DETECTION OF REFLECTOR SURFACE FROM NEAR FIELD PHASE MEASUREMENTS

Final Report
Grant No. NCC-3-146
DETECTION OF REFLECTOR SURFACE FROM NEAR FIELD PHASE MEASUREMENTS

Submitted by:
Dr. Nathan Ida
Department of Electrical Engineering
The University of Akron
Akron, OH. 44325-3904

Submitted to
NASA Lewis Research Center
INTRODUCTION

The deviation of a reflector antenna surface from a perfect parabolic shape causes degradation of the performance of the antenna. The shape of the antenna is therefore desired for several applications. If the shape of the antenna can be determined quickly during its manufacture, localized deviations from a perfect surface might be eliminated. If an antenna should become damaged, the location of the damage may allow easier repair. This is particularly important since the damage is not easy to see and is difficult to measure directly.

The problem of determining the shape of the reflector surface in a reflector antenna using near field phase measurements in not a new one. A recent issue of the IEEE transactions on Antennas and Propagation (June, 1988) contained numerous descriptions of the use of these measurements, including works by Y Rhamat-Samii, et al, W. Chujo, et al., and J. J. Lee, et al. These accounts use one of two methods: holographic reconstruction or inverse Fourier transform.

Holographic reconstruction, used by Rahmat-Samii, makes use of measurement of the far field (amplitude and phase) of the reflector and
then applies the Fourier transform relationship between the far field and the current distribution on the reflector surface.

Inverse Fourier transformation uses the phase measurements to determine the far field pattern using the method of Kerns. After the far field pattern is established, an inverse Fourier transform is used to determine the phases in a plane between the reflector surface and the plane in which the near field measurements were taken.

These calculations are time consuming since they involve a relatively large number of operations. For the holographic reconstruction technique, the calculations are of the order of \(n^2 \log(2n) \) floating point operations per phase measurement. The inverse Fourier transform method requires \(n^2 \log(2n) \) calculations to obtain the far field pattern, followed by \(n^2 \log(2n) \) operations to obtain the near filed phases again.

A much faster method can be used to determine the position of the reflector. This method makes use of simple geometric optics to determine the path length of the ray from the feed to the reflector and from the reflector to the measurement point. This method takes only 57 floating point operations per phase measurement and gives the specular reflection point directly, rather than the phase at a plane near the reflector, as the inverse Fourier transform method does.

For small physical objects and low frequencies, diffraction effects have a major effect on the error, and the algorithm provides incorrect results. It is believed (but not proven) that the effect is less noticeable
for large distortions such as antenna warping, and more noticeable for small, localized distortions such as bumps and depressions such as might be caused by impact damage.

Determination of the applicable distortion feature sizes is outside the scope of this work.

THE REFLECTOR SURFACE ESTIMATION ALGORITHM

Necessary assumptions.

The Reflector Surface Estimation (RSE) algorithm developed here, requires that there be no caustic points between the reflector surface and the measurement plane. If this assumption is met, each point on the phase measurement plane corresponds to either zero or one specular reflection point on the antenna surface.

Geometry of the problem.

The geometry used in the discussions throughout this document are shown in Figure 1. In accordance with normal conventions, the antenna radiates in the z-direction. A feed horn is located at the apparent focus \((x_f,y_f,z_f)\). A ray emitted from the feed intersects the reflector surface at the point \((x,y,z)\). The ray is reflected from \((x,y,z)\) and intersects the near field plane at a point \((x_a,y_a,z_a)\).
Required data.

The RSE algorithm requires transform phase measurements in the near field of a reflector antenna to the point on the antenna which caused the specular reflection. Required inputs to the basic algorithm are:

- **Phase measurements**
 - Absolute phase measurements or relative phase measurements which can be converted to absolute.

- **Frequency**
 - The frequency at which the phase measurements were taken.

- **Antenna feed location**
 - The location of the antenna feed in the coordinate system in which the results are desired.

- **Reference length**
 - One physical measurement which must be made to provide relative phase length.

- **Phase measurement**
 - The distance from the origin of the coordinate system to the plane in which the phase measurements are made.

Theory.

The electrical distance from the feed of the antenna to the phase measurement plane can be found from:

\[
d = d_{\text{ref}} - \frac{\Phi_{\text{ref}} - \Phi_{ij}}{k}
\]

(1)
The distance consists of two components: the distance from the feed to the reflector and the distance from the reflector to the measurement point.

\[d_{ij} = \sqrt{(x-x_f)^2 + (y-y_f)^2 + (z-z_f)^2} + \sqrt{(x-x_a)^2 + (y-y_a)^2 + (z-z_a)^2} \]

(2)

It is desired to know the location of that reflector point. Since we know the phase at many points in the near field, we can calculate the angle of arrival of the ray. The partial derivatives are:

\[\frac{\partial \phi_{ij}}{\partial x} = \frac{\phi_{i+1,j} - \phi_{i-1,j}}{x_{i+1,j} - x_{i-1,j}}, \quad \frac{\partial \phi_{ij}}{\partial y} = \frac{\phi_{i,j+1} - \phi_{i,j-1}}{y_{i,j+1} - y_{i,j-1}} \]

(3)

\[m_x = \frac{1}{k} \frac{\partial \phi_{ij}}{\partial x}, \quad m_y = \frac{1}{k} \frac{\partial \phi_{ij}}{\partial y}, \quad m_z = \frac{1}{\sqrt{1 - m_x^2 - m_y^2}} \]

(4)

From these derivatives, we can define the path of the incoming ray:

\[x = \frac{m_x}{m_z}(z-z_a) + x_a, \quad y = \frac{m_y}{m_z}(z-z_a) + y_a \]

(5)

We define constants representing the slopes of the lines:

\[C_1 = \frac{m_x}{m_z}, \quad C_2 = \frac{m_y}{m_z} \]

(6)

Substituting (5) and (6) into (2)

\[d_{ij} = \sqrt{(C_1(z-z_a) + x_a-x_f)^2 + (C_2(z-z_a) + y_a-y_f)^2 + (z-z_f)^2} + \sqrt{(x-x_a)^2 + (y-y_a)^2 + (z-z_a)^2} \]

(7)
Two new constants are now defined,

\[d_1 = -C_1 z_a + x_a - x_f \quad \quad d_2 = -C_2 z_a + y_a - y_f \]

Substituting into equation (8)

\[d_{ij} = \sqrt{(d_1 + C_1 z)^2 + (d_2 + C_2 z)^2 + (z - z_f)^2 + (x - x_a)^2 + (y - y_a)^2 + (z - z_a)^2} \]

