ROSE GARDEN PROMISES OF INTELLIGENT TUTORING SYSTEMS: BLOSSOM OR THORN?

Valerie J. Shute
AFHRL/MOE
Brooks Air Force Base, Texas

ABSTRACT

Intelligent tutoring systems (ITS) have been in existence for over a decade now. However, few controlled evaluation studies have been conducted comparing the effectiveness of these systems to more traditional instruction methods. This paper examines two main promises of ITSs: (1) Engender more effective and efficient learning in relation to traditional formats, and (2) Reduce the range of learning outcome measures where a majority of individuals are elevated to high performance levels. Bloom (1984) has referred to these as the "two sigma problem" -- to achieve two standard deviation improvements with tutoring over traditional instruction methods. Four ITSs are discussed in relation to the two promises. These tutors have undergone systematic, controlled evaluations: a) The LISP tutor (Anderson Farrell & Sauers, 1984); b) Smithtown (Shute & Glaser, in press); c) Sherlock (Lesgold, Lajoie, Bunzo & Eggan, 1990); and d) The Pascal ITS (Bonar, Cunningham, Beatty & Well, 1988). Results show that these four tutors do accelerate learning with no degradation in final outcome. Suggestions for improvements to the design and evaluation of ITSs are discussed.

INTRODUCTION

Advances and innovations in the history of education have been scarce. Of the few instructional breakthroughs (e.g., Head Start program, "mastery learning"), none have conveyed more potential and excitement than the emergence of intelligent tutoring systems over a decade ago. For a long time, researchers have contended that individualized tutoring engenders the most effective and efficient learning for most people (e.g., Bloom, 1956, 1984; Burton & Brown, 1982; Carroll, 1963; Cohen, Kulik, & Kulik, 1982; Lewis, McArthur, Stasz & Zmuidzinas, 1990; Woolf, 1987). Intelligent tutoring systems (ITS) epitomize this principle of individualized instruction. Thus, by extension, the two main promises of ITS are they can: (1) Engender more effective and efficient learning in relation to traditional formats, and (2) Reduce the range of learning outcome measures where a majority of individuals are elevated to high performance levels. These promises have been called the "two sigma problem" (Bloom, 1984). The goal is to achieve two standard deviation improvements with tutoring over traditional instruction methods.

For those of us concerned with teaching and learning, these promises of ITS are profound. Unfortunately, although such systems have been in existence for over ten years now, their efficacy has been equivocal for several reasons: ITSs are often designed by seat-of-the-pants engineering, lacking principled design standards, and abounding in "intuition" underlying the implementation of system components (e.g., Koedinger & Anderson, 1990; Norman, 1989). Furthermore, systematic, controlled evaluations of ITSs are rare (Baker, 1990; Littman & Soloway, 1988). The few ITSs that actually have been evaluated in relation to other learning situations have shown evidence supporting the first promise (facilitating learning), but have shown little evidence supporting the second promise (reducing individual differences in outcome performance). I view this as encouraging, however, because
new technologies usually do not fare well compared against proven methods (Baker, 1990).

Bloom (1984) identified problems associated with "proven", conventional teaching methods (e.g., a teacher presenting material in front of 30 people). He asserted that this format provides one of the least effective techniques for teaching and learning. As teaching becomes more focused and individualized, learning is enhanced. For example, when a teacher supplements a lecture with diagnostic tests to determine where students are having problems, then adjusts the lecture accordingly, this is called "mastery teaching". Students learning under this condition typically generate test results around the 84th percentile. Bloom further reported that students involved in "one-to-one tutoring", with human tutors, performed around the 98th percentile (2 standard deviation increase) as compared with traditionally-trained students (see Figure 1). These results were replicated four times with three different ages groups for two different domains. Bloom thus provides evidence that tutoring is one of the most effective educational delivery methods available.

FOUR EVALUATIONS

The LISP tutor. Anderson and his colleagues at Carnegie-Mellon University (Anderson, Farrell, & Sauers, 1984) developed a LISP tutor which provides students with a series of LISP programming exercises and tutorial assistance as needed during the solution process. In one evaluation study, Anderson, Boyle, and Reiser (1985) reported data from three groups of subjects: human-tutored, computer-tutored (LISP tutor) and traditional instruction (subjects solving problems on their own). The time to complete identical exercises were: 11.4, 15.0, and 26.5 hours, respectively. Furthermore, all groups performed equally well on the outcome tests of LISP knowledge. A second evaluation study (Anderson, Boyle & Reiser, 1985) compared two groups of subjects: students using the LISP tutor and students completing the exercises on their own. Both received the same lectures and reading materials. Findings showed that it took the group in the traditional instruction condition 30% longer to finish the exercises than the computer-tutored group. Furthermore, the computer-tutored group scored 43% higher on the final exam than the control group. So, in two different studies, the LISP tutor was apparently successful in promoting faster learning with no degradation in outcome performance compared to traditional instruction.
In a third study using the LISP tutor to investigate individual differences in learning, Anderson (1990) found that when prior, related experience was held constant, two "meta-factors" emerged (i.e., factor analysis on factor scores). These two meta-factors, or basic learning abilities, included an acquisition factor and a retention factor. Not only did these two factors explain variance underlying tutor performance, they also significantly predicted performance on a paper-and-pencil midterm and final examination.

