduction

Organization of the Paper

Specification and Verification Terminology

Previous Work

Formal Techniques and the Development of User Interfaces
Two Views of Specifications

Testing vs. Proving Specifications

Formal Specification

The Aslan Specification Language
The Aslan Approach

A Specifier-friendly Feature

Specification of A Multiwindow User Interface
Overview

Types

Constants

State Variables

Definitions (Macros)

Initial Conditions

Critical Correctness Requirements
State Transitions

Window Closing (Iconifying)
Window Opening

Window Destruction

Window Creation

Shifting Input Focus

Moving Windows

Window Resizing

Window Restacking

Concluding Remarks



I. Introduction

1.1 Organization of the Paper

This paper documents an attempt to formally specify a multiwindow user interface. The
paper is organized as follows:

Section I briefly reviews the foundation laid in last summer’s work and discusses motiva-
tions and expected results of using formal specification techniques on user interfaces. Section
II! introduces the AsLAN formal specification language through the example in Appendix A.
Section III is a detailed look at an abstract specification of a typical multiwindow interface.
The formal specification discussed in Section III js in Appendix B. Finally, Section IV contains
concluding remarks and recommendations.

1.2 Specification and Verification Terminology

Specifications are statements about the functionality of a system. Specifications express
what is a system is to accomplish, not how it is to do it. In this paper, formal specifications
are assertions about the behavior of a system. Critical correctness criteria are assertions that
the specification and all refinements and jmplementations are to satisfy. Formal verification
techniques demonstrate that implementations satisfy their specifications. In addition, it is
useful to show that specifications meet their critical correctness criteria. This is sometimes
called design verification. Neumann explains [12]:

Formal verification has often been talked about as a technique for demonstrating
consistency between code and assertions about that code, in some cases between
code and specifications. Somewhat less popular has been the easier notion of using
formal verification to demonstrate that a set of formal specifications is consistent
with its formally axiomatized requirements, i.e., carrying out design verification.

1.3 Previous Work

This report describes a continuation of work on formalisms for user interface specification
and design described in [1]. That work examined several recent research results in human-
computer interaction (HCI) that may be applicable to NASA a.pphcatxons One of the results

“examined was the formal speqﬁcation of direct manipulation 1 user - interfaces for a secure military
message system [7 8]

[1] also contains an mtroductlon to formal specxﬁcatxon and Venﬁcatxon 1nc1udmg objections
to the approach and reasonable expectations. It was recommended that a pilot study using
formal techniques on a small, well-defined piece of a user interface be done. The subsystem
to be specified should have clear, high-level correctness properties that must be met. The
specification given in Appendlx B of this paper is the portion of a user interface that manipulates
windows. The correctness property that must be maintained is that nsers are not allowed to

I The information in I1.2 and Appendix A is based on a portion of a paper by the author and Daniel Stearns,
“Using the ASLAN specification language in undergraduate software engineering courses,” submitted to Computer
Science Education, July 1990



move, close, or resize certain windows. This correctness property was derived from current
interface prototypes developed at NASA KSC.

Using formal specification techniques is costly. Benefits are realized when there are readily
identifiable, critical correctness properties that must hold. This is the case for portions of
proposed interfaces to shuttle and space station software.

Further, it is not necessary to carry out formal specification and verification to their full
extent to realize benefits. Finding an appropriate level of formality and analysis can result in
systems that users can have a high degree of confidence in. To summarize [1, section IV.2.2]:

The general goal is to lower expectations for formal specification - the goal isn’t
necessarily provably correct software — but to specify important functionality and
correctness criteria in a way that is reviewable by software engineers and integrates
usefully in other software development eflorts.

1.4 Formal Techniques and the Development of User Interfaces

As noted in [1], there is some controversy about the usefulness of formal specification and
verification techniques in general. Because modern interfaces are visually complex and becoming
more aural, some HCI researchers believe that prototyping and user interface management
system (UIMS) are the correct approach to interface specification and development. Fischer is
a critic of formal specification of interfaces [6, p. 50,51]:

Static specification languages have little use in HCI software design. First, de-
tailed specifications do not exist. Second, the interaction between a system and its
user is highly dynamic and aesthetic, aspects that are difficult, if not impossible, to
describe with a static language. ...A prototype makes it much easier and produc-
tive for designers and users to cooperate because users do not have to rely on written
specifications, which do not indicate an interface’s qualities. .. .Validation and ver-
ification methods from other software domains have limited use in HCI. Formal
correctness is crucial, but it is by no means a sufficient measure of the effectiveness
and success of an HCI system.

Fischer’s statements are true for most interface development efforts. Formal techniques
aimed at low level or aesthetic portions of user interfaces may not be productive.

However, for critical aspects of NASA interfaces, such as alarm areas, critical correctness
requirements are apparent and easily expressed. By using techniques employed in the specifi-
cation of secure systems, formal specification becomes a valuable approach.

Further, it is possible to combine formal specifications of functionality with usability spec-
ifications. Carrol and Rosson have studied the design process and recommend an iterative
approach of developing and integrating functionality and usability specifications [5, p. 1]:

Much has been said about this “usability” problem regarding current interface
designs. Less has been said about how to solve the problem. ...we develop an ap-
proach to the problem based on usability specifications: precise, testable statements



of performance goals for typical users carrying out tasks typical of their projected
use of the system.