Expanding the first term and segregating powers of \(z \),

\[d_{ij} = \sqrt{(d_1^2 + 2d_1 C_1 z + C_1^2 z^2) + (d_2^2 + 2d_2 C_2 z + C_2^2 z^2) + (z^2 - 2z_z z_f + z_f^2) + (x - x_a)^2 + (y - y_a)^2 + (z - z_a)^2} \]

or:

\[\sqrt{(d_1^2 + d_2^2 + z_f^2) + (2d_1 C_1 + 2d_2 C_2 - 2z_f)z + (C_1^2 + C_2^2 + 1)z^2 + (x - x_a)^2 + (y - y_a)^2 + (z - z_a)^2} \]

Three additional constants are defined:

\[f_1 = d_1^2 + d_2^2 + z_f^2 \]
Substituting (13) through (15) into (8)

\[d_{ij} = f_2 C_1 + f_2 C_2 - f_2 z \]

Substituting (6) into equation (16) yields

\[d_{ij} = \sqrt{f_1 + f_2 z + f_3 z^2 + \sqrt{(x-x_a)^2 + (y-y_a)^2 + (z-z_a)^2}} \]

Substituting (6) into equation (16) yields

\[d_{ij} = \sqrt{f_1 + f_2 z + f_3 z^2 + \sqrt{C_1^2 (z-z_a)^2 + C_2^2 (z-z_a)^2 + (z-z_a)^2}} \]

\[d_{ij} = \sqrt{f_1 + f_2 z + f_3 z^2 + \sqrt{f_3 (z-z_a)^2}} \]

\[\sqrt{f_1 + f_2 z + f_3 z^2} = d_{ij} - \sqrt{f_3 (z-z_a)^2} \]

The second term on the right hand side of equation (19) can be either \(z-z_a \) or \(z_a-z \). One root represents the desired solution and the other root represents a point along the ray but in the positive \(z \) direction from the near field plane.

Squaring both sides and selecting the proper root,

\[f_1 + f_2 z + f_3 z^2 = d_{ij}^2 - 2\sqrt{f_3 (z-z_a)}d_{ij} + f_3 (z-z_a)^2 \]

Separating the powers of \(z \),

\[f_1 + f_2 z + f_3 z^2 = d_{ij}^2 - 2\sqrt{f_3} z_a d_{ij} + f_3 z_a^2 + (2\sqrt{f_3} d_{ij} - 2f_3 z_a)z + f_3 z^2 \]
The z^2 terms cancel, so

$$f_1 + f_2 z = d_{ij}^2 - 2\sqrt{3}z_a d_{ij} + f_3 z_a^2 + (2\sqrt{3}d_{ij} - 2f_3z_a)z$$

(22)

Solving for z,

$$z = \frac{f_1 - d_{ij}^2 + 2\sqrt{3}z_a d_{ij} - f_3 z_a^2}{2\sqrt{3}d_{ij} - 2f_3z_a - f_2}$$

(23)

The x and y points may be found from equation (5).

To obtain these results, the floating point operations in table 1 must be performed.
EFFECT OF NEAR FIELD GRID SIZE ON ACCURACY

An attempt was made to determine the effect of the near field grid size on the accuracy. The accuracy should worsen with larger grid sizes because the partial derivatives are determined from the phases of the nearest neighbors, and, in the presence of distortion, the calculated partial derivatives differs from the true local partial derivative for large grid sizes.

The analysis uses as a reflector model a parabola with cosine distortion in one of the axes. The surface is described by the equation

\[z = \frac{x^2 + y^2}{2f} + \delta \cos\left(2\pi \frac{y_{\text{max}} - y}{y_{\text{max}} - y_{\text{min}}} \right) \]

with \(\delta \) ranging from 0 to 0.007 meters.

The average error as a function of number of elements in the model antenna is plotted in figure 2 for several levels of distortion. As can be seen from the figure, the algorithm error varies nearly linearly with input distortion and is not greatly influenced by the element size. The invocations of RSE, and that the RSE algorithm failed for the large values of distortion for large grid sizes (evidenced by the curves which terminate early on the left of the plot). The RSE algorithm determined that some pairs of input phases were increasing or decreasing, wrote a message to the screen, and terminated the calculations for these cases.
For successful invocation of RSE, however, the accuracy of the result is not heavily influenced by grid size.

This is not to say that the number of grid points is not an important parameter. If the number of grid points is small, the position of the reflector surface will be known at only a few points.

EFFECT OF PHASE MEASUREMENT ERROR ON ACCURACY

An important performance measurement for any algorithm that uses real measurements is the effect of errors in the measurements on the accuracy of the results. In order to determine the output of the program to input noise, Gaussian noise of various amplitudes was added to the input phase measurements. The results are shown in figure 3.

The nonlinearity in the average output error as a function of input noise is apparently because the major effect on the error at low input noise levels is due to truncation errors in the algorithm. At higher levels, the error due to noise is the dominant part.
APPENDIX I
AUXILIARY PROGRAMS

This appendix contains description and listings of auxiliary programs used in the analysis. These programs include:

- **vary**: A program which uses all of the subroutines and functions below to produce error data based on variations in grid spacing, phase accuracy, and frequency.

- **rnfgp**: A subroutine which generates near field phase data on regular grid points based on user-supplied reflector distortion.

- **fixphi**: A subroutine which accepts the near field phase data supplied from rnfgp or from actual phase measurements and eliminates discontinuities which normally occur either at \(\pi \) and at \(-\pi\) or at 0 and 2\(\pi \). The input range is either \((-\pi, \pi)\) or \((0, \pi)\) and the output range is unlimited.

- **rseerr**: A subroutine which includes the RSE algorithm and uses a user-supplied reflector distortion function (also supplied in rnfgp) to determine the error of the RSE algorithm.

- **refun**: A function which is supplied to rnfgp and rseerr which returns the z position of a simulated reflector surface given the x and

11
y coordinates. The partial derivatives with respect to x, y, and z are also given.

Subroutine RNFPG.

RNFGP theory.

Program rnfpg is an iterative procedure used to determine a point on a reflector, \(x_r, y_r, z_r \), which will reflect incident rays from a known feed point to a known point in a near field plane. Only two of the variables are required; the third can be determined because it is known that the point lies on the reflector surface. The projection of the geometry in the \(y=0 \) plane is shown in figure 4.

The procedure begins with the selection of a starting value for the solution. The assumption is made that the x and y coordinates on the reflector are close to the x and y coordinates in the near field plane. About this point, four rays are used to probe the location of the exact solution. These rays originate form the feed location, intersect the reflector at four points arranged about the assumed solution (see figure 5).

