A Finite Element Model of Conduction, Convection, and Phase Change Near a Solid/Melt Interface

Larry A. Viterna
Lewis Research Center
Cleveland, Ohio

January 1991
A FINITE ELEMENT MODEL OF CONDUCTION, CONVECTION, AND PHASE CHANGE NEAR A SOLID/MELT INTERFACE

Larry A. Viterna
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

Detailed understanding of heat transfer and fluid flow is required for many aerospace thermal systems. These systems often include phase change and operate over a range of accelerations or effective gravitational fields.

An approach to analyzing such systems is presented which requires the simultaneous solution of the conservation laws of energy, momentum, and mass, as well as an equation of state. The variable property form of the governing equations are developed in two-dimensional Cartesian coordinates for a Newtonian fluid.

A numerical procedure for solving the governing equations is presented and implemented in a computer program. The Galerkin form of the finite element method is used to solve the spatial variation of the field variables, along with an implicit Crank-Nicolson time marching algorithm. Quadratic Lagrangian elements are used for the internal energy and the two components of velocity. Linear Lagrangian elements are used for the
The location of the solid/liquid interface as well as the temperatures are determined from the calculated internal energy and pressure. This approach is quite general in that it can describe heat transfer without phase change, phase change with a sharp interface, and phase change without an interface.

Analytical results from this model are compared to those of other researchers studying transient conduction, convection, and phase change and are found to be in good agreement. The numerical procedure presented requires significant computer resources, but this is not unusual when compared to similar studies by other researchers. Several methods are suggested to reduce the computational times.
ACKNOWLEDGMENTS

I would especially like to thank the co-chairmen Professor Gene E. Smith and Dr. Robert Siegel for their help in completing and critiquing this work. I also wish to acknowledge the assistance of all the members of my doctoral committee.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS iii
NOMENCLATURE .. v

CHAPTER

1. INTRODUCTION 1
2. LITERATURE REVIEW 4
3. PROBLEM FORMULATION 12

- Problem Statement
- Governing Equations

4. NUMERICAL APPROACH 25

- Subdividing the Domain
- Formulating the Element Equations
- Assembling the System Equations
- Solving for the Transient Response

5. RESULTS AND VERIFICATION 72

- Case 1: Conduction only
- Case 2: Phase Change by Conduction
- Case 3: Buoyancy-Driven Convection
- Case 4: Combined Conduction, Convection, and Phase Change
- Computer Resource Usage

6. CONCLUSIONS AND RECOMMENDATIONS 105

APPENDICES .. 109
REFERENCES ... 172
NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>thermal diffusivity</td>
</tr>
<tr>
<td>C</td>
<td>specific heat</td>
</tr>
<tr>
<td>(also capacitance matrix)</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>geometric dimension</td>
</tr>
<tr>
<td>e</td>
<td>internal energy</td>
</tr>
<tr>
<td>Fo</td>
<td>Fourier number</td>
</tr>
<tr>
<td>g</td>
<td>acceleration</td>
</tr>
<tr>
<td>(also gravity)</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>node number</td>
</tr>
<tr>
<td>j</td>
<td>time step increment</td>
</tr>
<tr>
<td>Ja</td>
<td>Jakob number</td>
</tr>
<tr>
<td>k</td>
<td>thermal conductivity</td>
</tr>
<tr>
<td>K</td>
<td>stiffness matrix</td>
</tr>
<tr>
<td>L</td>
<td>latent heat</td>
</tr>
<tr>
<td>n̂</td>
<td>unit normal vector</td>
</tr>
<tr>
<td>m̂</td>
<td>unit tangential vector</td>
</tr>
<tr>
<td>M</td>
<td>mass matrix</td>
</tr>
<tr>
<td>N</td>
<td>interpolation (shape) functions</td>
</tr>
<tr>
<td>Nu</td>
<td>Nusselt number</td>
</tr>
<tr>
<td>n</td>
<td>number of global nodes</td>
</tr>
<tr>
<td>P</td>
<td>pressure</td>
</tr>
<tr>
<td>Pr</td>
<td>Prantl number</td>
</tr>
<tr>
<td>q</td>
<td>heat flux</td>
</tr>
<tr>
<td>r</td>
<td>number of nodes per element</td>
</tr>
<tr>
<td>Ra</td>
<td>Rayleigh number</td>
</tr>
<tr>
<td>T</td>
<td>temperature</td>
</tr>
<tr>
<td>t</td>
<td>time</td>
</tr>
<tr>
<td>u</td>
<td>velocity in x-direction</td>
</tr>
<tr>
<td>v</td>
<td>velocity in y-direction</td>
</tr>
<tr>
<td>V</td>
<td>velocity</td>
</tr>
<tr>
<td>W</td>
<td>Gauss-Legendre weighting factors</td>
</tr>
<tr>
<td>x</td>
<td>coordinate in cartesian system</td>
</tr>
<tr>
<td>y</td>
<td>coordinate in cartesian system</td>
</tr>
<tr>
<td>β</td>
<td>coefficient of thermal expansion</td>
</tr>
<tr>
<td>η</td>
<td>transformed coordinate</td>
</tr>
<tr>
<td>μ</td>
<td>absolute viscosity</td>
</tr>
<tr>
<td>ρ</td>
<td>density</td>
</tr>
<tr>
<td>σ</td>
<td>normal stress</td>
</tr>
<tr>
<td>τ</td>
<td>shear stress</td>
</tr>
<tr>
<td>(also dimensionless time)</td>
<td></td>
</tr>
<tr>
<td>v</td>
<td>kinematic viscosity</td>
</tr>
<tr>
<td>φ</td>
<td>field variable</td>
</tr>
<tr>
<td>Φ</td>
<td>field value at a node</td>
</tr>
<tr>
<td>ζ</td>
<td>dimensionless location of phase interface</td>
</tr>
<tr>
<td>ξ</td>
<td>transformed coordinate</td>
</tr>
</tbody>
</table>
\(\theta \) parameter in time-marching recursion algorithm
(also dimensionless temperature)
\(\psi \) prescribed nodal value
\(\nabla \) divergence of a vector

Subscripts and superscripts

- \(\Omega \): classifies an area or volume integral
- \(\Sigma \): classifies a surface integral
- \(* \): classifies an approximate value of field variable
- \(l \): classifies liquid state
- \(s \): classifies solid state
- \(o \): classifies initial condition or reference state

Matrix notation

- \([\]\): single row matrix
- \(\{\}\): single column matrix
- \([\]\): matrix
CHAPTER 1

INTRODUCTION

The need for general analytical tools for modeling heat transfer and fluid flow is increasing as man designs more complex thermal/fluid devices. This is particularly true in the aerospace industry where highly reliable systems must operate in environments where little or no supporting experimental data is available. Such systems often include phase change and operate over a range of accelerations or effective gravitational fields. Experimental investigations of fluid/thermal systems under low gravity conditions are difficult and expensive. Because of the time required for many phase change problems, most experimental studies are not possible in ground-based low-gravity facilities and must be done on Earth-orbiting laboratories. For these reasons a predictive analytical or numerical method would be very valuable.

The intent of this research is to develop a general purpose numerical approach and computer program for analyzing the heat transfer and fluid flow of materials undergoing phase change. Such an analytical tool would
significantly reduce the number of experiments required and aid in our understanding of the experimental results.

Many practical applications of such a computational tool exist, such as modeling cryogenic fluid management systems and analyzing advanced material processing and casting methods. Systems such as batteries and thermal management devices could be examined as they might have to withstand initial or inadvertent freezing in the low temperatures of space. Another application is in the analysis of designs for a thermal storage device to be used in the space power system on the National Aeronautics and Space Administration (NASA) Space Station Freedom or lunar base. As described by Klann34, this space power system would collect and concentrate solar energy to heat the working fluid of a Brayton cycle heat engine. A latent heat thermal storage device would provide energy for the power system during dark periods of the Space Station orbit, (see Burns10).

Analytical approaches and numerical techniques for modeling thermal and fluid problems have been the subject of research and development for many years. Today, computer programs for modeling heat transfer by conduction are well developed and generally easy to apply. Until recently, computer programs for modeling fluid flow and its effect on convective heat transfer, however, had mostly been limited to empirical relationships based on known and simple geometries. Today, computational
convection using numerical methods such as finite differences and finite elements have become available to handle more complex flow geometries. Some of these are commercially available, however most are research oriented and limited in scope to particular applications. The additional complexities of having phase change phenomenon and materials that exhibit widely varying properties restricts the application of most present methods for such problems. Hence further work is needed to develop general purpose methods to analyze fluid/thermal problems with phase change.

In Chapter 2 a review is presented of the literature dealing with numerical solutions to thermal, fluid flow, and phase change problems. Chapters 3 and 4 cover the development of the governing equations and the numerical approach. Results and verification of the approach and model are presented in Chapter 5. The main body of the thesis ends with Chapter 6, in which concluding remarks and recommendations for further work are given. A computer program, PHASTRAN, developed during this research is discussed and presented in the appendices.
CHAPTER 2

LITERATURE REVIEW

Much research has been devoted to the analysis of materials undergoing phase change because of its association with many applications. The food, metallurgical, and semi-conductor industries are important examples. More recently, there has been an interest in modeling these processes in the space environment.

Many examples of research are in the literature for modeling phase change and fluid flow. For a detailed discussion on related subjects the reader is referred to: Stefan58 and Lunardini38, on the phase change problem; Carnahan, Luther, and Wilkes11 on numerical methods including the finite difference method; Baker4, Huebner and Thornton32, Zienkiewicz65 on the finite element method; Arpaci and Larsen2 on convective heat transfer; and VanWylen and Sonntag61 on thermodynamics.

To summarize the some of the most important works related to this research topic, first those papers related to numerical modeling of the phase change problem will be discussed followed by those related to the fluid flow. The classical analytical approach to the phase change
problem will not be discussed. Though elegant in its mathematical derivation, its application to problems of complex geometry and temperature dependent material properties is impractical. Some noteworthy papers on the classical analytical modeling of phase change include Budhia and Kreith9, Siegel and Savino54.

Most of the numerical models of phase change have involved the finite difference method, and to a lesser extent, the finite element method. This is not because of any superiority of the finite difference method, but rather the chronological development of the two methods. Indeed, most of the recent works have been devoted to the finite element approach.

Otis46 solved the melting problem by dividing the region into finite space intervals. Temperature was assumed uniform within each volume element at any instant and the latent heat effect was modeled as a moving heat source. The method required a coordinate transformation in terms of a pseudo time variable and was limited to analyses of materials initially or finally at the fusion temperature.

Murray and Landis41 suggested an approach by which the interface location was calculated by solving a differential equation for the velocity of the phase front. The differential equation was derived from an energy balance at the phase front. The temperature at the new front location was then set equal to the freezing
temperature.

Springer and Olson56 used the Murray and Landis approach to track the phase front in two dimensions. Again the temperature at the phase front was set equal to the fusion temperature and the temperatures in the remainder of the solid and fluid was determined from a finite difference solution for heat conduction.

Shamsundar and Sparrow53 used enthalpy as the dependent variable instead of temperature in a finite difference formulation. Because their formulation involved an integral approach to the energy balance, the method eliminated the need to explicitly track the interface. They maintained this was the best method for analysis of multidimensional conduction phase change. More discussion on this method follows in Chapter 3.

Only a few researchers have included the effects of natural convection in the fluid or radiative heat transfer. Such effects introduce nonlinearities in the field equations which require iterative solution procedures and increased computational times.

Tien59 solved the phase change problem with natural convection included in the fluid. He used a finite difference formulation of the conservation laws using a vorticity and stream function form of the momentum equations. Again the Murray and Landis approach was used to track the phase front. Tien's numerical results compared favorably with experimental data on the freezing
of naphthalene.

Valle60 also included natural convection in his solution but solved the problem using the finite element method. The conservation laws were developed in terms of the stream function and temperature. The latent heat effects and phase front motion were formulated implicitly in terms of an imbalance of the heat fluxes at the solid/liquid interface. This was one of the most detailed analyses of the phase change problem to date and included fluid flow, surface tension, and radiation effects. Valle compared his results to the work of Tien, however, and concluded that this approach did not seem to track the interface motion as effectively as approaches based on that of Murray and Landis.

More recently, several works have approached the phase change problem using moving and deforming finite element grids and/or coordinate transformation.

Ettouney and Brown18 transformed the problem so that the melt and solid regions have fixed boundaries, of which the interface is one. This is an elegant approach which couples the interface shape and field variables allowing more efficient solution techniques. However, this approach, as with other moving mesh formulations, has the limitation of not being able to easily handle disappearance, merging or fragmentary distribution of phases.

Albert and O’Neill1 used a method of transfinite
mappings in conjunction with a moving boundary-moving mesh finite element technique. Improvement in tracking the phase front was made compared to a fixed mesh approach. Again there is the limitation mentioned above for the Ettouney and Brown method which restricts its application.

Because of the high computational costs associated with modeling the phase change problem, some researchers have studied less numerically intensive schemes. Schneider52 formulated the phase change problem using the finite difference technique along with a variation of the enthalpy method of Shamsundar and Sparrow53. Depending on the amount of movement of the interface, Schneider's algorithm adjusts the number of convergence iterations. If the interface only moves within one grid spacing, only one iteration is used to converge the nonlinearities. This significantly reduces the computational times but may also affect the accuracy, especially for materials with properties that vary rapidly near the interface.

The application of numerical methods to the modeling of fluid flow problems has made remarkable progress over the last 25 years. Initially, computer-based solutions used the finite difference method. Over the years, the finite difference method has provided solutions to many difficult flow problems including slow viscous flows, boundary layer flows and even variable property flows (thermo-hydrodynamic) flows. More recently, the finite element method has been developed to handle many of the
same problems. The finite element method has been shown to be particularly useful in problems involving complex geometries and boundary conditions. Baker3, and Gallagher, et al.21 contain many examples of the application of finite element to complex problems.

Early applications of the finite element method to some continuum problems often used variational methods to derive the finite element equations. The lack of exact variational forms of the Navier-Stokes equations, however, prevented the use of finite elements to practical flow problems. Later, the application of weighted residual methods broadened the application of finite elements to a variety of fluid problems.

Olson44 applied a pseudo-variational approach to a two-dimensional incompressible formulation developed in terms of the stream function.

Baker3 applied the weighted residual technique of Galerkin22 to viscous incompressible flow. The Galerkin criteria, originally a nondiscretized approach is currently the most widely used method of formulating the finite element (discretized) equations.

Hood and Taylor31 also used the Galerkin criteria and formulated the Navier-Stokes equations in three ways: the velocity/pressure formulation; the stream function and vorticity formulation; and the purely stream function formulation. Comparison of these three formulations suggests that the velocity/pressure formulation may have
several advantages. It is readily extended to three dimensions. Pressure, velocity, velocity gradient, and stress boundary conditions can be easily handled. And it appears to require less computational time than the other formulations.

Recently, more attention has been given to the considerations for obtaining good quality solutions to these nonlinear fluids problems over a wider range of conditions. Important aspects of this include proper choice of solution technique, element types, and mesh refinement.

Gartling, et al. formulated the finite element equations in terms of velocity and pressure and studied the convergence properties of several solution algorithms, two element types, and several mesh refinements. Laminar flow between converging plane walls was used to represent a nonlinear problem. Of the solution techniques, they found that those which solved the full unsymmetric equation system were superior and more generally applicable than their symmetric counterparts. In particular, the Newton-Raphson procedure was the most rapidly convergent. No significant difference was found between an 8-node quadrilateral element and a 13-node quadrilateral element, with the 8-node being preferred because of its reduced complexity in formulation and use. Finally, adequate mesh refinement was required in the direction of most rapid variation of the solution field.
Ben-Sabar and Caswell6 investigated the effect of the choice of boundary conditions on the problems where the ratio of convective to diffusive terms are large. They found that consistent use of the velocity and surface traction boundary conditions are necessary to delay the appearance of numerical instabilities with increasing Reynolds number.

Fletcher20 developed an alternating direction implicit finite element method for flows where the convection terms dominate and applied the method to viscous compressible flow past a rectangular object. In comparison with an equivalent finite difference scheme, he found the finite element approach to be computationally more efficient.

Solutions to coupled fluid/thermal problems continue to be the subject of much research, particularly transient problems in three-dimensional space. Such problems often require the expenditure of significant computer resources. Though beyond the scope of this study, a number of efforts are directed at improved solution methods to solving large systems of nonlinear equations. The use of many of these methods will be dependent on the availability of new computer architectures providing vector and parallel processing capabilities.
CHAPTER 3

PROBLEM FORMULATION

Problem Statement

The problem selected is to analytically determine the transient temperatures, heat transfer rates, fluid velocities, and pressures in a pure substance or eutectic material undergoing phase change. The material can exist in solid and fluid states with variable properties satisfying a general equation of state model. It is contained in a vessel of arbitrary geometry such as is shown in Figure 3.1. Boundary conditions could include prescribed temperatures, heat flux, and fluid velocities. Flow in the fluid is induced due to a gravitational body force or accelerating reference frame and both inertial and viscous effects are included.

No surface free energy (surface tension) effects are included, nor is heat transfer by radiation. The effect of supercooling and mechanisms of nucleation or crystallization are also not considered. In addition, the fluid motion is restricted to laminar flow.
Problems in science and engineering can be classified as Lagrangian or Eulerian depending on the viewpoint or reference frame adopted. To formulate the governing equations, one of these two approaches must be adopted.

In the Lagrangian approach, all matter consists of particles which can be identified as they move through space. The independent variables in the Lagrangian system...
are \(x_0, y_0, z_0 \) and \(t \) where \(x_0, y_0, z_0 \) are the coordinates which a specified fluid element passed through at time \(t_0 \).

In the Eulerian approach, processes are characterized by continua of field quantities. The independent variables are the spatial coordinates \(x, y, z \) and time. To derive the governing equations, we focus our attention on one area in space called a control volume. If we apply the governing laws of the problem to a differential control volume we obtain a set of governing differential equations. This is the approach with which most problems in fluid and thermal analysis are formulated and is the approach adopted here.

The solution to modeling the phase change problem includes solving the equations expressing the three physical laws of:

1. Conservation of energy
2. Conservation of momentum
3. Conservation of mass

as well as a thermodynamic equation of state.

Because this problem is dominated by thermal aspects, it is particularly important to consider the form of the energy equation. The conservation of energy is most commonly expressed in terms of temperature and specific heat. Such formulations are quite valid for single phase problems, however, they may be inappropriate for materials undergoing phase change at a discrete temperatures.

To further discuss this, let us consider two
situations, one in which a *sharp* interface is formed and the other in which a *mushy* region with no sharp interface will exist.

An example of a sharp interface might be a thin layer of water with its top and bottom sides insulated as shown in Figure 3.2. Suppose the water was initially at a temperature above the freezing point and then one end of it is reduced to a temperature below the freezing point. Under these circumstances, a sharp interface will form which will separate the solid and liquid regions. In a volume element containing the interface however, the
specific heat is not easily defined. For such multi-phase problems, the energy equation is usually written separately for the solid and liquid phase regions. Since the interface is generally of unknown shape and position, numerical methods such as finite difference or finite element discretization encounter significant problems in handling the interface. Some numerical methods track the location of the interface. A heat balance can be formulated at the interface for more than one spatial coordinate. A differential equation is used to relate velocity of the interface to the heat absorption or removal. For three-dimensional phase change systems the interface is a surface and numerical methods for tracking the interface can become quite complicated.

The temperature and specific heat formulation also has difficulty when analyzing phase change where the interface is not sharp. White62 justifies the existence of mushy regions with an example of the welding of two plates. A similar example would be to consider a thermally insulated plate with electrical connections at each end, as in Figure 3.3. When an electric current is passed through the plate it will heat up due to heat generation from internal resistance. Eventually, the temperature of the plate will reach the fusion (i.e. melting) temperature of the material. At this time the internal energy will equal the saturated value at that pressure and temperature and is equal to the product of
Figure 3.3 System Which Does Not Exhibit a Sharp Interface During Phase Change

The density, ρ, specific heat of the solid, C_s, and fusion temperature, T_f. This is shown graphically in Figure 3.4 as point 1. As time continues, the internal heat generation results in increased internal energy with no change in temperature. This continues until the amount of energy converted to heat equals the latent heat and the material becomes liquid. This is seen as point 2 in Figure 3.4. As time progresses further, temperature of the material resumes its increase governed by the specific heat in the liquid. From this example, it is apparent that with the temperature description of the problem, the continuous transition is lost during the phase change.
Also assuming negligible diffusion of the thermal energy out of the electrodes, the material can exist at the fusion temperature in a two-phase state with no apparent sharp interface.

Figure 3.4 Internal Energy Versus Temperature for a Substance which Changes Phase at a Discrete Temperature

Many materials exhibit the behavior of phase change at a discrete temperature. To avoid the noncontinuous behavior of the product of temperature and specific heat, many formulations assume that the phase change occurs over a small but finite temperature range, see for example
Bamberger, et al.5 This approach essentially defines an artificial specific heat for the volume containing the phase front. While these formulations retain temperature as the primary unknown, they may introduce significant errors in the results. Bonacina, et al.8 demonstrated for example, that even in the one-dimensional case, the magnitude of the assumed range of phase change temperatures can affect the results significantly.

After studying the above examples, it is apparent that it is the energy in a given volume that is really of interest and not its temperature. Thus, an alternative to the temperature and specific heat formulation is to use internal energy as the primary unknown and compute the temperature from the internal energy. Shamsundar and Sparrow53 were among the first to employ such an approach. They used an integral relation setting the rate of increase of the energy content in a arbitrary control volume equal to the net rate at which heat is conducted in through its surface. This relation was applicable whether or not the interfacial surface passes through the control volume. By assuming no fluid motion, pressure is independent of time, and they reformulated the problem in terms of enthalpy. Such a formulation turns out to be quite general in that it can describe heat conduction without phase change, phase change with a sharp interface, and phase change without an interface. Because the phase front is not explicitly tracked, the enthalpy formulation
avoids many of the numerical difficulties associated with fixed grid numerical methods, particularly in problems involving fragmented phases.

Using an Eulerian frame of reference the governing equations for this problem can now be presented. For a variable property, Newtonian fluid, neglecting internal heat generation, surface free energy, and radiation, the conservation laws in Cartesian coordinates are:

\[
\rho \frac{\partial e}{\partial t} + \rho u \frac{\partial e}{\partial x} + \rho v \frac{\partial e}{\partial y} + P \frac{\partial u}{\partial x} + P \frac{\partial v}{\partial y} = \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \mu \Gamma(x,y,t)
\]

(3.1)

in which \(\Gamma \) is the viscous dissipation function given by

\[
\Gamma = 2 \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 \right] + \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)^2 - \frac{2}{3} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right)
\]

For the problems presented in Chapter 5, the natural convective velocities are slow and the viscosities are low. Under these conditions, the viscous dissipation terms may be neglected.
Conservation of momentum (Navier-Stokes equations):

\[
\frac{\partial u}{\partial t} + \rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} = \rho g_x - \frac{\partial P}{\partial x} + \frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} \tag{3.2}
\]

\[
\frac{\partial v}{\partial t} + \rho u \frac{\partial v}{\partial x} + \rho v \frac{\partial v}{\partial y} = \rho g_y - \frac{\partial P}{\partial y} + \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{xy}}{\partial y} \tag{3.3}
\]

in which

\[
\sigma_x = 2\mu \frac{\partial u}{\partial x} - \frac{2}{3} \mu \nabla \cdot \mathbf{V} \tag{3.4}
\]

\[
\sigma_y = 2\mu \frac{\partial v}{\partial y} - \frac{2}{3} \mu \nabla \cdot \mathbf{V} \tag{3.5}
\]

\[
\tau_{xy} = \tau_{yx} = \mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \tag{3.6}
\]

Conservation of mass:

\[
\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} + \frac{\partial \rho v}{\partial y} = 0 \tag{3.7}
\]

Additional equations are required to evaluate the thermodynamic of state and material properties:
temperature, $T = T(e, P)$
density, $\rho = \rho(e, P)$
thermal conductivity, $k = k(e, P)$
viscosity, $\mu = \mu(e, P)$

If we can evaluate the state and the material properties explicitly we can reduce the number of equations to four and solve in terms of the basic unknowns $u, v, P,$ and e. Specifying the state of a pure substance requires a minimum of two independent properties. When two phases of a pure substance exist together in equilibrium, the pressure and temperature are not independent and can therefore not be used to define the state. The two independent properties chosen as the basic field variables in the above equations are internal energy and pressure.

The initial conditions consist of specifying the velocities, pressure, and energy at time zero. The hydrodynamic boundary conditions specify either the velocity components or surface tractions. The thermal part of the problem requires the heat flux or internal energy be specified on the boundary. Temperature boundary conditions must therefore be converted to internal energy.

It should be noted that momentum and continuity equations as well as the convective transport terms in the energy equation are not required in that part of the solution domain which is in the solid state. The approach
to handling this problem is presented in the next chapter concerning the numerical method.

At this point, many formulations, for example Valle60, perform a transformation with the fluid velocity variables into a streamfunction and vorticity formulation. This was not chosen here. This decision was due to the requirement that this formulation be easily extendable to three-dimensional space. The streamfunction-vorticity formulation is often applied to two-dimensional incompressible flows. It can, however, be applied to a broader class of problems. This is because the definitions for the dependent variable transformations are essentially vector identities. These transformations can therefore be applied to three-dimensional Cartesian coordinate system. Unfortunately, for three dimensions, six scalar components for the streamfunction and vorticity must be defined compared to the four (3 velocities and 1 pressure) used in the physical variable formulation. In addition, certain boundary conditions become difficult to apply. These difficulties have generally precluded application of streamfunction-vorticity to three-dimensional problems.

As given in the problem statement, the present analysis is restricted to laminar flow conditions. Fluid motion is characterized as \textit{laminar} if the fluid flows in imaginary layers and there is no macroscopic mixing between adjacent fluid layers. A flow is said to be
turbulent, however, if such mixing occurs. It should be noted that the governing equations given above hold at any instant of time and apply to both laminar and turbulent flows. In a turbulent flow, however, the fluid velocities are fluctuating randomly about their mean values. Such a random variation in the field variables is nearly impossible to solve directly. The standard approach is to time-average the equations to obtain new ones which describe the temporally averaged field variables. Such an approach is beyond the scope of the present formulation, and the flow is assumed laminar.
CHAPTER 4

NUMERICAL APPROACH

The governing equations for the mass, momentum, and energy conservation given in the preceding chapter are represented by a system of nonlinear partial differential equations. These equations can describe some of the most interesting phenomenon in the fluid and thermal sciences. Unfortunately they are also some of the most difficult to solve.

With few exceptions, (see for example Graebel27), problems involving convection can not be solved by direct integration of the partial differential equations. For most problems we must resort to some numerical solution method. In the approach used here, the finite element method is used to solve the spatial problem along with a recursive time marching algorithm based on the finite difference method.

The finite element method is relatively new with most of its development occurring after 1960. There are several approaches to developing the finite element equations including the variational method, the method of weighted residuals, and the energy balance method. The
classical variational method is quite general, however it does require the existence of an exact variational form for the governing equations. For many problems, particularly in convective heat transfer, there are no exact variational forms. This requirement has limited the application of the variational method. Another procedure, the method of weighted residuals, or Galerkin method, does not require an alternate formulation of the physical problem and in fact can be applied to almost any well-posed system of differential equations. Oden42 introduced a method by which the finite element equations can be developed from global energy considerations. This method has also proven very useful in the solution of many thermomechanical problems.

Of the methods mentioned above, the Galerkin method has proven to be the most general and is the method chosen for the formulation developed here.