1.5 Two Views of Specifications

Most specification efforts target one of two goals: an executable specification (prototype
system), or a proof that a specification meets critical correctness requirements (“design verifi-
cation”). HCI specification are usually developed with the intent of having a prototype system
that can be “checked for certain undesirable properties” [8, p. 211]. Because these speci-
fications are to result in realistic prototypes, it is necessary to specify low-level events such
as mouse clicks and beeps. Not surprisingly, it is not feasible to combine a huge quantity of
implementation details with design verification of the specification.

The approach explored in this paper is to write abstract specifications and critical correct-
ness requirements for a portion of a user interface without getting bogged down in implemen-
tation details, High-level specifications have been very successful in the field of secure systems.
The formal specifications for these systems are shown to be consistent with their critical cor-
rectness criteria without becoming bogged down in implementation details. For example, in a
short, high-level specification, Kemmerer shows fundamental flaws in a cryptosystem [10].

Although Jacob focuses on executable specifications and prototyping, he briefly discusses
extensions to his techniques [8, p. 237):

In designing a secure message system, it is desirable to prove assertions about
the security of the system formally. Such proofs are usually based on a formal
specification of the system (with the proviso that the final software and hardware
correctly implement the specification). This approach has not generally been used
at the user interface level, but, if one had a formal specification of the user interface,
it would be possible to provide proofs about the user interface.

1.6 Testing vs. Proving Specifications

A common and persistent criticism of formal specification and verification is that the quan-
tity of proofs that must be done is overwhelming. a formal specification and statement of
correctness, it is possible to gain insights into the system and confidence in the specification
without performing proofs. The informal analysis of a formal specification can be a valuable
technique for communication between software engineers.

More formally, symbolic execution tools have been developed [11]. Specifications can then
be tested against correctness requirements. Testing specifications allows software engineers to
play what-if games with the specification and may result in the discovery of system states that
do not satisfy the correctness requirements.

These tools have been successfully used in the development of secure systems. Kemmerer
explains the use of the Inatest tool on a cryptosystem specification [10, p. 453]:

With the Inatest tool, it is possible to introduce assumptions about the system
interactively, execute sequences of transforms, and check the results of these execu-



tions. This provides the user with a rapid prototype for testing properties of the
cryptographic facilities ...



II. Formal Specification

II.1 The Aslan Specification Language

Software engineers’ lack of exposure to formal specification systems is particularly disturbing
in light of increasing dependence on critical software systems. Neumann describes examples of
problems with specifications in four application areas: human safety, reliability, security, and
user interfaces [12]. Neumann concludes (emphasis added):

There are many contributions that good software engineering practice could
have made to the prevention or minimization of these and many other problems.
In particular, the sound use of system structuring, specification languages capable
of meaningful abstraction, and rigorous analysis of specifications could all have had
significant effects.

The AsLaN formal specification language is a partial solution to the above problem. Software
engineers can use ASLAN to formally specify complex systems and develop their specifications
through arbitrary levels of abstraction. When a specification is passed through the AsLaN
Language Processor (ALP), software engineers receive a set of correctness conjectures.

The following sections describe features of ASLAN using a specification of a library as an
example. The library example has been used in many formal specification workshops. A library
specification written in the InaJo language appears in [11].

I1.2 The AsLAN Approach

The AsLAN language is built on first order predicate calculus, Systems being specified are
thought of as being in states, defined by the values of the system variables. Logical assertions
are used to define the critical correctness requirements that must hold in every state and those
that must hold between two consecutive states. The former are state snvariants, while the latter
are constraints on state transitions.

To prove that a specification satisfies its invariant and constraints, the ALP generates cor-
rectness conjectures. Correctness conjectures are lognca,l statements whose proof ensures the

correctness of the specxﬁcatmn with respect to the invariant and constraint.

Appendxx A contains a high-level spemﬁcatmn of a library. Although the hbra:y could be
further specified through more detailed levels of specification, only the top-level specification
will be examined here,

The state variables for this system appear in the VARIABLE section of the specification.
Library is a variable whose type is a collection of Book. At this level, Book is left as an

unspecified type. A state variable Checked_Out maps each book into the boolean domain,

while Number_Out maps library users to the the number of books they have checked out.

The specification contains an initial assertion defining possible starting states of the library.
This assertion states that the library is initially empty, that no users have books out, and that,
indeed, no books are checked out.

x




AN

The library specification contains an invariant assertion to specify the essential properties
that the system must have. The invariant states that

e when a book is checked out, it cannot be available. Similarly, an available book cannot
simultaneously be checked out.

e the limit on the number of books checked out by any user is enforced

e 100 user has more than one copy of the same book checked out

Clearly, we want the initial state of the system to fulfill the invariant. The ALP will generate
a logical implication that

initial — invariant

The particular correctness conjecture generated is

Library = EMPTY
& FORALL u: User (Number_Books(u) = 0)
& FORALL b: Book (“Checked_0ut(B))
-2
FORALL b:Book( b ISIN Library ->
Checked_Out(b) & ~Available(b)
| “Checked_Out(b) & Available(b))
& FORALL u:User (Number_Books(u) <= Book_Limit)
& FORALL u:User,bl, b2:Book(
Checked_QOut_To(u, b1)
& Checked_Out_To(u, b2)
& Copy.0f(b1, b2)
-> bl = b2)

It is up to the specifier, possibly with the help of a theorem prover, to prove the above
correctness conjecture.