Each of the rays is bounced off the reflector, following the laws of geometric optics. The intersection of the resulting ray and the near field plane is then calculated. These projections and the target grid point are shown in figure 5.
From these points, a new value of x_r, y_r is selected by linear interpolation:

$$x_{r'} = x_r - \delta + 2 \cdot \delta \cdot \frac{(x_a - x_{a3})}{(x_{a1} - x_{a3})}$$

$$y_{r'} = y_r - \delta + 2 \cdot \delta \cdot \frac{(y_a - y_{a4})}{(y_{a2} - y_{a4})}$$

Up to this point, we have not discussed the selection of δ. Obviously, to converge to a solution, δ must decrease with each iteration. The speed of convergence to a solution is directly related to the rate at which δ decreases. If δ is decreased too quickly, however, x_r, y_r may fall outside of the bundle of rays. This is usually not fatal, if the function is well behaved, but if it happens too often, divergence may occur.

The parameter which will determine how quickly δ can be reduced is related to the linearity of the mapping from the reflector position to the near field position. If the mapping is totally linear (e.g., no distortion), only one iteration is necessary. The more non-linearity, the more iterations will be needed.

One rough indication of linearity can be obtained from the points already calculated. If the transformation were totally linear, the distance in the x axis from x_{a1} to x_{a2} would be the same as the distance in the x direction x_{a4} to x_{a3}. Using the difference between the two distances divided by the total distance from x_{a1} to x_{a3} as the measure of non-linearity, we have:

$$\text{skew}_x = \left| \frac{(x_{a1} + x_{a3} - x_{a2} - x_{a4})}{(x_{a1} - x_{a3})} \right|$$
A similar measure can be made in the y direction.

$$\text{skew}_y = \left| \frac{(y_{a1} + y_{a3} - y_{a2} - y_{a4})}{(y_{a1} - y_{a3})} \right|$$

The program uses the non-linearity as the basis for the decrease in the spread of the packet of rays. The program starts with a δ of 10% of the largest dimension of the antenna. After the first iteration, δ is calculated from

$$\delta_{n+1} = \delta_n \times (\text{skew}')$$

Where

$$\text{skew}' = \max(0.1, \min(0.9, \max(\text{skew}_x, \text{skew}_y)))$$

The maximum value of skew$_x$ or skew$_y$ is used, so long as that value is greater than 0.1 and less than 0.9.

After the new value for δ is determined, a new bundle of rays is launched. A test is made to determine if the bundle of rays does enclose the solution. This can be determined by examining the intersection of the rays with the near field plane. x_{a3} should be less than x_a and x_{a1} should be greater than x_a, with similar requirements in the y axis. If one of these conditions is not met, an informative message is sent to the console and the value of δ is automatically multiplied by 2. The iteration then continues.
After each iteration, a test is made to determine if the error in the near field plane has converged to within the maximum error used in the program's calling argument. If it has, the value is printed out to a file and the program continues with the next point in the near field plane.

Subroutine fixphi.

Subroutine fixphi takes as its input the results of nfpq of near field phase measurements from an antenna facility and transforms the relative phase measurements (-π < θ < π) or (0 < θ < 2π) to measurements which can be used to determine phase length. For example, if the following line were input into the program:

1.0 1.5 2.5 0.5 1.5

the program would convert the line to:

1.0 1.5 2.5 3.64159 4.64159

The program works by first examining the data to see if it meets one of the conditions: (-π < θ < π) or (0 < θ < 2π). If it meets neither condition, an error message is displayed on the console and the program terminates. If either condition is met, the program continues.

The program continues by rewriting the input file and reading input while processing and printing the output. The first input value is special in that its value is always preserved. After the first value, each
measurement is examined to determine if it appears that the data has gone through a transition from $-\pi$ to π or from 2π to 0.

RNFG performance.

There were two figures of merit of the routine which were traded against each other to obtain maximum performance: computational speed and accuracy. Because of the iterative nature of the algorithm, additional accuracy can always be obtained by allowing more time for the computations, up to the precision limits of the machine. Double precision numbers were used as the default for the algorithm to limit the effect of machine precision on the output.

Required accuracy is an argument in the invocation of RNFG, and the algorithm will execute until that accuracy is obtained.

In order to determine the effect of accuracy on expected execution time, number of iterations was plotted as a function of required accuracy. The results are shown in figure 6.
Figure 1. Geometry used to develop the RSE algorithm
Table 1. Operations and timing. Times shown are for a Motorola 68881 co-
processor operating at 40 mHz. Time is given in microseconds.

<table>
<thead>
<tr>
<th></th>
<th>ADD</th>
<th>SUBTRACT</th>
<th>MULTIPLY</th>
<th>DIVIDE</th>
<th>SQ. ROOT</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\partial/\partial x)</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>(\partial/\partial x)</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>(m_x)</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>(m_y)</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>(m_z)</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td>6.0</td>
</tr>
<tr>
<td>(C_1)</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>(C_2)</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>(d_1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>(d_2)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>(f_1)</td>
<td>2</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>(f_2)</td>
<td>1</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>(f_3)</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>4.0</td>
</tr>
<tr>
<td>(z)</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>17.0</td>
</tr>
<tr>
<td>(x)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>4.0</td>
</tr>
<tr>
<td>Total</td>
<td>9.0</td>
<td>14.0</td>
<td>22.0</td>
<td>9.0</td>
<td>3.0</td>
<td>57.0</td>
</tr>
<tr>
<td>Cycle/oper</td>
<td>51</td>
<td>51</td>
<td>71</td>
<td>103</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>Total cycles</td>
<td>459.0</td>
<td>714.0</td>
<td>1,562.0</td>
<td>927.0</td>
<td>321.0</td>
<td>2,100.0</td>
</tr>
<tr>
<td>Time/cycle</td>
<td>0.025</td>
<td>0.025</td>
<td>0.025</td>
<td>0.025</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>Total time</td>
<td>11.48</td>
<td>17.85</td>
<td>0.00</td>
<td>23.18</td>
<td>0.00</td>
<td>52.51</td>
</tr>
</tbody>
</table>
Figure 2. Error vs. Discretization. Curves are (from bottom) for 1, 2, 3, 4, 5, and 6mm distortion.
Figure 3 RSE error in the presence of noise. Curves are (from bottom) for 1, 2, 3, 4, 5, and 6mm distortion
Figure 4. Problem geometry in the plane $y=0$.

