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Abstract

Many applications require that a control system must be tolerant to the failure of its com-
ponents. This is especially true for large space-based systems that must work unattended
- and with long periods between maintenance. Fault tolerance can be obtained by detect-
ing the failure of the control system component, determining which component has failed,
and reconfiguring the system so that the failed component is isolated from the controller.
This work reports on component failure detection experiments that were conducted on an
experimental space structure, the NASA Langley Mini-Mast.

Two methodologies for failure detection and isolation (FDI) exist that do not require the
specification of failure modes and are applicable to both actuators and sensors. These
methods are known as the Failure Detection Filter and the method of Generalized Parity
Relations. The latter method was applied to three different sensors types on the Mini-
Mast. Failures were simulated in input-output data that was recorded during operation of
the Mini-Mast. Both single and double sensor parity relations were tested and the effect of
several design parameters on the performance of these relations is discussed. The detection
of actuator failures is also treated. It is shown that in all the cases it is possible to identify
the parity relations directly from input-output data. Frequency domain analysis is used to
explain the behaviour of the parity relations.
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Title: Professor of Aeronautics and Astronautics
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Notation

Vector notation 7
Vectors will be written as a single column and will be denoted by bold lowercase characters.
We will also use the Matlab notation where a column vector is written on one line and a

semicolon is used to delimit the elements of the vector:
I
zeR" &= =z = : (0.1)
ZTn |

= [1‘1; Ceey In]. (02)

Row vectors will be written on one line and a comma will be used to delimit the elements
of the vector:

g e R <= ' =[z1. ..., z,). (0.3)

A few special vectors, which will be defined explicitly, will be written with reversed indices:

BeRY = B=[8;...;8) (0.4)

Matrix notation
Bold uppercase letters will be used to denote matrices, the corresponding lowercase letters

with subscripts ¢j will be used to denote the (7, j) entry:

ain - Qin
A g R < A= y Qi € R. (0.5)
Ami1 - Gmn
Columns of the matrix will be denoted by the vectors a;, ..., a,, and the rows will be

denoted by the row vectors af, ..., al,. The transpose of the matrix will be written as AT.







Symbols

a; parity relation coefficients, Equations (2.23) and (2.54)
a;; parity relation coefficients, Equations (2.36)

A discrete-time state transition matrix, Equation (2.8)
A. continuous-time system matrix, Equation (2.5)

B3; parity relation coefficients, Equations (2.18) and (2.38)
discrete-time input matrix, Equation (2.8)

continuous-time input matrix, Equation (2.5)

(e}

C output matrix, Equation (2.9)
ith row of C

C;  Equation (2.16)

Ci; Equation (2.32)

C; Equation (2.52)

D feedforward matrix, Equation (2.9)
d; ith row of D

D; Equation (2.17)
D;; Equation (2.33)

D; Equation (2.53)

Table continues on next page
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Symbols (continued)

Lh

T,'(k)
rij(k)
rii(k)

u(t)
u(k)
ui(k)
u(n;)

ui{n;)

2(1)
x(k)

y(1)
y(k)
vi(k)
y(ni)

¥i(ni)

Equations (2.12), (2.28), (2.40)

Equation (2.28)

field of real numbers

ith SSPR or SAPR regiéua@, Equations (2.21), (2.56)
ijth DSPR or DAPR residual, Equation (2.37)

jith DSPR or DAPR residual, Equation (2.38)
sampling period

continuous-time input vector, Equation (2.5)
discrete-time 1nput7vect(7)r, ﬁdnétion (2.8) |

ith element of u(k)w o |

Equations (2.15) and (2.41)

Equation (2.50) o , —

continuous-time state vector, Equation (2.5)
discrete-time state vector, Equation (2.8)
continuous-time measurement vector, Equation (2.6)
discrete-time measurement vector, Equation (2.9)
ith element of y(k)

Equation (2.40)

Equation (2.14)
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Chapter 1

Introduction

The requirement that a control system must be tolerant to the failure of its components
and still perform safely and reliably puts stringent requirements on the reliability of the
components that are used. Often the requirements on the reliability are so strict that it can
only be achieved through some form of redundancy. An example is flexible space structures.
Due to their large sizes and lightweight construction they have very low damping so that
active control is necessary to do shape control and damp out vibrations throughout the
structure. Active control is also necessary to perform other tasks like stationkeeping and
attitude control. Systems in space must work for long unattended periods of time and
with long intervals between maintenance so that a control system must be able to perform
satisfactorily even when some of its components, especially the actuators and sensors, fail.
To ensure stability of the control system and continue the mission it is necessary to detect
the failure of a component. Once a failure has been detected and the failed component has
been identified, the control system must be reconfigured to isolate the faulty component

from the controller. Other examples of control systems that require very high reliability are
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aircraft engines, nuclear reactors, and process control systems, to name but a few.

To increase the reliability of a system some form of redundancy is usually used. Redundancy
can be divided into two classes, hardware redundancy and analytical redundancy. In hard-
ware redundancy the reliability is increased by replicating the control system components.
A solution that is often applied is to use three or more sensors of the same kind to measure
the same variable. A voting scheme is then employed to find the odd one out. Hardware
redundancy has the advantage that it is insensitive to the magnitude of the failure and can
detect any type of discrepancy. Although hardware redundancy is simple to implement, it
is costly and adds unnecessary weight to the system. When many sensors and actuators are
used it becomes impractical to triplicate each device. As an example, it is estimated that
a large flexible space structure will have approximately 200 control system components.
Tripling so many components is impractical and not cost effective. Another way to increase
the reliability of a system is through analytical redundancy. Here the redundancy present
in the model of the plant and input-output his!oriesraréﬁused to detect and identify the

failure of a component.

The typical form of a failure detection and isolation (FDI) system is shown in Figure 1.1.

The FDI system is divided into two subsystems, the generation of residuals and decision

Input

Measurement Failure

Plant _ fu
Residual | Residual Decision | Decision

Generator Function

Figure 1.1: FDI block diagram.
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making, as shown in the figure. The Residual Generator uses the commanded inputs to the
plant, the measured outputs from the plant, and a model of the plant to generate a set of
residuals. The genération of residuals has been studied for many years and surveys of these
methods can be found in Willsky [14], Basseville [1], and Merrill [12]. The Decision Function
analyzes the residuals and based on this analysis makes a decision about the state of the
actuators and sensors. Typical examples of this analysis are simple threshold detectors that
compare the magnitudes of the residuals with a set of thresholds and declaring a failure
when the amplitude exceeds the threshold. Other methods are moving average analysis and
statistical decision theory. In the latter case a priori probabilities of the failure modes are
hypothesized and it is possible to optimize for a specific rﬁode of failure. It is not always
possible to enumerate all modes of failure and obtain the corresponding probabilities. It
is therefore desirable to have a methodology that does not require the specification of
the failure modes and corresponding probabilities of failure. Also, the method should be
applicable to both sensors and actuators. Only two methods satisfy the requirements set
forth, the Failure Detection Filter by Beard [2] (see also Jones [6] and Massoumnia [10]) and
the method of Generalized Parity Relations by Chow [4]. Because all analytical redundancy
methods use a model of the plant they are all sensitive to modelling errors. The design of

robust parity relations has been discussed by Lou et al. [8].

In this work we discuss the application of Generalized Parity Relations to an experimental
flexible space structure, the NASA Langley Mini-Mast. We concentrated on the genera-
tion of residuals and made no attempt to implement the Decision Function. It should be
clear from the examples that are presented in later chapters whether it would be possi-
ble to detect the failure of a specific component. The thesis is structured as follows. In
Chapter 2 we derive the equations for Generalized Parity Relations. Two special cases are

treated: namely, Single Sensor Parity Relations (SSPR) and Double Sensor Parity Relations
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(DSPR). Generalized Parity Relations for actuators are also derived. Chapter 3 describes
the NASA Langley Mini-Mast and discusses the application of SSPR and DSPR to a set
of displacement sensors located at the tip of the Mini-Mast. The performance of a reduced
order model that includes the first five modes of the mast is compared to a set of parity
relations that was identified on a set of input-output data. Both time domain and frequency
domain co;nparisons are made. The effect of the sampling p;eri;d and model order on the
performance of the Residual Generators are al”so discussed. Chapter 4 presents failure de-
tection experiments where the sensor set consisted of two gvros and an accelerometer. The
effects of model order and sampling frequency are again illustrated. The detection of actu-
ator failures are discussed in Chapter 5. Conclusions and directions for future research are

given in Chapter 6.
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Chapter 2

Generalized Parity Relations

" In the previous chapter we gave an outline of an FDI system where, for convenience of
analysis, we divided the system into two functional parts: the Residual Generator and the
Decision Function. In this chapter we give a brief description of a method to generate
residuals. The method, known as Generalized Parity Relations, is treated in detail by

Chow [4] and Dutilloy [5].

There are two forms of analytical redundancy, namely direct redundancy and temporal
redundancy. In direct redundancy a relation is formed by taking a linear combination of
the instantaneous values of a set of sensors whose outputs are linearly dependent. As an
example, let I denote a set of sensors whose instantaneous outputs are linearly dependent
and let the jth sensor be a member of the set. We can then find a relation for the jth
output y;:

yi(t) = Y aigu(t). (2.1)

i€l
i#]
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The residual is then defined as

r(t) = y(t) = ) euyilt) (2.2)

i€l

i#)
which will be zero (except for noise or other unmodelled effects) when all the sensors are
fully operational and nonzero in the case of a failure. Note that if 7(¢) is nonzero, any of

the sensors in the set could have failed — this single relation does not indicate which sensor

has failed.