An empty library is not very interesting. The specification must define how the library can
expand; that is, how the library can change from a current (‘old’) state to a new state in which
more books are present.

Allowable state changes are specified as transitions. An ASLAN transition consists of a
precondition (ENTRY) and a postcondition (EXIT). Transitions in the library example have only
postconditions. The ALP assumes that omitted preconditions are true.

The Add_A_Book transition allows the library to expand. Because Add_A_Book does not have
an entry assertion, it can be applied at any time. The exit assertion states the effect the
application of the transition has on the state variables. It asserts that



e the user adding the book must be a member of the library staff,

¢ and assuming the user is a staff person and the book isn’t already in the library (the
apostrophe is the ASLAN notation for ‘old value’),

o the book is added to the library
¢ the book is not checked out

¢ and in particular, this book has never been checked out

How can the specifier be assured that the Add_A Book transition meets the correctness
requirements embodied in the invariant? It must be proved that if the invarjant holds in the
current (old) state, and the transition is applied, then the invariant will hold in the new state.
That is,

invariant’ & entry’ & exit — invariant

Note that in the antecedent, the invariant and the entry assertion are evaluated in the old
state. The exit assertion and the consequent are evaluated in the new state.

ASLAN specifications can be made up of several levels of abstraction. Given a multilevel
specification, the ALP generates additional correctness conjectures that ensure that types,
variables, and transitions are properly refined, and that the correctness requirements are met
at every level of abstraction. Details are found in [4].

Ideally, AsLAN should be used to specify increasingly concrete levels of abstraction. The
resulting specification would be a high level specification defining the system as an abstract
data type, followed by intermediate levels leading to a low level specification close to code level.
In this most detailed specification level, the transitions’ entry and exit assertions become the
the pre- and postconditions of programming language level procedures which implement them.

I1.3 A Specifier-friendly Feature

Expressions in AsLAN look like first order logic assertions for a simple reason: the techniques
and expressive power of first order logic can be used to prove correctness conjectures.

Unfortunately for specifiers with a programming background, the semantics of first order
logic are not the same as those of procedural programming languages such as Pascal and C.
Consider an alternate version of the Return transition:

TRANSITION Return(B: Book)
EXIT
Checked_Out’(B) -> Checked_Dut(B) = FALSE
& Number_Books(Responsible’(B)) =
Number _Books(Responsible’(B) - 1)

10



~ The above exit assertion is written in a purely ‘logical’ form. Recall that the ALP will
construct a correctness conjecture whose proof ensures the invariant holds after the application
of Return:

FORALL b:Book (b ISIN Library’ ->
Checked_Out’(b) & ~Available’ (b)
| ~Checked_Out’(b) & Available’ (b))
& FORALL u:User (Number_Books’(u) <= Book_ Limit)
& FORALL u:User,bi, b2:Book(
Checked_Out_To’(u, bi)
& Checked_Out_To’(u, b2)
& Copy_0f(bi, b2)
-> b1 = b2)

Checked_Out’(B) -> Checked_Out(B) = FALSE
& Number_Books(Responsible’(B)) =
Number_Books (Responsible’ (B) = 1)
->
FORALL b:Book (b ISIN Library ->
S Checked_Out(b) & ~Available(b)
| “Checked_Out(b) & Available(d))
g FORALL u:User (Number_Books(u) <= Book_Limit)
& FORALL u:User,bl, b2:Book(
Checked_Out_To(u, bl)
& Checked_Out_To(u, b2)
& Copy_0f(bi, b2)
-> bl = b2)

It is a simple paper and pencil exercise to show that the conjecture generated cannot be
proved. In particular,

e The new values of Available and Checked Out_To are mentioned in the consequent in-
variant. Nothing can be proved about the new values of Available and Checked_Out_To.
Neither variable was mentioned in the exit assertion of Returm, and the antecedent in-
variant only relates old values of the state variables.

o Because the exit assertion was written as a logical implication, we have not specified
what will happen when Checked_Out’(B) is false. In particular, if the book B was not
checked out, the new value of Checked_Out(B) could be true or false. Also, the values of
Checked_Out for books other than B are unspecified!

- -

11



e Similarly, we have not specified the new values of Number Books for all users not responsi-
ble for the particular book B being returned. In particular, the new value of Number Books
for such users could be any integer.

These differences between the semantics of logic and those of programming languages have
caught professional specification writers by surprise [14].

The AsLAN language provides constructs that operate like programmers tend to think logical
operations should operate. Corresponding to logical implication is the ASLAN IF-THEN-ELSE-FI,
corresponding to disjunction is the ALT (alternative) statement, and corresponding to equality
is the BECOMES statement. Details are found in (3, 4].

In addition, ASLAN supplies the implicit ‘no changes’ for variables mentioned in the invariant
and constraint, but not mentioned in a particular transition.