Figure 5. Ray tracing in the near field plane.
Figure 6. rnfpg iterations versus accuracy. Curves are (from bottom) for 1, 2, and 3mm distortion.
COMPUTER PROGRAM LISTINGS

The programs used with this algorithm are listed on the following pages.
vary.f

vary.f compiles into a variety of programs depending on
the mode of compilation
Compilation must be done with the c preprocessor cpp.
One of the following may be defined

ERROR defaults to vary number of cells
varies the allowable error of rnfpg

program vary
implicit double precision (a-h)
implicit double precision (o-z)
double precision xamp(8),yamp(8)
common /partial/ pdfdx,pdfdy,pdfdz
common /distort/ del,omega,xampl,yampl
integer type
common /phys/ f,xf,yf,zf,xmin,xmax,ymin,ymax,freq,type
real maxerr(20,20),avgerr(20,20),rmserr(20,20)
integer error(20,20)
integer npts(8)

#define MAX CURVES 8
#define MAX POINTS 50
#ifdef ERROR
character*80 filename,pltttl,xttl,yttl,zttl
real xdata(50,8)
real ydata(50,8)
real avgitr
common /perf/ avgitr
#else ERROR
real xdata(50,8)
real adata(50,8)
real rdata(50,8)
real ndata(50,8)
real sigma(50,8)
real inacc(50,8)
#endif ERROR
common /plot/ idist,igrid,
data xamp/0.00, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07/
data yamp/0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00/

fmaxerr=.000001
ymax=1.1
ymin=.1
xmax=0.5
xmin=-.5
type = 1

#ifdef ERROR
infile=513
#else
infile=512
infile2=(infile1*3)/4
idiv = ifix(log(float(infile1))/log(2.0)-2.5)
gnids =2*ifix(log(float(infile1))/log(2.0)-2.5)
infile1=infile1+1
infile2=infile2+1
#endif ERROR
f = 1.0
xf = 0.0
vary.f

\[yf = 0.0 \]
\[zf = 1.0 \]
\[zp = 1.0 \]

periods = 1.0
omega = 2.0 * 3.14159265 * periods / (ymax - ymin)

freq=305000000000.0
Wave number
\[k = 2.0 * 3.14159265 / (300000000000/freq) \]

open(7,file="results.dat")
open(99,file="contour.dat")

min_dist=1
max_dist=7

do 10 i=min_dist,max_dist
idist=i
xampl=xamp(i)
yampl=yamp(i)
write(7,105)
105 format('avgerr.wpg')
write(7,106) xampl,yampl
106 format(' rnfpg error analysis'/
1 ' amplitude of (x,y) distortion = ('
2 'd18.10,'d18.10',')'
)

xlambda = 0.1
t = xamp1
del = t * xlambda

#ifdef ERROR
do 20 ierror=1,5
ferrmax=.000000001*(10**(ierror-1))
write(6,'*max err = ',ferrmax
write(7,'*max err = ',ferrmax
open(4,file="phl.dat",form='UNFORMATTED')
call rnfpg(infile1,ferrmax)
close(4)
ndata(ierror,i) = ferrmax
ydata(ierror,i) = avgitr
20 continue
continue
filename = "iter2.wpg"
pltttl = "RNFPG ITERATIONS VS ACCURACY"
xttl = "ACCURACY"
yttl = "ITERATIONS"
zttl = "DISTORTION"
call plotwpg(filename,pltttl,xttl,yttl,zttl,
1 0.00001,0.001,0.0,1.0,2.1,0,
2 max_dist-min_dist+1,
2 npts,xdata,ydata)
#endif ERROR

#else
open(4,file="ph1.dat",FORM='unformatted')
call rnfpg(infile1,fmaxerr)
close(4)
open(3,file="ph1.dat",FORM='unformatted')
open(4,file="ph1f.dat",FORM='unformatted')
call fixphi(infile1)
close(4)
close(3)
#endif

25
vary.f

open(4, file='ph2.dat', FORM='unformatted')
call rnfpg(infile2, fmaxerr)
close(4)
open(3, file='ph2.dat', FORM='unformatted')
open(4, file='ph2f.dat', FORM='unformatted')
call fixphi(infile2)
close(4)
close(3)

igrid=0
do 20 j=1, idiv
 igrid=igrid+1
 xdata(igrid, j) = infile2/(2**(j-1))
 open(4, file='phlf.dat', FORM='unformatted')
call rsegrid(infile2, 1+(infile2-1)/(2**(j-1)))
adata(igrid, j) = avgerr(igrid, j)
mdata(igrid, j) = maxerr(igrid, j)
rdata(igrid, j) = rmserr(igrid, j)
if(error(igrid, j).ne.0) go to 21
 close(4)
 igrid=igrid+1
 xdata(igrid, j) = infile2/(2**(j-1))
 open(4, file='ph2f.dat', FORM='unformatted')
call rsegrid(infile2, 1+(infile2-1)/(2**(j-1)))
adata(igrid, j) = avgerr(igrid, j)
mdata(igrid, j) = maxerr(igrid, j)
rdata(igrid, j) = rmserr(igrid, j)
if(error(igrid, j).ne.0) go to 21
 close(4)
20 continue

npts() = j-1

21 continue

do 30 j=1, 10
 nerrors(j) = 10
 sigma(j, i) = ((300000000./freq)/(360.*.01*5.)*float(j))
 open(4, file='phif.dat', FORM='unformatted')
 rewind(4)
call rseerr(infile1, sigma(j, i), inacc(j, i), ierrflg)
close(4)
30 continue

10 continue

call plotwpg("maxerr.wpg", 1 "MAXIMUM ERROR AS A FUNCTION OF DISCRETIZATION", 2 "NUMBER OF ELEMENTS ON A SIDE", "MAXIMUM ERROR", "DISTORTION", 3 10., 1000., 0., 0.00003., 0.0001, 1.0, 4 max_dist-min_dist+1, 5 npts, xdata, mdata)
call plotwpg("avgerr.wpg", 1 "AVERAGE ERROR AS A FUNCTION OF DISCRETIZATION", 2 "NUMBER OF ELEMENTS ON A SIDE", "AVERAGE ERROR", "DISTORTION", 3 10., 1000., 0., 0.00003., 0.0001, 1.0, 4 max_dist-min_dist+1, 5 npts, xdata, mdata)
call plotwpg("rmserr.wpg", 1 "ROOT MEAN SQUARE ERROR AS A FUNCTION OF DISCRETIZATION", 2 "NUMBER OF ELEMENTS ON A SIDE", "RMS ERROR", "DISTORTION", 3 10., 1000., 0., 0.00003., 0.0001, 1.0, 2 max_dist-min_dist+1, 3 npts, xdata, rdata)
call plotwpg("randerr.wpg", 1 "RANDOM ERROR AS A FUNCTION OF DISCRETIZATION", 2 "NUMBER OF ELEMENTS ON A SIDE", "RANDOM ERROR", "DISTORTION", 3 10., 1000., 0., 0.00003., 0.0001, 1.0, 2 max_dist-min_dist+1, 3 npts, xdata, rdata)
vary.f