The basic approach of the finite element method is to divide the solution domain up into a finite number of subdomains called elements. These elements are connected at node points on the element boundaries. The behaviors of the unknown field variables are then approximated within each element by continuous functions expressed in terms of nodal values of the field variables and their derivatives. Substitution of this approximation into the original differential equations and then integrating, results in some error or residual. In the Galerkin
method, linearly independent weighting functions are chosen such that the residual is required to vanish in some averaged sense over the entire solution domain. The resulting equations for each element are assembled into a set of coupled equations.

The coupled equations are then directly integrated in time to yield the nodal values of the field variables. This direct integration of the coupled equations uses a recursion technique based on the finite difference method. Approximations in the finite difference method, however, introduce numerical errors. Though these errors can be minimized as the time step used approaches zero, it is at the expense of increasing computational time. Large time steps, in contrast, can produce entirely unrealistic behavior, including nonphysical oscillations which can even become unstable. Development of the proper recursion technique is thus of great practical importance and is discussed more, later in this chapter.

Subdividing the Domain

The first step in applying the finite element method is to subdivide the solution domain into elements. The selection of proper element type is still somewhat of an art. Lower order polynomial elements are simplest to formulate, but more elements are required for good solution accuracy. Fewer higher order elements are needed
for the same accuracy but require increased computation time in the numerical integration of each element. In general, to model a complicated boundary, it is usually more efficient to use a large number of simple elements rather than a few complex ones. Thus, for most problems, elements with interpolating functions of order greater than 3 are seldom used.

In addition to computational efficiency, it is important that we select element types with interpolation functions that satisfy certain continuity and convergence requirements. This is necessary to ensure accuracy during integration and also that the approximate solution will converge to the correct solution with increasingly finer subdivisions (smaller elements). These requirements were given by Felippa and Clough19 and verified by Oliveira43. Specifically, they can be stated as

1. The field variable \(\phi \) and its derivatives up to one order less than the highest-order derivative of the element (weak form) equations must be continuous at the element interfaces.

2. The field variable \(\phi \) and its derivatives up to the order of the highest-order derivative of the element (weak form) equations must be continuous within the element.

The first of these is known as the compatibility
requirement and the second as the *completeness* requirement. Compatibility requires that the field variable and its principal derivatives be the same at coincident nodes of neighboring elements. This ensures that there will be no contribution to the finite element equations from "gaps" at the element interfaces since the boundary integrals of each element will cancel. The completeness requirement ensures convergence to the correct solution when, in the limit, the element size shrinks to zero.

It is convenient to introduce a standard notation to describe the degree of continuity of a field variable at the element interfaces. If the field variable is continuous at the element interfaces, it is said to have C^0 continuity. If, in addition, the second derivatives are also continuous, there is C^1 continuity, and so on. By choosing the internal energy, pressure and velocity form of the governing equations only first derivatives of the field variables appear. Thus only elements which satisfy C^0 continuity are needed to satisfy the above requirements.

But other considerations may also influence the selection of proper element types. Several researchers modeling fluid flow have established that the interpolation functions for the velocity components must be at least one order higher than the pressure interpolation functions to prevent oscillations of the
field variable solution. Yamada, et al.64 came to this conclusion by using a variational formulation. Olson and Tuann45 showed that spurious rigid body modes in the solution appear when this criteria is violated. Other researchers who have supported this conclusion include Hood and Taylor31 and Bercovier and Pironneau7. The restriction on the interpolation functions for the primitive variables arises from the uncoupled nature of the Navier-Stokes and continuity equations. This is because the continuity equation is simply a constraint on the velocities rather than an equation which fully couples velocities and pressure as the momentum equations do. A number of researchers modeling fluid flow using finite elements have concluded that quadratic interpolation functions for velocity and linear interpolation functions for pressure generally give the best performance6. An alternative approach to avoiding this problem is to uncouple the velocities and pressure by using a segregated method of solution. This is commonly done in finite difference formulations of the fluid equations, but it requires an additional convergence iteration to alternately satisfy the continuity and momentum equations.

Two useful sets of rectangular elements are the serendipity and Lagrangian families. The serendipity elements shown in Figure 4.1 contain only boundary nodes and their interpolation functions were derived by inspection. The Lagrangian elements shown in Figure 4.2
contain interior nodes and use the Lagrange polynomial as its interpolating function. Both the serendipity and Lagrangian element types have seen wide use in finite
element analysis.

As mentioned earlier, the geometry of the problem may also influence the selection of the element. One approach to modeling complex arbitrarily shaped boundaries is to use a body-fitted coordinate system. This approach can however add significantly to the modeling complexity. An alternative is to use curve-sided elements. Isoparametric elements are particularly useful as curve-sided elements. Isoparametric elements are elements whose geometry and field variable representations are described by polynomials of the same order. Using curve-sided elements, significantly fewer elements are usually required to fit a complex geometric boundary. Curved-sided isoparametric elements are commonly formed from either serindipity or Lagrangian elements.

Finally, other numerical considerations may also influence the selection of the proper element type. The numerical solution approach for the problem in this research requires the use of element mass lumping to prevent unrealistic oscillations in the field variables. This will be further discussed in the section on solving for the transient response. The use of element mass lumping has been shown by Gresho, et al. to yield unstable solutions with the quadratic serindipity element under certain conditions. The Lagrangian bi-quadratic element however showed good accuracy and stability. During the course of this research, stability problems
were also observed when using the quadratic serindipity elements with element mass lumping.

For the reasons given above, the 4-node Lagrangian linear element was chosen for the pressure field and the 9-node Lagrangian biquadratic element was chosen for the energy and velocity fields.

Besides the element selection, the subdivision of the domain can have a significant influence on the solution. It is easiest to generate a uniform element mesh, however, this may not always provide the best representation of the field. Usually more elements should be placed in regions where the boundary is irregular. Also, in general, the elements used should be well proportioned, with the ratio of their largest dimensions to their smallest dimensions near unity. Nevertheless, it can be acceptable to use long thin elements if it is known that the field does not vary greatly in the elements lengthwise direction.

Provided that elements have been selected which satisfy the compatibility and completeness requirements, increasing the number of elements will provide improved solution accuracy. If there is an approximate solution to the problem, the finite element model accuracy can be improved by using a finer mesh in areas where high gradients are expected in the field variable. This increased accuracy is at the obvious expense of increased computational effort. It is generally good practice to obtain several solutions to a problem using an increasing
number of elements. By comparing results it can then be determined what is a sufficient number of elements for good solution accuracy.

Once the element type has been chosen, the interpolating functions for both the linear and quadratic elements can now be developed. The Lagrange polynomial is defined by

\[L_k(x) = \prod_{m=0}^{n} \frac{x-x_m}{x_k-x_m}, \quad m \neq k \]

\[= \frac{(x-x_0) \cdots (x-x_{k-1})(x-x_{k+1}) \cdots (x-x_n)}{(x_k-x_0) \cdots (x_k-x_{k-1})(x_k-x_{k+1}) \cdots (x_k-x_n)} \]

(4.1)

Using the 4-node rectangular element and local coordinate system defined by Figure 4.3 the variation of some field variable \(\phi \) can be written as

\[\phi(\xi, \eta) = N_1(\xi, \eta) \phi_1 + N_2(\xi, \eta) \phi_2 + N_3(\xi, \eta) \phi_3 + N_4(\xi, \eta) \phi_4 \]

where \(\phi \) represents the nodal values of the field variable and the interpolating functions \(N \) are given by

\[N_1(\xi, \eta) = L_1(\xi)L_1(\eta), \quad N_2(\xi, \eta) = L_2(\xi)L_2(\eta), \quad \text{etc.} \]
These interpolation functions, formed as products of the Lagrange polynomial, are bilinear. The explicit expression for node 1 follows:

\[N_1(\xi, \eta) = L_1(\xi)L_1(\eta) = \frac{\xi - \xi_2}{\xi_1 - \xi_2} \times \frac{\eta - \eta_4}{\eta_1 - \eta_4} = \frac{\xi - 1}{-1 - 1} \times \frac{\eta - 1}{-1 - 1} \]

In this manner all of the linear Lagrangian interpolation
functions can be developed and are given by

\[N_1 = \frac{1}{4} \left(\xi \eta - \xi \eta + \eta + 1 \right) \quad N_2 = \frac{1}{4} \left(-\xi \eta + \xi \eta + \eta + 1 \right) \]
\[N_3 = \frac{1}{4} \left(\xi \eta + \xi \eta + \eta + 1 \right) \quad N_4 = \frac{1}{4} \left(\xi \eta + \xi \eta - \eta - 1 \right) \]

(4.2)

The quadratic Lagrangian interpolation functions can be developed similarly and are given by

\[N_1 = \frac{1}{4} \left(\xi \eta - \xi^2 \eta - \xi \eta^2 + \xi^2 \eta^2 \right) \quad N_2 = \frac{1}{2} \left(-\eta + \eta^2 + \xi^2 \eta - \xi^2 \eta^2 \right) \]
\[N_3 = \frac{1}{4} \left(-\xi \eta - \xi^2 \eta + \xi \eta^2 + \xi^2 \eta^2 \right) \quad N_4 = \frac{1}{2} \left(\xi + \xi^2 - \xi \eta^2 - \xi^2 \eta^2 \right) \]
\[N_5 = \frac{1}{4} \left(\xi \eta + \xi^2 \eta + \xi \eta^2 + \xi^2 \eta^2 \right) \quad N_6 = \frac{1}{2} \left(\eta + \eta^2 - \xi^2 \eta - \xi^2 \eta^2 \right) \]
\[N_7 = \frac{1}{4} \left(-\xi \eta + \xi^2 \eta - \xi \eta^2 + \xi^2 \eta^2 \right) \quad N_8 = \frac{1}{2} \left(-\xi + \xi^2 + \xi \eta^2 - \xi^2 \eta^2 \right) \]
\[N_9 = 1 - \xi^2 - \eta^2 + \xi^2 \eta^2 \]

(4.3)

After selecting the element type, the solution domain is subdivided into a specified number of these elements. Fitting a curved boundary such as shown in Figure 4.4 could be done with many small elements, however in this case, a better fit would result if we could use curve-sided elements as in Figure 4.5. Ergatoudis et al.17 were among the first to develop a general approach to creating such elements. Curved-sided elements are developed by
Figure 4.4 Example Solution Domain of Arbitrary Boundary

Figure 4.5 Curve-sided Element
transforming or mapping simple geometric shapes in some local coordinate system \((\xi-\eta)\) into distorted shapes in the global Cartesian coordinate system \((x-y)\). To construct a typical element such as is shown in Figure 4.5 we must start with a simpler "parent" element. Consider a parent element such as the 9-node quadratic Lagrangian element shown in Figure 4.6. The coordinates in the \((\xi-\eta)\) plane may be transformed into the \((x-y)\) plane using mapping functions of exactly the same form as the interpolation functions. These are given by

\[
x = \sum_{i=1}^{9} N_i(\xi,\eta)x_i \quad \text{and} \quad y = \sum_{i=1}^{9} N_i(\xi,\eta)y_i \quad (4.4)
\]

When making this transformation we must of course ensure that for every point in the local \((\xi-\eta)\) coordinate system there is a unique corresponding point in global \((x-y)\) coordinate system. If the transformation is not unique, the element can be greatly distorted causing unpredictable results on the solution.

This transformation technique can be useful in generating a set of element coordinates for a region in the solution domain such as that shown earlier. The region coordinates in the global cartesian system would become the \(x_i\) and \(y_i\) in equation (4.4). For a division of nine elements in the "parent" region shown in Figure 4.7,
the interpolation functions $N_i(\xi, \eta)$ are evaluated at the appropriate ξ and η having discrete values of $-1, -0.667, 0.333, 0, -0.333, -0.667,$ and 1. The resulting elements in the global cartesian system are shown in Figure 4.8. This technique is quite useful for automatic element (grid) generation and is not restricted to equal numbers of divisions in the ξ and η directions. It is also possible to make the grid mesh finer in an area by slight shifts in the discrete ξ and η values given above. For further discussion on grid generation techniques see Zienkiewicz, et al.65.

Before substituting the interpolating functions into the finite element equations, it is also necessary to
develop expressions for their derivatives. Following Huebner32, the variation of some field variable ϕ within an element having r nodes is again expressed as

$$\phi(\xi, \eta) = \sum_{i=1}^{r} N_i(\xi, \eta) \phi_i$$ \hfill (4.5)

The derivatives of the field variable can also be evaluated by

$$\frac{\partial \phi}{\partial x} = \sum_{i=1}^{r} \frac{\partial N_i}{\partial x} \phi_i \quad \text{and} \quad \frac{\partial \phi}{\partial y} = \sum_{i=1}^{r} \frac{\partial N_i}{\partial y} \phi_i$$ \hfill (4.6)

To evaluate the element matrices we must also express $\frac{\partial N_i}{\partial x}$ and $\frac{\partial N_i}{\partial y}$ in terms of local coordinates ξ and η. Applying the chain rule of differentiation yields

$$\begin{bmatrix} \frac{\partial N_i}{\partial \xi} \\ \frac{\partial N_i}{\partial \eta} \end{bmatrix} = \begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} \end{bmatrix} \begin{bmatrix} \frac{\partial N_i}{\partial x} \\ \frac{\partial N_i}{\partial y} \end{bmatrix} = [J] \begin{bmatrix} \frac{\partial N_i}{\partial x} \\ \frac{\partial N_i}{\partial y} \end{bmatrix}$$ \hfill (4.7)

where $[J]$ is the Jacobian matrix. The Jacobian is evaluated using
Figure 4.7 Nine-element "Parent" Region

Figure 4.8 Curve-sided Elements in the Cartesian System
\[J(\xi, \eta) = \begin{bmatrix} \sum_{i=1}^{r} \frac{\partial N_i}{\partial \xi}(\xi, \eta)x_i & \sum_{i=1}^{r} \frac{\partial N_i}{\partial \eta}(\xi, \eta)y_i \\ \sum_{i=1}^{r} \frac{\partial N_i}{\partial \eta}(\xi, \eta)x_i & \sum_{i=1}^{r} \frac{\partial N_i}{\partial \xi}(\xi, \eta)y_i \end{bmatrix} \] (4.8)

Rearranging, the derivatives of the shape functions in the two coordinate system are related by the inverse of the Jacobian as follows:

\[\begin{bmatrix} \frac{\partial N_i}{\partial x} \\ \frac{\partial N_i}{\partial y} \end{bmatrix} = \left[J \right]^{-1} \begin{bmatrix} \frac{\partial N_i}{\partial \xi} \\ \frac{\partial N_i}{\partial \eta} \end{bmatrix} \text{ for } i = 1, 2, \ldots, r \] (4.9)

From the above equations we can find the partial derivatives of the field variable in terms of the transformed coordinates \(\xi \) and \(\eta \) using

\[\begin{bmatrix} \frac{\partial \phi}{\partial x} \\ \frac{\partial \phi}{\partial y} \end{bmatrix} = \left[J \right]^{-1} \begin{bmatrix} \frac{\partial N_1}{\partial \xi} & \frac{\partial N_2}{\partial \xi} & \ldots & \frac{\partial N_r}{\partial \xi} \\ \frac{\partial N_1}{\partial \eta} & \frac{\partial N_2}{\partial \eta} & \ldots & \frac{\partial N_r}{\partial \eta} \end{bmatrix} \begin{bmatrix} \phi_1 \\ \phi_2 \\ \vdots \\ \phi_r \end{bmatrix} \] (4.10)

Finally, from advanced calculus we can express the differential area \(dx \, dy \) in terms of \(d\xi \, d\eta \) using
\[dx \, dy = |J| \, d\xi \, d\eta \quad (4.11) \]

in which \(|J|\) is the determinant of the Jacobian.

The validity of the element equations depends on the existence of the inverse of the Jacobian for each element. Also, the \(\xi-\eta\) to \(x-y\) coordinate mapping discussed earlier is unique only if the inverse of the Jacobian exists. A useful method for determining this uniqueness and the validity of the mapping is to evaluate the determinant of the Jacobian for all elements. If the sign of the determinant does not change throughout the solution domain, an acceptable mapping will be assured.

Formulating the Element Equations

To formulate the finite element equations from the governing equations we must apply the Galerkin method, substitute the interpolation functions for the field variables and their derivatives, and then perform the numerical integration on an element basis.

The velocity, pressure, and energy distribution within each element can be approximated by

\[u(x,y,t) = |N| (x,y) \cdot (u(t)) \quad (4.12) \]
\[v(x,y,t) = [N^v(x,y)] \{v(t)\} \quad (4.13) \]

\[P(x,y,t) = [N^p(x,y)] \{P(t)\} \quad (4.14) \]

\[e(x,y,t) = [N^e(x,y)] \{e(t)\} \quad (4.15) \]

Before applying the Galerkin method to the conservation of energy equation it is necessary to first linearize the nonlinear convective terms. Let \(u^* \) and \(v^* \) be an approximate solution to the velocity field and \(P^* \) be an approximate solution to the pressure field (such as the results from a previous iteration). Now applying the Galerkin method, the linearized energy equation yields

\[
\int_{\Omega} N^e \left(\rho \frac{\partial e^*}{\partial t} + \rho u^* \frac{\partial e^*}{\partial x} + \rho v^* \frac{\partial e^*}{\partial y} + P^* \frac{\partial u^*}{\partial x} + P^* \frac{\partial v^*}{\partial y}
- \frac{\partial T}{\partial x} \left(k \frac{\partial T}{\partial x} \right) - \frac{\partial T}{\partial y} \left(k \frac{\partial T}{\partial y} \right) \right) \, d\Omega = 0
\]

Integrating the last two conduction terms by parts using Green's theorem
the energy equation becomes

\[
\int_{\Omega} a(\nabla \cdot b) \, d\Omega = \int_{\Sigma} a(b \cdot \hat{n}) \, d\Sigma - \int_{\Omega} b \cdot va \, d\Omega
\] (4.17)

letting \(a = N_i^* \), \(\hat{b} = k \frac{\partial T}{\partial x} \hat{n}_i + k \frac{\partial T}{\partial y} \hat{n}_j \) (4.18)

\[
\int_{\Omega} N_i^* \left(\rho \frac{\partial e}{\partial t} + \rho u^* \frac{\partial e}{\partial x} + \rho v^* \frac{\partial e}{\partial y} + p^* \frac{\partial u^*}{\partial x} + p^* \frac{\partial v^*}{\partial y} \right) \, d\Omega
\] (4.19)
Applying the Galerkin method now to the momentum equations it is necessary to also linearize the nonlinear convective terms, by again letting \(u^* \) and \(v^* \) be an approximate solution to the velocity field. Taking the x-direction momentum equation and applying Galerkin's criterion yields

\[
\int_{\Omega} N_i \left(\frac{\partial e}{\partial t} \right) d\Omega + \int_{\Omega} N_i \left(\left[\rho \frac{\partial u^*}{\partial x} \right] + \left[\rho v^* \frac{\partial N}{\partial y} \right] \right) d\Omega \{ e \}
+ \int_{\Sigma} N_i q d\Sigma - \int_{\Omega} N_i \left(p^* \frac{\partial u^*}{\partial x} + p^* \frac{\partial v^*}{\partial y} \right) d\Omega
- \int_{\Omega} \left(\frac{\partial N}{\partial x} k \frac{\partial T}{\partial x} \right) + \left(\frac{\partial N}{\partial y} k \frac{\partial T}{\partial y} \right) d\Omega
\]

(4.20)

Integrating the viscous force terms by parts using Green's theorem

\[
\int_{\Omega} N_i \left(\rho \frac{\partial u}{\partial t} + \rho u^* \frac{\partial u}{\partial x} + \rho v^* \frac{\partial u}{\partial y} - \frac{\partial (\sigma_{xx} - p)}{\partial x} - \frac{\partial \tau_{xy}}{\partial y} + \rho g_x \right) d\Omega = 0
\]

(4.21)

Integrating the viscous force terms by parts using Green's theorem

letting \(a = N_i \)
\(b = \sigma_x \tilde{n}_i + \tau_{xy} \tilde{n}_j \)
yields

\[
\int_{\Omega} N^i \left(\frac{\partial (\sigma_x - P)}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} \right) \, d\Omega = \int_{\Sigma} N^i \left((\sigma_x - P) \, \vec{n}_i + \tau_{xy} \, \vec{n}_j \right) \, d\Sigma
\]

\[- \int_{\Omega} \left(\frac{\partial N_i}{\partial x} + \tau_{xy} \, \frac{\partial N_i}{\partial y} \right) \, d\Omega \]

(4.22)

Now defining

\[
\overline{\sigma}_x = (\sigma_x - P) \, \vec{n}_i + \tau_{xy} \, \vec{n}_j
\]

(4.23)

and introducing the velocity components with

\[
\sigma_x = 2\mu \frac{\partial u}{\partial x} - \frac{2}{3} \mu \nabla \cdot \nabla
\]

\[
\sigma_y = 2\mu \frac{\partial v}{\partial y} - \frac{2}{3} \mu \nabla \cdot \nabla
\]

(4.24)

\[
\tau_{xy} = \mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)
\]

The x-momentum equation becomes
Substituting the approximations for the field variables and rearranging, the x-momentum equation for node i of the element becomes

\[
\int_{\Omega} N_i^Y \left(\frac{\partial u}{\partial t} + \rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} \right) \, d\Omega
\]

\[+ \int_{\Omega} \frac{\partial N_i}{\partial x} \left(2\mu \frac{\partial u}{\partial x} - \frac{2}{3} \mu \frac{\partial u}{\partial x} - \frac{2}{3} \mu \frac{\partial v}{\partial y} \right) \, d\Omega \]

\[+ \int_{\Omega} \frac{\partial N_i}{\partial y} \mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \, d\Omega - \int_{\Omega} \frac{\partial N_i}{\partial x} \, p \, d\Omega \]

\[+ \int_{\Omega} N_i^Y \rho g_x \, d\Omega = \int_{\Sigma} N_i^Y \tau_x \, d\Sigma \]

The integral over the surface \(\Sigma\) is the natural boundary condition and can be used to introduce surface tractions.

The y momentum equation can be developed similarly and is given by
Finally, applying the Galerkin method to the conservation of mass equation (continuity), using weighting factors equal to the interpolating functions for pressure at each node \(i \) yields

\[
N^\nu_i \left(\frac{\partial \nu}{\partial t} \right) \, d\Omega
+ \int_\Omega \left(\frac{2}{3} \frac{\partial N^i}{\partial y} \left[\mu \frac{\partial N^i}{\partial x} \right] + \frac{\partial N^i}{\partial x} \left[\mu \frac{\partial N^i}{\partial y} \right] \right) \, d\Omega \{u\}
+ \int_\Omega \left(N^\nu_i \left[\rho u^* \frac{\partial N^i}{\partial x} \right] + N^\nu_i \left[\rho v^* \frac{\partial N^i}{\partial x} \right] \right) \, d\Omega \{v\}
+ \int_\Omega \left(\frac{4}{3} \frac{\partial N^i}{\partial y} \left[\mu \frac{\partial N^i}{\partial x} \right] + \frac{\partial N^i}{\partial x} \left[\mu \frac{\partial N^i}{\partial x} \right] \right) \, d\Omega \{v\}
+ \int_\Omega \frac{\partial N^i}{\partial y} \left[N^p \right] \, d\Omega \{p\} = \int_\Sigma \bar{\sigma} N_i^\nu \, d\Sigma - \int_\Omega \rho g_y N_i^\nu \, d\Omega
\] (4.27)

Substituting the approximations for the field variables \(u \) and \(v \) yields

\[
N^p_i \left[\frac{\partial \rho u}{\partial x} + \frac{\partial \rho v}{\partial y} \right] \, d\Omega = 0
\] (4.28)

It is important to note that all three conservation equations are applied throughout the solution domain. However, since there is no motion of the material in the
solid something must be done to prevent convective transport and influence of mass on the buoyant forcing function.

The simplest method for preventing fluid motion in the solid is to set the velocities u^* and v^* to zero and to increase the viscosity to some large value for those nodes which are in the solid state. As discussed earlier, during the phase change process, some materials develop a mushy region in which the interface between the phases is not sharp. If information is available on how the viscosity (and other properties) of the material varies as it undergoes phase change, it can be used in the material property data to improve the modeling of the flow near the phase front. For the cases studied in this research, the phase front was relatively sharp and the exact value of the assumed viscosity in the two phase region had little influence on the results. Also, because the results from the fluid equations are not applicable within the solid region, the exact influence of the viscosity in that region is unimportant.

The second problem alluded to above involves the influence of the density distribution within the solid on the overall buoyant forcing function. In reality the body forces on the solid are balanced by internal and boundary stresses. In this formulation, however, no such mechanism exists since no equations from solid mechanics were included. Because of this problem, incorrect body force
terms can develop if the density of the solid is significantly different from that of the liquid. To prevent this, the buoyant force term is first reformulated in terms of density change about a reference density such as

\[\int_{\Omega} \rho \left(1 - \frac{\rho}{\rho_0}\right) g N_i \, d\Omega \]

This approach is quite common in formulations of the Navier-Stokes equations which use the coefficient of thermal expansion. The reference density \(\rho_0 \) is taken to be the density of the fluid at the fusion temperature. To prevent the influence of the solid in the buoyant force terms, the density is set equal to the reference density for those nodes which are in the solid region. Note that this is done only in the evaluation of this integral while all other integrals are evaluated using the appropriate density for each state.

Because the fluid motion is influenced by buoyancy forces and the material properties vary with time, the energy, momentum, and mass equations are directly coupled and must be solved simultaneously. Two approaches have been used in the past to solve the steady solutions. Taylor and Ijam57 solved the equations simultaneously. Gartling24 used an algorithm in which the equations are segregated and the solution alternates between the them.
During the course of this research, both approaches were employed and evaluated. The method which solves the three equations simultaneously was found to require significantly more computer memory and computations in solving the equations. The alternating solution method required an iterative algorithm, however, this did not substantially change the overall algorithm. This is because iterations are required to satisfy the nonlinear terms in the Navier-Stokes equations. Based on these studies, the segregated approach to solving the energy and flow equations was adopted in the present analysis.