Smithtown. Shute & Glaser (in press) developed an ITS designed to improve an individual's scientific inquiry skills as well as provide a microworld environment for learning principles of basic microeconomics. In one study (Shute, Glaser & Raghavan, 1989), three groups of subjects were compared: a group interacting with Smithtown, an introductory economics classroom, and a control group. The curriculum was identical in both treatment groups (i.e., laws of supply and demand). Results showed that while all the three groups performed equivalently on the pretest battery (around 50% correct), the classroom and the Smithtown groups showed the same gains from pretest to posttest (26.4% and 25.2%, respectively), significantly outperforming the control group. Although the classroom group received more than twice as much exposure to the subject matter as did the Smithtown group (11 vs. 5 hours, respectively), the groups did not differ on their posttest scores. These findings are particularly interesting because the instructional focus of Smithtown was not on economic knowledge, per se, but rather on general scientific inquiry skills, such as hypothesis testing.

Another study conducted with Smithtown (Shute & Glaser, 1990) explored individual differences in learning and showed that scientific inquiry behaviors relating to a hypothesis generation and testing factor were significantly more predictive of successful learning in Smithtown than a standard measure of general intelligence. The five relevant indicators comprising this factor accounted for 42% of the criterion variance while a measure of general intelligence (composite of four tests) accounted for only 1% of the variance. These findings suggest that, in this tutor, individual differences in learning outcome are not simply a function of general intelligence. Rather, specific behaviors, presumably trainable, are predictive of outcome performance.

Sherlock. "Sherlock" is the name given to a tutor which provides a coached practice environment for an electronics troubleshooting task (Lesgold, Lajoie, Bunzo, and Egan, 1990). The tutor teaches troubleshooting procedures for dealing with problems associated with an F-15 manual avionics test station. The curriculum consists of 34 troubleshooting scenarios with associated hints. A study was conducted evaluating Sherlock's effectiveness using 32 trainees from two separate Air Force bases (Nichols, Pokorny, Jones, Gott, & Alley, in press). Pre- and post-tutor assessment was done using verbal troubleshooting techniques as well as a paper-and-pencil test. Two groups of subjects per Air Force base were tested: (1) subjects receiving 20 hours of instruction on Sherlock, and (2) a control group receiving on-the-job training over the same period of time. Statistical analyses indicated that there were no differences between the treatment and the control groups on the pretest (means = 56.9 and 53.4, respectively). However, on the verbal posttest as well as the paper-and-pencil test, the treatment group (mean = 79.0) performed significantly better than the control group (mean = 58.9) and equivalent to experienced technicians having several years of on-the-job...
experience (mean = 82.2). The average gain score for the group using Sherlock was equivalent to almost four years of experience.

Pascal ITS. An intelligent programming tutor was developed to assist novice programmers in designing, testing, and implementing Pascal code (Bonar, Cunningham, Beatty, & Weil, 1988). The goal of this tutor is to promote conceptualization of programming constructs or "plans" using intermediate solutions. A study was conducted with 260 subjects who spent up to 30 hours learning from the Pascal ITS (see Shute, in press). Learning efficiency rates were estimated from the time it took subjects to complete the curriculum. This measure involved both speed and accuracy since subjects could not proceed to a subsequent problem until they were completely successful in the current one. To estimate learning outcome (i.e., the breadth and depth of knowledge and skills acquired), three criterion posttests were administered measuring retention, application and generalization of programming skills.

The Pascal curriculum embodied by the tutor was equivalent to about 1/2 semester of introductory Pascal (J. G. Bonar, personal communication, March 1990). That is, the curriculum equaled about 7 weeks or 21 hours of instruction time. Adding two hours per week for computer laboratory time (conservative estimate), the total time spent learning a half-semester of Pascal the traditional way would be at least 35 hours. In the study discussed above, subjects completed the tutor in considerably less time (i.e., mean = 12 hours, SD = 5 hours, normal distribution). So, on average, it would take about three times as long to learn the same Pascal material in a traditional classroom and laboratory environment as with this tutor (i.e., 35 vs. 12 hours).

While all subjects finished the ITS curriculum in less time compared to traditional instructional methods, there were large differences in learning rates found at the end of the tutor. For these subjects (having no prior Pascal experience), the maximum and minimum completion times were 29.2 and 2.8 hours, a range of more than 10:1. In addition, while all 260 subjects successfully solved the various programming problems in the tutor’s curriculum, their learning outcome scores reflected differing degrees of achievement. The mean of the three criterion scores was 55.8% (SD = 19, normal distribution). The range from highest to lowest score was 96.7% to 17.3%, representing large between-subject variation at the conclusion of the tutor. In an attempt to account for these individual differences in outcome performance, Shute (in press) found that a measure of working memory capacity, specific problem solving abilities (i.e., problem identification and sequencing of elements) and some learning style measures (i.e., asking for hints and running programs) accounted for 68% of the outcome variance.