In temporal redundancy, the histories of outputs and inputs are taken into account. The
following example is used to illustrate temporal redundancy: consider a vehicle with mass
m and velocity v(¢) with commanded force f(¢) being applied to it. The velocity at time

t + At is given by the relation

ot + At) = o(t) + Lfnt—)m. (2.3)

The velocity measurements v(t) and v(t + Af) are now used together with the commanded

force to form the residual

f(t)

r(t+ At) = v(t + At) — v(t) - ——m—At. (2.4)

If the rate sensor fails in some way the measured velocity will differ from the actual velocity
so that residual r(t+ At) will be nonzero. Thus, the nonzero residual indicates the failure of
the sensor. When the actuator fails, the force applied to the mass will be different from the
commanded force that is used to compute the residual. Hence, the residual will be nonzero
and we can also detect the failure of the actuator. In this example, both the sensor failure
and the actuator failure result in the residual being nonzero; therefore, without additional
information we cannot determine which one of the components has failed when we observe

a nonzero residual.

17
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In our discussion so far we assumed that the residual is éxactly zero when the system is in
perfect working condition — in a practical FDI system this will never be the case because
there will always i)e measurement noise, disturbances, and model misrﬁatches. For the
example under‘discussion, the only parameter for the plant is the mass m and, for the
residual to have a small amplitude, the mass must be known accurately. The best we can
hope for in a practical system is a residual with a small amplitude when all the components
are functional and a large amplitude when a component has failed. Hopefully the difference
between small and large will be large enough so that a threshold detector can then be
used to discriminate between the failed and unfailed states. This example illustrates that
generalized parity relations can be used to detect sensor and actuator failures and that the
residual generator depends on the fidelity of the model to give a small residual when all the

components are fully operational.

In this work we will discuss only temporal redundancy relations. Furthermore, the formula-
tion of parity relations does not require the specification of measurement and process noise
models; therefore, we will not include noise in the plant model. Chow [4] treated the case

where noise is present in the system and discussed methods to obtain robust relations.

2.1 Single Sensor Parity Relations

Generalized parity relations can be constructed so that it is possible to identify which sensor
has failed. The procedure is to construct parity relations from different subsets of the sensors
so that when a sensor fails, only a subset of the parity residuals becomes larger. In this
section we will discuss a specific method that can detect and identify sensor failures. The
method, known as single sensor parity relations (SSPR), is discussed in detail by Dutilloy {5]

and Massoumnia and Vander Velde [11]. The basic idea is to construct a set of relations
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{ri, 1 = 1,2, ...} so that each residual r; depends on one and only one sensor y;. When
a sensor fails only the corresponding residual is affected, and it is therefore very easy to
identify which sensor has failed. In general, when an actuator fails, all the single sensor
parity relations will be affected. In this case, the Decision Function (see Chapter 1) will
decide that it was not all the sensors that have failed simultaneously as this is unlikely to

happen.

We will assume that the plant can be modelled accurately by a continuous-time, linear,

time-invariant model given by

2(t) = Acx(t)+ B.u(t), (2.5)

y(t) Ca(t) + Du(t), (2.8)

where z(t) € R"* is the state vector, u(t) € R™* is the commanded input vector, y(t) € R™
is the measurement 7‘:’é:cfto'r, and A, € Rﬁ’g"i;; Bc € R“”‘"“, C e RwXn= ,”arnd D € R Xnu
are the usual continuous-time state-space matrices. When a sensor fails the output can be

modelled 7by
y(t) = Cx(t) + Du(t) + (1), (2.7)

where the vector f(t) is an unknown function of time. This simple model is adequate
to describe many failures that occur in practical systems and is discussed in more detail
by Jones [6] and Massoumnia [10]. We will make no attempt to characterize f(t); an
important property of generalized parity relations is that no failure modes and corresponding
probabilities of failure need to be specified. It is important to notice that the output given

by Equation (2.6) is modified in some sense when a sensor fails.

The construction of generalized parity relations requires a discrete-time model of the sys-

tem. Let T, denote the sampling period. If the input signal u(t) is constant over the

19
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e

interval kT, <t < (k + 1)T,, the continuous-time system of Equations (2.5) and (2.6) can

be discretized as follows:

T,
a2((k+ 1)T,) eA"T’a:(k)+/ 4 Te=) B dr u(kT,)
g

= Ax(k) + Bu(kT,), (2.8)
y(kT,) = Cz(kT,) + Du(kT,), (2.9)
where
A = AT (2.10)
T,
B = / e4T=1 g 47 (2.11)
0

The notation z(k), y(k) and u(k) will often be used to donate z(kT), y(kT,) and u(kT})

respectively.

Consider now the ith sensor output y; and let ¢} and d; denote the ith row of C and D
respectively; the output history is easily obtained in terms of the initial state z(k) and
inputs w(k), u(k+1), ... as
vi(k) = caz(k)+dju(k),
yilk+1) = clAz(k)+ c;Bu(k) + diu(k + 1),

vi(k+2) = c;A’z(k)+ c,ABu(k) + c/Bu(k + 1) + diu(k + 2),

vi(k+ni) = ciAMx(k) + c;A™ T Bu(k) + -+ + ¢]Bu(k + n; — 1) + dju(k + n;).
(2.12)

These equations can be written in a compact form as follows:

yi(n:) = Ga(k) + Diu(ny), (2.13)

20



where

yi(n) = [w(k) wlk 4 s s vtk 4 m), (2.14)
u(n;) = [u(k); u(k+1);...; u(k + ny)l, ' ‘ (2.15)
G = [dicA;..;cA™], (2.16)
d 0 0 o)
¢'B d! 0 0
D; = c'AB c'B d’ e 0| (2.17)

\ ¢iA™TIB clA™T'B cAMT°B ... d

with y. € R™*1 s ¢ Rim+Dne g RIMHDXn: 354 D; € R(WHDX(M+Dn4 Note that the
Cayley-Hamilton theorem assures that C; will be singular for n; > =.. If n; is chosen large
enough so that the matrix C; becomes singular, we can find a vector 3, € R™*! in the left

null space of C; so that
BrC = 0, (2.18)
Bi = [Binis Bin=15 -5 Big; 1], (2.19)

where we have scaled the vector so that last element, 8q = 1. The reason for this choice will

become clear later. If the system is observable from the ith sensor, n; = n..

Multiplying Equation (2.13) by 37 and rearranging we get
Blyi(ni) = B{ Diu(n) = 0. (2.20)

Equation (2.20) is called the ith single sensor parity relation. When the ith sensor fails, the

output equation is modified in some unknown way so that the above relation will not hold.
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We define the :th residual as
rik+ ) = Blyi(n) - BT Diu(n)
= Byi(n) - efu(n) - (2.21)
= Tiy—Tiu (2.22)

where 7, , is the contribution of the ith output, r;, is the contribution of all the inputs and

T G
Ql' = 181— Di (2.23)
= [onami Gizms -5 Qinened Q1 —13 0i2n=13 -+ Qingn, =15 """
Q1,05 0205 -3 Ciing,0)s (2.24)

a; € R+ When all the sensors and actuators are fully operational, the model matches
the plant exactly, and there are no measurement noise and disturbances, all the residuals
ri, 1 = 1,2,...,n, will be zero. When the ith sensor fails, r;(k) will be nonzero and because
the residuals r;(k), j # ¢, are not functions of the ¢th sensor, they will remain zero. Thus it
is possible to detect and identify the failure of the ith sensor. Equation (2.21) has the form
of a multi-input single-output finite impulse response filter and both the system input vector
u(k) and the scalar output y;(k) are inputs to the residual generator. A block diagram of
the SSPR Residual Generator is shown in Figure 2.1. Because the system under discussion
is time-invariant the starting time is arbitrary. Using this property and Equations (2.19)

and (2.24), we can rewrite Equation (2.20) as summations,

ng Ny Ny
Z Bisyi(k—s) = Z Z O rsts(k —8) (2.25)
=0 r=1s=0

which is an ARX model for the system. (ARX = autoregressive with external input.)
The ARX description motivated the choice for 8 = 1 as this gives a monic denominator

polynomial for a single-input single-output system. If we can find an ARX model for the
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&=

i SSPR
ht Residual — r;

Generator

Figure 2.1: Block diagram of SSPR Residual Generator.

plant we do not need to find the state-space matrices. Many system identification techniques
immediately identify an ARX model from input-output data; see for example Ljung [7]. We
can, therefore, use standard system identification techniques to identify the coefficients of
Equation (2.25) and simply rearrange the equation to obtain a parity relation. Seen in
another way, constructing a robust parity relation is equivalent to finding a robust ARX

model for the plant.

2.2 Double Sensor Parity Relations

In some practical cases single sensor parity relations do not provide a reliable indication of
sensor failures. By using combinations of two or more sensors it is possible to construct more
complex parity relations. The different combinations must be selected so that it would still
be possible to identify which sensor has failed. One such method, which will be referred to
as double sensor parity relations (DSPR), combines the outputs of two sensors. The double

sensor parity relations are derived as follows: let the ith and jth measurements be given by

wi(kT)) = claz(kT,) + du(kT,), (2.26)
y;(kTy) = cz(kT,) + diu(kTy), (2.27)
23
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where ¢, cg, d. and d; are the ith and jth rows of C and D respectively. Similar to the
single sensor case, we write down a set of equations that relates consecutive outputs with

an initial state and the inputs to the system:
w(k) = ca(k)+du(k),
wu(k) = calk) +dyulk),

vi(k+1) = clAz(k)+ c.Bu(k) + diu(k + 1),

yi(k+1) = cjAz(k)+ c;Bu(k) + dju(k + 1),

wlktni=1) = A a(k) + A" T Bu(k) + -+ dlu(k + n; — 1),
y;(k+n;) = ch”J:c(k)+c3A"J'lBu(k)+ o+ diulk + ),
vilk+n) = cA™z(k) + AN Bu(k) + - -+ dlu(k + ny), (2.28)

where we assume that n; = n; + 1. These equations can again be written in a more compact
form similar to Equation (2.13) but, to simplify notation, we will first reorder the equations

so that all the equations involving y; appear first. We then have

yi(n;)
= C,'J':c(k) + Diju(ni), . (2.29)
y;(n;)
where
yi(ni) = [wi(k); gk + 1); o5 gk + i), (2.30)
yi(nj) = [y;(k); yi(k+ 1) ...5 y;(k + n;)], (2.31)
Gj = l[eiiciA; .. ciA™ )i €jA; ... ¢ A™M], (2.32)
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Di; = ) (2.33)

where D; and D; are defined by Equation (2.17) with n; + 1 and n; + 1 rows respectively.
Because we have assumed that n; is one less tharnini, the las't'nu columns of D; will be zero
because y;(k + n;) does not depend on u(k + n;). The condition for constructing a double
sensor parity relation is given by Chow [4]: the observable subspaces of the ith and jth

sensors must overlap. Assuming this is the case, we can find vectors 3; and 3, so that
(87, B]1Ci; = 0. (2.34)

Multiplying Equation (2.29) with [37, ﬁJT] we get the ¢:jth double sensor parity relation

ny Ty flu T
Do Biyilk =)+ > B ik —8) =D > aijrau(k—s) =0, (2.35)
s=0 s=1 r=13=0
where
a;; = (6], 87D (2.36)

A block diagram of the DSPR Residual Generator is shown Figure 2.2. If either the ith or

Yi —
Yj ——— DSPR
uy ——  Residual +—— ry;
: Generator
Up, —

Figure 2.2: Block diagram of DSPR Residual Generator.

the jth sensor fails the above relations will not hold; we define the ijth DSPR residual r;;



as

rij(k) = zﬁi,syi(k =)+ Bk —s) - Z Zaixmur(k ). (237)
3=0 s=1 r=1s=0

In general, when the ith sensor fails, the set of residuals r;p, i< g<nyand rp;, 1 <p<i

will all be nonzero. This set uniquely identifies the i¢th sensor.