The energy, momentum, and mass equations above were given for the weighting functions at each node i in the element. By inspection, we can write the energy equation for all nodes of each element as

\[
\begin{bmatrix} C \\ \end{bmatrix} \begin{bmatrix} \dot{e} \end{bmatrix} + \begin{bmatrix} K^e \end{bmatrix} \begin{bmatrix} e \end{bmatrix} = \begin{bmatrix} R_q + R_f + R_c \end{bmatrix}
\] (4.30)

Similarly, we can write the momentum and continuity equations for all nodes of each element as
\[
\begin{bmatrix}
M & 0 & 0 \\
0 & M & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\dot{u} \\
\dot{v} \\
\dot{p}
\end{bmatrix}
\]

\[
\begin{bmatrix}
K' + \frac{4}{3}K_{11} + K_{22} & K_{12} - \frac{2}{3}K_{21} & L_1 \\
K_{21} - \frac{2}{3}K_{12} & K' + \frac{4}{3}K_{22} + K_{11} & L_2 \\
L_{c1} & L_{c2} & 0
\end{bmatrix}
\begin{bmatrix}
u \\
v \\
p
\end{bmatrix}
\]

\[
\begin{bmatrix}
R_x \\
R_y \\
0
\end{bmatrix}
= \int_{\Omega} \begin{bmatrix}
N^x \\
N^y \\
1
\end{bmatrix} \begin{bmatrix}
\rho N_x \\
\rho N_y \\
\rho
\end{bmatrix} d\Omega
\]
\[
\begin{align*}
\mathbf{K}_\lambda^* &= \int_\Omega \left\{ \rho u^* N^* \right\} \frac{\partial N^*}{\partial x} \, d\Omega + \int_\Omega \left\{ \rho v^* N^* \right\} \frac{\partial N^*}{\partial y} \, d\Omega \\
\mathbf{K}_\lambda^\nu &= \int_\Omega \left\{ \rho u^* N^\nu \right\} \frac{\partial N^\nu}{\partial x} \, d\Omega + \int_\Omega \left\{ \rho v^* N^\nu \right\} \frac{\partial N^\nu}{\partial y} \, d\Omega \\
\mathbf{L}_1 &= - \int_\Omega \left[\frac{\partial N^\nu}{\partial x} \right] N^p \, d\Omega \\
\mathbf{L}_2 &= - \int_\Omega \left[\frac{\partial N^\nu}{\partial y} \right] N^p \, d\Omega \\
\mathbf{K}_{11} &= \int_\Omega \left[\frac{\partial N^\nu}{\partial x} \right] \mu \frac{\partial N^\nu}{\partial x} \, d\Omega \\
\mathbf{K}_{12} &= \int_\Omega \left[\frac{\partial N^\nu}{\partial y} \right] \mu \frac{\partial N^\nu}{\partial x} \, d\Omega \\
\mathbf{K}_{21} &= \int_\Omega \left[\frac{\partial N^\nu}{\partial x} \right] \mu \frac{\partial N^\nu}{\partial y} \, d\Omega
\end{align*}
\]
\[
\begin{align*}
[K_{zz}] &= \int_{\Omega} \left[\frac{\partial N^v}{\partial y} \right] \left[\frac{\partial N^v}{\partial y} \right] d\Omega \\
[L_{c1}] &= \int_{\Omega} \left[N^p \right] \left[\rho \frac{\partial N^v}{\partial x} \right] d\Omega \\
[L_{c2}] &= \int_{\Omega} \left[N^p \right] \left[\rho \frac{\partial N^v}{\partial y} \right] d\Omega \\
\{ R_q \} &= \int_{\Sigma} q \left\{ N^s \right\} d\Sigma \\
\{ R_p \} &= -\int_{\Omega} \left[N^v \right] \left(p^* \frac{\partial u^*}{\partial x} + p^* \frac{\partial v^*}{\partial y} \right) d\Omega \\
\{ R_c \} &= -\int_{\Omega} \left(\frac{\partial N^1}{\partial x} k \frac{\partial N^1}{\partial x} \right) + \left(\frac{\partial N^1}{\partial y} k \frac{\partial N^1}{\partial y} \right) d\Omega \\
\{ R_x \} &= \int_{\Sigma} \tilde{\sigma}_x \left\{ N^v \right\} d\Sigma - \int_{\Omega} \rho \left(1 - \frac{\rho}{\rho_0} \right) g_x \left\{ N^v \right\} d\Omega \\
\{ R_y \} &= \int_{\Sigma} \tilde{\sigma}_y \left\{ N^v \right\} d\Sigma - \int_{\Omega} \rho \left(1 - \frac{\rho}{\rho_0} \right) g_y \left\{ N^v \right\} d\Omega
\end{align*}
\]
To evaluate the finite element matrices requires integrating functions of the form

\[\int_{\Omega} f(x, y) \, d\Omega = \int_{-1}^{1} \int_{-1}^{1} f'(\xi, \eta) \, |J| \, d\xi \, d\eta \quad (4.32) \]

The Jacobian is a function of \(\xi \) and \(\eta \) and cannot be explicitly evaluated because the coefficients are polynomials, thus some type of numerical integration must be used. The Gauss-Legendre method is chosen here because it requires relatively few sampling points to obtain a good degree of accuracy. This method involves evaluating the function at the sampling points and weighting the results as follows

\[\int_{-1}^{1} \int_{-1}^{1} f'(\xi, \eta) \, |J| \, d\xi \, d\eta = \sum_{i=0}^{n} \sum_{j=0}^{n} W_i W_j f'(\xi_i, \eta_j) \quad (4.33) \]

Table 4.1 gives the location and weights for the Gauss-Legendre Quadrature up to order 4.
Table 4.1 Location and Weights for Gauss-Legendre Quadrature to Order 4

<table>
<thead>
<tr>
<th>Order</th>
<th>Location</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=1</td>
<td>±0.5773502691</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>n=2</td>
<td>0.0000000000</td>
<td>0.8888888889</td>
</tr>
<tr>
<td></td>
<td>±0.7745966692</td>
<td>0.5555555556</td>
</tr>
<tr>
<td>n=3</td>
<td>±0.3399810435</td>
<td>0.6521451548</td>
</tr>
<tr>
<td></td>
<td>±0.8611363115</td>
<td>0.3478548451</td>
</tr>
<tr>
<td>n=4</td>
<td>0.0000000000</td>
<td>0.5688888889</td>
</tr>
<tr>
<td></td>
<td>±0.5384693101</td>
<td>0.4786286704</td>
</tr>
<tr>
<td></td>
<td>±0.9061798459</td>
<td>0.2369268850</td>
</tr>
</tbody>
</table>

Figure 4.9 shows an example of the location of these sampling points for a typical element using a Gauss-Legendre Quadrature of order 2.

To accurately evaluate the volume integrals, Gauss-Legendre integration of order 1 is required for the bilinear elements and order 2 for the biquadratic elements.

Assembling the System Equations

Once the behavior of each element has been developed, the overall system is modeled by assembling these element equations into a set of system equations. To do this, the element equations, which were evaluated at the nodes of
each element, must now be transformed into the global node numbering scheme. The numbering schemes for the quadratic Lagrangian element and the global node numbering scheme for an example four element region are shown in Figure 4.10. For the sake of explanation assume there is a single field variable at each node, the total number of system nodal variables is equal to the number of global nodes, n (i.e. 25 in Figure 4.10). The nine local element
nodes for the upper left element in Figure 4.10 correspond to the global nodes 11, 12, 13, 8, 3, 2, 1, 6, and 7. The

![Local (Element) Node Numbering](image)

![Global Node Numbering](image)

Figure 4.10 Transformation of the Local Node Numbering to the Global Node Numbering Scheme

node relationship is only slightly more complicated for the case where multiple field variables exist at the same geometric node location. The procedure for assembling the system equations is as follows:

1. For n global nodes, set up two $n \times n$ and one $n \times 1$ null matrices (all zero entries) as the system
mass, stiffness and resultant matrices.

2. Take one element and use the relationship between the local and global node numbers to replace the indices in the element matrices with the corresponding global node numbers.

3. Insert those terms into the appropriate locations in the system matrices. If a term is inserted in a location where another term has already been placed, it should be added to the value at that location.

4. Repeat the procedure starting at step 2 for all of the elements.

The result will be a system of equations of the form

\[
\begin{bmatrix} M & \mathbf{r} \\ \mathbf{r}^T & 0 \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}} \\ \mathbf{x} \end{bmatrix} + \begin{bmatrix} K \end{bmatrix} \begin{bmatrix} \phi \end{bmatrix} = \begin{bmatrix} R(t) \end{bmatrix}
\] (4.34)

where again \(\phi \) is the unknown field variables, \([M]\) the mass matrix, \([K]\) the stiffness matrix, and \(R\) the resultant column matrix.

Solving for the Transient Response

The solution of the final set of simultaneous nonlinear ordinary differential equations is a formidable
task combining transient time integration with an iteration scheme at each time step to handle the nonlinear terms.

An approach to directly integrating these coupled equations in time is to use recursive algorithms based on the finite difference method. Let \(t_j \) be a typical time in the transient response such that

\[
t_{j+1} = t_j + \Delta t, \quad \text{for } j=0,1,2,...
\]

A general family of algorithms can be developed by introducing a parameter \(\theta \) such that

\[
t_{j+\theta} = t_j + \theta \Delta t, \quad \text{for } 0 \leq \theta \leq 1
\]

The system equations at time \(t_{j+\theta} \) can be written as

\[
\begin{bmatrix}
M \\
K
\end{bmatrix}
\{\phi\}_{j+\theta}^+ = \{R(t_j, \theta)\}
\]

Introducing the approximations
Substituting these approximations into the system equations yields

\[
\begin{align*}
\{ \phi \}_{j+\theta} & = \frac{\phi_{j+1} - \phi_j}{\Delta t} \\
\{ \phi \}_j & = (1-\theta)\{ \phi \}_j + \theta\{ \phi \}_{j+1} \\
\{ R(t_j) \}_j & = (1-\theta)\{ R \}_j + \theta\{ R \}_{j+1}
\end{align*}
\]

(4.36)

Rearranging, a general recursion formula for calculating the unknown field variables \(\{ \phi \}_{j+1} \) at the end of the time step to the known values \(\{ \phi \}_j \) at the start of the time step is given by

\[
\left[\theta[K] + \frac{1}{\Delta t}[M] \right] \{ \phi \}_{j+1} = \left[(\theta-1)[K] + \frac{1}{\Delta t}[M] \right] \{ \phi \}_j \\
+ (1-\theta)\{ R \}_j + \theta\{ R \}_{j+1}
\]

(4.37)

\[
\left[\vec{K} \right] \{ \phi \}_{j+1} = \{ \vec{R} \}_{j+1}
\]

(4.38)
in which

\[
\begin{bmatrix}
\bar{K}
\end{bmatrix} = \theta \begin{bmatrix} K
\end{bmatrix} + \frac{1}{\Delta t} \begin{bmatrix} M
\end{bmatrix}
\]

\[
\{\bar{R}\}_{j+1} = \left[(\theta - 1) \begin{bmatrix} K
\end{bmatrix} + \frac{1}{\Delta t} \begin{bmatrix} M
\end{bmatrix} \right] \{\phi\}_j + (1 - \theta) \{R\}_j + \theta \{R\}_{j+1}
\]

This equation represents a family of popular time-marching algorithms. Table 4.2 describes some of the members of this family.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>(\theta)</th>
<th>Accuracy</th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euler or Forward Difference</td>
<td>0</td>
<td>1st Order</td>
<td>Conditional</td>
</tr>
<tr>
<td>Crank-Nicolson</td>
<td>1/2</td>
<td>2nd Order</td>
<td>Unconditional</td>
</tr>
<tr>
<td>Galerkin</td>
<td>2/3</td>
<td>1st Order</td>
<td>Unconditional</td>
</tr>
<tr>
<td>Backward Difference</td>
<td>1</td>
<td>1st Order</td>
<td>Unconditional</td>
</tr>
</tbody>
</table>

All of the algorithms given in Table 4.2 are first order accurate with the exception of the Crank-Nicolson method which is second order accurate. The terms first order and second order refer to the truncation errors in the finite difference approximations. First order accuracy means that the error is proportional to the first power of the time step \(\Delta t\), and second order accuracy means
the error is proportional to the second power of Δt.

Many studies have been made to evaluate the relative accuracy of each of the methods given in Table 4.2. Perhaps one of the most relevant was performed by Hogge29 in which he studied a nonlinear heat transfer problem. His detailed investigation of the relative accuracy of the various methods concluded that the Crank-Nicolson scheme ($\theta=1/2$) is indeed the most accurate of these methods. He did note however, that more sophisticated schemes spanning several time steps can give even better accuracy.

Table 4.2 also characterizes the stability of the various methods. Stability means that the computed response does not oscillate and grow without bounds unrealistically. Stability is ensured for $\theta \geq 1/2$. All of the methods given in Table 4.2 are unconditionally stable except the Euler forward difference method. For methods where $\theta < 1/2$ a stable solution results only for time steps less than some critical value. It should be noted however that the selection of time step is important even for methods with $\theta \geq 1/2$. Though the computed response with one of these methods will not grow unrealistically without bound, it may exhibit spurious oscillations and decreased accuracy with a very large time step. With either method it is good practice to solve the integration with several different time steps and compare the results.

In addition to accuracy and stability, other considerations effect the selection of time integration
algorithm. The two common approaches to solving the overall system of equations are the explicit forward difference scheme and the implicit one parameter θ schemes.

The explicit forward difference scheme computes the field variables at time t_{j+1} from a set of uncoupled system equations. It does however require a lumped mass matrix. The term *lumped* is used to differentiate it from the original (or *consistent*) mass matrix. Lumped matrices are formed by assigning each node an amount of mass which can be attributed to that location. The most common approach to forming a lumped mass matrix is to sum the coefficients of the rows of the consistent mass matrix and use these as terms along the diagonal. The explicit forward difference scheme using a lumped mass matrix may result in a significant computational savings over implicit schemes because the field variable can be computed without solving the system of simultaneous equations at each iteration. Again it has the disadvantage of only conditional stability with selection of the time step. It also requires a constant time step throughout the solution.

The implicit "θ" algorithms compute the field variables from a coupled set of system equations. The time step for the implicit algorithms again is not restricted by the stability constraint discussed earlier. In addition, the time step can be varied throughout the
transient solution. This is a significant advantage of the implicit algorithms for this research problem. During the solution of a phase change problem, the maximum allowable time step may vary significantly. This is because the solution domain may be all solid, multi-phase, or fluid. Each of these situations could have very different rates of response. For example, during the time the material is all solid and only the energy equation is important, the allowable time step might be significantly larger than when fluid is present and results from the momentum equations become important.

Implicit algorithms permit either lumped or consistent mass matrices. However, the choice of lumped versus consistent mass matrices is not always be easily resolved. Considering their formulation, consistent mass matrices are thought to be more accurate. Many researchers, however, have found insignificant loss of accuracy using the lumped approach. In fact, virtually all finite difference formulations use the lumped mass approach. Emery, et al.16 found that the consistent approach could sometimes even predict unrealistic oscillations in the temperature distributions. This was most often observed near areas of sharp transients. The lumped approach however gave solutions which were intuitively obvious. During the course of this research, I also observed unrealistic oscillations in the field variables while using a consistent mass matrix approach.
This was particularly evident near the phase change front where the material properties varied greatly.

Because of the considerations and observations discussed above, the lumped mass, implicit Crank-Nicolson scheme was adopted for this research.

After application of the recursive time integration approach, the result will be a reduced set of system equations of the form

\[
\begin{bmatrix} K \end{bmatrix} \{\phi\} = \{R\} \tag{4.39}
\]

It is now necessary to account for any boundary conditions which were not already applied as natural boundary conditions. In particular, these include any prescribed value boundary conditions. Usually, at least one and sometimes more than one nodal value must be prescribed to make the system equations nonsingular and provide a unique solution. There are several ways to apply these prescribed boundary conditions and modify the set of system equations. The one chosen here is relatively straightforward and can be described best by example. Suppose there are only four system equations given by
Consider applying prescribed nodal values specified as

\[\phi_1 = \psi_1, \quad \phi_3 = \psi_3 \]

The modified system equations will become

\[
\begin{bmatrix}
 k_{22} & k_{24} \\
 k_{42} & k_{44}
\end{bmatrix}
\begin{bmatrix}
 \phi_2 \\
 \phi_4
\end{bmatrix}
=
\begin{bmatrix}
 r_2 - k_{21} \psi_1 - k_{23} \psi_3 \\
 r_4 - k_{41} \psi_1 - k_{43} \psi_3
\end{bmatrix}
\]

Note that once these prescribed boundary conditions have been applied, the number of equations and nodal unknowns to be solved for is reduced since it is not necessary to solve for the prescribed values. For problems with many prescribed boundary values, such as flow inside a containment vessel, the size of the system equations can be reduced significantly. From a computational standpoint, this can result in a substantial decrease in the time to invert the large system matrix.

Note also that since the dependent variable in the energy equation is internal energy, prescribed temperature boundary conditions must be handled with an additional
step. This step is simply to apply the equation of state model to convert the prescribed temperature value to a prescribed internal energy value.

Before summarizing the overall numerical approach, some discussion is warranted on the method for determining the state and material properties used throughout the solution domain. There were several requirements for this equation of state and material property model. First, the method should be able to describe reasonably complex material property characteristics. Second, the amount of input data to describe these material properties should be minimal. And finally, the method should be computationally efficient. Usually, either tabular data interpolation or "curve fitting" approaches are used for such models. Since two independent material properties are used (e.g. pressure and internal energy) the tabular data approach requires double interpolation and the "curve" in the second approach is really a surface.

Because of the requirements discussed above, a surface fitting approach to the material state properties was developed. In such an approach, the thermodynamic surface representing the dependent property as a function of the two independent properties is represented by one or more regions as shown in Figure 4.11. These regions are described by quadrilaterals defined by values at eight points along their sides. The point representing the independent properties is projected onto one of these
Figure 4.11 Surface Fitting of the Material State Properties

quadrilaterals. A double quadratic regression analysis of that quadrilateral is then used to yield the value of the dependent property.

The overall numerical solution procedure described in this chapter is summarized in Table 4.3. This numerical solution procedure is implemented in the computer program, PHASTRAN, which is described in Appendix A and listed in Appendix B.
Table 4.3 Overall Solution Procedure

<table>
<thead>
<tr>
<th>Initial calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read input data</td>
</tr>
<tr>
<td>Generate element coordinates</td>
</tr>
<tr>
<td>Initialize field variables</td>
</tr>
<tr>
<td>Evaluate material state properties</td>
</tr>
<tr>
<td>At each time step</td>
</tr>
<tr>
<td>Increment time</td>
</tr>
<tr>
<td>Iterate to converge nonlinear terms</td>
</tr>
<tr>
<td>Form the element equations</td>
</tr>
<tr>
<td>Assemble $[M]$, $[K]$, and (R) system matrices</td>
</tr>
<tr>
<td>Modify system matrices to form $[K]$ and (R)</td>
</tr>
<tr>
<td>Apply the prescribed boundary conditions</td>
</tr>
<tr>
<td>Solve the simultaneous equations</td>
</tr>
<tr>
<td>Update the material state properties</td>
</tr>
<tr>
<td>Set $u^$ and $v^$ to zero in the solid</td>
</tr>
<tr>
<td>Check for convergence of the field variables</td>
</tr>
<tr>
<td>Advance to the next time step</td>
</tr>
</tbody>
</table>
CHAPTER 5

RESULTS AND VERIFICATION

Direct experimental verification of the multi-dimensional phase change problem is difficult at best. Verification is especially difficult for containment vessels with complicated shapes and nonuniform boundary conditions. Even for very simple geometries, verification would rely on results from other numerical methods or the very few experimental observations of the combined transient effects that do exist. For this research, an alternative but indirect approach was chosen in which the individual phenomena are verified with simple geometries for which there are known and well established solutions. This approach resulted in a number of test cases which are summarized in Table 5.1. These cases are presented individually in the remainder of this chapter. Table 5.1 characterizes each case by the geometric space (1-dimensional or 2-dimensional) of the problem, the thermodynamic state of the material, and the principle phenomena of interest. Note that even though the particular case can be characterized as 1-dimensional, the 2-dimensional analysis was used.
The last case gives the solution to the general problem combining all the phenomena of interest. This case demonstrates the ability of this analysis approach to solving a realistic problem representing several interacting fluid/thermal phenomena. It could also serve as a test case for comparison of similar analyses which other researchers may be developing.

A discussion of the computer resource usage is given at the end of the chapter.

<table>
<thead>
<tr>
<th>Case</th>
<th>Space</th>
<th>Material State</th>
<th>Phenomena</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-D</td>
<td>Solid</td>
<td>Conduction, with Prescribed Temperatures</td>
</tr>
<tr>
<td>2</td>
<td>2-D</td>
<td>Solid-Liquid</td>
<td>Phase Change, by Conduction only with Prescribed Temperatures</td>
</tr>
<tr>
<td>3</td>
<td>2-D</td>
<td>Liquid</td>
<td>Buoyancy-Driven Convection with Prescribed Temperatures</td>
</tr>
<tr>
<td>4</td>
<td>2-D</td>
<td>Solid-Liquid</td>
<td>Phase Change, by Conduction and Buoyancy Driven Convection</td>
</tr>
</tbody>
</table>
Case 1: Conduction Only

As was discussed in Chapter 3, the formulation of the energy equation is based on internal energy instead of the more common temperature and specific heat approach. To ensure the validity of such an approach, Case 1 considers a simple transient problem for conduction heat transfer. For this case, material properties are constant throughout the solution domain and the material always remains in the solid state. Figure 5.1 describes the solution domain as well as the boundary and initial conditions. The problem consists of a slab of material initially at a uniform temperature, T_0. At time zero the surface temperature of one side is suddenly changed to T_1. Note that since the upper and lower sides are insulated, this problem is actually one dimensional.

Exact solutions to the problem of Case 1 are widely available, for example Kreith\(^{35}\). The results of such solutions are often presented in terms of a nondimensional temperature versus the Fourier number defined by

$$F_o = \frac{at}{(2D)^2}$$

where a is the thermal diffusivity defined by
a = $\frac{k}{\rho c}$

and D is the thickness of the material.

Though this problem is really one-dimensional, for convenience, the solution domain was discretized into a total of 25 equal elements, with 5 element divisions along each of the x and y directions. The time step used corresponds to a Fourier number of 0.0005. Figure 5.2
Figure 5.2 Calculated Temperatures for Case 1

shows the calculated temperature distributions at four times. These values are within one percent of the exact values for this problem. During the course of this research, many other similar problems involving conduction heat transfer were solved. These included cases with both prescribed temperatures and/or prescribed heat flux. Results from these cases as well as those of other investigators (see for example White62) has confirmed the validity of the internal energy formulation of the energy equation in calculating transient conduction heat
Several problems were studied involving phase change by conduction. For 1-dimensional space, exact solutions exist for prescribed temperature boundary conditions as well as cases with prescribed heat flux conditions. Results from the present formulation for such cases showed excellent agreement with exact solutions. A more complex case is that of multi-dimensional phase change. Case 2 models 2-dimensional phase change by conduction with prescribed temperature boundary conditions. Specifically the problem consists of a prism of square cross-section which is initially in the liquid state at the fusion temperature. Prescribed temperatures which are lower than the fusion temperature are applied to the surface of the prism, and it solidifies with time. Due to the symmetry of the problem, only one quarter of the cross-section need be considered with two boundaries maintained at the prescribed temperature as shown in Figure 5.3. For convenience the problem can be described by

Case 2: Phase Change by Conduction
Figure 5.3 Description of Case 2

\[\lambda^* = \frac{(L/C_s)}{T_f - T_1} \]

\(\text{dimensionless latent heat parameter} \)

\[\theta_r = \frac{(T_f - T_1)}{(T_0 - T_1)} \]

\(\text{dimensionless fusion temperature} \)

\[\tau = \frac{a \cdot t}{d^2} \]

\(\text{dimensionless time} \)
Figure 5.4 Calculated Loci of Interface for Case 2

\[\zeta_j = \frac{1}{D} \]

dimensionless interface location

in which D is a convenient reference length and the subscript s denotes properties of the solid.

This problem has been studied by several researchers in the past including Poots50, Lazaridis37 and Crowley14. The numerical data used here is the same as was used by
those researchers. These values are $\lambda^*=1.5613$, $\theta_f=1$, and $d_1=d_2=4$, where d_1 and d_2 are the normalized dimensions of the quarter square section.

Because the density is constant throughout the solution domain, no effects of flow in the liquid were considered and only the energy equation was solved. For this problem, a total of 49 equal square elements were used with a time step corresponding to a τ of 0.005. Figure 5.4 shows the calculated interface at various times during the solidification. The interface locations are also presented in terms of fraction of solidified matter along the diagonal and at the insulated boundaries in Figures 5.5 and 5.6, respectively. The calculated results compare quite well with the results from other researchers. Though no exact solution to this problem exists, a similarity solution for an infinite medium is also given. The calculated results of the present analysis for the finite medium compare favorably with the infinite medium analysis initially. At later times, the infinite medium solution predicts a slightly faster solidification. This is expected since end effects in the infinite medium allow for heat conduction out of the corner, while ends for the finite medium are effectively insulated.
Figure 5.5 Calculated Interface Location Along the Diagonal for Case 2

Figure 5.6 Calculated Interface Location Along the Center Line for Case 2
Case 3: Buoyancy-Driven Convection

Flow inside a square cavity is one of the simplest problems in convection and is often used to test the validity of fluid analysis methods. Case 3 is an example of buoyancy driven flow in a square cavity. Figure 5.7 describes the solution domain and boundary conditions. For this case, one side of the square cavity is maintained at a constant temperature of T_1. The opposite side is at a higher temperature T_2. The velocities of the fluid are prescribed to zero at the container wall. The Prandtl number of the fluid was chosen to be 1.

The dimensionless Rayleigh number, defined by

$$Ra = \frac{g\beta(T_2 - T_1)D^3}{\nu\alpha}$$

is used to characterize the flow. The coefficient of thermal expansion, β, in the definition of the Rayleigh number above is defined by

$$\beta = \left(1 - \frac{\rho}{\rho_0}\right) \frac{1}{\Delta T}$$

where the 0 subscript denotes some reference state, and ΔT is the change in temperature from that reference state.
For this problem, a total of 49 equal sized square elements were used. Figures 5.8, 5.9, and 5.10 show the calculated fluid velocity fields and temperatures at Rayleigh numbers of 10^3, 10^4, and 10^5. No cases were calculated for higher Rayleigh numbers, however, no stability problems were observed at a Rayleigh number of 10^5. The calculated results compare well qualitatively with similar analyses by Pepper and Cooper49. Pepper and Cooper also compiled data from the literature for the buoyancy driven cavity flow problem described above. This
Figure 5.8 Calculated Fluid Velocity Vectors and Normalized Temperature Contours for Case 3 at a Rayleigh Number of 10^3.

Figure 5.9 Calculated Fluid Velocity Vectors and Normalized Temperature Contours for Case 3 at a Rayleigh Number of 10^4.

data is presented in terms of an average Nusselt number given by

\[\text{Nu} = \int_0^D \frac{\partial T}{\partial x} \mid_{x=0} \, dy \]

The Nusselt number above is dimensionless by normalizing with respect to the wall temperatures and letting the dimension D be 1. Results from the present analysis are given in Table 5.2 and graphically in Figure 5.11 along with the results from other researchers.

<table>
<thead>
<tr>
<th>Ra</th>
<th>Nu</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^3)</td>
<td>1.11</td>
</tr>
<tr>
<td>(10^4)</td>
<td>2.40</td>
</tr>
<tr>
<td>(10^5)</td>
<td>5.17</td>
</tr>
</tbody>
</table>

Figure 5.11 shows excellent agreement between the present analysis and previously published data.

In addition to this problem, several other cases involving free and forced convection were studied during this research. One case considered driven cavity flow (forced convection) without buoyancy. In this case three
Figure 5.10 Calculated Fluid Velocity Vectors and Normalized Temperature Contours for Case 3 at a Rayleigh Number of 10^5.

Figure 5.11 Average Nusselt Number Versus Rayleigh Number for Case 3.
sides of the square cavity are maintained at a constant temperature of \(T_1 \). The fourth side is at a temperature \(T_2 \), and moves with a velocity \(V \). The predicted velocity and temperature contours compared well qualitatively with similar analyses by Chen, et al.13.

Case 4: Combined Conduction, Convection, and Phase Change

The last case gives the solution to the general problem combining conduction, convection, and phase change. Figure 5.12 shows the solution domain along with the boundary and initial conditions. The problem consists of a material inside a container of square cross-section. The top and bottom of the container are maintained at constant temperatures above and below the fusion temperature of the material. Since the container is initially at rest and not subject to a gravitational field, there is no motion in the liquid phase. The initial temperature distribution varies linearly between \(T_1 \) and \(T_2 \) and flat phase front has formed perpendicular to the direction of the temperature gradient. At time zero, the material is subjected to an acceleration causing buoyancy-driven convection in the fluid. This convective flow changes the heat transfer and thus affects the location of the phase front.

Table 5.3 gives the numerical values for the boundary
conditions, material properties, and geometry of Case 4.