These language features allow specifiers to write specifications in a more natural way. Read-
ers should compare the Return transition above with the version in the appendix.

Preliminary work on extending ASLAN to facilitate specification of real-time systems is
documented in [2].

12

o
i



I11. Specification of a Multiwindow User Interface

II1.1 Overview

Appendix B contains an ASLAN specification of an interface commonly provided by window
managers running on the X window system [9, 13, 15). Windows can be created, deleted,
opened, closed, resized, moved, brought to the foreground, and be made the target of user
input.

The specification has one feature not usually found in multiwindow interfaces: dedicated,
reserved (“special”) windows that cannot be moved, closed, or covered. Displays proposed for
shuttle ground support software will have such areas.

This specification was written to be an abstract description of the operations provided by a
window manager to a user. Note that pixels and mice, usually associated with such interfaces,
are not mentioned. It is sometimes hard to determine an appropriate level of abstraction
for a top-level specification. A guideline is that the most abstract specification be such that
critical functionality and correctness requirements can be expressed in a form that is readily
understandable and easily manipulable. In addition, top-level specifications should not restrict
possible implementations and refinements.

Although only a top-level specification of the interface is provided, it is clear that more
detailed levels of refinement could introduce implementation details such as pixels and mice.

Each major syntactic unit of the specification will be discussed in turn. Sections III.2
through I11.8.8 refer directly to Appendix B. The following lexical convention is used: con-
stants and ASLAN keywords are uppercase, type identifiers begin with uppercase, variables and
definitions are lower case.

1I1.2 Types

Six unspecified types are declared to represent classes of system objects that require no
elaboration at this level. For example, Processes can be associated with Windows, however at
this level of abstraction it is not important how either is implemented. Further, how windows
look on the screen (their Representations, Sizes, and Locations) are deferred.

The Display.Levels type represents the stacking level of windows on the screen. It is
tempting to define Display Levels as a synonym for integer. This would restrict possible
implementations. As discussed in IIL3, it is only necessary that Display Levels have a less-
than-or-equal ordering.

The state of a window is a simple enumerated type. The layout of a window is a structure
of three fields: a location, size, and a representation. As discussed in section III.4, windows
have a layout for when they are open, and another layout (an icon) for when they are closed.
Finally, the contents of the current screen is of type Displays — a set of window layouts. The
current display along with current stacking levels for the active windows defines the look of the
sCreen.

II1.3 Constants
Constants are unchanging mappings. For example, INITIAL_OPEN_LAYOUT associates a de-



fault look for windows opened for processes. With INITIAL_CLOSED LAYOUT and INITIAL_STATE,
the window manager determines the look of a window when it is created for a process.

OVERLAPS is an important relation that maps two layouts to true or false. The intent is that
refinements of OVERLAPS will check to see if any of the first layout overlaps the second. This
constant relation is useful in determining if windows are on the screen (overlap the BACKGROUND)
and if they would obscure a restricted window.

LESS_OR_EQUAL is similar to OVERLAPS. This boolean constant maps window stacking levels.
If DisplayLevels is subsequently refined to be the integers, this constant may turn into
nothing more than <.

SPECIAL is a boolean function that determines if a window is restricted. It is made a
constant in this specification so that the mechanisms for making windows restricted or not can
be omitted. It is reasonable that SPECIAL could be changed to be a state variable and state
transitions for its manipulation be added.

I11.4 State Variables

The value of the state variables determine the state of the interface. These values are
changed by the application of the state transitions discussed in section IIL8.

Windows are created for processes. The mapping of processes to windows is represented in
process. When a process is bound to a window, the window will inherit the initial open and
closed layouts from the process. These layouts (open_layout, closed layout) can be changed
by the resize and move state transitions. Associated with each window is also a stacking level
display level.

The layouts currently active on the screen are in display. The window selected to receive
input is determined by the value of input_focus.

II1.5 Definitions (Macros)

ASLAN definitions are macros used to make state transitions more understandable. Eight
definitions are given to represent mundane events such updating the display and changing layout
fields.

to_top_level is interesting because it specifies that the stacking level of its argument is to
be less than all other windows, and that the relationship between other windows should remain
as it was before the argument was made uppermost window.

There are two things to note. First, to_top_level may be restricting future implemen-
tations. It is not necessary for the argument’s stacking level to be strictly less than that of
all other windows, just that it be less than the level of all windows in its stack. That is, the
topmost windows of independent stacks on the screen could have the same display_level. It
is an interesting exercise to rewrite the definition to allow this.

Second, although it is specified that the relationships of other windows remains as they were
before the state transition, it is possible that the value of display level for each window has
changed! This allows refinements and eventual implementations flexibility in assigning display
levels - any implementation that has the argument window ending up on top, and doesn’t

14



Yy E

rearrange the other windows meets this specification.

set location and set_size manipulate one field of a particular window’s current layout.
Care is taken that other fields for this window, and layouts for other windows are unchanged.

The update_display definitions specify the addition and deletion of layouts to the current
display.