If, instead of using the ith measurement as the last row in Equation (2.28) we use the jth
measurement, n; will equal n; + 1 and we get a dual relation and residual. We will refer to

these as the jith DSPR and residual respectively. The residual in this case is

ri(k) = Y Bk =)+ D B uik =) =D ajirsu(k—s). (2.38)
s=1 s=0 r=1 8=0

2.3 Actuator Parity Relations

In the example at the beginning of this chapter we have shown that generalized parity
relations can be used to detect actuator failures. Dutilloy [5] has shown how to construct
actuator parity relations given the discrete-time system description, Equations (2.8) and
(2.9), for the case D = 0. The case where D is nonsingular will be treéted here. To construct
the actuator parity relations we again find the output history as in Equation (2.12) but now
we must use the same number of sensors as actuators, i.e., we must use a subset of sensors
so that ny, = n,. The reason for this requirement will become clear later in the derivation.
We will assume that this is the case and that the output is given by Equation (2.9). The

set of output equations can be written as a matrix-vector equation
v(ini) = Czx(k)+ Du(n;), (2.39)

where

i) = [y(k); y(k+1); .5 y(k + ni)], (2.40)
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u(ni) = [u(k); u(k+1); ..o w(k +ni)) (2.41)

= [ua(k); wa(k); -5 un,(K); va(k + 1); ua(k + 1)5 .05 un (kK + 1); -+

ui(k + ng); ug(k + ni); .o un (kB 4 00)), : (2.42)
C =7 [C, CA; ...; CA™], ' o (2.43)
D 0 0 0\
CB D 0. ... 0
D = CAB CB D I (2.44)
| CA™"'B CA™T*B CA™T°B .. D )

y € Rty e Rimtne € g Rm+nyxnz and p e RWHDnyX(m4ne Bocayse we
have chosen n, = n, the matrix D will be square. Assuming D is inveriible, we can multiply

Equation (2.39) by D' and after rearranging we get
u(ni) = (=D O)z (k) + D' y(my). (2.45)

This equation is similar to Equation (2.13) with the roles of the outputs and the inputs
interchanged. By proceeding as before, we can construct single actuator parity relations
(SAPR) and double actuator parity relations (DAPR). A little more work is necessary for
the actuator case because u(n;) contains all the elements of the input in an interleaved
way as shown in Equation (2.42). For example, if we want to construct a SAPR for the
ith actuator, we must form a vector of inputs that has only u;’s as elements, starting with
ui(k) and taking every n,th element of u(n;). In order to refer to the rows of D~!C and D!

in an easy way we define the following temporary matrices

¢ = -D'¢C (2.46)

27

(R I VRN Y



= [Z’l; e Ein.+1)nu] , . (2.47)

D = D! (2.48)
= (& ) - (2.49)
We can now set up equations similar to Equation (2.12) for the ith actuator,
gi(ni) = [ui(k); wi(k+1); ..., wi(k + n;)) (2.50)
= Ga(k) + Diy(ny), (2.51)
G o= [ €hnsi i Thynyn,| € RFDX, (2.52)
Di = [ diynyi o5 diymyn,] € ROWDX(itDR (2.53)
We now find a vector «; so that
afC =0. (2.54)
The ith SAPR residual is defined as
rik) = a:rD,-y(ni) - a?ﬁ,‘(n,-) (2.55)
= Biy(n) - alid(n) (2.56)
= i i: Birsyr(k—s) = 2“: aisui(k ~ ), (2.57)
r=1s=0 s=0
where
B = ofD; (2.58)
= [Birmi Bizmis -3 Binuinis Bitin=15 Bizini=1; -+ -5 Bimuime=15 = * 5
Bi1,05 Bi2,05 - -5 Bing 0l (2.59)

Because of the requirement that n, = n,, it was found that there is usually more than

one vector in the left null space of C;. These vectors give true parity relations (see Lou

28



et al. [8]) as they all satisfy Equation (2.54) exactly. It is not clear at this point how to
select between the different vectors, and whether one is necessarily “better” than another.

A block diagram of the SAPR Residual Generator is shown in Figure 2.3.

SAPR
Residual —— r;
Generator

Figure 2.3: Block diagram of SAPR Residual Generator.

In a similar way we can construct DAPR of the form r;; and r;;. Although we will show
experimental DAPR results, we will not derive the equations here as the procedure leading

to the results is analogous to the single actuator case.

2.4 Example

To illustrate some of the ideas discussed in the foregoing sections, we present a simple
example of a second order system. Many practical systems, including the Mini-Mast which
we will discuss in more detail later, are described by the following m-mode state-space

model

A, O B,

a(t) = et)+ | : |u@ (2.60)
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where

0 1 - :
A; = , t=1,...,m, (2.61)
—w? —2(,'0),'
0 .- 0
B; = , t=1,..., m, (2.62)
bix - bia,

where w; is the natural frequency of the ith mode with corresponding damping ratio ¢;. We
will analyze only one of the second order blocks. In order to simplify some of the hand
calculations we will further write the continuous-time state-space model in the observable

canonical form (see Chen [3])

0 -uw? w?
z(t) = z(t) + u(t), (2.63)
1 —2Cwn 0
y(t) = [0 1]=(®) (2.64)
= cz(t). (2.65)

The following parameters will be used:

sampling period s = 0.015 seconds,
natural frequency w, = 5rad/s (0.8 Hz),

damping ratio ¢ =0.01.

The discretized system is given by
0.9972 = -0.3774 0.3746

z(k+1) = z(k) + u(k)
0.0150  0.9957 0.0028
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Az (k) + bu(k), ' (2.66)

yk) = [0 1a(k)

c'z(k). (2.67)

We can also write this single-input single-output system as a difference equation

y(z) = &(zI-A) Tbu(z) ' (2.68)
= Q) (2)

b2127 1 + (a21b11 — a11bo1)z™?

u
1 - (a1 + az2)z7 ! + (an1a92 — aj2a21)z"2

(=)

0.002810:7" +0.002808:72
1 - 1.992883z-1 + 0.998501z=2

(2.69)
The difference equation describing the system is
y(k) — 1.992883y(k — 1) 4+ 0.998501y(k — 2) = 0.002810u(k — 1) + 0.002808u(k — 2). (2.70)

The SSPR residual is easily found as

2 2
r=3 Bylk—s) - aulk-s), (2.71)
3=0 s=1
where
B = [0.998501; -1.992883; 1], (2.72)
a = {0.002808; 0.002810; 0]. (2.73)

Note that ag = 0; this is expected because there is no direct feedforward from the input to
the output. The plant and Residual Generator are shown schematically in Figure 2.4. Note
that the transfer functions of the Residual Generator are the numerator and denominator
of the transfer functlonofthe plant — thé residual is formed by multiplying the output

y(z) by the denominator polynomial, the input u(z) by the numerator polynomial, and
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Residual Generator

Plant

u Z(i y d(z)

Figure 2.4: Block diagram of the plant and SSPR Residual Generator.

subtracting the latter from the former. The transfer functions for this Residual Generator
are shown in Figure 2.5. The transfer function from y to r has a large magnitude at high
frequencies. This will always be the case for practical systems as they have a natural roll-off
at high frequencies. The high gain at high frequencies can be a source of trouble if we have

noisy sensors or unmodelled high frequency dynamics.

The coefficients multiplying the input sequence are very small — it was first believed that
this is due to the small damping in the system but it is easily shown that this is not
necessarily the case. By repeating the above example and changing the damping ratio by a

factor of ten to { = 0.1, we get the following coefficients:

¢ 2] 23]

0.01 | 0.002808 | 0.002810

0.10 | 0.002783 | 0.002797

The discretization step was also carried out symbolically and the detail can be found in
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Figure 2.5: Transfer functions of the SSPR Residual Generator. The transfer -
functions are periodic and are shown up to half the sampling frequency.

Appendix A. We see that the elements of the A and B matrlces have factors hke e~C¢wnTs s
cos{wn/1 = (2 T,) and sm(wn\/l——c_zT The small coefﬁcxents are a result of the product
of {, wy, and T,. Even if we had a larger damping ratio (, these elements of o will still be
small because T, is small. For a given practical system we have no control over ¢ and the

only parameter that we can vary (to a limited degree) is the sampling period.

For the single-input single-output case, the single actuator parity relation is identical to the

single sensor parity relation. Therefore, only one relatiop exists and it is not possible to
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determine from a nonzero residual alone whether it was an actuator or sensor failure.
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Chapter 3

Displacement Sensor Failure

Detection

3.1 Introduction

In this chapter we discuss a series of failure detection experiments thaf were conducted on
the Mini-Mast. Specifically, we will look at the detection of displacement sensor failures of
the Mini-Mast and discuss several factors that influence the performance of the Residual
Generators. We will also compare parity relations obtained from a state-space model with
parity relations. identified directly on a set of input-output data. The parity relations
obtained from the state-space model will be referred to as the model-based relations and
those obtained by identification as the identified relations. First, we give a brief description

of the Mini-Mast.