The complexity of this problem is apparent from the number of physical constants listed in Table 5.3. Even if dimensional analysis were applied to this problem, over ten dimensionless groups would result. That many dimensionless numbers would not significantly improve the description of the problem, thus only the conventional dimensionless parameters are given here.

Figure 5.12 Description of Case 4
Table 5.3 Physical Properties and Conditions for Case 4

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_f</td>
<td>Fusion Temperature</td>
<td>0.0°C</td>
</tr>
<tr>
<td>T_{l1}</td>
<td>Prescribed Low Temperature</td>
<td>-0.5°C</td>
</tr>
<tr>
<td>T_{h2}</td>
<td>Prescribed High Temperature</td>
<td>1.5°C</td>
</tr>
<tr>
<td>ρ_s</td>
<td>Solid density</td>
<td>1000 kg/m3</td>
</tr>
<tr>
<td>ρ^L_0</td>
<td>Liquid density at T_f</td>
<td>1000 kg/m3</td>
</tr>
<tr>
<td>β^L</td>
<td>Liquid thermal expansivity</td>
<td>0.001/°C</td>
</tr>
<tr>
<td>μ</td>
<td>Dynamic viscosity</td>
<td>0.001 kg/</td>
</tr>
<tr>
<td>C_s</td>
<td>Solid specific heat</td>
<td>1000 J/kg°C</td>
</tr>
<tr>
<td>C^L_1</td>
<td>Liquid specific heat</td>
<td>1000 J/kg°C</td>
</tr>
<tr>
<td>L</td>
<td>Latent heat of fusion</td>
<td>1000 J/kg</td>
</tr>
<tr>
<td>k_s</td>
<td>Solid thermal conductivity</td>
<td>1 W/m°C</td>
</tr>
<tr>
<td>k^L_1</td>
<td>Liquid thermal conductivity</td>
<td>1 W/m°C</td>
</tr>
<tr>
<td>g</td>
<td>Acceleration</td>
<td>0.02 m/s2</td>
</tr>
<tr>
<td>D</td>
<td>Length of container side</td>
<td>0.1 m</td>
</tr>
<tr>
<td>t</td>
<td>time</td>
<td>s</td>
</tr>
</tbody>
</table>

The Rayleigh number, characterizing the buoyancy driven convection, and given by

$$Ra = \frac{g\beta(T_s - T_f)D^3}{\nu a} = 3 \times 10^4$$

The Prandtl number, characterizing the fluid's ratio of momentum and thermal diffusivity, and given by

$$Pr = \frac{\nu}{a} = 1.0$$

The Jakob number, characterizing the material's ratio
of specific heat to latent heat capacity, and given by

\[\text{Ja} = \frac{C_s (T_f - T_1)}{L} = 0.5 \]

In addition, we may define dimensionless temperatures given by

\[\theta_1 = \frac{T_1 - T_f}{T_2 - T_1} = -0.25 \]

and

\[\theta_2 = \frac{T_2 - T_f}{T_2 - T_1} = 0.75 \]

Finally, we may define a dimensionless time parameter given by

\[\tau = \frac{a \cdot t}{D^2} \]

For this problem a total of 49 equal square elements were used and the time step corresponded to a \(\tau \) of 0.0002. Figures 5.13 through 5.23 show the calculated results for
Case 4 at various times during the phase change process. These results include normalized isotherms, velocity vectors, and the location of the liquid/solid phase front. The development of the fluid flow and its effect on the heat transfer can be seen at the early time steps. The interesting aspect of this example is the definite influence of the fluid flow on the heat transfer and the resulting movement of the phase front. Steady state is reached at $r = 0.2$ with a phase front significantly different from the flat front formed initially under conditions of no convective flow.
Figure 5.13 Normalized Isotherms, Velocity Vectors, and Phase Distribution for Case 4 at $\tau=0.0$
Figure 5.14 Normalized Isotherms, Velocity Vectors, and Phase Distribution for Case 4 at $\tau=0.001$
Figure 5.15 Normalized Isotherms, Velocity Vectors, and Phase Distribution for Case 4 at $\tau=0.005$
Figure 5.16 Normalized Isotherms, Velocity Vectors, and Phase Distribution for Case 4 at $\tau=0.01$
Figure 5.17 Normalized Isotherms, Velocity Vectors, and Phase Distribution for Case 4 at $\tau=0.02$
Figure 5.18 Normalized Isotherms, Velocity Vectors, and Phase Distribution for Case 4 at $\tau=0.03$
Figure 5.19 Normalized Isotherms, Velocity Vectors, and Phase Distribution for Case 4 at \(\tau = 0.04 \)
Figure 5.20 Normalized Isotherms, Velocity Vectors, and Phase Distribution for Case 4 at $\tau=0.05$
Figure 5.21 Normalized Isotherms, Velocity Vectors, and Phase Distribution for Case 4 at $\tau=0.1$
Figure 5.22 Normalized Isotherms, Velocity Vectors, and Phase Distribution for Case 4 at $\tau=0.15$
Figure 5.23 Normalized Isotherms, Velocity Vectors, and Phase Distribution for Case 4 at $r=0.2$
Computer Resource Usage

Computer usage is of importance to most numerical modelers. Table 5.4 shows the computer time usage for each of the cases presented. The computer system used was an AMDAHL 5870 with an MVSXA operating system. It is important to note, that these cases were not fully optimized in terms of domain discretization or time step to provide minimum CPU times.

Table 5.4 CPU Times of Verification Cases

| Case | CPU Time, seconds | CPU Time
| # Time Steps |
|------|-------------------|------------|
| 1 | 696 | 1.74 |
| 2 | 16470 | 8.24 |
| 3 | 15035 | 150.4 |
| 4 | 145700 | 145.7 |

The CPU times given in Table 5.4 are long and could result in significant expense on a pay for time computer system. The intended use of this analytical model, however, is in the aerospace industry and government with institutional computational facilities devoted to such tasks. Where no other similar analysis tool is available,
the comparison may be between these computer costs and the need for a space flight experiment, for example, the cost of which can also be substantial.

It should also be noted that these CPU times are not unusual for modeling phase change problems with convection. Schneider52 cites researchers quoting CPU times of 50000 seconds on a CDC 6500 computer, for similar phase change problems. Further discussion on computer usage and possible areas of improvement can be found in the next chapter.
CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

The work presented develops a solution approach to the combined conservation laws of energy, momentum, and mass. This approach is quite general and provides a method to analyze a variety of fluid and thermal problems including those with phase change.

The finite element method, being an integral method provides a natural means to implementing the internal energy formulation of the phase change problem. Using elements with quadratic interpolation functions, the interface can be tracked quite accurately. Finite difference formulations to date only provide information on the interface location to within one mesh spacing. Results from those analyses show jagged interfaces (see Schneider52) that can influence convective flow in the liquid.

The analytic approach was implemented in a computer program and results were verified by investigating individual phenomenon and comparing with known solutions. In general, the approach yields solutions with good engineering accuracy. The predicted results for a problem
similar to that described in Chapter 3 were presented for comparison by other researchers who may develop similar analytical methods in the future.

One area of concern for the present approach is the high computer resource usage. The majority of the computer time is incurred in forming and then inverting the large set of system equations needed to converge the nonlinearities and achieve a valid solution.

One way of reducing the computer time requirements by improving the algorithm may be to incorporate a Newton-Raphson iteration scheme to converge for the nonlinearities. For a further discussion on the application of such methods, see Geradin, et al.²⁵.

Another approach to reducing computational times would be to improve the simultaneous equation solver. The matrices representing the system equations are characteristically sparse with nonzero coefficients located close to the diagonal. The use of a banded matrix solver could significantly reduce computer time.

Fortunately, future trends will continue to reduce the computational times and costs. The operation of the computer program on a 3090 class computer with vector optimizing hardware should reduce CPU times by about an order of magnitude. This trend of increased computational capability of the hardware will continue in the future. Also the development of efficient large matrix solvers is undergoing much research and is a very important aspect of
numerical modeling of fluid/thermal systems.

There are several obvious extensions to this work. First, this approach can easily be modified to analyze 3-dimensional space systems. Nothing in the formulation should prevent this and only the available computational capabilities might present a restriction on the geometric complexity of the problem.

Further investigation is also warranted in the use of consistent mass matrices for the inertia terms in the energy and momentum equations. Though the lumped mass matrices are by far the most common, there is concern that the method of lumping might contribute to inaccuracies particularly for highly distorted curve-sided elements.

Though I personally believe that the internal energy or enthalpy method is the only practical method for modeling the phase change problem in 3-dimensional space, development of other methods is warranted. The work of Chang and Brown12 is particularly interesting, although their moving boundary-moving mesh techniques would be very difficult to implement where the thermodynamic phases are fragmented.

For application to the space environment, other forces not addressed here can become important. Siegel55 provides a good overview on the effects of reduced gravity on heat transfer. The incorporation of a surface free energy model would be especially useful, particularly for very low gravity conditions. Pearson48, Labus36, and
Mette40 provide interesting approaches to handling the free surface problem, however, application to the finite element method remains fertile ground for research.

Finally, the incorporation of a turbulence model into the analysis could significantly extend its application.
APPENDICES
This appendix discusses the general programming approach and implementation used in this research. Included is a description of the program functions and important global variables. This is followed by a flowchart of the major functions.

The programming language APL was chosen for its reduced programming development time, its inherent matrix manipulation capabilities, and because it is easily transported to various computer hardware systems. APL was originally developed by Iverson as a general mathematical notation and later implemented as a computer programming language. A detailed description of the programming language APL is given by Gilman and Rose. APL has several significant advantages over more "conventional" languages such as FORTRAN, PASCAL, etc. Because APL is a symbolic vector language the source code is typically at least two to three times shorter than most other languages and can be developed about four to ten times faster. Table A.1 shows a comparison between FORTRAN and APL programs to produce the sum of all the numbers greater than 50 in a set of real numbers. The APL program is significantly shorter. Several characteristics contribute to APL's brevity. APL processes aggregates of
data, or arrays, with much the same syntax as single numbers, and therefore essentially eliminates the need for structures such as loops. Data is maintained unformatted within the APL environment, so that no logical ties to the host operating system files is required. In addition, all numbers are stored and operations performed using double precision.

Table A.1 FORTRAN and APL Programs to Sum the Real Numbers In a Set That are Greater Than 50

<table>
<thead>
<tr>
<th>FORTRAN</th>
<th>APL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOUBLE PRECISION SUM,X</td>
<td>+/(X>50)/X</td>
</tr>
<tr>
<td>READ(5,100) LIMIT</td>
<td></td>
</tr>
<tr>
<td>100 FORMAT(I10) SUM=0.0D0</td>
<td></td>
</tr>
<tr>
<td>200 DO 400 I=1,LIMIT</td>
<td></td>
</tr>
<tr>
<td>READ(5,300) X</td>
<td></td>
</tr>
<tr>
<td>300 FORMAT(F10.5) IF(X.LE.50.)</td>
<td></td>
</tr>
<tr>
<td>GO TO 200</td>
<td></td>
</tr>
<tr>
<td>400 SUM=SUM+X</td>
<td></td>
</tr>
<tr>
<td>WRITE(6,500) SUM</td>
<td></td>
</tr>
<tr>
<td>500 FORMAT(F20.5) STOP END</td>
<td></td>
</tr>
</tbody>
</table>

Most APL systems today use an interpreter though some compilers are available. The interpreted versions lend themselves very well to program development because the environment is interactive, no compiling is required, and the debugging facilities work directly with the source
code. Compiled versions however can run significantly faster for some problems (particularly those that are highly iterative). For the problem presented in this research, however, the computer time usage is dominated by inversion of the large system matrix. This inversion is performed by a highly efficient APL primitive function and would not benefit significantly from using a compiled external function. This APL matrix inversion function will also take advantage of super computer class vector processing hardware, when available, to further improve computational performance.

The following pages contain descriptions of the program functions and important global variables. This is followed by the calling structure (flow chart) of the major functions.
FUNCTIONS

ADJSTEP
ADJUSTS TIME STEP BASED ON ABILITY TO CONVERGE AND FIELD VALUES AGAIN
INTERACTIVE SOLUTION (FOR NON-LINEARITIES) AT EACH TIME STEP
AINTCON
INTEGRATION CONSTANTS FOR USE WITH AINTGRT
AREA
CALCULATES AREAS AND VOLUMES OF ELEMENTS
BDY
EVALUATES R VECTOR FROM BOUNDARY AND INTERNAL CONDITIONS
BDY2
MODIFIES ELEMENT R MATRIX FOR BOUNDARY COND. TYPE 2 (PRESCRIBED FLUX)
BDY2ASUB
SUB-FUNCTION OF BDY2 TO PRESCRIBE EACH (ELEMENT, SIDE COMBINATION)
CHKCNV
CHECKS CONVERGENCE OF EF, UF, VF AND PF WITH LAST ITERATION VALUES
CHKCNSV
CHECKS FIELD VALUES FOR CONVERGENCE
CHKEF
CHECKS ENERGY FIELD VALUES TO SEE IF WITHIN PROPERTY DATA RANGE
CHKINPRES
CHECK PRESCRIBED PRESSURE NODE "PRNODE" SPECIFIED IN INPUT
CHKINPUT
CHECK INPUT PARAMETERS
CHKSS
CHECK IF STEADY STATE HAS BEEN REACHED
CHKTF
CHECKS TEMPERATURE FIELD VALUES IF WITHIN PRESCRIBED VALUES
CLEANUP
ERASES VARIABLES NAMED IN QLV EXCEPT THOSE WITH ALT. CHARACTER NAMES
COORXE
GENERATES XI-ETA COORDINATES OF THE NODES
CPUCHK
RETURNS A 0 IF CPU TIME LIMIT IS EXCEEDED
CPUTIME
RETURNS CPU SECONDS USED SINCE "TSTART" WAS ISSUED
DFN
CALCULATES DERIVATIVES OF FIELD VARIABLE AT THE ELEMENT NODES
DIAG
FORMS DIAGONAL MATRIX FROM A VECTOR X
EGIASW
ASSIGN ENERGY FIELD VALUES
EGIBAR
FORMS ENERGY EQUATIONS FOR SOLVING TRANSIENT RESPONSE
EGYEVOL
EVALUATES ENERGY MATRICES
EGYMAT
CONSTRUCT THE ENERGY ELEMENT MATRICES
ENERGY
FORMS AND SOLVES THE TRANSIENT ENERGY EQUATION
FLDMATCM
FORMS CM MATRIX FOR FLDMAT
FLDMAT6KA
FORMS KA MATRIX FOR FLDMAT
FLDMAT6KAE
FORMS KAE MATRIX FOR FLDMAT
FLDMAT6KMN
FORMS K11 K12 K21 K22 MATRICIES FOR FLDMAT
FLDMAT6CLCN
FORM LC1 AND LC2 MATRICIES FOR FLDMAT
FLDMAT6LN
FORMS L1 AND L2 MATRICIES FOR FLDMAT
FLDMAT6MM
FORMS MASS MATRIX FOR FLDMAT
FLDMAT6AR
FORM R VECTORS FOR FLDMAT
FLDMAT6RC
FORMS RC VECTOR FOR FLDMAT
FLDMAT6RP
FORMS AND ASSIGNS RP MATRICIES FOR FLDMAT
FLDSLV
SOLVES EQUATIONS AND ASSIGNS FIELD VALUES
FLDSLVSTAR
RETURNS FIELDS FROM LAST ITERATION
FLOW
FORM AND SOLVE THE FLUID FLOW EQUATIONS
FLWASN
ASSIGN FLUID FLOW FIELD VALUES
FLWBAR
FORMS FLOW EQUATIONS FOR SOLVING TRANSIENT RESPONSE
FLWEVL
EVALUATES FLUID FLOW ELEMENT MATRICES
FLWMAT
CONSTRUCT THE FLUID FLOW MATRICES
FMFEQ61
FORM ENERGY FIELD EQUATIONS
FMFEQ62
FORM FIELD EQUATIONS
FRONTEND
PERFORMS UPFRONT ONCE ONLY FUNCTIONS
GRAVVEC
RETURNS GRAVITATIONAL BODY FORCE VECTOR
GRID6ELN
GENERATES QUADRATIC NODE NUMBERS (ELEMENT BASIS) FOR GRIDGEN
GRID6NODE
GENERATES LINEAR NODE NUMBERS (ELEMENT BASIS) FOR GRIDGEN
GRID6RSE
GENERATES REGION SIDE ELEMENT NUMBERS
GRID6RSLN
GENERATES REGION SIDE LINEAR NODE NUMBERS FOR GRIDGEN
GRID6RSN
GENERATES REGION SIDE QUADRATIC NODE NUMBERS FOR GRIDGEN
GRIDGEN
GENERATES ELEMENT NODE NUMBERING
INBDY
SPECIFY REGION BOUNDARY CONDITIONS
INGEOM
SPECIFY GEOMETRY INPUT PARAMETERS

INITIAL
INITIALIZE VARIABLES

INITMP
INITIALIZE MATERIAL PROPERTIES: CASE WHERE PRESSURE NODE PRESCRIBED

INITMPROP
INITIALIZE MATERIAL PROPERTIES USING AVERAGE CONDITIONS

INITPRES
INITIALIZE PRESSURE FIELD

INITTEMP
INITIALIZE TEMPERATURE

INITVEL
INITIALIZE FLUID VELOCITIES

INPLYGN
FINDS IF POINTS XY ARE IN POLYGONS Q

INPROG
SPECIFY PROGRAM OPERATION INPUT PARAMETERS

INPUT
SPECIFY AND PRINT OUT INPUT PARAMETERS

INREG
SPECIFY INITIAL R AND Z COORDINATES OF REGION

INTQR
INTERPOLATES BY FINDING CLOSEST REGION AND USING DBL. QUAD. REGRESS.

INTQRREG
CALLED BY INTQR, IT PERFORMS DOUBLE QUADRATIC REGRESSION BY REGION

INTQRQUNN
UNNORMALIZE A MATRIX "A" (NESTED ARRAY) WRT. RANGE

JACCHK
CHECK IF DETERMINANT OF JACOBIAN HAS A SIGN REVERSAL

LSHAPE
CALCULATES LINEAR SHAPE FUNCTIONS AND THEIR DERIVATIVES

LUMP
LUMPS THE CAPACITANCE MATRIX BY ROWWISE SUMMATION

LX
LATENT EXPRESSION FOR PHASTRAN

MAP
MAP XI-ETA COORDINATES OF NODES INTO X-Y SYSTEM

PHASTRAN
MAIN CONTROL FUNCTION FOR PHASE CHANGE ANALYSIS MODEL

PRSCRB
PRESCRIBES FINITE ELEMENT EQUATIONS IN THE GLOBAL VARS. KBAR AND RBAR

PRSIDE
MODIFIES PFEQ WHICH DEFINES PRESCRIBED BOUNDARY CONDITIONS

PRSIDEADJ
ADJUSTS ORIGINAL NODE POSITIONS IN A MATRIX FOR FIELD TYPE

PRSIDEFLD
PRESCRIBES BOUNDARY CONDITIONS FOR A FIELD

PRSIDETEMP
CONVERTS TEMPERATURE BOUNDARY CONDITIONS TO ENERGY BC'S

PRSPRES
PRESCRIBES PRESSURE NODEM

PRSP1
PRESCRIBES PRESSURE NODEM: CASE WHERE TOTAL MASS CONSTRAINED
PRSP2
PRESCRIBES PRESSURE NODEM: CASE OF OPEN SYSTEM
PRSVLC
RETURNS LOCATIONS OF PRESCRIBED VALUES FOR THESE FIELD TYPES
QLGSHP
CALCS. QUADRATIC LAGRANGIAN SHAPE FUNCTIONS AND DERIVATIVES
QUADGXY
PERFORMS QUADRATIC REGRESSION ANALYSIS IN 3 DIMENSIONS X Y Z
RCOND
RETURNS SUB-VECTOR FOR INTERNAL CONDUCTION
RDUPL
RETURNS A BOOLEAN FOR REDUCING DUPLICATE VALUES LEAVING ONLY THE 1ST
REDUCE
REDUCES (BY SUMMATION) A VECTOR WITH MULTIPLE INDICES
REMDUPEL
REMOVES DUPLICATE ELEMENTS OF X
RESULTS
DISPLAYS FIELD VARIABLES
RHOZERO
CALCULATES THE REFERENCE DENSITY
RPRES
FORMS PRESSURE RESULTANT VECTOR
SAVEFIELDS
SAVES FIELDS AT EVERY DFN TIME STEP, PUTS IN NESTED ARRAY SAVEFDS
SETLAST
SETS VARIABLES FROM LAST TIME ITERATION
SETSOLID
SETS VELOCITIES TO ZERO FOR NODES IN SOLID STATE
SETSTAR
SETS EF, UF, VF AND PF AT LAST CONVERGENCE ITERATION
SIFAC
CALCULATES THE SIDE INTEGRATION FACTOR FOR USE WITH SINTGRT
SINTCON
INTEGRATION CONSTANTS FOR USE WITH SINTGRT
STATPRES
CALCULATES THE STATIC PRESSURE DISTRIBUTION
STRIPE
CREATES STRIPE LINE BORDER
TIMECHK
RETURNS A 0 IF TIME LIMIT IS EXCEEDED
TIMESTEP
TIME STEPPING FUNCTION
UPPROP
UPDATES PROPERTIES ON GLOBAL NODE BASIS
UPPROPATEMP
PLACES PRESCRIBED TEMPERATURES IN UPDATED PROPERTIES
VARIABLES

ANI: ORDER OR GAUSS-LEGENDRE QUADRATURE FOR AREA INTEGRATION
AXEI: XI AND ETA COORD. USED IN AREA NUM. INTEGRATION
BC: MODIFIED BOUNDARY CONDITIONS OF REGIONS
CEQ: CAPACITANCE MATRIX FOR FLOW EQUATIONS
CIL: CONSTANTS FOR FUNCTION INTGRT
CMAT: CONVERGENCE ITERATION LIMIT
CPULIM: LIMIT FOR CPU TIME
CSTL: CONSTANTS FOR LINEAR SHAPE FUNCTIONS
CSQTLG: CONSTANTS FOR QUADRATIC LAGRANGIAN SHAPE FUNCTIONS
DXT: DER. SHAPE FNCS. WRT X FOR ELMNT. TYPE (NESTED ARRAY)
DYT: DER. SHAPE FNCS. WRT Y FOR ELMNT. TYPE (NESTED ARRAY)
EC: ENERGY CALCULATION CONTROL (0-NO THERMAL CALC.
EF: INTERNAL ENERGY
EFINIT: INITIAL INTERNAL ENERGY
EFSTAR: INTERNAL ENERGY OF LAST CONVERGENCE ITERATION
ELN: NODE NUMBERS FOR EACH QUADRATIC ELEMENT
EReq: RESULTANT VECTOR FOR ENERGY EQUATIONS
ERR: ALLOWABLE FIELD CONVERGENCE ERROR
FELT: FIELD ELEMENT TYPES (1-LINEAR, 2-QUAD)
FT: FIELD TYPE (1-INTERNAL ENERGY, ETC)
FC: FLUID CALCULATION CONTROL (0-NO FLOW, 1-FLOW CALCULATED)
FREQ: RESULTANT VECTOR FOR FLOW EQUATIONS
GF: GEOMETRIC FACTOR FOR X-Y OR R-Z COORDINATE SYSTEMS
GRZ: GRAVITATIONAL CONSTANTS IN X AND Y DIRECTIONS
ICtl: ITERATION CONTROL (0-SUCCESSIVE SUB. 1-NEWTON-RAPHSON)
KBAR MODIFIED STIFFNESS MATRIX FOR TRANSIENT FLOW EQUATIONS
KEQ STIFFNESS MATRIX FOR FLOW EQUATIONS
KT THERMAL CONDUCTIVITY
LNODE NODE NUMBERS FOR EACH LINEAR ELEMENT
LSS SHAPE FUNCTIONS FOR SIDE INTEGRATION
ND NUMBER OF DIVISIONS PER SIDE PER REGION
NE NUMBER OF ELEMENTS PER REGION
NST SHAPE FUNCTIONS FOR ELEMENT TYPES (NESTED ARRAY)
P INTERPOLATED PRESSURE FIELD OF FLUID
PFEQ MATRIX POS. AND PRSCRB. VALUES OF FLUID
PFINIT INITIAL PRESSURE FIELD
PFSTAR PRESSURE OF LAST CONVERGENCE ITERATION
EPHI ENERGY FIELD VARIABLE SOLUTION
FPHI FLOW FIELD VARIABLE SOLUTION
PRNODE PRESCRIBED PRESSURE NODE INFORMATION
QAIF QUAD. AREA INTEGRATION FACTOR
QSIF SIDE INTEGRATION FACTOR
QSS SHAPE FUNCTIONS FOR SIDE INTEGRATION
RBAR MODIFIED RESULTANT VECTOR FOR TRANSIENT FLOW EQUATIONS
REQ RESULTANT VECTOR FOR FLOW EQUATIONS
RHO DENSITY OF MATERIAL
RELAST LAST TIME ITERATION RESULTANT VECTOR FOR ENERGY
RFLAST LAST TIME ITERATION RESULTANT VECTOR FOR FLOW
RN REGION NUMBER
RSELMT REGION SIDE ELEMENTS
RSLN REGION SIDE LINEAR NODES
RSN REGION SIDE NODES
RZC X AND Y COORDINATES OF CONTAINER
RZE X AND Y COORDINATES OF ELEMENTS
RN X AND Y COORDINATES OF NODES
RZR X AND Z COORDINATES OF NODES OF REGIONS
SAREA SIDE AREAS OF RING ELEMENTS
SSC STEADY STATE CONTROL (1-EXIT EARLY IF REACH STEADY STATE)
SF STATE (OF THE MATERIAL) FIELD
SFN SAVE FIELDS EVERY SFN TIME STEPS
SNI ORDER ON GAUSS-LEGENDRE QUADRATURE FOR SIDE INTEGRATION
STAIMSG STATUS MESSAGES
SXI XI AND ETA COORD. USED IN SIDE NUM. INTEGRATION
TCTL TIME START, END AND INCREMENT CONTROL
TF TEMPERATURE FIELD
THETA TRANSIENT ALGORITHM CONTROL PARAMETER
TIME RECORD OF TIMES FOR EACH TIME STEP
TIMELIM TIME LIMIT ON RUN
TINIT INITIAL TEMPERATURE
TSC TIME STEP CONTROL (O-CONSTANT, 1-VARIABLE)
UF U VELOCITY FIELD
UFINIT INITIAL U VELOCITY FIELD
UFSTAR U VELOCITY FIELD OF LAST CONVERGENCE ITERATION
VF V VELOCITY FIELD
VFINIT INITIAL V VELOCITY FIELD
VFSTAR V VELOCITY FIELD OF LAST CONVERGENCE ITERATION
VIS FLUID VISCOSITY
VOL VOLUME OF THE RING ELEMENTS
XEN XI AND ETA COORD. OF NODES WRT REGION COORDINATES
:QUADRCXY
:UPPROPTEMP
:CHKCNY
:CHKCNVAS1
:CHKCNVAS1
:CHKCNVAS1
:CHKCNVAS1
:SETSOLID
:SETSOLID
:ADJSTEP
:CHKEF
:CHKTF
:INITIAL
:CHKINPUT
:CHKINPRES
:AINTCON
:LSHAPE
:QLGSHAPE
:JACCHK
:SINTCON
:QLGSHAPE
:LSHAPE
:SIFAC
:AREA
:INITTEMP
:INITVEL
:INITPROP
:INITMP
:INTQR
:INPLYGN
:INTQRREC
:REMDUPEL
:QUADRCXY
:UPPROPTEMP
:UPPROPTEMP
:STATPRES
:INITMPROP
:RPRES
:DFN
:QLGSHAPE
:DFN
:QLGSHAPE
:RCOND
:GRAVVEC
:RHOZERO
:INTQR
:INPLYGN
This appendix contains the APL source program listing used in this research. The input data for Case 4 described in Chapter 5 is contained in the functions and global variables listed in this appendix. To run the program after loading the APL workspace enter the following:

```
PHASTRAN #
```

where # is the the number of divisions of a side of the solution domain. A value of seven results in 49 equal elements for this case. The results of such a run are given in the global variable `RESULTS` at the end of this appendix.
SYSTEM VARIABLE SETTINGS