II1.6 Initial Conditions

The INITIAL assertion describes the state of the interface when the system is first brought
up. An informal reading of the assertion is “nothing is on the screen, and all windows are
inactive, and windows that are created for processes will be on somewhere on the screen.”

IILI.7 Critical Correctness Requirements

The critical correctness requirements are expressed in the INVARIANT. This assertion is to
be true when the system is started, and continue to hold in every state the system can reach
starting at the initial state and using the state transitions described in ITI.8. The assertion
consists of three conjuncts. The first says that every layout on the screen has to be associated
with an active window. The second asserts that every current layout must be at least partially
on the screen. The third states that restricted windows are not covered.

II1.8 State Transitions

The following subsections describe the eight state transitions. Since none of the transitions
have explicitly stated ENTRY assertions, there are no restrictions on when the transitions can be
applied. This corresponds to typical window managers — it is possible, for example, to attempt
to close windows at any time.

Although there are no restrictions on when the transitions can be applied, it is not always
the case that applying them has any effect on the state of the system. For example, most
window managers will allow a user to close an already closed window. From the user’s view,
there is no change in the state of the display.

The specifications for the state transitions are written with this in mind. The style used is
as follows: an exit assertion is a disjunct of two clauses joined by the ASLAN ALT operator. The
first clause specifies the effect of the state transition when variables are changed (the closing of
an open window, for example) and the second clause specifies that no variables change.

The ALT operator is logical disjunction augmented by statements specifying that unmen-
tioned state variables do not change. These statements are generated automatically by the
ALP [3, 4].

When reading the transitions it is important to pay careful attention to the use of the
old-value operator (apostrophe). The following gections will focus on the first disjunct of each
transition’s exit assertion.

II1.8.1 Window Closing (Iconifying)

To close a window w, it is necessary that w be open, that it is not a restricted window, that
w’s new state is closed (and that the states of other windows are unchanged), that w’s open



layout is taken off the screen and replaced by its icon, and that the icon not be hidden.
I11.8.2 Window Opening

open_window is symmetric to close_window.
II1.8.3 Window Destriiction

To destroy a window w, it is necessary that w active before the state transition and unused
afterwards, that w is not a restricted window, and that the layout of w be removed from the
screen.

111.8.4 Window Creation

Windows are created for and associated with processes. To create a window for process p it
is necessary that there exists a window w that was inactive before the state transition and will
become active. This window will inherit its initial state and layouts from p. w will be associated
with p, and w’s current layout will be added to the display uncovered by other windows or icons.

I11.8.5 Shifting Input Focus

This transition assumes that only one window at a time can be the target of user input. It
is a simple transition that checks that only active windows can recelve input.

1I1.8.6 Moving Windows

The move transition looks more complicated than it is. There are two symmetric cases for
when the window to be moved, w, is open and closed. In either case, w cannot be a restricted
window and the current display is modified. If w’s state is open then its location is changed,
w must still be on the screen, and w cannot overlap any special windows. The case when w is
closed is symmetric.

I11.8.7 Window Resizing

This transition states that only ordinary, open windows can be resized. In addition, a
window cannot be resized to overlap a restricted window.

111.8.8 Window Restacking

To bring an active window w to the foreground, the display must be changed, and the act
of bringing v to the foreground must not overlap a restricted window.

16



IV. Concluding remarks

This paper has disctssed formal specification of user interfaces. The particular approach
taken was to construct an abstract, state-machine model of the interface using the ASLAN
specification language. Emphasis was placed on defining essential functionality and critical
correctness requirements without introducing implementation details.

The resulting specification defines the functionality of a typical window manager (Appendix
B). The specification can be the foundation of several further activities:

e The correctness conjectures generated by the ASLAN language processor could be proved.
Successful proofs would show that the specification satisfies its critical correctness criteria.

Failed attempts to prove correctness conjectures have lead to new insights into the system
being specified. Failed proofs can show misunderstandings in functionality, inconsistency,
and incompleteness. These insights can be especially valuable to software engineers as
they work toward defining essential functionality and correctness of a system.

e The specification can be expanded. It would be useful to refine the top-level specification
into lower, more detailed specifications. A challenge is to refine the specification down
to an implementation level at which objects such as pixels, mouse clicks, and scroll-
bars are used. New techniques would have to be developed to maintain readability and
understandability while handling the amount of detail at low levels.

o The specification could serve as inspiration for a specification of a particular part of the
proposed shuttle/space station ground software. This is a promising area for further
research. After informal requirements for, say, protected alarm areas on screens are
developed, an effort should be made to formally specify their actions and correctness
requirements.

e The specification could be tested. A symbolic execution tool for ASLAN specifications
should be constructed.

Formal specification of user interfaces is not cost effective for most projects. However, for
highly structured interfaces whose performance is critical (such as the NASA interfaces being
developed) formal specification can play a valuable role in unambiguously defining functionality

and providing confidence in meeting correctness requirements. There is considerable interest in
formal techniques and proofs of correctness among developers of critical interfaces.

17



References

[1] B. Auernheimer. Formalisms for user interface specification and design. In NASA CR-
166837, NASA Kennedy Space Center (October 1989).

[2] B. Auernheimer and R. A. Kemmerer. RT-ASLAN: a specification language for real-time
systems. IEEE Transactions on Software Engineering, SE-12, 9 (September 1986).