1 "RSE AVG ERROR IN THE PRESENCE OF NOISE",
2 "STD DEVIATION OF INPUT, RADIANS", "AVERAGE ERROR, METERS", zttl,
3 0., 0.006, 0.01, 0., 0.00002, 0.00005, 0, 0,
4 max_dist-min_dist+1,
5 nerrors, sigma, inacc)

#include ERROR
stop
end
Calculate the z coordinate of the reflector surface

```fortran
real*8 function reffun(x,y)
implicit real*8 (a-h)
implicit real*8 (o-z)
real argx, sinfunx, cosfunx
real argy, sinfuny, cosfuny
integer type
real*8 x,y,f,del,omega,ymax
real*8 temp

common /partial/ pdfdx, pdfdy, pdfdz
common /distort/ del,omega
common /phys/ f,xf,yf,zf,zp,xmin,xmax,ymin,ymax,freq,type

x and y are the x and y positions of the point

del is the distortion amplitude factor

omega is the distortion wave number

ymax is the maximum y value

if(type .eq. 1) then
  argy = omega * (ymax-y)
  sinfuny = sin(argy)
  cosfuny = cos(argy)
  temp = -0.5/f
  pdfdx = x*temp
  pdfdy = y*temp - del * omega * sinfuny
  pdfdz = 1.0
  reffun = (x**2+y**2)/(4.0*f)+del*cosfuny
  return
endif

if(type .eq. 2) then
  argx = omega * (xmax-x)
  sinfunx = sin(argx)
  cosfunx = cos(argx)
  temp = -0.5/f
  pdfdx = x*temp - del * omega * sinfunx
  pdfdy = y*temp
  pdfdz = 1.0
  reffun = (x**2+y**2)/(4.0*f)+del*cosfunx
  return
endif

if(type .eq. 3) then
  argx = omega * (xmax-x)
  argy = omega * (ymax-y)
  sinfunx = sin(argx)
  sinfuny = sin(argy)
  cosfunx = cos(argx)
  cosfuny = cos(argy)
  temp = -0.5/f
  pdfdx = x*temp - del * omega * sinfunx
  pdfdy = y*temp - del * omega * sinfuny
  pdfdz = 1.0
  reffun = (x**2+y**2)/(4.0*f)+del*cosfunx +del*cosfuny
  return
endif
endfunc
```
subroutine rnfpg(nphasegp, ferrmax)

! The purpose of this program is to detect an antenna
! reflector surface from the near field phase distribution.
! The near field phase distribution is defined on an nxn
! rectangular grid system.
! Feeder location(xf,yf,zf), value of lambda, diameter of
! the reflector aperture(d)

implicit real*8 (a-h)
implicit real*8 (o-z)
real*8 xa, ya
real avgitr
common /partial/ pdfdx,pdfdy,pdfdz
integer type
common /phys/ f,xf,yf,zf,zp,xmin,xmax,ymin,ymax,freq,type
common /perf/ avgitr
dimension phi(1026)
open(11, file='res')
pi = 3.1415926

! Diameter of the region of interest on the reflector
d=1.
! Near field grid spacing
detnf = d/(nphasegp-1)
 k = 2*3.1415926 /(300000000. / freq)
 fctrmin = 0.1
 fctrmax = 0.9

nfirst=1 write(6,998)ferrmax
998 format("max err =",g8.3)
nloops=0

! Scan through the x axis of the near field
do 10 i=1,nphasegp
 call tick(i)
! Scan through the y axis of the near field
do 20 j=1,nphasegp
 define the x,y,z coordinates in the near field
 xa = xmin + detnf * (i-1)
 ya = ymin + detnf * (j-1)
 za = zp
 set up for search in reflector plane
 xr=xa
 yr=ya
 delta=dmax1(dabs(xmax-xmin),dabs(ymax-ymin))/10.
 reflector plane iteration loop
 continue
 nloops=nloops+1
 launch four rays
 call qray(xr+delta,yr,xax1,yay1)
 call qray(xr,yr+delta,xax2,yay2)
 call qray(xr-delta,yr,xax3,yay3)
 call qray(xr,yr-delta,xax4,yay4)

10 continue
20 continue
subroutine qray(xr,yr,xa,ya)
 implicit real*8 (a-h)
 implicit real*8 (o-z)
 common /partial/ pdfdx,pdfdy,pdfdz
 integer type
 common /phys/ f,xf,yf,zf,zp,xmin,xmax,ymn,ymax,freq,type

 if(xa3.gt.xa)goto 649
 if(xa.gt.xa1)goto 649
 if(ya4.gt.ya)goto 649
 if(ya.gt.ya2)goto 649
 go to 650

 continue
 write(6,648)
 format(' got outside of bundle of rays')
 delta=delta*2
 goto 601

 continue
 if(xa1.ne.xa3)
1 xr=2*delta/(xa1-xa3)*(xa-xa3) + xr - delta
 if(ya2.ne.ya4)
1 yr=2*delta/(ya2-ya4)*(ya-ya4) + yr - delta
 continue

 skewx = 0
 skewy = 0
 if((xa1 - xa3) .eq. 0) goto 680
 skewx = dabs(((xa1+xa3)-(xa2+xa4))/(xa1-xa3))
680 if((ya2 - ya4) .eq. 0) goto 681
 skewy = dabs(((ya2+ya4)-(ya1+ya3))/(ya2-ya4))
681 factor=2*dmax1(skewx,skewy)
 factor=dmax1(factor,fctrmax)
 factor=dmin1(factor,fctrmin)
 delta=delta*factor

 if(abs((xa1-xa3)*pdfdx)+abs((ya2-ya4)*pdfdy)) .gt. ferrmax) goto 601
 zr=reffun(xr,yr)
 dist=dsqrt((xf-xr)**2+(yf-yr)**2+(zf-zr)**2)+
 1 dsqrt((xa-xr)**2+(ya-yr)**2+(za-zr)**2)
 phi(j)=k*dist
 nphi=phi(j)/(2*pi)
 phi(j)=phi(j)-nphi*2*pi
 if(nfirst.ne.1)goto 200
 write(4)dist,phi(j)
 format(f14.8/f14.8)
 nfirst=0