QCT: 1E-13
QFC: ...
QHT:
QIO: 1
QLC:
QLX:
QPP: 5
QPR:
QPW: 79
QRL: 16807
QTZ: 0
QWA: 31226812
QNL:

ADDROWS

0. T+TABLE ADDROWS ROW;L
1. a ADDS ROW(S) TO A TABLE FILLING WITH BLANKS OR 0'S
2. a
3. TABLE+TOMATRIX TABLE a
4. ROW+TOMATRIX ROW a
5. L+"1+pTABLE”)“1+pROW a
6. TABLE+((1+pTABLE),L)+TABLE a
7. T+TABLE,[1]((1+pROW),L)+ROW a

ADJSTEP

0. CIC ADJSTEP NIT:MSG
1. a ADJUSTS TIME STEP BASED ON ABILITY TO CONVERGE AND FIELD VALUES
2. a
3. +(TSC=0)/0 a
4. +(NIT>CIL)/DEC a
5. +(~CHKF)/DEC a
6. +(~CHKTF)/DEC a
7. +0 a
8. DEC:TIME+TCTL[1] a
9. INITIAL a
10. NTS=1 a
11. CIC=+10p0 a
13. END:MSG+"TIME STEP CHANGED TO" a
14. STATUS MSG TCTL[3] a
15. +0 a
16. STOP:STATUS 'NOT CONVERGED' a
17. + a
AGAIN
[0] NIT+AGAIN ITER
[1] a INTERATIVE SOLUTION (FOR NON-LINEARITIES) AT EACH TIME STEP
[2] a
[3] NIT+ITER+ITER+1 a
[4] + (ITER+CI)/0 a
[5] SETSTAR a
[6] ENERGY a
[7] FLOW a
[8] UPPROP a
[9] + (CHKCNV NIT)/0 a
[10] SETSOLID a
[11] NIT+AGAIN ITER a

AINTCON
[0] AINTCON N1;B1;B2;D;N1;ETA;QJAC;NSHP;LAS;QAS
[1] a INTEGRATION CONSTANTS FOR USE WITH AINTGRT
[2] a
[3] N1*1+ANI*N a
[4] ETA*(N1,N1)N1+(QJ[1;1])ANI a
[5] AXEI=(2,(N1xN1))p,ETA,((ETA) a
[6] LAS+LSHAPE AXEI a
[7] QAS+QLGSHP AXEI a
[8] QJAC+RZE JACOB QAS a
[9] QJAC+MDET QJAC a
[10] JACBK QAIF a
[12] B2+RZE BF QAS a
[13] NSHP+u 2 1 3q1,NE,pNSHP)QNSHP+LAS[1,1]a
[14] NST+cNSHP a
[15] NSHP+u 2 1 3q1,NE,pNSHP)QNSHP+QAS[1,1]a
[16] NST+NSTpNSHP a
[17] D=q 1 2 3q1,pD)pD+B1[1;1] a
[18] DXT+cD a
[19] D=q 1 2 3q1,pD)pD+B1[2;1] a
[20] DYT+cD a
[21] D=q 1 2 3q1,pD)pD+B2[1;1] a
[22] DXT+cD a
[23] D=q 1 2 3q1,pD)pD+B2[2;1] a
[24] DYT+cD a

ORDER OF GAUSS-LEGENDRE ETA COORDS.
XI AND ETA COORDS.
LINEAR SHAPE FUNCTION
QUAD. LAGRANGIAN SHAPE FNS.
JACOBIAN FOR QUAD. ELEMENTS
QUAD. AREA INTEGRATE FACTOR
CHECK JACOBIAN
LINEAR GRADIENT MATRIX
QUAD. GRADIENT MATRIX
SHAPE FNS. ELMNT. TYPE 1
SHAPE FNS. ELMNT. TYPE 2
ADD TO GLOBAL VARIABLE
DERIV. WRT. X ELMNT. TYPE 1
PUT IN GLOBAL VARIABLE
DERIV. WRT. Y ELMNT. TYPE 1
ADD TO GLOBAL VARIABLE
ADD TO GLOBAL VARIABLE
ADD TO GLOBAL VARIABLE
ADD TO GLOBAL VARIABLE
AINCGRT

I=AINCRT A;WE;WEX;N1

a INTEGRATES FUNCTION OVER AREA OF ELEMENT IN XI-ETA COOR. SYSTEM

[3] \(N1+ANI+1 \ a \)
[4] \(+(1p,A)/SCALAR \ a \)
[5] \(+(\sqrt{pQAIF})=2+pA)/NXT \ a \)
[6] STATUS ERMNGC(1) a
[7] \(0 \ a \)
[8] XCT:A+AX(2\(p\)pA)\(\pi\)(2\(p\)pA)pQAIF a
[9] \(+CALC \ a \)
[10] \(SCALAR:A+AX{\pi} pQAIF \ a \)
[11] \(CALC:WE+(N1,N1)pN1+(\sqrt{\pi})[ANI,] a \)
[12] \(WEX+(pA)p\left((x/(1+pA)),(1+pA)p(.WE)x,\pi WE \ a \)
[13] \(I++/[1]WEX=Ax \ a \)

1+ORDER OF INTEGRATION
CHECK IF A IS SCALAR
CHECK IF \(pA \) IS LIKE \(pQAIF \)
MESSAGE TO USER
EXIT
MUL. BY INTEGR. FACTOR
JUMP TO FINISH INTEGRATION
MUL. BY INTEGR. FACTOR
WEIGHTING FACTORS
RESHAPE WEIGHT FACTORS
NUMERICAL INTEGRATION

AREA

[0] AREA;RN
[1] a CALCULATES AREAS AND VOLUMES OF ELEMENTS
[2] a
[3] SAREA+GF=AINCRT 1 a
[4] VOL=AINCRT 1 a

SIDE AREAS OF ELEMENTS
VOLUME OF ELEMENTS

BDY

[0] R=BDY FT;B;W;NC;N;D;S
[1] a EVALUATES R VECTOR FROM BOUNDARY AND INTERNAL CONDITIONS
[2] a
[3] B=FT FSTCM BC a
[5] R+(4,(SNI+1),NE)p0 a
[6] a
[7] LOOP:+(0=pNC)/HXT1 a
[8] N+1=NC a
[9] NC+(N=NC)/NC a
[10] +(N=1)/LOOP a
[12] D=RN FSTCM B a
[13] +(0=x/pD)/NXT1 a
[14] +(N=2)/B2 a
[15] M="BOUNDARY CONDITION NOT DEFINED (BDY)" a
[16] STATUS M a
[17] +LOOP a
[18] B2:R=D BDY2 R a
[19] +LOOP a
[20] a
[21] XCT1:+(1 2=FELT[FT])/LINEAR,QUAD a
[22] STOP a
[23] QUAD:5=QSS[1,1] a
[24] +NXT2 a
[25] LINEAR=S=LSS[1,1] a
[26] XCT2:R=4 2 3 1q((1+pS),pR)pR a
[27] R=3 1 2 q((pR)pS)xR a

BC'S FOR THIS FIELD TYPE
LIST OF BC TYPES
INITIALIZE R VECTOR TO ZERO
LOOP ON BOUNDARY CONDITIONS
TAKE FIRST BC TYPE
REMOVE THIS TYPE FROM LIST
IGNORE PRESCRIBED BC'S
BC'S FOR THIS BC TYPE
BC'S FOR THIS REGION NUMBER
EXIT IF NO SUCH BC'S
BOUNDARY CONDITION TYPE 2
WARNING TO USER
DISPLAY AND RECORD MESSAGE
CONTINUE LOOPING
PRESCRIBED FLUX BC
END OF LOOP
CHECK IF LINEAR ELEMENTS
WRONG ELEMENT TYPE
QUADRATIC SHAPE FUNCTIONS
FINISH CALC. OF R VECTOR
LINEAR SHAPE FUNCTIONS
RESHAPE R
AND MULTIPLY BY SHAPE FNS.
BDY2
[0] G+D BGY2 R;D1
[1] a MODIFIES ELEMENT R MATRIX FOR BOUNDARY COND. TYPE 2 (PRESCRIBED FLUX)
[2] a D[i;1] IS THE SIDE NUMBERS
[3] a D[i;2] IS THE PRESCRIBED FLUX VALUES
[4] a
[5] !(O=1+P)D)/O a
[6] G+R a
[8] BGY2SUBD1 a
[9] G+R a

EXIT IF NO BOUNDARY CONDITIONS
INITIALIZE RETURN VARIABLE
NESTED ARRAY OF BOUNDARY COND.
HANDLE EACH BOUNDARY CONDITION
RETURN R VECTOR FROM BDY2SUB

BDY2SUB
[0] BGY2SUB D1;EL;S;PV
[1] a SUB-FUNCTION OF BGY2 TO PRESCRIBE EACH (ELEMENT, SIDE COMBINATION)
[2] a D1 IS A NESTED ARRAY OF PRESCRIBED SIDE BOUNDARY CONDITIONS
[3] a R IS THE R MATRIX FROM BGY2 WHICH IS MODIFIED BY THIS FUNCTION
[4] a
[5] S+D[1;1] a
[6] EL$+RSELMT[S;1] a
[7] PV+((pR)[2],pEL)"*"D[1;2] a
[8] R[S;1:EL]+PV a

SIDE AFFECTED
ELEMENTS AFFECTED
PRESCRBD. VALUES AT INTG. PTS, EL
MODIFY THE R MATRIX

BF
[0] B=RZ BF S;R$S
[1] a CALCULATES THE FIELD VARIABLE GRADIENT INTERPOLATION MATRICIES
[2] a
[4] B+(INV RZ JACOB S)INPROD B

CHKCNV
[0] CNV+CHKCNAV NIT
[1] a CHECKS CONVERGENCE OF EF, UP, VF AND PF WITH LAST ITERATION VALUES
[2] a CNV RETURNS 1 IF ALL CONVERGED 0 IF NOT ALL CONVERGED
[3] a
[4] CNV-ERR CHKCNAVS1 'EF' a
[5] +(PC<0)/END a
[6] CNV-ERR CHKCNAVS1 'UP' a
[7] CNV-ERR CHKCNAVS1 'VF' a
[8] CNV-ERR CHKCNAVS1 'PF' a
[9] END:+(CNV<0)/LIMIT a
[10] STATUS 'CONVERGED WITH' NIT 'ITERATIONS' a
[11] =0 a
[12] LIMIT+((NIT<CILI)/O a
[13] STATUS 'NOT CONVERGED IN' NIT 'ITERATIONS' a
[14] a

CHECK EF
JUMP IF NO FLOW CALCS.
CHECK UP
CHECK VF
CHECK PF
CHECK FOR CONVERGENCE
MESSAGE TO USER
EXIT
EXIT FOR MORE ITERATIONS
MESSAGE TO USER
CHKCNV\$A1
[0] CNV+ERR CHKCNV\$A1 FLDNM;FPC;FLD;FLDSTAR;LS
[1] a CHECKS FIELD VALUES FOR CONVERGENCE
[2] a
[3] CNV+0 a
[4] FLD+FLDNM a
[5] FLDSTAR+FLDNM, 'STAR' a
[6] LS+(|FLD|) ERR1/|FLD a
[7] LS+LSv(|FLD|)<1E-10 a
[8] LS-LSv(|FLDSTAR|)<ERR1/|FLDSTAR a
[9] LS+LS+FLDSTAR a
[10] +(\<|LS|)/CANT a
[12] FLDSTAR+LS/FLDSTAR a
[13] AFC=(|FLD-FLDSTAR| * FLDSTAR a
[14] CNV+X/ERR>AFC a
[15] +(CNV)/0 a
[16] +(ITER<\CIL)/0 a
[17] STATUS 'MAX ERROR ', FLDNM, ': ', 5\% / AFC a
[18] +0 a
[19] CANT: a
[20] STATUS 'UNKNOWN CONVERGENCE OF', FLDNM a
[21] CNV+ITER=1 a

CHKEF
[0] REC=CHKEF; RGD; RGE
[1] a CHECKS ENERGY FIELD VALUES TO SEE IF WITHIN PROPERTY DATA RANGE
[2] a
[3] RGD+MINMAX, PROPDATA[2;1] a
[4] RGE+MINMAX EF a
[5] REC+RGE<.RCD a

CHKINPRES
[0] CHKINPRES;A
[1] a CHECK PRESCRIBED PRESSURE NODE "PRNODE" SPECIFIED IN INPUT
[2] a
[3] *(2=GNC 'PRNODE')/0 a
[4] A-MINMAX, (PROPDATA\DSEL\6)[1;1] a
[7] +0
[8] ERR1: 'CHECK INPUT: TOO HIGH PRESSURE SPECIFIED FOR PROPERTY DATA'
[9] STOP
[10] ERR2: 'CHECK INPUT: TOO LOW PRESSURE SPECIFIED FOR PROPERTY DATA'

DEFAULT IS NOT CONVERGED
FIELD VALUES OF LAST ITERATION
LOCATIONS WITH SMALL VALUES
OR SMALL ABSOLUTE VALUES
OR RELATIVE SMALL STAR VALUES
CHECK IF NO VALUES WILL LEFT
IGNORE SMALL FIELD VALUES
AND THOSE SMALL STAR VALUES
ABSOLUTE FRACTIONAL CHANGE
RETURN A 1 IF ALL CONVERGED
EXIT IF ALL CONVERGED
EXIT IF NOT AT ITERATION LIMIT
DISPLAY MAXIMUM ERROR
EXIT
CAN'T DETERMINE CONVERGENCE
WARN USER
OK IF NOT FIRST ITERATION
RANGE OF DATA VALUES
RANGE OF ENERGY FIELD VALUES
CHECK IF WITHIN RANGE
CHECK IF CONFLICT WITH MATL. PROP.
MIN. AND MAX. PRESSURE
CHECK IF TOO HIGH
CHECK IF TOO LOW
CHECK INPUT: TOO HIGH PRESSURE SPECIFIED FOR PROPERTY DATA'
CHECK INPUT: TOO LOW PRESSURE SPECIFIED FOR PROPERTY DATA'
STOP
STOP
CHKINPUT
[0] CHKINPUT:A;M
[1] a CHECK INPUT PARAMETERS
[2] a
[3] CHKINPRES a
[4] +(5<A)0.2>A++((L/RZR)-L/RZR)/0 a
[5] 'WARNING: ASPECT RATIO OF ELEMENTS GREATER THAN 5'

CHKSS
[0] OK=CHKSS CIC
[1] a CHECK IF STEADY STATE HAS BEEN REACHED
[2] a
[3] OK=0 a
[4] +SSC=0/0 a
[5] OK=I=CIC a
[6] +(OK)/0 a
[7] STATUS 'STEADY STATE SOLUTION REACHED' a

CHKTF
[0] RTC=CHKTF:RGB;RGT;TMP;TOL
[1] a CHECKS TEMPERATURE FIELD VALUES IF WITHIN PRESCRIBED VALUES
[2] a
[3] TOL+1 a
[4] RTC+1 a
[5] TMP=1 FSTCM BC a
[6] TEMP-1 FSTCM TMP a
[7] TMP=RN FSTCM TMP a
[8] TMP=0 1+TMP a
[9] +(2+1+TMP)/0 a
[11] RGB=(MEAN RGB)+~1 1x(1+TOL)x0.5+/RGB a
[12] RGT-MINMAX TF a
[13] RTC=~/RGT<.5 RGB a

CLEANUP
[0] CLEANUP:NAMES:ALTALP:C
[1] a ERASES VARIABLES NAMED IN GLY EXCEPT THOSE WITH ALT. CHARACTER NAMES
[2] a
[3] +(0=QNC 'GLY')/0 a
[4] NAMES*+((1+GGLY)10+GLY a
[5] ALTALP=1 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' a
[6] NAMES+(~+=/NAMES=ALTALP)/NAMES a
[7] C=QEX NAMES a
[8] +(I=x/C)/0 a
[9] 'VARIABLES NOT ERASED IN CLEANUP' a
[10] NAMES[1((C)/(pC)xC=0)] a

EXIT IF GLY NOT AVAILABLE
GET VARIABLE NAMES FROM GLY
ALTERNATE ALPHABET
DO NOT ERASE ALT. CHAR. NAMES
ERASE THE REST
CHECK IF ALL WERE ERASED
MESSAGE TO USER
DISPLAY THOSE NOT ERASED
CLS
[0] CLS:RC;CTLS;DATS
[1] a CLEARS 3270 SCREEN
[2] RC+120 QSVO 2 cu'CTLSDATS'
[3] +((v/2+RC)/NOSHARE
[4] RC+1 0 1 0 QSVC 'CTLS'
[5] CTLS+ 'PAGE +1'
[6] RC+CTLS
[7] +((0.-RC)/0
[8] 'RETURN CODE OF ',(RC),' FROM AP 120'
[9] DATS
[10] RC+QSVR 2 cu'CTLSDATS'
[11] +0
[12] NOSHARE:'OFFER TO AP 120 NOT ACCEPTED'

COLM
[0] R+I COLM X
[1] a RETURNS VALUES FOR "I" INDEX OF LAST DIMENSION OF "X"
[2] a
[3] R+(I-1+1+P)/X a
[4] +((1+IP,I)/0 a
[5] R+(1+IP+pR)pR a

COORXE
[0] COORXE:A
[1] a GENERATES XI-ETA COORDINATES OF THE NODES
[2] a
[3] A-1+(1+1+1+1+ND)X2+2XND a
[4] A+(2+PA)pA a
[5] A+4+0.5+0.5A pA a
[6] XEN+(2,0.5*x/pA)pA a

CPUCRK
[0] CK+CPUCRK
[1] a RETURNS A 0 IF CPU TIME LIMIT IS EXCEEDED
[2] a
[3] CK+CPU-TIMELCPU.LIM a
[4] +((CK=1)/0 a
[5] STATUS 'CPU LIMIT EXCEEDED' a

CPUTIME
[0] CPU+CPUTIME
[1] a RETURNS CPU SECONDS USED SINCE "TSTART" WAS ISSUED
[2] CPU+0.001xDAl[2]-T1[2]
DFN
[0] DF+DFN F;A;B;S
[1] a CALCULATES DERIVATIVES OF FIELD VARIABLE AT THE ELEMENT NODES
[2] a
[3] A+1 -1 0 -1 1 -1 1 0 1 1 0 -1 -1 a NODE XI-ETA COORDINATES
[4] B=QLCSHPW2 pA a SHAPE FUNCTIONS AT NODES
[5] B+RZE BF S a GRAD. INTERP. MATRIX
[6] DF+3 2 1N+/B=OPAX(2 4)(F[ELN]) a DERIVATIVES AT NODES

DIAG
[0] A=DIAG X
[1] a FORMS DIAGONAL MATRIX FROM A VECTOR X
[2] A+0 -1+(-1pX)*((2ppX)p0),X

DIST
[0] R=A DIST B
[2] a LAST DIMENSION OF A AND B IS 2 COLUMNS OF X AND Y'S
[3] a
[4] R+(/(B-A)*2)*0.5 a SQUARE ROOT OF SUM OF DIFF. Squared

DX
[0] R=DX T
[1] a RETURNS DERIVATIVES OF THE SHAPE FUNCTIONS WRT. X
[2] a T IS THE FIELD TYPE (E.G. 1-ENERGY)
[3] a
[4] R+>DXT[FELT[T]] a SELECT FROM GLOBAL NESTED ARRAY

DY
[0] R=DY T
[1] a RETURNS DERIVATIVES OF THE SHAPE FUNCTIONS WRT. Y
[2] a T IS THE FIELD TYPE (E.G. 1-ENERGY)
[3] a
[4] R+>DYT[FELT[T]] a SELECT FROM GLOBAL NESTED ARRAY

EGYASN
[0] LPV EGYASN F
[1] a ASSIGN ENERGY FIELD VALUES
[2] a
[3] F+LPV X a EXPAND FOR PRESCRIBED VALUES
[5] EF+FAN F a ENERGY VALUES AT ALL NODES
EGYBAR
[0] EGYBAR A; B; CDT
[1] a FORMS ENERGY EQUATIONS FOR SOLVING TRANSIENT RESPONSE
[2] a
[3] CEQ= LUMP CEQ a
[5] KBAR= (THETA*KEQ)+ CDT a
[6] A+ (CDT*KEQ*THETA-1)+*.EPHI a
[7] NEW STIFFNESS MATRIX
[8] B+, (RELAST*X-1-THETA)+THETA*EREQ a
[9] NEW RESULTANT VECTOR

EGYEVL
[0] EGYEVL; KAE; CM; RC; RP
[1] a EVALUATES ENERGY MATRICES
[2] a
[3] PSEQ3 0=0 a
[4] INITIALIZE PRESCRIBE VALUES MATRIX
[5] EMAT a
[6] CONSTRUCT FIELD EQUATIONS

EGYMAT
[0] EGYMAT
[1] a CONSTRUCT THE ENERGY ELEMENT MATRICES
[2] a
[3] FLDMAT a
[4] FORM CM MATRIX
[5] FLDMAT a
[6] FORM RC VECTOR
[7] EXIT IF NO FLOW CALCS.
[8] FLDMAT a
[9] FORM KAE MATRIX
[10] FLDMAT a

ENERGY
[0] ENERGY; LPV; FT; RESULT
[1] a FORMS AND SOLVES THE TRANSIENT ENERGY EQUATION
[2] a
[3] +(EC=O)/0 a
[4] EXIT IF NO THERMAL ENERGY CALCS.
[5] FT=1 a
[6] FIELD TYPE IS ENERGY
[7] EGYEVL a
[8] FORM THE ENERGY EQUATIONS
[9] PRSIDE FT a
[10] MODIFY EQUATIONS FOR TRANSIENT FORM.
[11] PRSCR a
[12] PRSCRIBE REGION SIDE BC'S
[13] LPV+PRSVLC FT a
[14] MODIFY FLUID EQUATIONS
[15] locations of prescribed values
[16] RESULT=FLDLSV LPV a
[17] SOLVE THE PRESCRIBED VALUES
[18] LPV EGIAEN RESULT a
[19] ASSIGN THE FIELD VALUES
FAN

[0] R=FAN P;MAX
[1] a RETURNS FIELD VARIABLE AT ALL NODES
[2] a F IS FIELD VARIABLE
[3] a R IS MAXIMUM OF NNG FOR ALL FIELD TYPES
[4] a
[5] R=F a
[6] MAX=[f/NNG]\pFEET a
[7] +(MAX=pF)/0 a
[8] R=LINFV F a

INITIALIZE RETURN VARIABLE
MAXIMUM NODES PER ELEMENT
EXIT IF ALREADY SAME AS LARGEST ELEMENT
CONVERT LINEAR TO QUADRATIC VALUES

FLDMAT\text{\textasciitilde}CM

[0] FLDMAT\text{\textasciitilde}CM;A
[1] a FORMS CM MATRIX FOR FLDMAT
[2] a
[4] A+1 2 4 3(NS 1)\times OPAX(2 3)A
[5] A+(NS 1)\INPROD A
[6] CM+NODEM A\INTGRT A

FLDMAT\text{\textasciitilde}KA

[0] FLDMAT\text{\textasciitilde}KA;A
[1] a FORMS KA MATRIX FOR FLDMAT
[2] a
[3] A+(NS 2)\times OPAX(2 3)((2 FVEB RHO)\times 2 FVEB UF)
[4] KA+NODEM A\INTGRT A \INPROD 1 2 4 3\text{DX 2}
[5] A+(NS 2)\times OPAX(2 3)((2 FVEB RHO)\times 2 FVEB VF)
[6] KA+KA+NODEM A\INTGRT A \INPROD 1 2 4 3\text{DY 2}

FLDMAT\text{\textasciitilde}KAE

[0] FLDMAT\text{\textasciitilde}KAE;A
[1] a FORMS KAE MATRIX FOR FLDMAT
[2] a
[3] A+(NS 1)\times OPAX(2 3)((1 FVEB RHO)\times 1 FVEB UF)
[4] KAE+NODEM A\INTGRT A \INPROD 1 2 4 3\text{DX 1}
[5] A+(NS 1)\times OPAX(2 3)((1 FVEB RHO)\times 1 FVEB VF)
[6] KAE+KAE+NODEM A\INTGRT A \INPROD 1 2 4 3\text{DY 1}
FLDMAT\&KNN
[0] FLDMAT\&KNN;A
[1] a FORMS K11, K12, K21, K22 MATRICES FOR FLDMAT
[2] a
[4] K11-NODEM AINTGRT(DX 2)INPROD A
[5] K12-NODEM AINTGRT(DY 2)INPROD A
[7] K21-NODEM AINTGRT(DX 2)INPROD A
[8] K22-NODEM AINTGRT(DY 2)INPROD A

FLDMAT\&LCN
[0] FLDMAT\&LCN;A
[1] a FORMS LC1 AND LC2 MATRICES FOR FLDMAT
[2] a
[3] A+(NS 4)INPROD 1 2 4 3%DX 2
[4] LC1-NODEM AINTGRT A*OPAX(2 4)(2 FVEB RHO)
[5] A+(NS 4)INPROD 1 2 4 3%DY 3
[6] LC2-NODEM AINTGRT A*OPAX(2 4)(3 FVEB RHO)

FLDMAT\&LN
[0] FLDMAT\&LN
[1] a FORMS L1 AND L2 MATRICES FOR FLDMAT
[2] a
[3] L1+-NODEM AINTGRT(DX 2)INPROD 1 2 4 3%NS 4
[4] L2+-NODEM AINTGRT(DY 3)INPROD 1 2 4 3%NS 4

FLDMAT\&MM
[0] FLDMAT\&MM;A
[1] a FORMS MASS MATRIX FOR FLDMAT
[2] a
[3] A+2 FVEB RHO a RHO AT QUAD. ELMNT NODES
[4] A+(NS 2)INPROD 1 2 4 3%(NS 2)*OPAX(2 3)A a INTER. CALC.
[5] MM+NODEM AINTGRT A a MASS (INERTIA) MATRIX

FLDMAT\&R
[0] FLDMAT\&R;GV
[1] a FORM R VECTORS FOR FLDMAT
[2] a
[3] GV+GRAVVEC
FLDMATRC
[0] FLDMATRC
[1] a FORMS RC VECTOR FOR FLDMAT
[2] a
[3] RC+MODEV SINTCRT BDY 1
[4] RC+RC+RCOND

FLDMATRP
[0] FLDMATRP
[1] a FORMS AND ASSIGNS RP MATRICIES FOR FLDMAT
[2] a
[3] RP+RPRES

FLDLSV
[0] F=FLDLSV LPV;X
[1] a SOLVES EQUATIONS AND ASSIGNS FIELD VALUES
[2] a
[3] +(ICTL=0)1/SS, NR a
[5] F+RBAR-KBAR a
[6] +0 a
[7] NR: a
[8] X=LPV/FLDLSV\$STAR a
[9] F=(KBAR+.X)-RBAR a
[10] F+X+(-F)KBAR a

FLDLSV\$STAR
[0] F=FLDLSV\$STAR
[1] a RETURNS FIELDS FROM LAST ITERATION
[2] a
[3] +(-PC=0)/M1 a
[4] F+EF a
[5] +0 a

CHECK TYPE OF ITERATION METHOD
SUCCESSIVE SUBSTITUTION
SOLVE SIMULTANEOUS EQUATIONS
EXIT
NEWTON-RAPHSON
FIELDS FROM LAST ITERATION
NEW FORCING FUNCTION
SOLVE SIMULTANEOUS EQUATIONS

CHECK IF FLOW CALCS. WERE SOLVED
FOR CASE OF NO FLOW CALCULATIONS
EXIT
FOR CASE WITH FLOW CALCULATIONS
FLOW

FLOW;LPV;PT;RESULT

a FORM AND SOLVE THE FLUID FLOW EQUATIONS

a

+FC=0)/0 a

PT+2 3 a

FLWEVL a

FLWBAR a

PRSIDE PT a

PRSPRES a

PRSCRB a

LPV=PRSVLC PT a

RESULT+FLDSLVP LPV a

LPV FLWASN RESULT a

EXIT IF NO FLOW CALCS.