[3] B. Auernheimer and R. A. Kemmerer. Procedural and nonprocedural semantics of the
ASLAN formal specification language. Proceedings of the nineteenth annual Hawaii in-
ternational conference on system sciences (January 1986).

[4] B. Auernheimer and R. A. Kemmerer. ASLAN users manual. Technical report TRCS84-10.
Department of Computer Science, University of California, Santa Barbara (March 1985).

[5] J. Carroll and M. Rosson. Usability specifications as a tool in iterative development. In
Advances in human-computer interaction, vol. 1. H. Hartson, ed. (1985).

[6] G. Fischer. Human-computer interaction software: lessons learned, challenges ahead. IEEE
Software 6, 1 (January 1989).

[7] R. J. K. Jacob. A specification language for direct-manipulation user interfaces. ACM
Transactions on Graphics 5, 4 (October 1986).

[8] R. J. K. Jacob. An executable specification technique for describing human-computer
interaction. In Advances in human-computer interaction, vol. 1. H. Hartson, ed. (1985).

[9] O. Jones. Introduction to the X window system. Prentice-Hall (1989).

[10] R. A. Kemmerer. Analyzing encryption protocols using formal verification techniques.
IEEE Journal on Selected Areas in Communications, 7, 4 (May 1989).

[11] R. A. Kemmerer. Testing formal specifications to detect design errors. IEEE Transactions
on Software Engineering, SE-11, 1 (January 1985).

[12] P. G. Neumann. Flaws in specification and what to do about them. ACM SIGSOFT
Engineering Notes, 14, 3 (May 1989).

[13] O’ Reilly & Associates, Inc. X ‘Window System Series, vols. 0-7.

[14) R. Platek and D. Sutherland. The semantics of the Freiertag MLS information flow tool
and its impact on design verification: some SCOMP examples. Unpublished report,
Odyssey Research Associates, Inc., Ithaca (December 1983).

[15] R. W. Scheifler and J . Gettys. The X window system. ACM Transactions on Graphics 5,
2, (April 1986).

18

(



A

N

~“Appendix A
Specification of A Library

SPECIFICATION Library
LEVEL Top.Level

TYPE
User,
Book,
Book_Title,
Book_Author,
Book_Collection IS SET OF Book,
Titles IS SET OF Book_Title,
Pos_Integer IS TYPEDEF i:INTEGER (i>0)

CONSTANT
Title(Book):Book_Title,
Author(Book) :Book_Author,
Library_Staff(User) :BOOLEAN,
Book_Limit:Pos_Integer

DEFINE L
Copy_0f(B1,B2:Book) : BOOLEAN ==
Author(B1) = Author(B2)

g Title(B1) = Title(B2)

VARIABLE
Library:Book_Collection,
Checked_Out(Book) : BOOLEAN,
Responsible(Book) :User,
Number_Books (User) : INTEGER,
Never_Out (Book) :BOOLEAN,

DEFINE -
Available(B:Book) :BOOLEAN ==
B ISIN Library & ~“Checked_Out(B),
Checked_Dut_To(U:User,B:Book) :BOOLEAN ==
Checked_Out(B)
& Responsible(B)=U

19



INITIAL T
Library = EMPTY

& FORALL u:User (Number_Books(u) = 0)
& FORALL b:Book (“Checked_Out(b))

INVARIANT
FORALL b:Book(b ISIN Library ->
Checked_Out(b) & “Available(b)
| “Checked_Out(b) & Available(b))
& FORALL u:User(Number_Books(u) <= Book_Limit)
& FORALL u:User,bi,b2:Book(
Checked_Out_To(u,bl)
& Checked_Out_To(u,b2)
& Copy_0f(b1,b2)
-> bi=b2)

TRANSITION Check_Out(U:User,B:Book)
EXIT
Available’ (B)
& Number_Books’(U) < Book_Limit ]
& IF FORALL Bi:Book (Checked_Out_To’(U,B1) -> ~Copy_0f(B,B1))
THEN
Number_Books(U) BECOMES (Number_Books’(U) + 1) )
& (Checked_Dut(B) BECOMES TRUE) o’
& (Responsible(B) BECOMES U)
& (Never_Out(B) BECOMES FALSE)
FI

TRANSITION Return(B:Book)
EXIT
( IF Checked_Out’(B)
THEN Checked_Out(B) BECOMES FALSE
& Number_Books(Responsible’(B))
BECOMES (Number_Books(Responsible’(B)) - 1)
FI)

TRANSITION Add_A_Book(U:User,B:Book)
EXIT
( IF Library_Staff(U)
& B "ISIN Library’
THEN Library = Library’ UNION {B}
& Checked_Out(B) BECOMES FALSE
& Never_Out(B) BECOMES TRUE



N

FI)

TRANSITION Remove_A_Book(U:User,B:Book)
EXIT
(IF Library_Staff(U)
& Available’ (B)
THEN Library = Library’ SET_DIFF {B}

FI)

END Top._Level
END Library

21



Appendix B < =
Specification of a Multiwindow Interface

SPECIFICATION window_interface
INHIBIT /* do not produce correctness conjectures */
LEVEL Top.Level .