 continue

 write(4)(phi(j),j=1,nphasegp)
555 format(1026f14.8)
10 continue

 close(11)
 avgitr = float(nloops)/float(nphasegp**2)
 write(7,997)avgitr
 write(6,997)avgitr
997 format("avg iter = ",f8.3)
 return
end
real*8 l1x, l2x, l1y, l2y, l1z, l2z
zr = reffun(xr, yr)
l1x = xf - xr
l1y = yf - yr
l1z = zf - zr
absnrm = pdfdx**2 + pdfdy**2 + pdfdz**2
r = 2.0*(pdfdx * l1x + pdfdy * l1y + pdfdz * l1z)/absnrm
l2x = l1x - r * pdfdx
l2y = l1y - r * pdfdy
l2z = l1z - r * pdfdz
quick = (zp-zr)/l2z
xa = quick * l2x + xr
ya = quick * l2y + yr
return
end
fixphi.f

subroutine fixphi(ninfile)
implicit double precision (a-h)
implicit double precision (o-z)
double precision phi(1026)

pi = 3.14159265
two pi = 2*3.14159265

read(3)dref,phiref
write(4)dref,phiref

199 format(f14.8/f14.8)
ifirst = 1
irow = 0

10 do 10 i=1,ninfile
 read(3)(phi(n),n=1,ninfile)
 if(ifirst .eq. 1) phirow = phi(1)
 ifirst = 0
 philast = phirow
 if((phi(1)-phirow) .lt. (-1*pi)) then
 irow = irow + 1
 philast=phi(1)
 phirow=phi(1)
 endif
 else if((phi(1)-phirow) .gt. pi) then
 irow = irow - 1
 philast=phi(1)
 phirow=phi(1)
 endif
 icol = irow
 do 20 j=1,ninfile
 if((phi(j)-philast) .lt. (-1*pi)) then
 icol = icol + 1
 else
 if((phi(j)-philast) .gt. pi) then
 icol = icol - 1
 endif
 endif
 philast=phi(j)
 phi(j) = phi(j) + icol*twopi
 continue
 20 write(4)(phi(n),n=1,ninfile)
10 continue

7 format(1026f14.0)
8 format(1026f14.8)
return
end
rsegrid.f

subroutine rsegrid(ninfile,ntouse)

the purpose of this program is to detect an antenna reflector surface from the near field phase distribution. The near field phase distribution is defined on an nxn rectangular grid system.

surface detection

implicit double precision (a-h)
implicit double precision (o-z)
double precision lambda,mx,my,mz,k
double precision dummy(1026)
double precision phi(3,1026)
real*8 reffun
integer contour(1026)
common /partial/ pdfdx,pfddy,pfdz
common /distort/ del,omega,xampl,yampl
integer type
common /phys/ f,xf,yf,zf,xmin,xmax,ymin,ymax,freq,type
real maxerr(20,20),avgerr(20,20),rmserr(20,20)
integer error(20,20)
common /plot/ idist,igrid
1 maxerr(20,20),avgerr(20,20),rmserr(20,20),error(20,20)
character*4 comment
error(igrid, idist)=0
comment = 'errmax = 0.0
sumerr = 0.0
sumsq = 0.0
nsum = 0

if(ntouse.lt.100) write(99,801)ntouse,idist
801 format('e',i4.4,i2.2,'.dat')
if(ntouse.lt.100) write(99,802)ntouse,del
802 format(' ALGORITHM ERROR WITH ',i4.4,' GRIDS AND ',
1 F9.3,' MM MAX SIN DISTORTION')

if(ntouse.lt.100) write(99,803)1,'err<.00003'
if(ntouse.lt.100) write(99,803)2,'err<.00002'
if(ntouse.lt.100) write(99,803)3, err<.00001'
if(ntouse.lt.100) write(99,803)4, err>.00000'
if(ntouse.lt.100) write(99,803)5, err>.00001'
if(ntouse.lt.100) write(99,803)6, err>.00002'
if(ntouse.lt.100) write(99,803)7, err>.00003'
if(ntouse.lt.100) write(99,803)8, err>.00004'
803 format(1,i3,' ',a)

if(ntouse.lt.100) write(99,804)ntouse-2
804 format(1,i3)

za = zf
pi = 3.14159265
read(4) dref,phiref
lambda=300000000./freq
k = (2*pi)/lambda
delx=(xmax-xmin)/(ntouse-1)
dely=(ymax-ymin)/(ntouse-1)
nitoskip=(ninfile/(ntouse-1))-1
write(6,*); nitoskip = ';,ntoskip

read in two lines of input to start the process


```fortran
if(ntoskip.eq.0) then
  read(4)(phi(2,n),n=1,ntouse)
else
  read(4)phi(2,1),
  ((dummy(iskip),iskip=1,(ntoskip)),phi(2,n),n=2,ntouse)
endif

if(ntoskip.ne.0) then
  do 880 iskip=1,(ntoskip)
  endif
  880 read(4)dummy(1)

if(ntoskip.eq.0) then
  read(4)(phi(3,n),n=1,ntouse)
else
  read(4)phi(3,1),
  ((dummy(iskip),iskip=1,(ntoskip)),phi(3,n),n=2,ntouse)
endif

if(ntoskip.ne.0) then
  do 881 iskip=1,ntoskip
  endif
  881 read(4)dummy(1)

  do 400 n=1,ntouse
    400 phi(2,n)=phi(2,n)-phiref

  do 10 i=2,ntouse-1
    10 write(T,*)su_nerr

  xa=xmin+(i-1)*detx
  prepare to read in a new row
  do 11 il=1,ntouse
    11 phi(1,il)=phi(2,il)

  if(ntoskip.eq.0) then
    read(4)(phi(3,n),n=1,ntouse)
  else
    read(4)phi(3,1),
    ((dummy(iskip),iskip=1,(ntoskip)),phi(3,n),n=2,ntouse)
  endif

  if(ntoskip.ne.0.and.i.ne.(ntouse-1)) then
    do 882 iskip=1,ntoskip
 endif
  882 read(4)dummy(1)

  do 401 n=1,ntouse
    401 phi(3,n)=phi(3,n)-phiref

  do 20 j=2,ntouse-1
    20 ya=ymin+(j-1)*dely
dref and phiref are measured quantities

dphidx=phi(3,j)-phi(1,j)
if(dphidx.gt.pi)dphidx=dphidx-2*pi
if(dphidx.lt.-1*pi)dphidx=dphidx+2*pi
if((dphidx.lt.-1).or.(dphidx.gt.1))then
  if(error(igrid, idist).eq.0)then
    error(igrid, idist)=1
    comment=' ?? '
    write(6,S70)
  endif
endif
```
rsegrid.f