FIELD TYPES U, V, AND P

FORM THE FLUID EQUATIONS

MODIFY EQUATIONS FOR TRANSIENT FORM.

PRESCRIBE REGION SIDE BC'S

PRESCRIBE PRESSURE NODE

LOCATIONS OF PRESCRIBED VALUES

SOLVE THE FLUID EQUATIONS

ASSIGN THE FIELD VALUES

FLWASN

LPV FLWASN F

a ASSIGN FLUID FLOW FIELD VALUES

a

P+LPV\F a

F([PFEQ[1;])=PFEQ[2;] a

U*P+(A+NNG 2)+P a

F+4+F a

V*P+(A+NNG 3)+P a

F+4+F a

P+(NNC 4)+P a

(UF VP PP)+FAN*UF VP PP a

EXPAND FOR PRESCRIBED VALUES

REINSERT PRESCRIBED VALUES

EXTRACT U VELOCITY VALUES

DROP THOSE VALUES

EXTRACT V VELOCITY VALUES

DROP THOSE VALUES

EXTRACT SUPER VELOCITY VALUES

EXPAND TO ALL NODES

FLWBAR

FLWBAR;A;B;CDT

a FORMS FLOW EQUATIONS FOR SOLVING TRANSIENT RESPONSE

a

CEQ=LUMP CEQ a

CDT+CEQ*TCTL[3] a

KBAR=(THETA*KEQ)+CDT a

A=+(CDT*KEQ*THETA-1)+.XPFH a

B+=(RPLAST*1-THETA)+THETA*FREQ a

RBAR=A+B a

USE LUMPED CAPACITANCE

CAPACITANCE + ATIME STEP

NEW STIFFNESS MATRIX

INTERMEDIATE CALCULATION

INTERMEDIATE CALCULATION

NEW RESULTANT VECTOR

FLWEVL

FLWEVL;WM;KA;KC;K11;K12;K21;K22;L1;L2;RC;RU;RV;LC1;LC2;RP

a EVALUATES FLUID FLOW ELEMENT MATRICES

a

PFEQ=3 OpO a

FLWMAI a

FMFEQA2 a

INITIALIZE PRESCRIBE VALUES MATRIX

CONSTRUCT FLUID SUB-MATRICES

FORM FIELD EQUATIONS
FLWMAT

[0] FLWMAT
[1] a CONSTRUCT THE FLUID FLOW MATRICES
[2] a
[3] FLDMAT0MM a
[4] FLDMAT0KA a
[5] FLDMAT0KHN a
[6] FLDMAT0LN a
[7] FLDMAT0LCN a
[8] FLDMAT0R a

FLDMAT

[0] FLDMAT
[1] a CONSTRUCT THE FLUID FLOW MATRICES
[2] a
[3] FLDMAT0MM a
[4] FLDMAT0KA a
[5] FLDMAT0KHN a
[6] FLDMAT0LN a
[7] FLDMAT0LCN a
[8] FLDMAT0R a

FORM MASS MATRIX
FORM KA MATRIX
FORM K11 K12 K21 K22 MATRICIES
FORM L1 L2 MATRICIES
FORM LC1 LC2 MATRICIES
FORM RU RV VECTORS

FMFEQA1

[0] FMFEQA1
[1] a FORM ENERGY FIELD EQUATIONS
[2] a
[3] CEQ+CM a
[4] EREQ+RC a
[5] +(FC=1)/FLOW a
[6] KEQ+(pCEQ)p0 a
[7] =0 a
[8] FLOW:KEQ+KAE a
[9] EREQ+EREQ+RA a

FMFEQ2

[0] FMFEQ2;Z1;Z2;Z3
[1] a FORM FIELD EQUATIONS
[2] a
[3] Z1+(NNG 2 4)p0 a
[4] Z2+(NNG 2 2)p0 a
[5] Z3+(NNG 4 4)p0 a
[6] KEQ=(K1+K2+(4+3)xK11),K12,L1 a
[7] KEQ+KEQ,(1)K21,(K1+K11+(4+3)xK22),L2 a
[8] KEQ+KEQ,(1)L1C1,L2C2,Z3 a
[9] EREQ+RU,(1)RV,(1)((NNG 4),1)p0 a
[10] CEQ+MM,Z2,Z1 a
[12] CEQ=CEQ,(1)(Z21),(Z21),Z3 a

ZERO MATRIX
ZERO MATRIX
ZERO MATRIX
X MOMENTUM (STIFFNESS)
Y MOMENTUM (STIFFNESS)
CONTINUITY (STIFFNESS)
FLOW RESULTANT VECTOR
X MOMENTUM (INERTIAL)
Y MOMENTUM (INERTIAL)
CONTINUITY (INERTIAL)
FRONTEND
[0] FRONTEND A
[1] * PERFORMS UPFRONT ONCE ONLY FUNCTIONS
[2] *
[3] TSTART a
[4] CLEANUP a
[5] STATMSG+O Op' a
[6] ND+A a
[7] INPUT a
[8] GRIDGEN a
[9] COORXE a
[10] MAP a
[11] INITIAL a

FSTCM
[0] R*X FSTCM M
[1] * RETURNS SUB-MATRIX WHERE MEMBERS OF X MATCH FIRST COLUMN OF M
[2] *
[3] R*(M[;1]eX)_0 1+M

FSTI
[0] R*FSTI A
[1] * PUTS 1 IN COLUMN OF EACH ROW OF A WHERE FIRST POSITIVE CHANGE OCCURS
[2] *
[3] R+<\A

FVEB
[0] R*FT FVEB X;ET
[1] * RETURNS THE FIELD VARIABLE ON AN ELEMENT NODE BASIS
[2] * X IS FIELD VAR. ON A GLOBAL NODE BASIS FOR HIGHEST ORDER ELEMENT
[3] * FT IS THE TYPE OF FIELD (E.G. 1-ENERGY)
[4] *
[5] ET=FELT(FT) a
[6] +(ET=1 2)/TYPE1 TYPE2 a
[7] TYPE1:R*X[ELN[;1 3 5 7]] a
[8] +0 a
[9] TYPE2:R*X[ELN] a

START CLOCK FOR TIME CHECKING
ERASE OLD VARIABLES
INITIALIZE STATUS MESSAGE
NUMBER OF DIVISIONS PER SIDE OF REGION
SPECIFY INPUT PARAMETERS
GENERATE ELEMENT NODE NUMBERING
GENERATE XI-ETA COORDINATES OF THE NODES
MAP XI-ETA NODE COORDINATES INTO X-Y SYSTEM
INITIALIZE VARIABLES

CONVERT FIELD TYPE TO ELEMENT TYPE
CHECK TYPE OF ELEMENT
FIELD VARIABLES ON LINEAR ELEMENT BASIS
EXIT
FIELD VARIABLES ON QUAD. ELEMENT BASIS
FVCB

[0] R+FT FVCB X;A;ET
[1] a RETURNS THE FIELD VARIABLE ON AN GLOBAL NODE BASIS
[2] a X IS FIELD VAR. ON A GLOBAL NODE BASIS FOR HIGHEST ORDER ELEMENT
[3] a FT IS THE TYPE OF FIELD (E.G. 1-ENERGY)
[4] a
[5] a ET=FETL(FT) a
[6] +(ET=1 2)/T1,T2 a
[7] T1: a
[8] X=(2PA+1+2xND)PX a
[9] X=(A+AP1 0)/X a
[10] R,AX a
[11] =0 a
[12] T2:R+X a

CHANGE FIELD TYPE TO ELEMENT TYPE
CHECK TYPE OF ELEMENT
CONVERT TO LINEAR GLOBAL BASIS
MAKE FIELD VARIABLE A MATRIX
REMOVE LINEAR NODE COLUMNS
REMOVE LINEAR NODE ROWS
EXIT
LEAVE ON QUADRATIC GLOBAL BASIS

FVIP

[0] R+FVIP F
[1] a CALC FIELD VARIABLES AT INTEGRATION POINTS
[2] a

GRAVVEC

[0] GV+GRAVVEC;R;RZ
[1] a RETURNS GRAVITATIONAL BODY FORCE VECTOR
[2] a
[3] R=RHO a
[4] R2=RHOZERO a
[6] R=R1+R+RZ a
[7] GV+(2 FVEB R)×OPAX(2 3)(NS 2) a
[8] GV+NODEV AINTGRT GV a

DENSITY
REFERENCE DENSITY
SET SOLID AND 2% NODES TO RHOZERO
NORMALIZED DENSITY
MULTIPLY BY THE SHAPE FUNCTIONS
INTEGRATE ON GLOBAL BASIS
MULTIPLY BY GRAVITY

GRIDAEFLN

[0] ELN+GRIDAEFLN CNQ;A
[1] a GENERATES QUADRATIC NODE NUMBERS (ELEMENT BASIS) FOR GRIDGEN
[2] a
[3] A+1,("1+3×ND)p1 1 0 a
[4] ELN(A)CNQ a
[5] ELN+AEFLN a
[6] ELN(A)ELN[1+1+A+IEAI-A] a
[7] ELN(A)+ELN[1+1;] a
[8] ELN+1 3 2 4 5(4pND,3)pELN a
[9] ELN+[1 2],[3 4]ELN a
[10] ELN+ELN[7 8 9 6 3 2 1 4 5] a

EXPANSION VECTOR
EXPAND GLOBAL NODE NUMBER ON COLUMNS
EXPAND GLOBAL NODE NUMBERS ON ROWS
DUPLICATE COLUMNS
DUPLICATE ROWS
RESHAPE NODE NUMBERS
AND SEPARATE FOR EACH ELEMENT
REORDER FOR STANDARD ELEMENT
GRIDALNODE
[0] LNODE=GRIDALNODE GNL;A;
[1] a GENERATES LINEAR NODE NUMBERS (ELEMENT BASIS) FOR GRIDGEN
[2] a
[5] A=((N+2,N,2)*(2*N,2)*A)
[6] A=((N+2,4)*p1 3 2*(N,4,N,2)*p1 3 2*A

GRIDARSE
[0] RSE=GRIDARSE;A;
[1] a GENERATES REGION SIDE ELEMENT NUMBERS
[2] a
[3] EN=(2pA)*p1ND=2 a
[4] A=EN[1,1]:pEN; a
[5] A=A, [1]:EN[1,1]:pEN; a

GRIDARSN
[0] RSN=GRIDARSN GNL;A
[1] a GENERATES REGION SIDE LINEAR NODE NUMBERS FOR GRIDGEN
[2] a
[4] A=A,[1]:2*(2)]~10*GNL a
[5] RSN=A[1 3 2 4]; a

GRIDARS
[0] RSN=GRIDARS GNL;A
[1] a GENERATES REGION SIDE QUADRATIC NODE NUMBERS FOR GRIDGEN
[2] a
[4] A=A,[1]:2*(2)]~10*GNQ a
[5] RSN=A[1 3 2 4]; a

GRIDGEN
[0] GRIDGEN;A;GML;GML
[1] a GENERATES ELEMENT NODE NUMBERING
[2] a
[5] RSN=GRIDARSN GNQ a
[6] RSELN=GRIDARSE a
[7] RSN=GRIDARSNL GNL a
[8] ELN=GRIDARSN GNQ a
[9] LNODE=GRIDALNODE GNL a

GLOBAL NODE NUMBERS--QUAD. ELEMENTS
GLOBAL NODE NUMBERS--LINEAR ELEMENTS
NODE NUMBERS ON EACH SIDE OF REGION
NODE NUMBERS ON EACH SIDE OF REGION
LINEAR NODE NUMBERS--EACH SIDE OF REGION
QUADRATIC NODE NUMBERS--ELEMENT BASIS
LINEAR NODE NUMBERS--ELEMENT BASIS
HERON
[0] A=HERON T;S
[1] a CALCULATES AREAS OF TRIANGLES "T" USING HERON'S FORMULA
[2] a LAST DIMENSION OF T CONTAINS 3 SIDE LENGTHS
[3] S+0.5*(T)
[4] A=(0.5*S*(S-1 COLM T)*(S-2 COLM T)*(S-3 COLM T))*0.5

IEA1
[0] R=IEA1 A
[1] a RETURNS INDICES OF LOCATION OF ALL ONES IN VECTOR A
[2] R=R/(1pA)*R=A=1

IFST1
[0] R=IFST1 A
[1] a RETURNS INDICES OF FIRST POSITIVE CHANGE IN EACH ROW OF A
[2] R=(.A)/.Ax(pA)px-lmpA+FST1 A.1

INBDY
[0] INBDY
[1] a SPECIFY REGION BOUNDARY CONDITIONS
[2] a FIELD
[3] a 1 TEMPERATURE
[4] a 2 FLUID VELOCITY IN X DIRECTION
[5] a 3 FLUID VELOCITY IN Y DIRECTION
[6] a TYPES
[7] a 1 PRESCRIBED VALUE
[8] a 2 PRESCRIBED FLUX(SIGN CONVENTION FLUX IN IS POSITIVE)
[9] a BC+5 CO0
[10] a FIELD TYPE REGION SIDE PROPERTIES
[11] BC+BC,1 1 1 1 .5
[12] BC+BC,1 1 1 3 1.5
[13] a
[14] BC+BC,2 1 1 4 0
[15] BC+BC,2 1 1 2 0
[16] BC+BC,2 1 1 1 0
[17] BC+BC,2 1 1 3 0
[18] a
[19] BC+BC,3 1 1 4 0
[20] BC+BC,3 1 1 2 0
[21] BC+BC,3 1 1 1 0
[22] BC+BC,3 1 1 3 0
[23] BC+BC
[24] a
[25] PRNODE=2 0 a PRESCRIBED PRESSURE NODE
INGCOM

[0] INGCOM;A;RR;ZR
[1] a SPECIFY GEOMETRY INPUT PARAMETERS
[2] a
[3] INREG a
[4] GP+1 a
[5] CRZ+"2E2" 0 a

SPECIFY COORDINATES OF REGION
CARTESIAN COORDINATES
GRAVITATIONAL CONSTANTS

INITIAL

[0] INITIAL: A
[1] a INITIALIZE VARIABLES
[2] a
[3] CHKINPUT a
[4] RN+1 a
[5] AINTCON ANI+2 a
[6] SINTCON SNI+2 a
[7] AREA a
[9] INITTEMP a
[10] INITVEL a
[11] INITRES a
[12] INITMPROP a
[13] EREQ+RRES+RCOND a
[14] A+(1 2)GRAVVEC a
[15] FREQ=A,[1;1;]((NNG 4),1)p0 a
[16] SETLAST a
[17] SETSTAR a
[18] SAVELSQ+0p0 a

CHECK INPUT PARAMETERS
REGION NUMBER
AREA INTEGRATION CONSTANTS
SURFACE INTEGRATION CONSTANTS
VOLUME AND SIDE AREAS OF ELEMENTS
INITIAL TIME
INITIALIZE TEMPERATURE
INITIALIZE VELOCITIES
INITIALIZE PRESSURE
INITIALIZE MATERIAL PROPERTIES
ENERGY RESULTANT VECTOR
GRAVITATIONAL BODY FORCE VECTORS
FLOW RESULTANT VECTOR
SET LAST TIME ITER. VARS.
SET LAST CONVERGENCE ITER. VARS.
INITIALIZE STORAGE OF FIELD VARS.

INITMP

[0] INITMP:A;DATA
[1] a INITIALIZE MATERIAL PROPERTIES: CASE WHERE PRESSURE NODE PRESCRIBED
[2] a
[3] TF+((NNG 2)TINIT a
[4] DATA+((PROPDATAASEL 1 4 6)1 4 2;1) a
[5] A+(PP,[1.5]TP)INTQR DATA a
[6] EF=A[1;1;] a
[7] UPPROP a

INITIALIZE TEMPERATURES TO TINIT
ASSUME INITIALLY 14
INTERPOLATE
ENERGY FIELD
UPDATE ALL PROPERTIES

INITMPROP

[0] INITMPROP
[1] a INITIALIZE MATERIAL PROPERTIES USING AVERAGE CONDITIONS
[2] a
[3] +(2=DNC 'PRNODE')/NP a
[4] STOP a
[5] NP:INITMP a

CHECK IF PRESSURE NODE PRESCRIBED
STOP EXECUTION
INITIALIZE PROPERTIES
INITPRES

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>INITPRES</td>
</tr>
<tr>
<td>1</td>
<td>INITIALIZE PRESSURE FIELD</td>
</tr>
<tr>
<td>2</td>
<td>(0=NC 'PFINIT')/NXT1</td>
</tr>
<tr>
<td>3</td>
<td>PF=PFINIT</td>
</tr>
<tr>
<td>4</td>
<td>+O a</td>
</tr>
<tr>
<td>5</td>
<td>NXT1:PF=(NNG 1)pPRNODE[1]</td>
</tr>
<tr>
<td>6</td>
<td>INITMP a</td>
</tr>
<tr>
<td>7</td>
<td>PF=FAN STATPRES</td>
</tr>
<tr>
<td>8</td>
<td>CHECK IF PFINIT EXISTS</td>
</tr>
<tr>
<td></td>
<td>USE VALUES IN PFINIT</td>
</tr>
<tr>
<td></td>
<td>EXIT</td>
</tr>
<tr>
<td></td>
<td>FIRST USE REFERENCE PRESSURE</td>
</tr>
<tr>
<td></td>
<td>CALC. DENSITY</td>
</tr>
<tr>
<td></td>
<td>CALC. STATIC PRESSURES</td>
</tr>
</tbody>
</table>

INITTEMP

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>INITTEMP a</td>
</tr>
<tr>
<td>1</td>
<td>INITIALIZE TEMPERATURE</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>TINIT+,a(2p1+A)p(A+2×ND)INTERVALS -0.5 1.5 a</td>
</tr>
<tr>
<td></td>
<td>INITIALIZE TEMPERATURE</td>
</tr>
</tbody>
</table>

INITVEL

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>INITVEL</td>
</tr>
<tr>
<td>1</td>
<td>INITIALIZE FLUID VELOCITIES</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
</tr>
<tr>
<td>3</td>
<td>+(−A/2=NC 2 6p'UINITVFINIT')/ZERO</td>
</tr>
<tr>
<td>4</td>
<td>UF=UFINIT a</td>
</tr>
<tr>
<td>5</td>
<td>VF=VFINIT a</td>
</tr>
<tr>
<td>6</td>
<td>+O a</td>
</tr>
<tr>
<td>7</td>
<td>ZERO:UF=(NNG 2)p0 a</td>
</tr>
<tr>
<td>8</td>
<td>VF=(NNG 2)p0 a</td>
</tr>
<tr>
<td></td>
<td>CHECK FOR INITIAL VELOCITIES</td>
</tr>
<tr>
<td></td>
<td>INITIAL U VELOCITY</td>
</tr>
<tr>
<td></td>
<td>INITIAL V VELOCITY</td>
</tr>
<tr>
<td></td>
<td>EXIT</td>
</tr>
<tr>
<td></td>
<td>ASSUME ZERO U VELOCITY</td>
</tr>
<tr>
<td></td>
<td>ASSUME ZERO V VELOCITY</td>
</tr>
</tbody>
</table>
INPLYGN

[0] R=XY INPLYGN Q;AREAP;CNP;INP;MXI;NXI;NN;S;S1;S2
[1] a FINDS IF POINTS XY ARE IN POLYGONS Q
[2] a XI IS 2 COLUMN MATRIX AND Q p (NBR. POLYGONS) (NBR. NODES EA.) 2
[3] a Q NODES ARE NUMBERED SEQUENTIALLY AROUND PERIMETER
[4] a R RETURNS NBR. OF THE POLYGON CLOSEST TO EACH XY p (1+pXY)
[5] a APPROACH IS TO FIND AREAS OF POLYGONS BY DIVIDING INTO TRIANGLES AND
[6] a COMPARING TO SUM OF AREAS OF TRIANGLES OF XY AND EACH POLYGON SIDE
[7] a
[8] NN+(pQ)2 a NUMBER OF NODES PER POLYGON
[9] INF+INF,[1.51]1+INF*\nn a INDS. OF SUCCESSIVE NODE PAIRS
[10] CNP+Q[;]INF; a COORDS. OF SUCC. NODE PAIRS
[11] MXY+MEAN 1.32%Q a MEAN X Y COORDS. EACH POLIGN.
[12] MXY+2.13%(NN, pMXY)pMXY a RESHAPED FOR NBR. OF NODES
[14] S1+CNP[;11]DIST MXY a LENGTHS OF 1 NODE TO MEAN PT.
[15] S2+CNP[;22]DIST MXY a LENGTHS OF 2 NODE TO MEAN PT.
[16] AREAP=1/HERON S,S1,[2.5]S2 a AREA OF EACH POLYGON
[17] CNP=((1+pXY),pCNP)pCNP a RESHAPED NODE PAIRS FOR EACH XY
[18] NXY+(10%1)%(10%CNP[;111])pMXY a RESHAPE XY ALL POLIGNS., NODES
[19] S=((1+pXY),pS)pS a RESHAPE POLIGN SIDE LENGTHS
[20] S1+CNP[;11]DIST NXY a CALC LENGTHS OF 1 NODE TO XY
[21] S2+CNP[;22]DIST NXY a CALC LENGTHS OF 2 NODE TO XY
[22] R=1/HERON S,S1,[3.5]S2 a AREAS EACH POLIGN. WITH EA XY
[23] R=((RA)(1+pRA)pAREAP)+OFAX 2 AREAP a NORMALIZED DIFF. IN AREAS
[24] R=IFST1(I/R)-OFAX 1 R a CLOSEST POLIGN. FOR EACH XY

INPROD

[0] D=A INPROD B;C;RA;N;CB;R;E
[1] a CALCULATES INNER PRODUCT OF MULTIPLE MATRICIES
[2] a
[3] +((pA)+(pB))/CHK
[5] +((C=10%10pA)=(R=1+p20pB))/NXT
[6] CHK:'INCORRECT p IN INPROD'
[7] STOP
[8] NXT:RA+1*2pA
[9] CB=1+1.5pB
[10] D=(E,RA,CB)p+/[1](4 2 3 1%(CB,N,RA,C)pA)3 2 1 4%(RA,(N=+/E),R,CB)pB
INPROG

[0] INPROG
[1] a SPECIFY PROGRAM OPERATION INPUT PARAMETERS
[2] a
[3] CIL+6 a
[4] CPULIM+90×3600 a
[5] TIMELIM+72×3600 a
[6] EC+1 a
[7] ERR+0.05 a
[8] FC+1 a
[9] FEI=2 2 2 1 a
[10] ICTL+0 a
[11] SPN+5 a
[12] TCTL+0 200 2 a
[13] THETA+0.5 a
[14] TSC+0 a
[15] SSC+1 a

CONVERGENCE ITERATION LIMIT
LIMIT FOR CPU TIME
ENERGY CALC. CONTROL (O-NO THERMAL CALC.)
ALLOWABLE FIELD CONVERGENCE ERROR
FLUID FLOW CALC. CONTROL (O-NO FLOW CALC.)
ELEMENT TYPES FOR EACH FIELD
ITERATION CONTROL (O-SUB 1-NEWTON-RAPHSON)
SAVE FIELDS AT EVERY SPN TIME STEPS
TIME START, END AND INCREMENT CONTROL
TRANSIENT ALGORITHM CONTROL PARAMETER
TIME STEP CONTROL (O-CONSTANT, 1-VARIABLE)
STEADY STATE CONTROL

INPUT

[0] INPUT
[1] a SPECIFY AND PRINT OUT INPUT PARAMETERS
[2] a
[3] INGEOM a
[4] INBDY a
[5] INPROG a
[6] NE=ND=ND a

GEOMETRY FACTORS
BOUNDARY CONDITIONS
PROGRAM OPERATION PARAMETERS
NUMBER OF ELEMENTS PER REGION

INREG

[0] INREG; RR; ZR; a
[1] a SPECIFY INITIAL R AND Z COORDINATES OF REGION
[2] a
[3] a 'LARGE SQUARE BOX'
[4] RR+1×0 0.5 1 1 1 0.5 0 0 0.5
[5] ZR+1×0 0 0 0.5 1 1 1 0.5 0.5
[6] RZR=RR,[0.5]ZR

INTERVALS

[0] I=N INTERVALS P;B;E
[3] E=1+P
[4] I=B+((E-B)+N)x−1+iN+1)
INTQR

R+XY
INTQR D:A;B;MAX;MIN;ND;NXY

1 a INTERPOLATES BY FINDING CLOSEST REGION AND USING DBL. QUAD. REGRESS.
2 a XY ARE X AND Y VALUES TO BE INTERPOLATED
3 a D ARE INTERP. DATA X, Y AND Z (MAY BE MULTIPLE 2) p ≥3 NR 8
4 a NR IS THE NUMBER OF QUADRATIC REGIONS
5 a R RETURNS INTERP. VALUES WITH 2 PARTIAL DERIV. p(−2+1+3) 3 (1+pXY)
6 a
7 a
8 a
9 a
10 a
11 a
12 a
13 a
14 a
15 a
16 a
17 a
18 a

EXIT IF NO POINTS
NORMALIZE REGION COORDS.
RESHAPE NORMALIZED COORDS.
NORMALIZE XY WITH MAX MIN
RESHAPE NORM. REGION X Y
FIND CLOSEST REGION
DO REGRESSION ANALYSIS
UNNORMALIZED THE RESULT
EXIT RETURN IF NO VALUES

INTQR®

R+D INTQR® XY:A;B;E:I;NDV:RI;UI

1 a CALLED BY INTQR, IT PERFORMS DOUBLE QUADRATIC REGRESSION BY REGION
2 a XY IS A 3 COLUMN MATRIX OF X AND Y VALUES AND REGION NUMBERS
3 a D IS REGION X Y Z DATA (23) (NUMBER OF REGIONS) 8
4 a R IS INTERP. VALUES AND 2 PART. DERIV. p(−2+1+3) 3 (1+pXY)
5 a
6 a
7 a
8 a
9 a
10 a
11 a
12 a
13 a
14 a
15 a
16 a
17 a
18 a
19 a
20 a
21 a
22 a
23 a
24 a
25 a

REGION INDICES
TRANSPOSE REGION DATA
UNIQUE REGION INDICES
NUMBER OF DEPENDENT VARIABLES
INITIALIZE RETURN VARIABLE
RESHAPE INTERP. DATA (INDEP. VARS.)
ADD BACK AGAIN THE DEPEND. VARS.
E HAS p NDV (NBR. REGIONS) 8 3
LOOP ON EACH REGION OF INTEREST
INDEXIES OF XY WITHIN THIS REGION
NESTED ARRAY OF REGION DATA
INDICES OF XY WITHIN THIS REGION
NESTED ARRAY OF XY IN THIS REGION
DBL. QUAD. REGRES. ON "DEP. VAR. MIN AND MAX VALS. FOR REGION p 2 NDV
LIMIT INTERP. Z VALS. TO REGION Z'S
ASSIGN RETURN VALUES
DROP ONE FROM LOOP VARIABLE
END OF LOOP
INTQR@UNN