/* Brent Auernheimer -- July 1990

This is a high-level specification written using the Aslan
specification language of a window-based
user interface. Mice are not explicitly mentioned.

Note that a ’ (‘prime’) is the old-value operator. That is,
is x is a variable, then x’ represents its value before the
application of a transition. An unprimed x represents the
new-value of x.

This user interface is typical of window managers running

on X. One added feature is SPECIAL windows

which cannot be closed (iconified), moved, or covered by A
other vindows or iconms.

Notational conventions -- alphanumeric tokens are lowercase
except for the following:

* Keywords and constants are uppercase.
* Type identifiers begin with uppercase.

*/

TYPE
Windows, Processes, Locations, SizZes, Representations, Display_Levels,
States IS (OPEN, CLOSED, UNUSED),
Layouts IS STRUCTURE OF
(location: Locations, size: Sizes, rep: Representationms),
Displays IS SET OF Layouts

CONSTANT
NULL_PROCESS: Processes,
INITIAL_OPEN_LAYOUT(Processes): Layouts,

C

22



INITIAL_CLOSED_LAYOUT(Processes): Layouts,
INITIAL_STATE(Processes): States,

/* OVERLAPS is to be true if first argument overlaps the second */
OVERLAPS(Layouts, Layouts): BOOLEAN,

BACKGROUND: Layouts, /# windows must overlap the background */
SPECIAL(Windows): BOOLEAN, /* some windows cannot be covered */

/* the smallest display_level is the window closest to the top,
the largest is the window buried the deepest x/
LESS_OR_EQUAL(Display_Levels, Display.Levels): BOOLEAN

VARIABLE
process(Windows) : Processes,
open_layout(Windows): Layouts,
closed_layout(Windows): Layouts,
state(Windows): states,
input_focus(Windows): BOOLEAN,
display: Displays,
display_level(Windows): Display_Levels

DEFINE
/* DEFINitions are macros used to make state transitions easier to read */

to_top._level(w: Windows): BOOLEAN ==
/+ W becomes the topmost window ... */
FORALL w2: Windows (
(w "= w2)
-> LESS_OR_EQUAL(display._level(w), display_level(w2))
2 display_level(w) “= display_level(w2))

/% all other windows maintain their previous relationship */
& FORALL wi, w2: Windows (
Wl "=w & w2 "=w ->(
(LESS_OR_EQUAL(display_level’(w1), display_level’(w2))
-> LESS_OR_EQUAL(display_level(w1), display_level(w2)))
& (LESS_OR_EQUAL(display_level’(w2), display_level’ (w1))
-> LESS_OR_EQUAL(display.level(w2), display_level(w1))))),

/* note that square brackets are used to select fields from
structure typed variables */

set_location(w: Windows, s: States, 1: Locations): BOOLEAN ==



((s = OPEN)
-> FORALL wi: Windows (
(w = w1 -> open_layout(w)[location] = 1
& open_layout(w)[size] = open_layout’(w)[size]
& open_layout(w) [rep] = open_layout’(w)[rep])
& (w "= wi -> open_layout(wl) = open.layout’(w1)))
& NoChange(closed.layout))

(

& ((s = CLOSED)
-> FORALL wi: Windows (
(v = w1 -> closed_layout(w) [location] = 1
& closed_layout(w)[size] = closed_layout’(w)[size]
& closed_layout(w)[rep] = closed_layout’(w) [rep])
& (v "= wi -> closed_layout(wl) = closed_layout’(wi)))

& NoChange(open_layout)),

set_size(w: Windows, s: States, si: Sizes): BOOLEAN ==
((s = OPEN)
-> FORALL wi: Windows (
(w = wi -> open_layout(w) [size] = si
& open_layout(w)[location] = open_layout’(w)[location]
& open_layout(w) [rep] = open_layout’(w)[repl)
& (w "= w1 -> open_layout(wl) = open_layout’(wi))) »
& NoChange(closed_layout)) \V

& ((s = CLOSED)
-> FORALL wi: Windows (
(w = w1 -> closed_layout(w) [size] = si
& closed_layout(w)[location] = closed_layout’(w)[location]
& closed_layout(w)[rep] = closed_layout’(w)[rep])
& (w "= w1 -> closed_layout(wl) = closed_layout’(w1)))
& NoChange(open_layout)),
update_display_close(w: Windows): BOOLEAN ==
(display = display’
SET_DIFF {SETDEF 1: Layouts (1 = open_layout’(w))}
UNION {SETDEF 1: Layouts (1 = closed._layout’(w))}),

update_display_open(w: Windows): BOOLEAN ==
display = display’
SET_DIFF {SETDEF 1l: Layouts (1 = closed_layout’(w))}
UNION {SETDEF 1: Layouts (1= open_layout’(w))},