The Mini-Mast is an experimental truss at the NASA Langley Research Center, Hampton,
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Virginia. The mast is deployed vertically and is rigidly fixed at its base. It has 18 bays,
each of length 1.12 meter (3.68ft); the total length of the mast is 20.16 meters (66.14ft).7
The bays are numbered 1 through 18, with Bay 18 at the top. The mast has three member
types: longerons, battens, and diagonals. Longerons are parallel to the vertical axis and
provide beam stiffness and strength in bending. Battens are in the beam face planes and
provide stability. Diagonals, also in the beam face planes, provide stiffness and strength
in torsion and shear. The mast is shown schgmatica]ly in Figure 3.1. The truss has 57
corner joints with stainless steel pins that allow the longerons and diagonal members to be

hinged, so that it is possible to retract and deploy the mast. Three torque wheel actuators

~—Bay 18

Sensor 2
[—]

X Sensor 3

Sensor 1

Figure 3.1: Schematic diagram of the Mini-Mast and orientation of the dis-
placement sensors. The sensors measure displacements normal to their surfaces,
relative to a fixed structure.
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are mounted at the top of the mast parallel to the XYZ axes. By applying voltages to

these motors, it is possible to apply torsional and bending torques to the mast. These

actuators were used in the failure detection experiments to excite the mast. The mast is

also mstrumented w1th a qu set of accelerometers, rate gvros, and dlsplacement Sensors.

The displacement sensors are e mounted so that each measures d1splacements normal to its
reference surface, and relative to a fixed structure that is built around the mast. Three
displacement sensors are mounted at each bay but only the three sensors at Bay 18 were

used.

A finite element model for the Mini-Mast has been developed by NASA to analyze the modal
frequencies and mode shapes. A brief summary is given here; detail can be found in Pappa et
al [13]. The first two modes are the ﬂrst bendmg modes, oriented in the X and Y directions.

The natural frequencies of these modes are approxxmately 0. 65H27Thls Is followed by the
first torsion mode with a natural frequency of approxxmately 4.4z The fourth and fifth
modes are the second bending modes with natural frequencies of approximately 6.2Hz. The
directions of the second bending modes are rotated by 45 degrees from che X-Y directions,
thus coupling the bending responses. The first and second of 108 local modes, caused mainly
by the diagonal members, have natural frequencies of approximately 14.8 Hz. Other modes
are: second torsional at 20.86Hz, third bending modes at 29.79Hz and 30.94Hz, third
torsional at 38.83Hz, fourth bending modes at 40.12Hz and 43.41 Hz, fourth torsional at
54.30Hz, fifth bending modes at 66.34 Hz and 70.25Hz, and fifth torsional mode at 71.88 Hz.
The state-space model used to generate the model-based parity relatlons mcluded the first 5
modes of the system; the modal frequencies and damping ratios used are shown in Table I.
The state-space model was obtained by Drs. Raymond Montgomery and David Ghosh of

NASA Langley Research Center by an analysis of input-output data in preparation for

the design of a control system for the Mini-Mast. The state-space matrices are given in
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Appendix B.

Table |. State-space model modal frequencies and damping ratios

Mode ¢ w [Hz] | w [rad/s]

First bending 0.0323 | 0.8539 5.3778
First bending 0.0213 | 0.8547 5.3702
First torsional 0.0717 | 4.2933 27.0133

Second bending | 0.0238 | 6.1186 | 38.4440

Second bending | 0.0100 | 6.1669 | 38.7478

Several experiments were conducted on the Mini-Mast to obtain input-output data sets.
The mast was excited by driving the torque wheels with random signals. For the experi-
ments discussed in this chapter, the input signal amplitudes were independent, identically
distributed with a uniform probability density function. The sampling period T, was 15 ms.
This is a baseline sampling period that will be used by the control system for the mast.
The input signals were held constant for four sampling periods, i.e., for 60 ms. This choice
gave the freedom to simulate different sampling periods when analyzing the sensor parity
relations. Unfortunately, keeping the amplitude constant for more than one sampling pe-
riod but taking samples every sampling period results in a signal with a spectrum that
has zeros at frequencies lower than half the sampling frequency. A typical spectrum of an
input signal that was held constant for four sampling periods but that was sampled every
sampling period is shown in Figure 3.2. Fortunately, due to nonlinearities of the actuators

and joints of the Mini-Mast, no zeros occurred in the output spectrum.
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Figure 3.2: Spectrum of the input signal. The input was held constant for 4 sam-
pling periods (4T,) but samples were taken every sampling period, T, = 15 ms.

The three displacement sensors at the tip of the mast will be referred to as Sensor D1, Sen-
sor D2 and Sensor D3 with corresponding measurements y;, ¥ and ya and SSPR residuals
r1, T2 and r3. The transfer functions from the ith measurement y; to the ith residual =; will
be called B;(z) and the transfer functions from the inputs uy, ..., u,, to r; will be denoted
by Ai1(z), --., Ain,(2). In some experiments we will use an increased sampling period of
30 ms, which is twice the baseline sampling period; this will be referred to as 27,. The order
of the parity relation, n; in Equation (2.25), will be referred to as the number of lags. Note
that for n; lags we are actually using n; + 1 samples of the corresponding measurement:
n; past values plus the current sample. Corresponding to the 10 dimensional state of the

state-space model usedﬂ,mtwlie model-based parity relations incorporate 10 la,gé.
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The spectrum of y; is shown in Figure 3.3. In this figure we clearly see the first bending mode

'100 ; ¥ T T T T T

-120

-140

-160

dB

2
F
r

0 5 10 15 20 25 30 35
Frequency [Hz]

Figure 3.3: Spectrum of Displacement Sensor 2.

at approximately 0.9 Hz and the first torsional mode at 4.3Hz. The peaks in the spectrum
at 12.6 Hz, 13.9Hz and 16.6Hz correspond to the local modes. The second torsional mode
is at approximately 21.4Hz. Further, though the input signals have zeros in their spectra
(see Figure 3.2), they do not show up in the spectrum of the output signal. Note that 256
point DFTs were used to compute these spectra so that we do not have very fine spectral
resolution. The spectra of the other two displacement sensors are similar in nature to the
one just shown and will not be shown here. When we refer to a particular behavior of a
residual later in this work only one example will be given to illustrate the point. If a specific

example does not represent all the sensors it will be noted explicitly.
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Failures of the sensors were simulated in the data by modifying the recorded data. In most
of the examples that we will discuss the sensor is failed to zero by simply zeroing the output
data. (See Equati;)n (2.7) for the modelling of failures.) We will also choose the failure
times to be a,pi)roximately in the middle of a plot so that it will be easy to compare the

amplitude of the residual before and after the failure.

3.2 Model-based Single Sensor Parity Relations

Figure 3.4 shows the failure of Sensor D1 that has failed to zero at sample number 213.
The failure is clearly indicated by the large transient in the residual. In this figure we also
see a behavior that was typical for all model-based residuals for displacement sensors; the

residual has a large amplitude while the sensor is in perfect condition followed by a smaller

:«implitude when the trai{sients excited by the fgiilure are g;Jne. In Cha;;ter 2 it was shown
that the inputs to the ith Residual Generator are all the cont;'ol inputs and, for single
sensor parity relations, the ith measurement. Equation (222) further shows that the ith
residual r; has two components r;, and Tiu, corresponding to the ith measurement and
all the inputs. The residual is defined as the difference between these two components.
Therefore, except for noise and unmodelled effects, we expect these two components to be
equal. Plotting the components rllyr and r; , separately in Figure 3.5, we see that this is not
so. The component r,, has a much larger amplitude than r,, and there is no similarity
between the two components. At first it was believed that this discrepancy is due to the
small damping of the mast but the example at the end of Chapter 2 clearly indicates that
this is not the reason. This difference in amplitude of the two components explains the
previously mentioned behavior that the residual amplitude is large while the sensor is fully

operational and small when the sensor has failed. The reason for the mismatch will be given
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Figure 3.4: Displacement Sensor D1 failure. Top: Sensor D1 output y;. Bot-
tom: model-based SSPR residual r;. Sensor D1 has failed to zero at sample
number 213.
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Figure 3.5: Components r; , (top) and 7, (bottom) of model-based SSPR r;.
Sensor D1 has failed to zero at sample number 213.
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when we discuss the transfer functions of the Residual Generator.

The SSPR residual r3 is shown in the top of Figure 3.6. In this example Sensor D3 has
failed to zero at sample number 235. As before, we see a large transient when the failure
occurs. The bottom of Figure 3.6 shows the same residual, but this time Sensor D3 has
failed at sample number 234, one sample (15 ms) earlier. Although a brief pulse is visible,
we did not get a clear failure signature and the spike could have been caused by noise.
This inability of the model-based single sensor parity relations to give a clear indication
of sensor-off failure modes occurred often and the reason for the poor performance will be

explained later. We now show a different failure mode.