[0] U=INTQR@UNN A;R;MMM
[1] UNNORMALIZE A MATRIX "A" (NESTED ARRAY) WRT. RANGE
[5] R RETURNS INTERP. VALUES WITH 2 PART. DERIV. p(DEP. VARS.) 3 (1+pXY)
[6] (R MAX MIN)=A
[7] MMM=MAX-MIN
[8] U=(2+MIN)+OPAX(1)((2+MMM)×OPAX(1)R[;1;1]) a
[9] U+U,[2](2+MMM)×OPAX(1)(R[;1;2]+OPAX(2)MMM[1])) a
[10] U+U,[2](2+MMM)×OPAX(1)(R[;1;3]+OPAX(2)MMM[2])) a

INV

[0] I=INV A;R
[1] a CALCULATES INVERSE OF MULTIPLE 2×2 MATRICES; N 2 2
[2] R=pA
[3] A=((1+p(A);4);4)×A
[4] I=(pA)I 0 0 1
[10] I+R̅I

JACCHK

[0] JACCHK A
[1] a CHECK IF DETERMINANT OF JACOBIAN HAS A SIGN REVERSAL
[2] +(02(1/,A)×1/,A)\text{WARN}
[3] +0
JACOB
[0] JAC=RS JACOB S;RS;DX;DE;RN;ZN;A
[1] " CALC. THE JACOBIAN MATRICES FOR ALL ELEMENTS
[2] S ARE THE SHAPE FUNCTIONS
[4] A
[5] RS=(pS)[2]
[8] RN+RS^-2+pRZ)pRZ[1;1]
[10] A+=(RSNE,1)p+/DXxRN
[12] A=A,((RSNE,1)p+/DExRN
[13] A=A,((RSNE,1)p+/DExZN
[14] JAC=(RS,NE,2,2)DA

LIMITTO
[0] R=Y LIMITTO X
[1] " LIMIT Y TO RANGE BETWEEN DEFINED BY X
[3] " R RETURNS MODIFIED Y p (pY)
[4] A
[5] X=MINMAX X a
[6] Y=YOPAX(ppY),(,(1,1+pX)*X) a
[7] R=YOPAX(ppY),(,-1.1+pX)*X) a

LINFV
[0] R=LINFV F;SHP;A
[1] " CONVERTS LINEAR FIELD VARIABLE TO VALUES AT ALL NODES
[2] " F IS LINEAR FIELD VARIABLE p (ND+1)*2
[3] " R IS NODAL VALUES (GLOBAL BASIS)
[4] A
[5] R=(NNG 2)p0 a
[6] A=A 5p0 1 0 1 0 1 0 1 0 0 a
[8] SHP+,(NE)pA)pA a
[9] A+=/SHPx2 3 1p(1pSHP)pF+F[LNODE] a
[10] A=F,A a a
[12] R[,ELN]+=,a a
LSHAPE

[0] \(\text{LSHAPE XE:C:ETA:XI} \)
[1] \(\text{CALCULATES LINEAR SHAPE FUNCTIONS AND THEIR DERIVATIVES} \)
[2] \(\text{XI COORDINATES} \)
[3] \(\text{ETA COORDINATES} \)
[4] \(\text{POLYNOMIAL COEFFICIENTS} \)
[5] \(\text{RESHAPE TO MATCH CSL} \)
[6] \(\text{CALCULATE SHAPE FUNCTIONS} \)

LUMP

[0] \(\text{LUMP C} \)
[1] \(\text{LUMPS THE CAPACITANCE MATRIX BY ROWWISE SUMMATION} \)
[2] \(\text{ROWWISE SUMMATION} \)
[3] \(\text{USE SUM TERMS FOR DIAGONALS} \)

LX

[0] \(\text{LX:A} \)
[1] \(\text{LATENT EXPRESSION} \)
[2] \(\text{INITIALIZE STACK VARIABLE} \)
[3] \(\text{SHARE SYSTEM VARIABLE} \)
[4] \(\text{SHARE STACK VARIABLE} \)
[5] \(\text{CLEAR THE SCREEN} \)
[6] \(\text{DISPLAY A STRIPE ON SCREEN} \)
[7] \(\text{SKIP A LINE} \)
[8] \(\text{READER} \)
[9] \(\text{SKIP A LINE} \)
[10] \(\text{WORKSPACE NAME} \)

MAP

[0] \(\text{MAP:C:ETA:X:SHP:XI:Y} \)
[1] \(\text{MAP XI-ETA COORDINATES OF NODES INTO X-Y SYSTEM} \)
[2] \(\text{XI COORDINATES} \)
[3] \(\text{ETA COORDINATES} \)
[4] \(\text{BUILD MATRIX COLUMNS OF} \)
[5] \(\text{SHAPE FUNCTIONS} \)
[6] \(\text{COORDS. OF GLOBAL NODES} \)
[7] \(\text{COORDS. OF ELEMENT NODES} \)
MDET
[0] A=MDET B
[1] a CALCULATES DETERMINANT OF MULTIPLE 2x2 MATRICES
[2] a
[3] A=((1+pA)*4,4)pA+B
[4] A=A[:1]*A[:4]-A[:2]*A[:3]
[5] A=(2+((pB)-2)pB)pA

MEAN
[0] M=MEAN A
[1] a FINDS MEAN OVER LAST INDEX OF A VECTOR
[2] M=(Σ1+pA)/A

MINMAX
[0] R=MINMAX X
[1] a RETURNS THE MINIMUM AND MAXIMUM VALUES OF X
[2] R=(MAX,0.5)/X

NNG
[0] N=NNG FT;NLN;NQN
[1] a RETURNS THE TOTAL NUMBER OF NODES (GLOBAL) FOR EACH FIELD TYPE
[2] a
[3] NLN=(ND+1)*2 a
[4] NQN=(1+2*ND)*2 a
[5] N=(NLN,NQN)[FELT[FT]] a

RETURN VARIABLE
NODEM

B+NODEM A;B1:B2:C:D;R;RNODE;CNODE
a ASSEMBLE MODEL MATRIX FROM ELEMENT MATRICES

[0] R+1+1+pA a
[1] C+1+1+pA a
[2] +(R=4)/RL a
[3] RNODE+ELN a
[4] B1+NNG 2 a
[5] TYPE a
[6] RL:RNODE+LNODE a
[7] B1+(ND+1)+2 a
[8] TYPE:+(C=4)/CL a
[9] CNODE+ELN a
[10] B2+NNG 2 a
[12] C2:CNODE+LNODE a
[13] B2+(ND+1)+2 a
[14] NXT:D+2 3 P(R,C,NE)P[CNODE a
[16] D+D REDUCE,A a
[17] B+(*B1,B2)P0 a
[19] B+(B1,B2)PB a

NUMBER OF ROWS
NUMBER OF COLUMNS
CHECK IF LINEAR ROWS
USE QUADRATIC NUMBERING
NUMBER OF QUADRATIC NODES
JUMP AND CHECK COLUMN TYPE
USE LINEAR NUMBERING
NUMBER OF LINEAR NODES
CHECK IF QUADRATIC COLUMNS
USE QUADRATIC NUMBERING
NUMBER OF QUADRATIC NODES
JUMP
USE LINEAR NUMBERING
NUMBER OF LINEAR NODES
RESHAPE COLUMN NODE NUMBERS
COMBINE WITH ROW NUMBERS
SUM WHERE MULTIPLE INDICES
INITIALIZE RETURN VARIABLE
REORDER RETURN VARIABLE
RESHAPE RETURN VARIABLE

NODEV

B+NODEV A;B1:D;R;RNODE
a ASSEMBLE MODEL VECTOR FROM ELEMENT VECTORS

[0] R+1+1+pA a
[1] +(R=4)/RL a
[2] RNODE+ELN a
[3] B1+NNG 2 a
[4] +NXT a
[5] RL:RNODE+LNODE a
[6] B1+(ND+1)+2 a
[7] NXT:D+RNODE a
[8] D+D REDUCE,A a
[9] B+B1P0 a
[11] B+(B1,B2)PB a

NUMBER OF ROWS
CHECK IF LINEAR
QUADRATIC NUMBERING
NUMBER OF QUADRATIC NODES
JUMP
LINEAR NODE NUMBERING
NUMBER OF LINEAR NODES
STRING OUT NUMBERS
SUM WHERE MULTIPLE INDICES
INITIALIZE RETURN VARIABLE
REORDER RETURN VARIABLE
RESHAPE RETURN VARIABLE

NORMR

R+R/NORMR F;MIN;MAX
a NORMALIZE MATRIX "F" WRT. RANGE (RESULT IS A NESTED ARRAY)

[0] R+R/NORMR F a
[1] MIN+L F a
[2] R+(F-(pF)P[MIN]+(pF)P[MAX]-MIN a
[3] R+R MAX MIN a

MAXIMUM OF EACH COLUMN
MINIMUM OF EACH COLUMN
NORMALIZE FROM 0-1
RETURN NEW ARRAY, WITH MAX. AND MIN
NS
[0] R=NS T
[1] a RETURNS SHAPE FUNCTIONS FOR ELEMENT TYPES
[2] # T IS THE FIELD TYPE (E.G. 1-ENERGY)
[3]
[4] R=NST[FEET(T)] a

OPAX
[0] R*X(FN OPAX)B;AS;MIL;RT;Y
[1] a APPLIES DIATIC PRIMITIVE OPERATOR ALONG AXES
[2]
[3] (AS Y)*B a
[4] +(1pX)=pY)/APP a
[5] +(1pY)=pX)/YL a
[6] MIL-=(ipX)=AS a
[7] +(-a)/(pT)=(-MIL)/pX)/ERR1 a
[8] RT=(MIL)/ipX),(-MIL)/ipp X
[9] Y+RY=(pX)[RT]P Y a
[10] +APP a
[12] +(-a)/(pX)=(-MIL)/pY)/ERR1 a
[13] RT=(MIL)/ipY),(-MIL)/ipp Y
[14] X+RY=(pY)[RT]P X a
[15] APP:R=X FN Y a
[16] +O a
[17] ERR1:OES 'RANK ERROR'

PHASTRAN
[0] PHASTRAN A
[1] a MAIN CONTROL FUNCTION FOR PHASE CHANGE ANALYSIS MODEL
[2]
[3] FRONTEND A a
[4] Timestep a a
[5] RESULTS+RESULTS a
[6] STATUS TSTOP a

PROPDATASEL
[0] R+PROPDATASEL N
[1] a RETURNS SUBSET OF PROPDATA BASED ON STATE CONDITIONS AND PROPERTIES
[2] # N IS NUMERIC VECTOR CORRESPONDING TO SF NOTATION
[3]
[4] R=PROPDATA a

ALL PROPERTY DATA

ONLY REQUESTED STATES
PRSCRB

PRSCRB;A;BNP;KB
a PRESCRIBES FINITE ELEMENT EQUATIONS IN THE GLOBAL VARS. KBAR AND RBAR
b PFEQ[1:] POSITIONS IN KBAR (1 THRU 1+KBAR)
c PFEQ[2:] CORRESPONDING PRESCRIBED VALUES
d PFEQ[3:] (0 FOR SOLID NODES, 1 FOR BOUNDARY CONDITIONS)

a PFEQ=PFEQ[1:]+PFEQ[1:] a
b PFEQ=(ADUPL PFEQ[1:])/PFEQ a
A+1+pKBAR a
b PFEQ=(PFEQ[1:]+A)/PFEQ a
BNP=A PFEQ[1:] a
b A=(-BNP)/KBAR a
b KB=((A)PFEQ[2:])*A a
b KB=PFEQ[3:]*[2:]*KB a
b RBAR=(BNP/RBAR)+BNP/KB a
b KBAR+BNP/KB a

PFSIDE

PFSIDE FT:B;C;D1;D2
a MODIFIES PFEQ WHICH DEFINES PRESCRIBED BOUNDARY CONDITIONS
b B=BC[;3 2 1 4 5] a
b B+RN FSTCM B a
b B=1 FSTCM B a
b ((pFT)cB)PFSIDE\FLD*FT a
b END:D1=PFEQ[1:] a
b D1=+C+ADUPL D1)/D1+D1 a
b D2+ADUPL D2 3:1 a
b PFEQ=D1,[1]D2 a

PFSIDE\ADJ

PFSIDE\ADJ TYPE:PFTS
a ADJUSTS ORIGINAL NODE POSITIONS IN A MATRIX FOR FIELD TYPE
b PFTS=(-1+/\TYPE=\FT)*FT a
b AN=ON++/NNG PFTS a

PFSIDE\FLD

PFSIDE\FLD TYPE:N;V
a PRESCRIBES BOUNDARY CONDITIONS FOR A FIELD
b B+TYPE FSTCM B a
b +0=0 B/B a
b N+TYPE SIDENODES B[;1] a
b V+Q(0;P)S=0;B[;2] a
b (N V)+((N V)PFSIDE\TEMP TYPE a
b N+5N PFSIDE\ADJ TYPE a
b PFEQ=PFEQ,N[1],V[0.5]1 a

PUT IN ASCENDING ORDER
REMOVED DUPLS. (LEAVE 1ST)
ALL POSITIONS IN KBAR
REMOVE ANY OUT OF RANGE
BOOL. POS. NOT PRSCRBD.
COLUMNS OF K'S PRESCRIBED
K'S X PRESCRIBED VALUES
ZERO SOLID NODES
NEW R VECTOR
NEW K MATRIX

REORDER BC (REG. TYPE FT SIDE VAL.)
ONLY THIS REGION
ONLY PRESCRIBED BC'S
PRESCRIBE BC'S FOR EACH FIELD TYPE
MODIFY PFEQ TO ELIMINATE
-DUPLICATE NODE BC'S
-LEAVING ONLY THE FIRST
RESET GLOBAL VARIABLE PFEQ

PREVIOUS FIELD TYPES
ADJUSTED NUMBERS (POSITIONS)

BOUNDARY CONDITIONS FOR TYPE
EXIT IF NO BC'S FOR THIS TYPE
FIND NODE NUMBERS
FIND ASSOCIATED VALUES
HANDLE TEMP. BC'S DIFFERENTLY
ADJUST MATRIX POSITIONING
ADD PREVIOUS PRESCRIBED VALUES
PRSIDEATEMP

D+NV PRSIDEATEMP TYPE;I:C;I1;I2;N;V
a CONVERTS TEMPERATURE BOUNDARY CONDITIONS TO ENERGY BC'S
a

D+NV a

*(TYPE+1)/0 a

(N V)*NV a

D+W,[0.5]({N}p0 a

I=IR1A1 I=(1 FVGB SF)[N]*1.4 6 a

I+=(PROPDATASEL 1 4 6)[1 1 2] a

C*([II],[1.5](1 FVGB PF)[N[I]] a

D[2;1]I+(C INTQR I)[1;1] a

D+c[2]D a

INITIALIZE RETURN VARIABLE
EXIT IF NOT TEMPERATURE BC
NODES AND VALUES
SETUP RETURN VARIABLE
IND. OF NODES IN SINGLE PHASE
SINGLE-PHASE PROPERTY DATA
USE TEMPERATURE AND PRESSURE
INTERPOLATE SINGLE-PHASE POINTS
RETURN NESTED ARRAY

PRSPRES

PRSPRES

a PRESCRIBES PRESSURE NODEM

a

+(2=NC 'PRNODE')/NP a

CHECK IF PRESSURE NODE PRESCRIBED

PRSP1 a

PRESCRIBE PRES. (TOTAL MASS CONSTRAINED)

P=F=0 a

NP:PRSP2 a

PRESCRIBED PRESSURE NODE (OPEN SYSTEM)

PRSP1

PRSP1;A:B;NN

a PRESCRIBES PRESSURE NODEM: CASE WHERE TOTAL MASS CONSTRAINED

a USES PRESSURE VALUE FROM LAST ITERATION

a

N=NNp(1+ND)+1 0 , (ND+1)p0 a

NUMBER OF QUAD. NODES (GLOBAL BASIS)

B=+/-/NNp(2=[1.2]+NNN) x PFFE=(1;) a

BOOL. WHERE PRES. NODES OCCUR

A=([A]+0)A=+([-A]+0)A \1 (ND+1)+2 a

BOOL. WHERE VELOCITIES PRESCRIBED

B=PF[1;A] a

PRESS. NODES WHERE VEL. NOT PRSCRBED.

PFFE=PFFE,3 1P((-1)+3+NN),B,1 a

USE 1ST UNPRSCRBED. PRES. NODE

PRESCRIBE THE PRESSURE NODE

PRSP2

PRSP2;N

a PRESCRIBES PRESSURE NODEM: CASE OF OPEN SYSTEM

a

N=(*/NN2 3)+PRNODE[1] a

MATRIX LOCATION OF NODE NUMBER

PFFE=PFFE,3 1P,N,PRNODE[2],1 a

PRESCRIBE THE PRESSURE NODE
PRSVLC
[0] CE*PRSVLC FT
[1] a RETURNS LOCATIONS OF PRESCRIBED VALUES FOR THESE FIELD TYPES
[2] a
[3] CE*(+/NNG FT)p1 a
[4] CE[(PFEQ[1;1])]=0 a VECTOR OF 1'S FOR ALL NODES INSERT 0'S WHERE PRESCRIBED

QLGSHP
[0] SHP+QLGSHP XE;Ai:C;ETA;XI
[1] a CALC. QUADRATIC LAGRANGIAN SHAPE FUNCTIONS AND DERIVATIVES
[2] a
[4] C^([ETA*XI]^2),([XI*ETA]^2),([1.5](XI*ETA)*2] a
[5] C^([1,1],XI,ETA,([XI*ETA]),([XI*2]),([ETA*2]),[C] a
[6] SHF+CSQLC a
[7] A^CSQLC*OPAX 2(0 1 0 1 2 0 2 1 2) a
[8] A^A[;1 2 5 4 7 1 8 3 9 6] a
[9] SHP+SHP,([0.5]C+.X a
[10] XI COORDINATES ETA COORDINATES BUILD MATRIX OF POLYNOMIAL .COEFFICIENTS CALCULATE SHAPE FUNCTIONS COEF. FOR DERIV. WRT XI REORDER DERIV. WRT XI COEF. FOR DERIV. WRT ETA REORDER DERIV. WRT ETA

QUADPLY
[0] P=QUADPLY XY;X;Y
[1] a FORMS POLYNOMIAL FOR 2 DIMENSIONAL QUADRATIC
[2] a
[3] a
[5] P+1,X,(X*2),Y,(Y*2),([X]*2),([1.5](X*Y)*2] a
[6] X VALUES Y VALUES FORM POLYNOMIAL

QUADRGXY
[0] Z=D QUADRGXY XY;C;K;DX;DY;PXY
[1] a PERFORMS QUADRATIC REGRESSION ANALYSIS IN 3 DIMENSIONS X Y Z
[2] a
[3] a
[4] a
[5] a
[8] PXY^QUADPLY XY a
[9] Z^PXY+.X a
[10] C^2[1 2 0 1 1 2 0 0]*X[2 3 1 6 8 7 1 1] a
[12] Z^Z,([1.5]DX a
[13] C^1 1 1 2 0 2 0 0*X[4 6 7 5 1 8 1 1] a
[14] DY^PY+.X a
[15] Z^Z,DY a

POLYNOMIAL OF INTERP. DATA REGRESSION ON DATA POLY. OF XI'S TO BE INTERP. INTERPOLATED VALUES COEF. FOR DERIV. WRT. X DERIV. OF Z WRT. X AT XI CATTENATE TO RETURN VARIABLE COEF. FOR DERIV. WRT. Y DERIV. OF Z WRT. Y AT XI CATTENATE TO RETURN VARIABLE
RCOND

[0] RC=RCOND
[1] \text{RETURNS SUB-VECTOR FOR INTERNAL CONDUCTION}
[2] \text{SUB-VECTOR FOR INTERNAL CONDUCTION}
[3] RC++(DX, DY)\times\text{OPAX}(2, 3)(1 \text{ FVEB TF}) \text{ DERIVATIVES OF TEMP.}
[4] RC=RC\times\text{OPAX}(1, 2)(\text{FVIP KT}) \text{ MULT. BY CONDUCTIVITY}
[5] RC++\text{RC} \times\text{OPAX}(1, 2, 4)(\text{DX}, \text{DY}) \text{ MULT. BY DERIV. SHP. FNS.}
[6] RC+=\text{(pRC, 1)pRC} \text{ RESHAPE TO COLUMN VECTOR}
[7] RC+=\text{NODET AINTGRT RC} \text{ INTGRT. GLOBAL NODE BASIS}

RDUPX

[0] R=RDUPX X
[1] \text{RETURNS A BOOLEAN FOR REDUCING DUPLICATE VALUES LEAVING ONLY THE 1ST}
[2] \text{RETURNS A BOOLEAN FOR REDUCING DUPLICATE VALUES LEAVING ONLY THE 1ST}
[3] R=1 \text{IND}<\text{X} \Rightarrow \text{X}

REDUCE

[0] \text{X=IND REDUCE VAL;C;D;C2;C3;I}
[1] \text{REDUCE (BY SUMMATION) A VECTOR WITH MULTIPLE INDICES}
[2] \text{REDUCE (BY SUMMATION) A VECTOR WITH MULTIPLE INDICES}
[3] \text{IND+IND(I*IND) \text{ REORDER INDICES SEQUENTIALLY}}
[4] \text{VAL+VAL(I) \text{ AND THE CORRESPONDING VALUES}}
[5] \text{C2*IND*10IND \text{ LOCATIONS OF DUPLICATES}}
[6] +((1\times/C2)/\text{NXT} \text{ JUMP IF DUPLICATE INDICES EXIST}}
[7] \text{X=VAL,(0.5)*IND \text{ RETURN VARIABLE}}
[8] +0 \text{ EXIT}
[9] \text{NXT:}
[10] \text{C3+C2+(-C2)\times((pC2)-1)*C2 \text{ BOOLEAN WITH 0'S AT FIRST DUPL.}}
[11] D+C3/\text{IND*C3} \text{ REDUCED SET OF INDICES}
[12] C+\text{VAL*10VAL}((-1+\text{pVAL})*\text{C3} \text{ SUM VALUES}
[13] C+=((-1+\text{pVAL})*\text{C3})/C \text{ ELIMINATE THOSE VALUES}
[14] X+D \text{ REDUCE C \text{ RECURSION TO FURTHER REDUCE}}

REMDUPEL

[0] R=REMDUPEL X
[1] \text{REMOVES DUPLICATE ELEMENTS OF X}
[2] \text{REMOVES DUPLICATE ELEMENTS OF X}
[3] R=((X\times)=\text{pX})/X

RESULTS

[0] R=RESULTS;HDR
[1] \text{DISPLAYS FIELD VARIABLES}
[2] \text{DISPLAYS FIELD VARIABLES}
[3] R=PF,EF,TF,SF,UF,\text{[1.5]}VF
[4] \text{PRESSURE' 'ENERGY' 'TEMPERATURE' 'STATE' 'U-VELOCITY' 'V-VELOCITY'}
[5] R=\text{HDR,[1]}R
RHOZERO
[0] R=RHOZERO;DATA:IP
[1] a CALCULATES THE REFERENCE DENSITY
[2] a
[3] DATA=(PROPDATASEL(1451) a
[4] IP+1 2p(MEAN PF),MEAN TF a
[5] R=IP+1,IP INTQR DATA a

RPRES
[0] RP=RPRES
[1] a FORMS PRESSURE RESULTANT VECTOR
[2] a
[3] RP*PF(ELN)*(DFN UP[I]+(DFN VF)[2])

SAVEFIELDS
[0] NTS SAVEFIELDS SFN
[1] a SAVES FIELDS AT EVERY DFN TIME STEP, PUTS IN NESTED ARRAY SAVEFLDS
[2] a
[3] *(0+SFN)*NTS/0 a
[4] SAVEFLDS+SAVEFLDS, tTIME(PF,EF,TF,UF,IP,[1.5]VF) a

SETLAST
[0] SETLAST
[1] a SETS VARIABLES FROM LAST TIME ITERATION
[2] a
[3] RELAST=FREQ a
[4] HFLAST=FREQ a
[6] FPHI+UF,VP,FVFGB PF a

SETSOlid
[0] SETSOlID;A:N;NSO:L;P
[1] a SETS VELOCITIES TO ZERO FOR NODES IN SOLID STATE
[2] a
[3] NSOL+IEA1=SF<4 a
[4] UF[NSOL]+0 a
[5] VF[NSOL]+0 a

USE LIQUID DATA
USE MEAN PRES. AND TEMP.
INTERPOLATE ON DENSITY
SETSTAR
[0] SETSTAR
[1] a SETS EF, UF, VF AND PF AT LAST CONVERGENCE ITERATION
[2] a
[3] EFSTAR+EF a LAST ENERGY VALUES
[4] +(FC=0) O a CHECK IF FLOW CALC. WERE SOLVED
[5] UFSTAR+UF a LAST U VELOCITIES
[6] VFSTAR+VF a LAST V VELOCITIES
[7] PFSTAR+PF a LAST Pressures

SIDENODES
[0] R=FT SIDENODES S:ET
[1] a RETURNS THE REGION SIDE NODES FOR A FIELD TYPE
[2] a S IS THE SIDE NUMBERS
[3] a FT IS THE TYPE OF FIELD (E.G. 1-ENERGY)
[4] a
[5] ET+FELT[FT] a CHANGE FIELD TYPE TO ELEMENT TYPE
[6] +(ET=1 2)/[1,2] a CHECK TYPE OF ELEMENT
[7] +0 a EXIT IF NOT VALID ELEMENT TYPE
[8] T1:R=RSLN[S;1] a LINEAR SIDE NODES
[9] a

SIFAC
[0] SIF=SIFAC;DX;DE;XN;YN;A;B;C;D;S1;S2;S3;S4 a CALCULATES THE SIDE INTEGRATION FACTOR FOR USE WITH SINTGRT
[1] a
[2] a
[4] a
[6] a
[8] a
[10] a
[12] a
[14] a
[16] a
[17] D+((C[4:1]*2)+D[4:1]) a DERIVATIVES X COORDINATES
[18] a
[19] S1+=((A[1:1]*2)+B[1:1]) a SIDE 1
[20] a
[22] a
[24] a
[25] S4+=((C[4:1]*2)+D[4:1]) a SIDE 4
[26] a
[28] a
[29] A+(SNI+1),NE)+/A a .AS PART OF THE...
[30] a
[31] SIF=A+(pA)p%S1,S2,S3,[1.5]S4 a SIDE INTEGRATION FACTOR
SINTCON

0 SINTCON N;A;N1
1 a INTEGRATION CONSTANTS FOR USE WITH SINTGRT
2 a
3 N1+1+SNI+N a
4 A+N1+([N1;1][SNI;1] a
5 SXEI=A,(N1p1),A,(N1p-1) a
6 SXEI=SXEI,[0.5](N1p-1),A,(N1p1),A a
7 QSS=QGSP SXEI a
8 LSS=LSHAPE SXEI a
9 QSIF=SIFAC a

ORDER OF GAUSS-LEGENDRE
INTEGRATION POINT CONSTANTS
XI COORDINATES
ADD ETA COORDINATES
QUADRATIC SHAPE FUNCTIONS
LINEAR SHAPE FUNCTIONS
SIDE INTEGRATION FACTOR