 endif
 endif
 format(' grid size too large')
 dphidx=dphidx/(2*delx)
 dphidy=phi(2,j+1)-phi(2,j-1)
 if(dphidy.gt.pi)dphidy=dphidy-2*pi
 if(dphidy.lt.(-1*pi))dphidy=dphidy+2*pi
 if((dphidy,lt.-1).or.(dphidy.gt.1))then
 if(error(igrid, _dist).eq.0)then
 error(igrfd, idist)=1
 comment='??'
 write(6,570)
 endif
 endif
 dphidy=dphidy/(2*dely)
 mx = dphidx/k
 my = dphidy/k
 mz = dsqrt (1.0-mx**2-my**2)
 c1 = mx/mz
 c2 = my/mz
 d1 = -c1*za + xa - xf
 d2 = -c2*za + ya - yf
 f1 = d1**2 + d2**2 + zf**2
 f2 = 2.0 * ((d1+c1 + d2+c2 - zf)
 f3 = c1**2 + c2**2 + 1.0
 znu = f1*(f3*za**2 - 2.0 * dsqrt(f3)*d*za
 + d**2)
 znd = (f2 + f3*2.0*za - 2.0 * dsqrt(f3)*d)
 z=nz/znnd
 c=
 write(6,991)x,y,z
 format(991)format(5f10.10,",",f18.10,",",z=f18.10)
 err = z - reffun(x,y)
 if(err.gt.0)then
 contour(j)=5
 if(err.gt.0.001)contour(j)=6
 if(err.gt.0.002)contour(j)=7
 if(err.gt.0.003)contour(j)=8
 else
 contour(j)=4
 if(err.lt.-0.001)contour(j)=3
 if(err.lt.-0.002)contour(j)=2
 if(err.lt.-0.003)contour(j)=1
 endif
 derror= dabs(err)
 write(6,556)x,y,z,derror
 c
 format(5f14.8)
 if(derror .gt. errmax) errmax=derror
 sumerr = sumerr + derror
 sumsq = sumsq + derror**2
 nsum = nsum + 1
 continue
 if(ntouse.lt.100) write(99,819)(contour(j), j=2,ntouse-1)
719 format(1026il);
10 continue
 rms = dsqrt(sumsq/nsum)
 average = sumerr/nsum
 maxerr(igrid, _dist)=errmax
 avgerr(igrid, _dist)=average
 rmserr(igrid, _dist)=rms
 write(7,557)errmax,average,rms
 557 format(' maxerr = ', d14.8,
1 ' sumerr/n = ', d14.8,
2 ' sumsq/n = ', d14.8)
 write(7,558)ntouse,average
 558 format(' = ',i4,":",f14.8)
return
end
subroutine rseerr(ninfile, sigma, inacc, error)

surface detection
implicit double precision (a-h)
implicit double precision (o-z)
real sigma, inacc, gasdev
integer error
double precision lambda, mx, my, mz, k
double precision phi(3,1026)
real*8 reffun
common /partial/ pdfdx, pdfdy, pdfdz
common /distort/ del, omega, xamp, yamp
integer type
common /phys/ f, xf, yf, zf, zp, xmin, xmax, ymin, ymax, freq, type
logical exist, opened
integer ios, n,
integer arg1, arg2, arg3, arg4, arg5

continue
error=0
errmax = 0.
sumerr = 0.
sumq = 0.
nsum = 0
za = zp

pi = 3.14159265
read(4, end=699, err=698) dref, phiref
lambda=300000000./freq
k = (2*pi)/lambda
deltax=(xmax-xmin)/(ninfile-1)
dely=(ymax-ymin)/(ninfile-1)
read in two lines of input to start the process
read(4, end=699, err=698)(phi(2, n), n=1, ninfile)
read(4, end=699, err=698)(phi(3, n), n=1, ninfile)
do 400 n=1, ninfile

 perturb = sigma * gasdev()
 phi(2, n)=phi(2, n)-phiref + perturb
 perturb = sigma * gasdev()
 phi(3, n)=phi(3, n)-phiref + perturb
400 continue

do 10 i=2, ninfile-1
 xa=xmin+(i-1)*deltax
 prepare to read in a new row
 do 11 il=1, ninfile
 phi(1, il)=phi(2, il)
 phi(2, il)=phi(3, il)
 read(4, end=699, err=698)(phi(3, n), n=1, ninfile)
 11 continue

 do 401 n=1, ninfile
 perturb = sigma * gasdev()
 phi(3, n)=phi(3, n)-phiref + perturb
401 continue

do 20 j=2, ninfile-1
 ya=ymin+(j-1)*delx
36
d = dref + 1/k*(phi(2, j))

dref and phiref are measured quantities.

dphidx = phi(3, j) - phi(1, j)
if (dphidx .gt. pi) dphidx = dphidx - 2*pi
if (dphidx .lt. (-1*pi)) dphidx = dphidx + 2*pi
if ((dphidx .lt. -1).or.(dphidx .gt. 1)) then
 if (error.eq.0) then
 error = 1
 write(6, 510)
 endif
 endif
 dphidx = dphidx/(2*detx)
endif

dphidy = phi(2, j+1) - phi(2, j-1)
if (dphidy .gt. pi) dphidy = dphidy - 2*pi
if (dphidy .lt. (-1*pi)) dphidy = dphidy + 2*pi
if ((dphidy .lt. -1).or.(dphidy .gt. 1)) then
 if (error.eq.0) then
 error = 1
 write(6, 510)
 endif
 endif
 dphidy = dphidy/(2*dety)
endif

mx = dphidx/k
my = dphidy/k
mz = dsqrt(1.0 - mx**2 - my**2)
c1 = mx/mz
c2 = my/mz
d1 = -c1*za + xa - xf
d2 = -c2*za + ya - yf
f1 = d1**2 + d2**2 + zf**2
f2 = 2.0 * (d1*c1 + d2*c2 - zf)
f3 = c1**2 + c2**2 + 1.0
znu = -f1 + (f3*za**2 - 2.0 * dsqrt(f3)*d*za + d**2)
znd = (f2 + f3*2.0*za - 2.0 * dsqrt(f3)*d)
z = znu/znd
x = c1*(z-za) + xa
y = c2*(z-za) + ya
err = z - reffun(x, y)
derror = dabs(err)
if (derror .gt. errmax) errmax = derror
sumerr = sumerr + derror
sumsq = sumsq + derror**2
nsum = nsum + 1
continue

format(1026i1);
10 continue

rms = dsqrt(sumsq/nsum)
average = sumerr/nsum
inacc = average
write(7, 555) sigma, inacc, errmax, average, rms
555 format(2, 'sigma=', g14.8, ',', inacc='g14.8', ',errmax=', g14.8,
, 'average=', d14.8, ',', rms='d14.8')
write(6, 555) sigma, inacc
557 format(2, 'ninfile, average')
558 format(4, f14.8)
return
698 write(6,'***error***')
return
699 write(6,'***end***')
call ERRSNS(arg1, arg2, arg3, arg4, arg5)
write(6,'*') arg1, arg2, arg3, arg4, arg5
inquire(4, EXIST=exist, NEXTREC=nr, IOSTAT=ios, OPENED=opened)
write(6,'*') 'exist=', exist, 'iostat=', ios, 'opened=', opened
write(6,'*') 'next record = ', nr
write(6,'*') 'nsum=', nsum, 'nsum=', nsum, 'nsum=', i
call flush(6)
rewind (4)
goto 1
end
vctr.f

program vctr
 this program reads the coordinates of any point on the reflector and determines the corresponding coordinates on the near field plane.