A noisy sensor was simulated by adding white noise to the output of Sensor D2. The
plot at the top of Figure 3.7 shows the output of Sensor D2 with noise added to it from
sample number 240. The standard deviation of the noise was one hundredth that of the
standard deviation of the measurement y;. The effect of the noise is barely visible in the
measurement. The corresponding SSPR residual, r;, is shown in the bottom of Figure 3.7.
The failure is clearly indicated by the residual. So the added-noise failure mode is clearly
detected by the parity relation. However, this extreme sensitivity of the residual to noise
can be a problem when we are working in a really noisy environment. Before we discuss
the transfer functions of the Residual Generators we first turn to parity relations identified

on input-output data.
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Figure 3.6: Top: model-based SSPR 73 when Sensor D3 has failed to zero
at sample number 235. Bottom: the same residual when Sensor D3 failed at
sample number 234, one sample earlier.
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Figure 3.7: Top: Sensor D2 output. Noise was added to Sensor D2 from sample
number 240. Bottom: Model-based SSPR ;.
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3.3 Identified Single Sensor Parity Relations

It was noted in C}iapter 2 that single sensor parity relations correspond to an ARX model
of the plant. Uéing a different set of input-output data, the coefficients of the parity relation
(see Equation (2.25)) were identified using a least squares criterion. The length of the data
set was slightly less than 30 seconds. These parity relations, which will be referred to as

identified relations, were applied to the same data used in Section 3.2. Figure 3.8 shows
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Figure 3.8: Identified SSPR residual r3. Sensor D3 has failed to zero at sample
number 234. Compare with the plot at the bottom of Figure 3.6.

the identified SSPR residual r3 when Sensor D3 has failed to zero at sample number 234,
i.e., at the same time as portrayed in the bottom graph of Figure 3.6. In that case the
model-based SSPR failed to give a clear indication of the failure. In Figure 3.8 we see

that the identified residual gives a very different failure signature. First, note that the

47



amplitude of the identified residual is smaller than the amplitude of the model-based residual
by approximately two orders of magnitude. Furthermore, the amplitude of the identified
residual is small while the sensor is in good condition and large while the sensor is faulty,
the opposite of what we had before. Clearly, this case is much closer to V\{hat we would
like to see. To highlight the difference between the model-based and identified relations, we
show the components r3y and r3, in Figure 3.9. Here we see that the contributions 73,
and 73, are approximately of the same magnitude. We also see in these figures that the
two components have similar wave forms and thus, when subtracted from each other, will
result in a residual with a small amplitude. Careful comparison between Figures 3.6 and 3.9
further shows that, while the sensor is in working condition, the model-based residual has
more high frequency content than the identified residual. The reason for this will become

clear when we discuss the different Residual Generator transfer functions in the next section.

With the identified relations we have the luxury of easily increasi: g the number of lags used
in the parity relations. In Figure 3.10 we show the residual of an identified SSPR relation
with 20 lags. To make a comparison with a previous failure we have chosen a failure of
Sensor D3 at sample number 234. Comparing Figure 3.10 with Figure 3.8 we see that
increasing the number of lags results in a residual with a smaller amplitude while the sensor
is in good health and a slightly larger residual when the failure is present. Therefore, at the
expense of an increase in the number of computations, we can improve the failure signature

by choosing a higher order model.
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Figure 3.9: Components r3, and r3, of identified SSPR residual 3.
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Figure 3.10: Identified SSPR residual r3 with 20 lags. Sensor D3 has failed to
zero at sample number 234,
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3.4 Transfer functions of model-based and identified Single

Sensor Parity Relations

To explain some effects that we have seen in the preceding sections and further highlight
the differences between the model-based and identified SSPR residuals, we now turn to the

transfer functions of the corresponding residual generators.

In Chapter 2 it was noted that a SSPR Residual Generator is a glﬁiti-input single-output
finite impulse response filter so that the individual transfer functions have no poles (except
for poles at the origin). The zero locations of the model-based and identified Residual
Generators for the transfer function Bg(z) are shown in Figure 3.11. We see that the
identified relation has zeros at higher frequencies than the model-based relation. The zeros
of the model-ba§gd Residual ngirrat?r are simply the poles of the plant (see Section 2.1),
and the polesiha:f'e Been coﬁst:raivrie;ditjo tlie first five modes of the mast by our selection of
the model. During the identification process no constraint is placed on the pole locations
and the resulting model thus gives poles that give the best fit over all frequencies. Except
for one complex zero pair, there is little correspondence between the zero locations of the

two transfer functions.

The transfer functions of the model-based and identified Residual Generators are compared
in Figure 3.12. We first note that the model-based transfer function from y; to r, has a
small gain at low frequencies and a high gain at high frequencies. This high gain at high
frequencies explains the extreme sensitivity that the residual showed to a noisy sensor (see
Figure 3.7). Although it was not shown there, the corresponding identified residual was less
sensitive to noise. The high gain is also responsible for the good transient that we have seen
in Figure 3.4. In that figure we see that there was an abrupt change in the measurement

at the time of failure. For the example shown at the bottom of Figure 3.6, the time of
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Figure 3.11: Left: Zero locations of the model-based Residual Generator transfer
function y, to r,. Right: Zero locations of the identified Residual Generator
transfer function yo to r9. The solid line circles have radius 1. Note that the
model-based Residual Generator has two closely spaced zeros at approximately
45 degrees.

failure was chosen so that the output y; was close to a zero crossing point so that there
was no abrupt change in the signal. The high gain at high frequencies also explains why
the components r;, and g, have such different amplitudes — noise in the measurement is
amplified considerably so that the contribution of that component is much larger than the
contribution of uy, ..., 4,,. The model-based transfer functions A;1(2), ..., A2,3(z) also
have smaller ga.i>ns at low frequencies than the identified relations. The identified relation

clearly puts more emphasis at low frequencies and less at high frequencies.

The spectra of the model-based and identified residuals are shown in Figure 3.13. We see
that the model-based residual has very little frequency content at low frequencies and much

greater frequency content at high frequencies. Note that the difference of the minimum
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Figure 3.12: Transfer functions of the model-based (solid line) and identified
(dashed line) SSPR Residual Generators. Top left: y, to ry, top right: u; to
T2, bottom left: u; to 72, bottom right: u3 to ry.

at low frequencies and the maximum at high frequencies is almost 180 dB! Clearly, the
model-based Residual Generator does a very good job at frequencies below 7 Hz. However,
because we have a reduced order model with an excellent match at low frequencies, there is
a significant mismatch at high frequencies and this prevents the model-based relations from
obtaining good performance. The large high frequency content was pointed to earlier when
we discussed the differences between model-based and identified relations in Figures 3.5, 3.6
and 3.9. Note further that the model-based spectrum clearly shows a peak at approximately

14.4Hz that corresponds to the local modes which are not included in the state-space model.
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Figure 3.13: Spectra of the model-based and identified residuals.

The spectra of the identified residuals exhibit an almost flat response over all frequencies.
The limitation of the 10 lag relation clearly shows up as a peak at approximately 0.9 Hz,
the first bending mode, as well as a peak at approximately 6 Hz, the second bending mode.
Increasing the number of lags to 20 clearly shows an improved match at the first bending

mode and a spectrum with a slightly smaller magnitude over most of the frequency band.

In the next section we investigate the effect of the sampling period on the performance of

the Residual Generators.
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3.5 Increased Sampling Period

It was found that increasing the sampling period had a significant effect on the identified
SSPR residuals. An increase in the sampling period gave improvement on the model-based
SSPRs. Using the same data set as before the sampling period was increased to 30 ms,

i.e., 2T,. Figure 3.14 shows the identified residual r3 when Sensor D3 has failed to zero at
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Figure 3.14: Identified SSPR r3, 10 lags, sampling period 2T,. Sensor D3 has
failed to zero at sample number 117.

sample number 117; this corresponds to the same time as we had in Figures 3.9 and 3.10.
Here we clearly see that doubling the sampling period leads to a major improvement in the
failure signature. The same failure is shown in Figure 3.15 where we have used a sampling

period of 30 ms and a parity relation with 20 lags — an excellent failure signature.
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Figure 3.15: Identified SSPR r3, 20 lags, sampling period 27,.

It was hoped that the transfer functions of the corresponding Residual Generators would
hint at why the increased sampling period leads to so much improvement in the residual but
an analysis turned out to be fruitless. One possible reason is that at 10 lags only a small
portion of one period of lowest frequency of interest, i.e., the first bending mode at 0.9 Hz,
counts in the computation of a relation — with noise contaminating the measurement, it
is difficult to capture the underlying low frequency component. Increasing the sampling
period results in samples taken further apart so that, using the same number of lags, a
greater portion of one period is covered. Another possible reason is that, at 27T,, a smaller
frequency band needs to be matched by the ARX model leaving more freedom to give a
better model at low frequencies. The transfer functions of 20 lag, 17, and 20 lag, 27,
identified SSPR Residual Generators are compared in Figure 3.16. We see that the 27T,

transfer functions tend to have more peaks and dips at low frequencies compared to the 17,
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Figure 3.16: Identified SSPR Residual Generator transfer functions, 20 lags, 17T,
(solid line) and 2T, (dashed line). The transfer functions are as follows: upper
left: yo to ry, upper right: u; to ry, lower left: u; to r;, lower right: u3 to r,

counterparts, indicating that more modes are being included at the lower frequencies.

3.6 Double Sensor Parity Relations

In this section we present several failures where DSPRs are used to detect the failure.
As before, we will compare model-based relations with identified relations and discuss the
effect of increased number of lags and increased sampling period on the performance of the

Residual Generators.
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Figure 3.17 shows the model-based residuals 713 and ry3 where Sensor D1 has failed to zero
at sample number 238. A brief transient is visible at the time of failure. Note further that
the residual remains small after the transient is gone. Like the model-based SSPRs, the
model-based DSPRs sometimes fail to indicate the failure of a sensor. An example is shown
in Figure 3.18 where Sensor D1 has failed to zero at sample number 250. In this example
the residuals give no indication of the failures at all. Careful inspection of the plot at the
bottom of the figure shows that the first part of the residual up to sample number 250 has
a high frequency content while the part from sample number 250 to the end shows some
underlying low frequencies. This is to be expected as the DSPR Residual Generator has as
inputs the plant inputs uy, up, uz as well as the two measurements y1 and y3. Therefore,
even when Sensor D1 fails to zero, the dynamics of the mast are still being fed to the
Residual Generator through Sensor D3. We thus would expect that this signal, which has

low frequencies in it, should appear at the output of the Residual Generator.