SINTGRT

0 I=SINTGRT A;N1;WE
1 a INTEGRATES FUNCTION OVER SIDES OF ELEMENT IN XI-ETA COORD. SYSTEM
2 a
3 N1+SNI+1 a
4 +(1ep.A)/SCALAR a
5 +(pQSAIF)=3+pA)/NXT a
6 STATUS ERMSG(2) a
7 +O a
9 *END a
10 SCALAR:A=A*QSIF a
12 I++(1)/WE=A a

MULTIPLY BY INTGRT. FACTOR
MULTIPLY BY INTGRT. FACTOR
WEIGHTING FACTORS
INTEGRATE ALL SIDES

SKIP

0 S+SKIP N
1 a PRODUCE "N" BLANK ROWS
2 S=(N,1)p' '

STATPRES

0 SPF+STATPRES;A;NXN;Xyc
1 a CALCULATES THE STATIC PRESSURE DISTRIBUTION
2 a
3 NXN+(N4)INPROD 1 2 4 3NX 4 a
4 Xyc+RZI[1;1 3 5 7] a
5 A+=(11)GRZ[1](pXyc)4 PVEB RHO*Xyc a
6 A=NXN INPROD(3+pNXN),1)pA a
7 A+NODEM AINTGRT A a
8 SPF+ABNODEM AINTGRT NXN a
9 SPF+SPF+PRNODE[2]-SPF[1+PRNODE] a

PRODUCT OF SHAPE FUNCTIONS
X Y COORDS. OF CORNER NODES
DENSITY*GRAVITY*LOCATION
MULTIPLY BY SHAPE FUNCTIONS
INTEGRATE ON GLOBAL BASIS
SOLVE FOR PRESSURE
ADD REFERENCE PRESSURE
STATUS
[0] STATUS MSG
[1] a MANAGES STATUS MESSAGES
[2] a
[3] MSG+MSG a
[4] STATMSG+STATMSG ADDROWS MSG a
[5] MSG a

MESSAGES

FORMAT MESSAGE
RECORD IN STATMSG
DISPLAY THE MESSAGE AT TERMINAL

STRIPE
[0] S+STRIPE
[1] a CREATES STRIPE LINE BORDER

TIMECHK
[0] CK+TIMECHK
[1] a RETURNS A 0 IF TIME LIMIT IS EXCEEDED
[2] a
[3] CK<-=(0.001*OAI[3]-TIC[3])2*TIMELIM a
[4] +(CK-1)/0 a
[5] STATUS 'RUN TIME LIMIT EXCEEDED' a
[6] a

CHECK RUN TIME
EXIT IF OK
MESSAGE TO USER
TO SET S+TIMECHK

Timestep
[0] TIMESTEP:CIC:NIT:NTS
[1] a TIME STEPPING FUNCTION
[2] a
[3] NTS=0 a
[4] CIC=10p0 a
[5] LOOP:TIME+TIME+TCTL(3) a
[6] NTS+NTS+1 a
[7] STATUS 'TIME'('-1+TIME') a
[8] +(TCTL(2)<'-1+TIME')/0 a
[9] +(0=CPUCHK)/0 a
[10] +(0=TIMECHK)/0 a
[11] NIT+AGAIN 0 a
[12] SETSOLID a
[13] CIC+1+CIC,NIT a
[14] CIC ADJSTEP NIT a
[15] SETLAST a
[16] NTS SAVEFIELDS SFN a
[17] +(CHKS CIC)/0 a
[18] +LOOP a

INITIALIZE TIME STEP COUNTER
INITIALIZE CONVERGENCE ITER. COUNTER
LOOP ON TIME
INCREMENT TIME STEP COUNTER
DISPLAY TIME
EXIT IF AT TIME LIMIT
EXIT IF CPU TIME EXCEEDED
EXIT IF RUN TIME EXCEEDED
CONVERGE AND RETURN ITERATION NUMBER
SET SOLID NODE VELOCITIES TO ZERO
UPDATE CONVERGENCE ITERATION COUNTER
ADJUST TIME STEP BASED ON ITER. NBR.
SET EF, UF, VF, PF FOR LAST TIME STEP
SAVE FIELDS AT CERTAIN TIME STEPS
EXIT IF STEADY STATE REACHED
CONTINUE IN TIME
TOMATRIX

[0] M=TOMATRIX V
[1] a CHANGES A SCALAR, VECTOR OR ARRAY OF RANK 3 OR HIGHER TO A MATRIX
[2] a
[3] M=V a
[4] +(2=ppV)/0 a
[5] +(2<ppV)/M1 a
[7] -0 a
[8] M1=M-((x/(-1+ppV)+pV),-1+pV)pV a

INITIALIZE RETURN VARIABLE
EXIT IF ALREADY MATRIX
CHECK IF RANK GREATER THAN 2
CONVERT SCALAR OR VECTOR TO A MATRIX
EXIT
CONVERT HIGHER RANK ARRAY TO A MATRIX

TSTART

[0] TSTART
[1] a STARTS CLOCK FOR TIME CHECKING
[2] T1=OAI

TSTOP

[0] R=TSTOP;T2
[1] a DISPLAYS CPU, CONNECT TIMES SINCE TSTART WAS ISSUED
[2] a
[3] T2=OAI a
[4] SKIP 1 a
[5] R+(0.001×T2(2)-T1(2)), SEC. CPU a
[6] R+R ADDR(0.001×T2(3)-T1(3)), SEC. CT a

CURRENT ACCOUNT INFO.
SKIP A LINE
DISPLAY CPU USAGE
DISPLAY CONNECT TIME

UPPROP

[0] UPPROP;DATA;IP;DP
[1] a UPDATES PROPERTIES ON GLOBAL NODE BASIS
[2] a
[3] DATA=PROPDATASEL;6 a
[4] IP=PF,[1.5]EF a
[5] DP=IP INTQR DATA a

PROPERTY DATA
INDEPENDENT PROPERTIES
PERFORM INTERPOLATION
STATE
TEMPERATURE
DENSITY
CONDUCTIVITY
VISCOITY
PRESCRIBED TEMPERATURES
UPPROPATEMP

[0] UPPROPATEMP:B:N:T
[1] a PLACES PRESCRIBED TEMPERATURES IN UPDATED PROPERTIES
[2] a
[3] B+BC(; 3 2 1 4 5) a
[4] B+RH FSTCM B a
[5] B+1 FSTCM B a
[6] B+1 FSTCM B a
[7] +(O=1+P0)/0 a
[8] B+R~R~B a
[9] N+1 SIDENODES B[; 1] a
[10] T+M(00N)PB([; 2] a

REORDER BC (REG. TYPE FT SIDE VAL.)
BC'S FOR THIS REGION
ONLY PRESCRIBED BC'S
ONLY TEMP. BC'S
EXIT IF NO TEMP. BC'S
PRESCRIBED TEMPERATURE CONDITIONS
FIND NODE NUMBERS
FIND ASSOCIATED TEMP. VALUES
REPLACE WITH PRESCRIBED TEMPERATURES
GI

<table>
<thead>
<tr>
<th>(+)</th>
<th>20.7735</th>
<th>0.57735</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.7746</td>
<td>0.7746</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-0.3398</td>
<td>-0.3398</td>
<td>0.86114</td>
<td>0.86114</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>-0.53847</td>
<td>0.53847</td>
<td>-0.90618</td>
<td>0.90618</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.23862</td>
<td>0.23862</td>
<td>-0.66121</td>
<td>0.66121</td>
<td>-0.93247</td>
<td>0.93247</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-0.40585</td>
<td>0.40585</td>
<td>-0.74153</td>
<td>0.74153</td>
<td>-0.94911</td>
<td>0.94911</td>
<td></td>
</tr>
</tbody>
</table>

CSL

<table>
<thead>
<tr>
<th>(+)</th>
<th>0.25</th>
<th>-0.25</th>
<th>0.25</th>
<th>0.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>-0.25</td>
<td>0.25</td>
<td>-0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>0.25</td>
<td>0.25</td>
<td>-0.25</td>
<td>0.25</td>
<td>-0.25</td>
</tr>
<tr>
<td>0.25</td>
<td>0.25</td>
<td>-0.25</td>
<td>0.25</td>
<td>-0.25</td>
</tr>
</tbody>
</table>

CS4LG

<table>
<thead>
<tr>
<th>(+)</th>
<th>9.9</th>
<th>NUMERIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td>0.25 0 0</td>
<td>-0.25 -0.25 0.25</td>
</tr>
<tr>
<td>0 0 -0.5 0</td>
<td>0 0.5 0.5 0</td>
<td>-0.5</td>
</tr>
<tr>
<td>0 0 -0.25 0</td>
<td>0 -0.25 0.25 0.25</td>
<td></td>
</tr>
<tr>
<td>0 0 -0.25 0</td>
<td>0 -0.5 -0.5 0</td>
<td>-0.5</td>
</tr>
<tr>
<td>0 0 -0.25 0</td>
<td>0 -0.5 -0.5 0</td>
<td>-0.5</td>
</tr>
<tr>
<td>0 -0.5 0 0</td>
<td>0.5 0 0 0.5</td>
<td>-0.5</td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>-1 -1 0 1</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>3000</th>
<th>4000</th>
<th>4000</th>
<th>4000</th>
<th>3000</th>
<th>2000</th>
<th>2000</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>4500</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>4500</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>5000</td>
<td>6000</td>
<td>7000</td>
<td>7000</td>
<td>7000</td>
<td>6000</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
</tbody>
</table>

1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	
4	4	4	4	4	4	4	4	

-2	-1	0	0	0	-1	-2	-2
0	0	0	0	0	0	0	0
0	1	2	2	1	0	0	

<table>
<thead>
<tr>
<th>1000</th>
<th>1000</th>
<th>1000</th>
<th>1000</th>
<th>1000</th>
<th>1000</th>
<th>1000</th>
<th>1000</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>1000</td>
<td>999</td>
<td>998</td>
<td>998</td>
<td>998</td>
<td>998</td>
<td>998</td>
<td>999</td>
<td>1000</td>
</tr>
</tbody>
</table>

1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	
1	1	1	1	1	1	1	

0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
0.01	0.005	0.001	0.001	0.001	0.005	0.01	0.01	0.01
0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
RESULTS

<table>
<thead>
<tr>
<th>PRESSURE</th>
<th>ENERGY</th>
<th>TEMPERATURE</th>
<th>STATE</th>
<th>U-VELOCITY</th>
<th>V-VELOCITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2854</td>
<td>6500</td>
<td>1.5</td>
<td></td>
<td>0.000E0</td>
<td>0.000E0</td>
</tr>
<tr>
<td>0.1427</td>
<td>6500</td>
<td>1.5</td>
<td></td>
<td>0.000E0</td>
<td>0.000E0</td>
</tr>
<tr>
<td>0.2855</td>
<td>6500</td>
<td>1.5</td>
<td></td>
<td>0.000E0</td>
<td>0.000E0</td>
</tr>
<tr>
<td>0.4282</td>
<td>6500</td>
<td>1.5</td>
<td></td>
<td>0.000E0</td>
<td>0.000E0</td>
</tr>
<tr>
<td>0.571</td>
<td>6500</td>
<td>1.5</td>
<td></td>
<td>0.000E0</td>
<td>0.000E0</td>
</tr>
<tr>
<td>0.7136</td>
<td>6500</td>
<td>1.5</td>
<td></td>
<td>0.000E0</td>
<td>0.000E0</td>
</tr>
<tr>
<td>0.8563</td>
<td>6500</td>
<td>1.5</td>
<td></td>
<td>0.000E0</td>
<td>0.000E0</td>
</tr>
<tr>
<td>1.141</td>
<td>6500</td>
<td>1.5</td>
<td></td>
<td>0.000E0</td>
<td>0.000E0</td>
</tr>
<tr>
<td>1.284</td>
<td>6500</td>
<td>1.5</td>
<td></td>
<td>0.000E0</td>
<td>0.000E0</td>
</tr>
<tr>
<td>1.427</td>
<td>6500</td>
<td>1.5</td>
<td></td>
<td>0.000E0</td>
<td>0.000E0</td>
</tr>
<tr>
<td>1.569</td>
<td>6500</td>
<td>1.5</td>
<td></td>
<td>0.000E0</td>
<td>0.000E0</td>
</tr>
<tr>
<td>1.712</td>
<td>6500</td>
<td>1.5</td>
<td></td>
<td>0.000E0</td>
<td>0.000E0</td>
</tr>
<tr>
<td>0.2854</td>
<td>6012</td>
<td>1.012</td>
<td></td>
<td>0.000E0</td>
<td>0.000E0</td>
</tr>
<tr>
<td>0.1427</td>
<td>5946</td>
<td>0.946</td>
<td></td>
<td>7.690 E-5</td>
<td>0.00008336</td>
</tr>
<tr>
<td>0.0000731</td>
<td>5908</td>
<td>0.9075</td>
<td></td>
<td>2.046 E-4</td>
<td>0.00008165</td>
</tr>
<tr>
<td>0.1428</td>
<td>5896</td>
<td>0.8958</td>
<td></td>
<td>3.577 E-4</td>
<td>0.00006989</td>
</tr>
<tr>
<td>0.2856</td>
<td>5907</td>
<td>0.9067</td>
<td></td>
<td>4.575 E-4</td>
<td>0.00005228</td>
</tr>
<tr>
<td>0.4284</td>
<td>5945</td>
<td>0.9449</td>
<td></td>
<td>5.411 E-4</td>
<td>0.00002314</td>
</tr>
<tr>
<td>0.5711</td>
<td>6000</td>
<td>0.9970</td>
<td></td>
<td>5.646 E-4</td>
<td>0.00007881</td>
</tr>
<tr>
<td>0.7138</td>
<td>6075</td>
<td>1.075</td>
<td></td>
<td>5.918 E-4</td>
<td>0.00003793</td>
</tr>
<tr>
<td>0.8565</td>
<td>6152</td>
<td>1.152</td>
<td></td>
<td>4.795 E-4</td>
<td>0.00005737</td>
</tr>
<tr>
<td>0.9991</td>
<td>6238</td>
<td>1.238</td>
<td></td>
<td>3.738 E-4</td>
<td>0.00006606</td>
</tr>
<tr>
<td>1.142</td>
<td>6312</td>
<td>1.312</td>
<td></td>
<td>2.752 E-4</td>
<td>0.00006041</td>
</tr>
<tr>
<td>1.284</td>
<td>6376</td>
<td>1.376</td>
<td></td>
<td>1.726 E-4</td>
<td>0.00004949</td>
</tr>
<tr>
<td>1.427</td>
<td>6418</td>
<td>1.418</td>
<td></td>
<td>9.500 E-5</td>
<td>0.00003728</td>
</tr>
<tr>
<td>1.57</td>
<td>6439</td>
<td>1.439</td>
<td></td>
<td>2.949 E-5</td>
<td>0.00002886</td>
</tr>
<tr>
<td>1.712</td>
<td>6443</td>
<td>1.443</td>
<td></td>
<td>0.000E0</td>
<td>0.000E0</td>
</tr>
</tbody>
</table>

<p>| 0.2854 | 5632 | 0.6318 | | 2.318 E-5 | 0.0001787 |
| 0.1426 | 5545 | 0.545 | | 1.046 E-5 | 0.0002365 |
| 0.0001462| 5481 | 0.4808 | | 2.209 E-5 | 0.0002257 |
| 0.1429 | 5470 | 0.4701 | | 3.298 E-5 | 0.0001771 |
| 0.2857 | 5502 | 0.5017 | | 4.416 E-4 | 0.000109 |
| 0.4285 | 5561 | 0.5606 | | 5.166 E-4 | 0.00004373 |
| 0.5712 | 5637 | 0.6374 | | 5.562 E-4 | 0.00004134 |
| 0.7139 | 5737 | 0.7369 | | 5.541 E-4 | 0.00001082 |
| 0.8566 | 5852 | 0.8516 | | 4.907 E-4 | 0.0000156 |
| 0.9993 | 5991 | 0.9909 | | 3.931 E-4 | 0.00001709 |
| 1.142 | 6125 | 1.125 | | 2.625 E-4 | 0.00001586 |
| 1.285 | 6253 | 1.253 | | 1.459 E-4 | 0.0000129 |
| 1.427 | 6341 | 1.341 | | 4.358 E-5 | 0.00009754 |
| 1.57 | 6387 | 1.387 | | 0.000E0 | 0.000E0 |
| 1.712 | 6393 | 1.393 | | 0.000E0 | 0.000E0 |
| 0.2853 | 5412 | 0.4121 | | 1.603 E-5 | 0.0002286 |
| 0.1425 | 5349 | 0.3488 | | 8.582 E-5 | 0.0003182 |
| 0.0002494| 5319 | 0.3193 | | 1.640 E-4 | 0.0003011 |
| 0.0002494| 5339 | 0.3395 | | 2.295 E-4 | 0.0002478 |
| 0.02859 | 5391 | 0.3905 | | 3.002 E-4 | 0.0001634 |
| 0.4286 | 5454 | 0.454 | | 3.464 E-4 | 0.00007213 |
| 0.5711 | 5528 | 0.5275 | | 3.814 E-4 | 0.00003524 |
| 0.1435 | 5314 | 0.3136 | 4 | -2.207E-4 | 0.0003536 |
| 0.2865 | 5485 | 0.4348 | 4 | -2.669E-4 | 0.0003357 |
| 0.4292 | 5643 | 0.5433 | 4 | -2.719E-4 | 0.0002525 |
| 0.5719 | 5867 | 0.6774 | 4 | -2.684E-4 | 0.0001368 |
| 0.7147 | 5854 | 0.8544 | 4 | -2.550E-4 | 0.00001959 |
| 0.8574 | 5922 | 0.9217 | 4 | -2.360E-4 | 0.0000985 |
| 1.143 | 5991 | 0.9906 | 4 | -2.082E-4 | 0.0000203 |
| 1.285 | 6083 | 1.063 | 4 | -1.596E-4 | 0.00002941 |
| 1.428 | 6181 | 1.181 | 4 | -1.189E-4 | 0.00003584 |
| 1.571 | 6178 | 1.178 | 4 | -0.935E-5 | 0.00002477 |
| 1.714 | 6140 | 1.14 | 4 | 0.0000E0 | 0 |
| 0.285 | 5109 | 0.1093 | 4 | 0.0000E0 | 0 |
| 0.1422 | 5114 | 0.1137 | 4 | -5.810E-5 | 0.00009632 |
| 0.1437 | 5142 | 0.1416 | 4 | -1.875E-4 | 0.000186 |
| 0.2867 | 5239 | 0.2292 | 4 | -2.911E-4 | 0.0002786 |
| 0.4294 | 5587 | 0.5868 | 4 | -3.771E-4 | 0.0002964 |
| 0.572 | 5749 | 0.7486 | 4 | -4.205E-4 | 0.0002525 |
| 0.7148 | 5856 | 0.856 | 4 | -4.344E-4 | 0.0001229 |
| 0.8575 | 5934 | 0.9337 | 4 | -4.174E-4 | 0.00002274 |
| 1.143 | 6053 | 1.053 | 4 | -3.825E-4 | 0.00007911 |
| 1.286 | 6093 | 1.093 | 4 | -3.329E-4 | 0.0001666 |
| 1.428 | 6104 | 1.104 | 4 | -2.552E-4 | 0.0000247 |
| 1.571 | 6070 | 1.07 | 4 | -1.817E-4 | 0.00002941 |
| 1.714 | 6010 | 1.01 | 4 | -9.402E-5 | 0.00002941 |
| 0.2853 | 5076 | 0.07633 | 4 | -2.655E-5 | 0.000007806 |
| 0.1423 | 5075 | 0.07484 | 4 | -1.255E-4 | 0.00005711 |
| 0.1436 | 5104 | 0.1041 | 4 | -2.420E-4 | 0.000162 |
| 0.2864 | 5208 | 0.2078 | 4 | -3.636E-4 | 0.0002192 |
| 0.4292 | 5377 | 0.3773 | 4 | -4.634E-4 | 0.0001793 |
| 0.5721 | 5574 | 0.5737 | 4 | -5.458E-4 | 0.0001127 |
| 0.7148 | 5706 | 0.7064 | 4 | -5.654E-4 | 0.00005014 |
| 0.8576 | 5815 | 0.8151 | 4 | -5.412E-4 | 0.00002281 |
| 1 | 5887 | 0.8869 | 4 | -4.817E-4 | 0.00008481 |
| 1.143 | 5935 | 0.9348 | 4 | -3.750E-4 | 0.0001423 |
| 1.286 | 5951 | 0.9514 | 4 | -2.675E-4 | 0.0001769 |
| 1.429 | 5930 | 0.9296 | 4 | -1.393E-4 | 0.0001555 |
| 1.571 | 5866 | 0.8657 | 4 | -3.904E-5 | 0.0001434 |
| 1.714 | 5789 | 0.7888 | 4 | 0.0000E0 | 0 |
| 0.2856 | 5015 | 0.01501 | 4 | 0.0000E0 | 0 |
| 0.1424 | 5050 | 0.0499 | 4 | 1.650E-5 | 0.00003792 |
| 0.1435 | 4989 | 0 | 4 | 0.0000E0 | 0 |
| 0.2861 | 5012 | 0.01226 | 4 | 1.752E-4 | 0.00006113 |
| 0.4291 | 5054 | 0.05399 | 4 | 3.263E-4 | 0.00006718 |
| 0.5721 | 5203 | 0.2031 | 4 | 4.345E-4 | 0.00006556 |
| 0.7149 | 5319 | 0.3186 | 4 | 5.081E-4 | 0.00005376 |
| 0.8577 | 5442 | 0.4417 | 4 | 5.271E-4 | 0.00002952 |
| 1 | 5511 | 0.5109 | 4 | 5.059E-4 | 0.00001969 |
| 1.143 | 5549 | 0.5494 | 4 | 4.19E-4 | 0.00002726 |
| 1.286 | 5563 | 0.5625 | 4 | 3.249E-4 | 0.00005135 |
| 1.429 | 5547 | 0.5468 | 4 | 1.853E-4 | 0.00006357 |</p>
<table>
<thead>
<tr>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.572</td>
<td>5512</td>
<td>0.5123</td>
<td>4</td>
<td>-6.661E-5</td>
</tr>
<tr>
<td>-1.714</td>
<td>5434</td>
<td>0.434</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>-0.2853</td>
<td>3904</td>
<td>0.09627</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-0.1423</td>
<td>3900</td>
<td>0.1004</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-0.000739</td>
<td>3892</td>
<td>0.1082</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-0.01435</td>
<td>3884</td>
<td>0.1159</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-0.02863</td>
<td>3887</td>
<td>0.1134</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-0.04292</td>
<td>3911</td>
<td>0.08889</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-0.05721</td>
<td>3958</td>
<td>0.04323</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-0.07149</td>
<td>4014</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>-0.08577</td>
<td>4139</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>-0.1143</td>
<td>4473</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>-0.1286</td>
<td>4536</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>-0.1429</td>
<td>4543</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>-0.1572</td>
<td>4416</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>-0.1714</td>
<td>4331</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0.285</td>
<td>3766</td>
<td>-0.2341</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.1422</td>
<td>3768</td>
<td>-0.2324</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-0.0005601</td>
<td>3762</td>
<td>-0.2379</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-0.1435</td>
<td>3761</td>
<td>-0.2388</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-0.2865</td>
<td>3762</td>
<td>-0.2377</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-0.4293</td>
<td>3771</td>
<td>0.2295</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-0.5721</td>
<td>3790</td>
<td>0.2105</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-0.7149</td>
<td>3802</td>
<td>-0.1979</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-0.8578</td>
<td>3807</td>
<td>-0.1934</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-1.001</td>
<td>3802</td>
<td>-0.1975</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-1.143</td>
<td>3800</td>
<td>-0.2005</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-1.286</td>
<td>3799</td>
<td>-0.2013</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-1.429</td>
<td>3799</td>
<td>-0.2006</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-1.572</td>
<td>3803</td>
<td>-0.1972</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-1.714</td>
<td>3801</td>
<td>-0.1934</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.2851</td>
<td>3634</td>
<td>-0.3658</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.1422</td>
<td>3634</td>
<td>-0.3663</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-0.00066266</td>
<td>3633</td>
<td>-0.3673</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-0.1435</td>
<td>3632</td>
<td>-0.368</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-0.2864</td>
<td>3633</td>
<td>-0.3674</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-0.4293</td>
<td>3636</td>
<td>-0.3642</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-0.5721</td>
<td>3641</td>
<td>-0.3586</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-0.7149</td>
<td>3647</td>
<td>-0.353</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-0.8577</td>
<td>3650</td>
<td>-0.3495</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>3651</td>
<td>-0.3495</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1.143</td>
<td>3651</td>
<td>-0.349</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1.286</td>
<td>3651</td>
<td>-0.349</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1.429</td>
<td>3652</td>
<td>-0.3485</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1.572</td>
<td>3652</td>
<td>-0.3475</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1.715</td>
<td>3652</td>
<td>-0.3476</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.2852</td>
<td>3500</td>
<td>-0.5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.1422</td>
<td>3500</td>
<td>-0.5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-0.0006932</td>
<td>3500</td>
<td>-0.5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-0.1435</td>
<td>3500</td>
<td>-0.5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-0.2864</td>
<td>3500</td>
<td>-0.5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-0.4292</td>
<td>3500</td>
<td>-0.5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-0.5721</td>
<td>3500</td>
<td>-0.5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-0.7149</td>
<td>3500</td>
<td>-0.5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Value</td>
<td>3500</td>
<td>0.5</td>
<td>1</td>
<td>0.000E0</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-----</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>-0.8577</td>
<td>3500</td>
<td>0.5</td>
<td>1</td>
<td>0.000E0</td>
</tr>
<tr>
<td>-1</td>
<td>3500</td>
<td>0.5</td>
<td>1</td>
<td>0.000E0</td>
</tr>
<tr>
<td>-1.143</td>
<td>3500</td>
<td>0.5</td>
<td>1</td>
<td>0.000E0</td>
</tr>
<tr>
<td>-1.286</td>
<td>3500</td>
<td>0.5</td>
<td>1</td>
<td>0.000E0</td>
</tr>
<tr>
<td>-1.429</td>
<td>3500</td>
<td>0.5</td>
<td>1</td>
<td>0.000E0</td>
</tr>
<tr>
<td>-1.572</td>
<td>3500</td>
<td>0.5</td>
<td>1</td>
<td>0.000E0</td>
</tr>
<tr>
<td>-1.715</td>
<td>3500</td>
<td>0.5</td>
<td>1</td>
<td>0.000E0</td>
</tr>
</tbody>
</table>
REFERENCES
REFERENCES

60. Valle, A., "The Finite-Element Method and the Stefan

Abstract

Detailed understanding of heat transfer and fluid flow is required for many aerospace thermal systems. These systems often include phase change and operate over a range of accelerations or effective gravitational fields. An approach to analyzing such systems is presented which requires the simultaneous solution of the conservation laws of energy, momentum, and mass, as well as an equation of state. The variable property form of the governing equations are developed in two-dimensional Cartesian coordinates for a Newtonian fluid. A numerical procedure for solving the governing equations is presented and implemented in a computer program. The Galerkin form of the finite element method is used to solve the spatial variation of the field variables, along with the implicit Crank-Nicolson time marching algorithm. Quadratic Lagrangian elements are used for the internal energy and the two components of velocity. Linear Lagrangian elements are used for the pressure. The location of the solid/liquid interface as well as the temperatures are determined from the calculated internal energy and pressure. This approach is quite general in that it can describe heat transfer without phase change, phase change with a sharp interface, and phase change without an interface. Analytical results from this model are compared to those of other researchers studying transient conduction, convection, and phase change and are found to be in good agreement. The numerical procedure presented requires significant computer resources, but this is not unusual when compared to similar studies by other researchers. Several methods are suggested to reduce the computational times.