%

update_display_create(w: Windows): BOOLEAN ==
(state(w) = OPEN & (display = display’
UNION {SETDEF 1: Layouts (1 = open_layout(w))}))
| (state(w) = CLOSED & (display = display’
UNION {SETDEF 1: Layouts (1 = closed_layout(w))})),

update_display_destroy(w: Windows): BOOLEAN ==
(state(w) = OPEN & (display = display’
SET_DIFF {SETDEF 1: Layouts (1 = open_layout’(¥))}))
| (state(w) = CLOSED & (display = display’
SET_DIFF {SETDEF 1: Layouts (1 = closed_layout’(w))})),

update_display_move (w: Windows): BOOLEAN ==
(state’(w) = OPEN & (display = display’
SET_DIFF {SETDEF 1: Layouts (1 = open_layout’(¥))}
UNION {SETDEF 1: Layouts (1 = open_layout(w))}))
| (state’(w) = CLOSED & (display = display’
SET_DIFF {SETDEF 1: Layouts (1 = closed_layout’ (w))}
UNION {SETDEF 1: Layouts (1 = closed_layout(w))}))

INITIAL /* the following assertion defines the jnitial state of the system */
display = EMPTY
& FORALL w: Windows (
state(w) = UNUSED
& process(w) = NULL_PROCESS
& input_focus(w) = false)
& FORALL p: Processes (
OVERLAPS (INITIAL_OPEN_LAYOUT(p), BACKGROUND)
& OVERLAPS(INITIAL_CLOSED_LAYOUT(p), BACKGROUND))

INVARIANT
/* the following assertion is the critical correctness requirements
that must hold in every state (including the initial state */

FORALL 1: Layouts (
1 ISIN display ->
EXISTS w: Windows (
(state(w) = OPEN & 1 = open_layout(w))
| (state(w) = CLOSED & 1 = closed_layout(w))))
& FORALL 1: Layouts (
1 ISIN display -> OVERLAPS(1, BACKGROUND))
& FORALL w: Windows (



SPECIAL(w) & state(w) ~= UNUSED AN
-> EXISTS 1: Layouts ((1 ISIN display
& (1 = open_layout(w) | 1 = closed_layout(w)))
& FORALL 11: Layouts ((1 -= 11) & (11 ISIN display)
-> “OVERLAPS(11, 1))))

/* the transitions are written to have NoChange to the state variables
if they shouldn’t be applied. These NoChange clauses could be
rewritten to specify error notification and processing */

TRANSITION close_window(w: Windows) /% iconify */
EXIT
state’(w) = OPEN
& “SPECIAL(w)
& state(w) BECOMES CLOSED
& update_display_close(w)
& to_top_level(w)

ALT NoChangeé

TRANSITION open_window(w: Windows) - E
EXIT
state’(w) = CLOSED
& state(w) BECOMES OPEN
& update_display_open(w)
& to_top_level(w)

Cﬁﬁ

ALT NoChange

TRANSITION destroy_window(w: Windows)
EXIT .
(state’(w) = OPEN | state’(w) = CLOSED)
& state(w) BECOMES UNUSED
& "SPECIAL(w)
& update_display_destroy(w)

ALT NoChange

TRANSITION create(p: Processes)
EXIT
EXISTS w: Windows (
state’(w) = UNUSED
& state(w) BECOMES INITIAL_STATE(p)



& open_layout(w) BECOMES INITIAL_CLOSED_LAYOUT(p)
& closed_layout(w) BECOMES INITIAL_OPEN_LAYOUT(p)
& process(w) BECOMES p

& update_display.create(w)

& to_top_level(w))

ALT NoChange

TRANSITION shift_focus(w: Windows)
/* assumes that only one window at a time has input focus and
that closed windows can have input_focus */
EXIT
(state’ (w) = OPEN | state’(w) = CLOSED)
% FORALL wi: Windows (input_focus(w1) = (w1l = ))

ALT NoChange

TRANSITION move(w: Windows, 1l: Locations)
EXIT
(*SPECIAL(w)
& update_display_move(w)
& (((state’(w) = OPEN)
& set_location(w, state’(w), 1)
& OVERLAPS(open_layout(w), BACKGROUND)
& “EXISTS wi: Windows (
SPECIAL(w1) & state’(wl) "= UNUSED
& OVERLAPS(open_layout(w), open_layout’(w1))))

| ((state’(w) = CLOSED)
& set_location(w, state’(w), 1)
& OVERLAPS(closed_layout(w), BACKGROUND)
& "EXISTS wi: Windows ( :
SPECIAL(wi) & state’(wi) ~= UNUSED
& OVERLAPS(closed_layout(w), open_layout’(w1))))))

ALT NoChange

TRANSITION resize(w: Windows, s: Sizes)
EXIT
(state’(w) = OPEN) & “SPECIAL(w)
& "EXISTS wi: Windows(SPECIAL(w1) & (state’(wl) ~= UNUSED)
& OVERLAPS(open_layout(w), open_layout’(w1)))

27



& set_size(w, state’(w), s)
ALT NoChange

TRANSITION to_foreground(w: Windows)
EXIT
to_top_level(w)
2 state’(w) "= UNUSED
& “EXISTS wi: Windows(SPECIAL(w1) & (state’(wl) “= UNUSED)
& ((state’(w) = OPEN) & (OVERLAPS(open_layout’{(w), open_layout’(w1)))
| (state’(w) = CLOSED) & OVERLAPS(closed_layout’(w), open_layout’(w1))))

ALT KoChange

END Top.Level
END window_interface

(