The detection of the failure of Sensor D2 at sample number 150 by an identified DSPR
is shown in Figure 3.19. Both the residuals r;; and 73, give a clear indication of the
failure. The number of lags used was 10. Although this is a different sensor and the parity
relations have more Jags than the model-based relation, a comparison will still be made. We
note that the identified residuals are significantly smaller than the rﬁodel—based residuals.
Furthermore, the difference in frequency content of the residual before and after the failure
is large. This invites signal processing to improve the failure signature. It was noted in
Section 2.2 that it is possible to construct a dual parity relation for a specific pair of sensors.
The dual residuals ro; and r93 are shown in Figure 3.20. Clearly, there is a marked difference
in the amplitudes of the residuals when compared to the ones in Figure 3.19. When this
difference was first noted it was believed that this is because Sensor D2 appears as the first

sensor in the relation but this big difference did not manifest itself in the other relations
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Figure 3.17: Model-based DSPR residuals 7y, and 7y3. Sensor D1 has failed to
zero at sample number 238.
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Figure 3.18: Model-based DSPR residuals r;; and 7,3. Sensor D1 has failed to
zero at sample number 250.
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Figure 3.19: Identified DSPR residuals 71 and 733. Sensor D2 has failed to zero
at sample number 150.

61



x103

T T VN
4 — 4
2 -
E
‘:’ 0 JL**MWM\T L
o
2 |
4} 1
i § I o 1
0 100 200 300 400 500
Sample number
x1073
T [
n A l
2 — H
= ok
=, I |
S ol i
2+ 1 .
4t |
I 1 r 1 1 _
0 100 200 300 400 500

Sample number

Figure 3.20: Dual identified DSPR residuals r3; and r33. Sensor D2 has failed
to zero at sample number 150.
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and their dual forms.

Generalized parity- relations do not require the specification of the failure mode. The de-
tection of a different type of failure by identified relations is shown in Figure 3.21. Here a

gain reduction of 50% in the output of Sensor D3 was simulated from sample number 180

to 500. Both residuals clearly indicate this failure.

Increasing the number of ldgs in the relations a,ga,irzilﬂ ;ésﬁlted in improved failure signatures.
Figure 3.22 shows the residuals where we have used 20 lags in the DSPRs. This is the same
failure that we have seen in Figurrie' 3.20. A comparié6n of the two figures shows that there is
an advantage in increasing the number of lags. The amplitudes of the residuals are smaller

when the sensors are in healthy condition and larger once a sensor fails.

Increasing the sampling period again resulted in a significant improvement of the failure
signatures. Aﬁrrrin;d}e(-ba'sgd:DSPRrat 2T, is shov;rE in Figure‘3.23. Comparing this figure
with Figure 3.18 vx;e :h;)tige a signiﬁéant differé;:gg ;bj;etween the residuals. Considering that
we are using the same continuous-time state-space model, but now using a longer sampling
period, it is clear that the sampling period has a significant effect on the performance of
a parity relation. An example of a 20 lag identified DSPR with a 27, sampling period is

shown in Figure 3.24.
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Figure 3.21: ldentified DSPR residuals 7,3 and r33. The output of Sensor D3
was reduced by a factor of 2 from sample number 180 to 500.
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Figure 3.22: Identified DSPR residuals r9; and 73, 20 lags. Sensor D2 has
failed to zero at sample number 150.
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Figure 3.23: Model-based DSPR residuals 7,3 and 7,3, 10 lags, 2T,. Sensor D1

has failed to zero at sample number 125,
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Figure 3.24: Identified DSPR residuals r3; and 723, 20 lags, 2T,. Sensor D2 has
failed to zero at sample number 75.

67

muer 1



3.7 Summary

In this chapter we have looked at the detection of displacement sensor failures using single
and double sensor parity relations. A comparison was maderbetween a set of relations
obtained from a state-space model of the Mini-Mast and a set of relations that was obtained
by identifying the coefficients of the parity relations directly from a set of input-output
data. The state-space model included the first five modes of the mast. The model-based
relations failed to indicate all the failures and were very sensitive to noise. The sensitivity
to noise is a result of the very large gains at high frequencies of the corresponding Residual
Generators. The spectra of the model-based residuals indicate that the state-space model
gives an excellent fit at frequencies below 7Hz at the expense of a poor fit at high frequencies.
Reduced order low frequency models are often used in control system design but the results
of this chapter show that they are not suitable to design Residual Generators for use in

failure detection.

The identified residuals always gave a clear indication of the failure. An analysis of the
Residual Generator transfer functions shows that the identified relations put more emphasis
at low frequencies and less at the high frequencies. The flat spectra of the residuals suggests

that it is important that the model fit the plant well even at high frequencies.

By identifying the parity coefficients directly from input-output data we had the freedom
of choosing the model order. In all the experiments an increase in the number of lags
(i.e. increasing the order of the model) led to an improvement of the failure signature. An
increase in the model order usually resulted in a smaller residual while the sensors were
in good health as well as an increase in the magnitude of the residual when a failure was

present.
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To improve the performance of the Residual Generator in the case of sensor-off failures,
double sensors parity relations can be used. In all the experiments and different failure
modes considered,v the double sensor parity relations performed better than their single
Sensor parity rélation counterparts. The main reason for the improvement is the inclusion

of an extra measurement that feeds dynamics of the plant to the Residual Generator even

when the other sensor fails to zero.

Increééihg the sampliﬁg period resulted in a signiﬁca.ntr improvéfﬁéht of the failure signa-
tures. This is probably because, with a short sampling peribd, only a small portion of one
period of a low frequency is covered by a relation with the resulting loss of the important low

frequency information. Furthermore, the same model order must match a smaller frequency

band, giving a better fit.
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Chapter 4

Accelerometer and Gyro Failure

Detection

4.1 Introduction

In this chapter we discuss the sensor failure detection experiments conducted on some
accelerometers and gyros of the Mini-Mast. These experiments are similar in nature to
the experiments discussed in the previous chapter. Because we are using different types
of sensors, we will get the interesting case where sensors of mixed type are used to form
a double sensor parity relation. Three sensors are considered: two accelerometers that
measure linear acceleration in the global X and Y directions, and the Z-axis gyro. All the
sensors are at the tip of the mast. No state-space model was available for this set of sensors

so we present only identified relations.

Before we discuss the failure detection experiments we first look at the spectra of the mea-
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surements. In Figure 4.1 we show the spectrum of the Y-axis acceleration. The torque wheel
g P q

0 5 10 15 20 25 30

Frequency [Hz]

Figure 4.1: Spectrum of the Y-axis acceleration. The torque wheel motors were
driven by discrete-time white noise that was passed through lowpass filters with
20z bandwidth.

35

motors were driven by 20Hz bandlimited random signals. We see that the first torsional

mode is the dominant mode, with the first and second bending modes approximately 80 and

10dB down respectively. We also see the effect of the local modes at 15Hz and 19Hz. The

peaks in the spectrum at approximately 9Hz and 23 Hz are probably the result of aliasing:

the peak at 23Hz is caused by the fourth bending mode at 43.4Hz and the peak at 9Hz

comes from a mode at 74.8Hz. Similarly, there are modes at 91.7Hz and 93.2Hz that alias

to 25 Hz and 26.5 Hz respectively. In this experiment the sensor signals were filtered by third

order analog lowpass filters before they were sampled, but the filtering was not enough to
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prevent aliasing. The bandwidth of the analog filters was 20 Ha.

The solid line in Figure 4.2 shows the spectrum of the same measurement, but this time

dB

0 5 10 15 20 25 30 35
Frequency [Hz]
Figure 4.2: Spectrum of the Y-axis acceleration. The torque wheel motors were

driven by discrete-time random signals that were held constant for 4 sampling
periods. The dashed line shows the spectrum when the sampling period is 2T.

the torque wheel motors were driven by random signals that were held constant for 4
sampling periods. The output was sampled at 17, intervals, which corresponds to a sampling
frequency of 66.67Hz. Again we see the peaks at approximately 9 and 23Hz. The dashed
line in this figure shows the spectrum when we sample the output of the Y-axis accelerometer
at 27, (33.33Hz). Here we clearly see how the local mode at 19 Hz aliases to approximately
14Hz. Although it was believed that the sensor outputs were filtered by 20 Hz analog filters

before they were sampled, it was found after the experiments were conducted that the analog
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filters were inadvertently set to have 100 Hz bandwidths, which is way above the sampling
frequency. Although most of the aliased components are 30dB or more down, it was found
that the ambiguitif caused by their presence degraded the performance of the Residual
Generators. So all measurements were digitally filtered with a fifth order elliptical filter
with 0.5dB passband ripple and stopband attenuation of 40dB; the equivalent continuous-
time cutoff frequency was 7Hz. The passband of this filter was chosen to be wide enough to
pass the first five modes of the Mini-Mast and still give acceptable attenuation of the 9Hz

aliased component. The spectrum of the Z-axis g-yro signal is shown in Figure 4.3 where

-100

dB

-120

-140

-160

80— . S : ,

Frequency [Hz]

Figure 4.3: Spectrum of the Z-axis gyro signal. The torque wheel motors were
driven by discrete-time random signals that were held constant for 4 sampling
periods.

we see that the first torsional mode is by far the dominant mode.
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4.2 Single Sensor Parity Relations

For this set of experiments the torque wheel motors were driven by random signals that
were held constant for 47,, while the sensor outputs were sémpled at 17T, intervals. A

block diagram of the experimental setup is shown in Figure 4.4. In the block diagram we

u
y . .

MiniMast Anti-alias Yf Residual r . re

Filter Postfilter |——

Generator

Figure 4.4: Experimental setup.

also show an additional filter at the output of the residual generator. In some experiments
we will show how additional filtering of the residuals can be used to improve the failure
signature. This filter will be called the postfilter and we will indicate when it is used. A
sixth order elliptical filter with 10 Hz bandwidth, 0.5dB passband ripple and 60dB stopband

attenuation will be used in all the cases.