 implicit real*8 (a-h)
 implicit real*8 (o-z)
 dimension x(9,9),y(9,9),z(9,9),k(81),l(81),xa(9,9),ya(9,9)
 real*8 t,lx,ly,lz,l,ulx,uly,ulz
 real*8 pdfdx,pdfdy,pfdhz,absnrml
 real*8 nrmlx,nrmly,nrmrml

 open(12,file='data')
 open(13, file='res', status='old')
 write(*5) 'enter distortion factor t'
 read(5,*) t
 xlambda = 0.1
 nperiod = 1
 f = 1.0
 ymax = 1.1
 ymin = 0.1
 d = 1.
 delref = 0.125
 zp = 1.
 del = t * xlambda
 xf = 0.0
 yf = 0.0
 zf = 1.0
 pi = 3.14159265
 omega = 2.0 * pi * nperiod/(ymax-ymin)
 cx = 2.0 * pi/xlambda
 zaa = zp
 nrefgp = d/delref + 1
 do 10 i=1,nrefgp
 do 20 j=1,nrefgp
 read(13,3)k(i),l(j),x(i,j),xa(i,j),y(i,j),ya(i,j),z(i,j)
 format(2i3,f11.7)
 tlx = xf - x(i,j)
 fly = yf - y(i,j)
 llz = zf - z(i,j)
 l1 = sqrt(lx**2 + ly**2 + lz**2)
 pdfdx = -x(i,j)/(2.0*f)
 pdfdy = -y(i,j)/(2.0*f) - det*omega*sin(omega*(ymax-y(i,j))
 pdfdz = 1.0
 absnrml = sqrt(pdfdx**2 + pdfdy**2 + pfdhz**2)
 nrmlx = pdfdx/absnrml
 nrmly = pdfdy/absnrml
 nrmrz = pfdhz/absnrml
 ulx = ulx + r*nrmlx
 uly = uly + r*nrmly
 ulz = ulz + r*nrmrz
 in original z(i,j) was z
 xaa = (zaa-z(i,j))*(ulx/ul2x) + x(i,j)
 yaa = (zaa-z(i,j))*(uly/ul2y) + y(i,j)
 write(12,5)k(i),l(j),x(i,j),xaa,y(i,j),yaa,z(i,j),zaa
 format(2i3,f10.5)
 20 continue
 10 continue
 close(13)
 close(12)
end
gasdev.f

function gasdev()
 returns a normally distributed deviate with zero mean
 and unit variance
 double precision rand
 data iset/0/
 data gset/0.0/
 if(iset.eq.0) then
 v1 = 2. * rand() + 1.
 v2 = 2. * rand() - 1.
 r = v1**2 + v2**2
 if(r.ge.1) go to 1
 fac = sqrt(-2.*log(r)/r)
 gset = v1 * fac
 gasdev = v2 * fac
 iset = 1
 else
 gasdev = gset
 iset = 0
 endif
 return
end
vary1k.f

program vary
 implicit double precision (a-h)
 implicit double precision (o-z)
 double precision xamp(8),yamp(8)
 common /partial/ pdfx,pdfy,pdfdz
 common /distort/ del,omega,xamp,yamp
 integer type
 common /phys/ f,xf,yf,zf,zp,xmin,xmax,ymin,ymax,freq,type
 real maxerr(20,20),avgerr(20,20),rmserr(20,20)
 integer error(20,20)
 integer npts(8),nerrors(8)
#define MAX_CURVES 8
#define MAX_POINTS 50
 c character*80 filename,pltttl,xttl,yttl,zttl
 #ifdef ERROR
 real xdata(50,8)
 real ydata(50,8)
 real avgitr
 common /avgitr/ avgitr
 #else
 real xdata(50,8)
 real ydata(50,8)
 real rdta(50,8)
 real mdta(50,8)
 real sigma(50,8)
 real inacc(50,8)
 #endif
 common /plot/ idist,igrid,
 maxerr(20,20),avgerr(20,20),rmserr(20,20),error(20,20)
 data xamp /0.00, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07/
 data yamp /0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00/
 integer atime(3),iday, imonth,iyear
 500 format(i2.2,'/',i2.2,'/',i2.2, ' ',i2.2,':',i2.2'.Ii2.2')
 call itime(atime)
 call idate(iday, imonth,iyear)
 write(6,500)imonth,iday, iyear,atime
 fmaxerr=.000001
 ymax=1.1
 ymin=0.1
 xmax=0.5
 xmin=0.5
 type = 1
 infile1=1024
 idiv = ifix(log(float(infile1))/log(2.0)+2.5)
 ngrids =2*ifix(log(float(infile1))/log(2.0)-2.5)
 infile1=infile1+1
 f=1.0
 xf=0.0
 yf=0.0
 zf=1.0
 zp=1.0
 periods = 1.0
 omega = 2.0 * 3.14159265 * periods / (ymax-ymin)
 freq=30500000000.
 c Wave number
```fortran
vary1k.f

k = 2.0 * 3.141592650 / (300000000/freq)

open(7, file="results.dat")
open(99, file="contour.dat")
min_dist=1
max_dist=7
read(5,997)
997 format(13)
999 format(4 bad distortion selector:, i4)
else
998 format("doing iteration ", i2, ", ", g10.4, ", ", g10.4)
endif

do 10 i=min_dist,max_dist
10 idist=i
xamp=xamp(i)
yamp=yamp(i)
write(7,105)
write(7,106) xamp(y), yamp(x)
write(7,105) xamp(y)
write(7,106) yamp(x)

x lamb d = 0.1
t = xamp
del = t * x lamb d
open(4, file="phi1.dat", FORM='unformatted')
call rnfpg(infile1, fmaxerr)
close(4)
open(3, file="phi1.dat", FORM='unformatted')
open(4, file="phi1.dat", FORM='unformatted')
call fixphi(infile2)
close(4)
close(3)
21 npts(i) = j-1
10 continue
continue
call ltime(atime)
call ldate(iday, imonth, iyear)
write(6,500) imonth, iday, iyear, atime
stop
end
```