Figure 4.5 shows the failure of the Y-axis accelerometer at sample number 245 and Figure 4.6
shows a failure of the Z-axis gyro at sample number 255. In both cases identified SSPRs
with 20 lags were used. Although both residuals indicate the corresponding failures, they
contain high frequency noise and clearly will not give reliable indications of failures. The
same residuals of Figures 4.5 and 4.6 are shown in Figures 4.7 and 4.8, but this time after
the residuals were filtered by the postfilter. We see that lowpass filtering the residuals

definitely leads to improved failure signatures. Figures 4.9 and 4.10 show the same sensors
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Figure 4.5: SSPR for Y-axis accelerometer failure, 20 lags, 1T,. The Y-axis
accelerometer has failed to zero at sample number 245,
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Figure 4.6: SSPR for Z-axis gyro failure, 20 lags, 1T,. The gyro has failed to
zero at sample number 255,
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Figure 4.7: SSPR for Y-axis accelerometer failure, 20 lags, 1T,. This residual
was filtered with the postfilter. The Y-axis accelerometer has failed to zero at
sample number 245,
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Figure 4.8: SSPR for Z-axis gyro failure, 20 lags, 1T,. The residual was filtered
with the postfilter. The gyro has failed to zero at sample number 255.
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Figure 4.9: SSPR forrY-arxis agéelerometer failure, 20 lags, 27,. The Y-axis
accelerometer has failed to zero at sample number 117.
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Figure 4.10: SSPR for Z-axis gyro failure, 20 lags, 2T,. The gyro has failed to
zero at sample nuraber 137.
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with the same type of failures at approximately the same points in time, but this time
using a sampling period of 27,. These two figures must be compared with Figures 4.5 and
4.6 respectively. First we note that the residuals have respectively 5 and 7.5 times larger
amplitudes. Filrthermore, the ratios of the amplitudes in the failed and unfailed states
have increased considerably. The postfilter has not been applied to these residuals: the
improvement comes only from the increased sampling period. It was found that filtering
these residuals with the postfilter resulted in little improvement of the failure signature. In

the next section we look at double sensor parity relations.
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4.3 Double Sensor Parity Relations

Although the singlt; sensor parity relations at 27, gave good performance there were failures
where the indic_ations were only marginal. The next step is to look at double sensor parity
relations and hope that they w’m perform better. Figure 4.11 shows a failure of the X-axis
accelerometer at sample number 236 and Figure 4.12 shows a failure of the Z-axis gyro at
sample number 286. The number of lags used was (11,10), i.e., the parity relations had
the form r;; as shown in Equation (2.37), and we use the notation (¢,7) to indicate the
number of lags used. In both cases the unfiltered DSPR residuals are shown. We now
have the interesting case where sensors of mixed type are used to construct the parity
relations. The residual at the top of Figure 4.11 used the X-axis and Y-axis accelerometer
measurements to compute the residual, while the residual shown at the bottom of this
figure was computed from the X-axis accelerometer and Z-axis gvro measurements. A
comparison of these residuals with their 20 lag, 1T, single sensor counterparts (Figures 4.5
and 4.6) shows that we get a significant improvement by using the double sensor parity
relations. It is again possible to clean up the signals with the postfilter but we will not

show the results here.

An increase in the sampling period again leads to a significant improvement in the fail-
ure signatures as shown in Figu'res 4.13 and 4.14. Note that the output of the Residual
Generators are shown in these figures: no extra filtering was applied to the residuals. In
Figure 4.15 we have simulated the failure of an accelerometer that gives the correct output
when the acceleration is positive and zero when the acceleration is negative. This type of
failure can occur when a sensor is powered by a dual rail power supply and the negative

supply falls away. The residuals clearly indicate this type of failure.

Despite the good results that we have shown so far, the Generalized Parity Relations are
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Figure 4.11: DSPR for X-axis accelerometer failure, (11,10) lags, 17.
Top: residual with sensor pair (X-axis accelerometer,Y-axis accelerometer);
Bottom: residual with sensor pair ( X-axis accelerometer, Z-axis gyro).

The X-axis accelerometer has failed to zero at sample number 236.
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Figure 4.12: DSPR for Z-axis gyro failure, (11,10) lags, 1T,. The gyro has
failed to zero at sample number 286.The residual at the top was constructed

from the pair (X-axis accelerometer, Z-axis gyro) and the residual at the bottom

from the pair (Y-axis accelerometer, Z-axis gyro).
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Figure 4.13: DSPR for X-axis accelerometer failure, (11,10) lags, 27.
Top: residual with sensor pair (X-axis accelerometer,Y-axis accelerometer);
Bottom: residual with sensor pair (X-axis accelerometer, Z-axis gyro).

The X-axis accelerometer has failed to zero at sample number 118.
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Figure 4.14: DSPR for Z-axis gyro failure, (11,10) lags, 2T,. The gyro has

failed to zero at sample number 143. The residual at the top was constructed

from the pair ( X-axis accelerometer, Z-axis gyro) and the residual at the bottom
from the pair (Y-axis accelerometer, Z-axis gyro).
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Figure 4.15: DSPR for X-axis accelerometer failure, (11,10) lags, 2T,. The out-
put of the X-axis accelerometer was half wave rectified from sample number 125
till the end.

Top: residual with sensor pair ( X-axis accelerometer,Y-axis accelerometer);
Bottom: residual with sensor pair (X-axis accelerometer, Z-axis gyro).
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still sensitive to certain parameter variations. In Figure 4.16 we show a failure of the Z-axis
gyro at sample number 250. The torque wheel motors were driven by lowpass filtered white
noise. The coeﬁicie—nts of the single sensor parity relation were identified ona different input-
output data sef, but with the motors driven by a similar type of input signal. Figure 4.17

shows a failure of the same sensor at the same time, using the same data set. However,

the parity relation coefficients were identified on an input-output data set where the motors

were driven b) randon; sxgnals :thét were held constant for 47,. We see thai’; the residual
gives no indication of the failure. Repeating this test on the accelerorn__ete;s gave the same
result, i.e., no indication of failures. One possible explanation is that the torque wheel
motors have a significant amount of friction so that the amplitudes of the input signals
will determine how much the wheels are actually excited. The amplitudes of the lowpass
filtered input signals were approximately 7 times smaller than the amplitudes of the input
signals that were held constant. It is therefore difficult to conclude whether the difference
in performance is due to the different type of input signals that were used or due to the
different magnitudes of the input signals. Either case, it is a disturbing fact that the parity

relations show this sensitivity to the different input signals.
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Figure 4.16: SSPR for Z-axis gyro failure, 20 lags, 1T,. Tk« gyro has failed to
zero at sample number 250.
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Figure 4.17: SSPR for Z-axis gyro failure, 20 lags, 17,. The gyro has failed to
zero at sample number 250.
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4.4 Summary

In this chapter wr:: have discussed the detection of accelerometer and gyro failures. It
was found that‘ the wider bandwidth of the measured signals caI; lead to ali;xsing that in
turn degrades the performance of the residual generators. With proper anti-alias filters in
place, the double sensor parity relations give good failure signatures. The sampling period
again proved to be a very irrﬁprc,)rtrant parameter in the design of the Residual Generator.
Despite the good performance, the:paritg; relations are still very sensitive to the type and /or

magnitude of the signals that are used to excite the system.

We also showed examples of parity relations that were constructed using different types of
sensors. In all the cases considered the double sensor parity relations gave clear indications
of all the different failure modes. It must be noted that this improved performance comes

with the burden of an increased computational load.

It must be noted that we have shown results using parity relations with 20 lags throughout
this chapter. It was found that, because this set of sensors have higher bandwidths than
the displacement sensors, lower order models simply did not give clear indications of the

failures.
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Chapter 5

Actuator Failure Detection

In this chapter we discuss the detection of actuator failures on the Mini-Mast. For the
experiments conducted here, the torque wheel motors were driven by lowpass filtered ran-
dom signals. The bandwidths of these filters were 10Hz, and the baseline sampling period
of 0.015 seconds, i.e., 1T,was used. The measurements were filtered by 20Hz third order
analog filters before they were sampled and digitized. We will present data only on results
where the Bay 18 displacement sensors were used to obtain measurements, as the results

obtained by using the accelerometers and gyro were similar in nature.

A failure was simulated while the experiment was conducted by disconnecting the com-
manded signal to a torque wheel motor. The model-based single actuator parity relation
for this failure is shown in Figure 5.1. The actual time of failure is not known but should
be approximately at sample number 500. In the figure we see that there is no indication
of the failure at all. The residual of the same failure is shown in Figure 5.2 but this time
an identified parity relation with 20 lags was used to detect the failure. Even though this

residual is significantly smaller than the model-based residual, no indication of the failure
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Figure 5.2: |dentified SAPR for X-wheel failure.
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is visible.

The above experiment was repeated by using double actuator parity relations, and both 17,
and 2T, sampling periods were used without any visible improvement. Single and double
actuator parity relations were also identified using the X and Y-axes accelerometers and

Z-axis gyro but they, too, were unable to detect the failure.

To gain more insight into the behavior of the actuator parity relations a computer simulation
was conducted. Bandlimited random input signals were generated and a failure of the Y-
torque wheel motor was simulated in the input data by zeroing the actual signal going to
the plant. The Y-torque wheel motor was zeroed between samples number 213 and 284.
The corresponding outputs were generated using the Mini-Mast state-space model given in

Appendix B. The SAPR residual r; is shown if Figure 5.3.

This simulation was repeated, but this time noise was added to the measurements before

they were used by the Residual Generator. A block diagram of this is shown below.

noise

u Mini-Mast |.Y

Residual T

u: Generator

Actuator failure simulation.
The standard deviation of the noise that was added to the measurement was 1% of the

standard deviation of the measurement. The SAPR residual for this simulation is shown in

Figure 5.4. A comparison of the magnitudes of the residuals in Figures 5.3 and 5.4 shows
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Figure 5.3: SAPR residual for Y-torque wheel failure. In this simulation the
torque wheel was in a failed state between samples 213 and 284.

that the single actuator parity relations are extremely sensitive to noisy measurements. This
sensitivity is also clearly visible when we look at the contributions of the measurements, Ty,
and control inputs, 7y, to the residual r; as shown in Figure 5.5. In these figures we see that
the noise in the measurement is amplified so much that it is orders of magnitude larger than
the contribution of the control signal r,. The extreme sensitivity to noise is easily explained
when we look at the transfer functions of the corresponding Residual Generator, shown in
Figure 5.6. In this figure we see that the transfer functions from the measurements y to
the residual r; have very large gains over a large portion of the frequency band, especially
at high frequencies, and therefore the smallest amount of noise in the measurements will
be amplified and bury the residual deep in it. The figure also shows that the gain of the

transfer function from the control signal u; to the residual r; is small compared to the gains
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Figure 5.4: SAPR residual for Y-torque wheel failure with noisy measurements.
The standard deviation of the added noise is 1% of the standard deviation of
the measurement. The torque wheel was in a failed state between samples 213

and 284.

of the other transfer functions. Simulations with double actuator parity relations showed

similar sensitivity to noise and gave no improvement.
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Figure 5.5: Contribution 7y and r, to the SAPR residual for Y-torque wheel.
The standard deviation of the noise is 1% of the standard deviation of the
measurement. The torque wheel was in a failed state between samples 213 and
284.
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To summarize, detecting actuator failures on the Mini-Mast using Generalized Parity Re-
lIations was without any success. The main reason for the poor performance of the parity
relations is the ext‘reme sensitivity to noise, a result of the very high gains on the transfer
functions from -the measurements to the residual. Also, the small contribution of the control
signal to the residual makes its absence very hard to detect. This sensitivity is inherent in

the formulation of actuator parity relations.
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Chapter 6

Conclusion

Space based stations put strict requirements on the reliability of the control system compo-
nents. Because these systems will be used for long unattended periods of time the control
system must be tolerant to the failure of its actuators and sensors. The reliability of the sys-
tem can be increased through hardware redundancy, but this leads to increased weight and
can be impractical when many components are used by the control system. The reliability
of the system can also be increased with analytical redundancy that uses the redundancy

that is present in the dynamics of the plant and the input-output histories.

Ideally one would require that a failure detection and isolation system be independent of
the mode of failure and it should also be applicable to both sensors and actuators. Two
methodologies satisfy these requirements: the Failure Detection Filter and the method of
Generalized Parity Relations. In this work we discussed the application of Generalized
Parity Relations to an experimental flexible space structure, the NASA Langley Mini-Mast.
Two different sensor sets were considered and the detection of actuator failures was also

investigated. The performance of a reduced order model that included the first five modes
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of the plant (referred to as model-based relations) was compared to a set of parity relations
that was identified directly from input-output data (referred to as the identified relations).

The effect of the model order and sampling period on the performance of the Residual

Generator were also shown.

The first set of sensors consisted of the three displacement sensors at the tip of the mast.
These sensors measured the displacement of the tip relative to a fixed, rigid structure that
was built around it. The model-based residuals suffered from sensitivity to noise and did not
give reliable indications of the failures. The identified relations gave good failure signatures
on all the different failure modes that kwere simulated in the dataBecEauseall analytxcal
redundancy techniques use a model of the plant, they all suffer from mismatches between
the model and the real plant. By identifying the coefficients of the parity relations directly
from input-output datg Elje pfaed for an accurate state-space model of the plant disappears.
Idefxtifying the parity relations has the advantage that it is easy to increase the model
of the order if the low order models that are typically used by the control system give
unacceptable performance. Using double sensor parity relations led to no improvement for
the model-based relations, while the identified relations showed a significant improvement
in the failure signature.! It was also illustrated that the sampling period had a significant
effect on the performance of the Residual Generators; it was found that the longer sampling
periods gave better failure signatures. The reason for this improved performance comes

from the smaller frequency band that needs to be matched by a model with a given order.

The second sensor set consisted of two accelerometers and a gyro, all mounted at the tip
of the mast. A state-space model was not available for this set of sensors so all the results

apply to identified relations. Because of the wider bandwidths of these sensors it was

1This clearly shows that the reliabiliiy problem can be solved by instrumenting all flexible space structures
with displacement sensors and using identified relations. The only problem that remains to be solved is

building a rigid, fixed structure around the flexible structure.
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found that we had to increase the order of the model to get good performance from the
Residual Generators. The single sensor parity relations performed satisfactorily and the
double sensor pari.ty relations gave good failure signatures. Again, increasing the sampling
period resulted in a significant improvement of the failure signétures. This combination of

sensors also illustrated that it is possible to use sensors of mixed type to construct parity

relations.

A set of parity relations that was identified when the mast was excited by bandlimited
signals performed poorly when applied to data that was recorded when the mast was driven
By wideband signals. The magnitudes of the input signals differed considerably so that the

poor performance is probably caused by the nonlinearities of the torque wheel actuators.

The detection of actuator parity relations proved to be very difficult. It was found that the
Residual Generators had very large gains associated with the transfer functions from the
measurements to the residual, making it extremely sensitive to noise in the measurements.
This resulted in residuals that were so noisy that it completely obscured the contribution

of the control input.

Future Work

In this work we presented many examples where parity relations gave a clear indication of
the corresponding failure. However, no statistical tests were performed to see how good
they perform when subjected to thousands of failures. Clearly, this is a task that must be

performed before this method can be applied to a practical system.

In the Introduction we mentioned that there is another failure detection and isolation
method that does not require the specification of failure modes and is applicable to both
sensors and actuators. It would be interesting to compare the performance of this method,

called the Failure Detection Filter, to the method of Generalized Parity Relations that was
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used in this work.

Though FDI has been studied for many years, several problems remain unsolved. A brief
summary of some problems that need further lnvestxg;tion is given here. It was pointed
out that an increase in the sampling period led to irrripi'ovedrfa,ilure signatures. Although
no examples were givéri it was found that iricreasing the sampling period beyond a certain
point yielded no improvement. It thus appears that there might be an optimum sampling
period. Even if we can find such an optimal sampling period ana.lyticai,lly, it may not be an
acceptable sampling period for use by the controller.r It is easy to derive parity relations
when the sampling period used by the Residual Generator is an integer multiple of the

sampling period used by the controller. However, the analysis of the system is complicated

because the resulting Residual Generator is not time invariant any more. Because of the

large improvement that can be realized by the selection of a good samphng perlod it is an

area that warrants further investigation.

It was pointed out at the end of Section 2.2 that the construction of double sensor parity
relations leads to a choice of two relations. An example of this was given in Section 3.6
where we saw that the use of the second relation gave better failure signatures. Analysis
of double sensor parity relations may lead to additional insight to why this happened and

maybe hint at which relation should be used for best results.

In Section 2.1 we mentioned that a parity relation corresponds to an ARX model of the
system. An ARX model is but one of several models to describe a system. A more general

model structure is given by (see Ljung [7])

a(ayt) = Z8u(t) + 3800, (6.1)
where
a(g) =1+eaqg +... 4+ an, ¢, (6.2)
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g is the shift operator, and 3(q), 7(¢), 0(¢) and ¢(q) have similar definitions. We see
that the ARX model is obtained from this general model by setting y = § = ¢ = 1. By
adopting a more éeneral model as given above it may be possible to describe a greater
class of systems; and thus broaden the number of systems that can benefit from analytical
redundancy techniques. The applicability of this model to practical systems should be

investigated.

When doing model validation, r(t) (see Equation (6.1)) is studied in great detail as this
signal contains a wealth of information about the identified model. Thus we see that model
validation is similar in nature to failure detection. Robust identification techniques are con-
stantly being developed. Because analytical redundancy methodologies all rely on a model
of the plant robustness is always an issue. The applicability of these robust identification

techniques to failure detection must therefore be investigated.
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Appendix A

Second order system analysis

In this appendix we will find the discrete-time description of a continuous-time second order

system. Let the continuous-time system be

w2

§% + 2(wns + w? u(s),

y(s) (A1)

where w, is the natural frequency and { < 1 the damping ratio. A continuous-time state-

space description is (see Chen [3], chapter 6)

0 -w? w?
&(t) = s+ | " | u), . (A2)
1 —2(wn 0
y(t) = [0 1J=(1) (A.3)
= cdz(t). (A.4)

The discrete-time state-space description is given by Equations (2.8) - (2.11). Let the

damped natural frequency be denoted by

wg =wpy/1—(2. (A.5)
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Evaluating the equations for A and B we get

air a1z
A = (A.6)
az1 @22
)
cos(wqTy) + Cwn sin(wqTy) Y sin(wqTy)
= e~CwnTs wd we , (A7)
de sin{wqTy) cos(wyTy) — %ﬂ sin(wqT,)
and
b1
B = (A.8)
\ b21
2 .
QCwn _— e"(wnTa (QCwn COS(Wde) + w"l(2c - 1) Slr;(wdTa))
= - Vi (A.9)
\ 1- e‘(umTa (cos(wdT,) + g%‘jd—g;’l)

The numerator and denominator polynomials are found by evaluating Equation (2.68)

y(2) = c(z2I- A) lbu(z) (A.10)
= %u(z) (A.11)

by 2! b1y — ap b -2 )
_ 212 +7(fl121 11 — a1bay)z —. (A.12)
1 —(a11 + az)z"! + (an1a22 — ajzaz)z
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Appendix B

Mini-Mast state-space model

The continuous-time state-space model of the Mini-Mast is given by
A, O B,
z(t) = z(t) + : u(t) (B.1)
O As Bs
where

(B.2)
—28.920733 —0.347406

(B.4)
~-729.718377 -3.873707

(B.3)
~28.839048 —0.228771
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0 1
A4 = y (B5)

—1477.941136 —1.829934

0 1
As = : (B.6)
—1501.392005 —-0.774956
0 0 0
B, = , (B.7)
0 -0.006166 0
0 0 0
B, = , (B.8)
-0.004122 0 O
0 0 0
B = : (B.9)
0 0 0.194500
0 00
By = , (B.10)
—-0.002723 -0.002723 0O
0 00
Bs = (Bll)

0.002549 -0.002549 0
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The output matrix for the set of displacement sensors at the tip of the mast is

4.846400 0 -5.821079 0 4.846400 0 0.544624 0 1.069679 0
C=1 -0798394 0 5784700 0 4.911925 0 -—1.740127 0 —1.302644 0

—3.724208 0 -0.288348 0 4.633496 0 —1.597996 0 —0.142804 0
(B.12)

The D matrix is

D=o0. (B.13)
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