SUMMARY AND CONCLUSION

Intelligent tutoring systems have been around for over a decade now, so it is not unfair to ask: What is the verdict? Four ITSs have been discussed in this paper which have undergone systematic evaluations. The results of the evaluations, as a whole, were very encouraging. The common finding is that learning efficiency with ITSs was enhanced in relation to traditional instruction (e.g., LISP tutor, Smithtown, Sherlock, Pascal tutor). That is, learning rates were accelerated whereby students acquired the subject matter faster from various ITSs than from more traditional environments: (a) Subjects working with the LISP tutor learned the knowledge and skills in 1/3 to 2/3 the time it took a control group to learn the same material; (b) Subjects
working with Smithtown learned the same material in 1/2 the time it took a classroom-instructed group; (c) Subjects working with Sherlock learned in 20 hours skills which were comparable to those possessed by technicians having almost 4 years experience; and (d) Subjects learning from the Pascal ITS acquired, in 1/3 the time, equivalent knowledge and skills as learned through traditional instruction.

For learning outcome measures, the LISP tutor yielded the same (or in one study, 43% better) criterion scores than a control group not using the tutor. Results from the Smithtown analysis showed that subjects learned the same material as a classroom group, despite the fact that the tutor focused on the instruction of scientific inquiry skills, not the subject matter. And the outcome data from subjects using Sherlock showed increases in scores comparable to an advanced group of subjects and significantly better than a control group. In all cases, individuals learned faster, and performed at least as well, with the ITSs as subjects learning from traditional environments.

The second promise, concerning a reduction in the range of outcome scores, was less straightforward to assess. While the outcome variance of the Smithtown data was fairly restricted (M=72.7; SD=10), posttest data from the Sherlock analysis showed a less restricted range in outcome scores (M=79; SD=17). And the results from the Pascal ITS study similarly showed a relatively large variability on the final performance measure (M=55.8; SD=19).

As stated earlier, Bloom (1984) reported that individualized tutoring resulted in a two standard deviation increase in outcome performance for the majority of learners (see Figure 1). He suggested that treatment-effect size be computed as follows: \(\text{Effect size} = \frac{\text{Mean exper.} - \text{Mean control}}{\text{SD control}} \). To illustrate, data from the Sherlock evaluation yields an effect size \(\frac{79.0 - 58.9}{19.7} = 1.02 \). This implies a 1 standard unit increase in performance above the control group of subjects (84th percentile). Although this represents a significant improvement of ITS over traditional instruction, it falls short of attaining "2 sigma" status.

The problem with finding evidence from the ITSs for a "reduction in range" may be due, in part, to the unreasonableness of the second promise. In a footnote to his article, Bloom reported, "The control class distributions were approximately normal, although the mastery learning and tutoring groups were highly skewed" (1984, p. 16). Skewness and kurtosis data were, unfortunately, not presented. It may be more reasonable to evaluate ITS success in terms of another criterion: the reduction in the correlation between incoming knowledge and skills and learning outcome. That is, for a tutor to be really effective, it should be able to compensate for (or remediate) incoming cognitive weaknesses, and reinforce strengths to maximize learning outcome. In terms of this criterion, Anderson (1990) reported two basic learning abilities (acquisition and retention factors) that were highly predictive of LISP outcome performance. A possible enhancement to the design of this system would include adapting to differences in learning abilities. For instance, on-line measures could be monitored for rates of acquisition and retention of the subject matter. Then subjects demonstrating deficits in either of these areas could receive compensatory instruction, as needed. In another study, Shute and Glaser (1990) identified certain inquiry skills that significantly predicted outcome performance for microeconomics. While this system did monitor inquiry skills, not enough adaptability was built into the design (i.e., it was created to be more exploratory so the "coach" intervened infrequently). A suggested system
modification would include increasing intervention as needed, rather than only after a fixed number of "buggy" behaviors. Finally, findings from the Pascal tutor (Shute, in press) showed that learning outcome was strongly predicted by a working memory factor, two problem solving abilities, and some learning behaviors. Information about an individual's working memory capacity could be used to vary instruction, such as teaching smaller chunks of relevant knowledge for those with less working memory capacity.

Moreover, this tutor could benefit from the inclusion of supplemental instruction on relevant problem solving skills (e.g., part-task training of sequencing skills). In summary, by restructuring curricular materials (i.e., adapting to individuals' needs in real-time), learning from tutors could become less dependent on aptitudes, thereby providing everyone with a "fair shake" at learning. Obviously this is an hypothesis that can be empirically verified with more research.

What else could bring ITSs closer to achieving these promises? A principled approach to the design and evaluation of ITSs would be very helpful. One such approach is exemplified by a taxonomy of learning skills, developed and currently in use for both basic and applied research at the Air Force Human Resources Laboratory (see Kyllonen & Shute, 1989). This taxonomy defines four interactive dimensions: subject matter, learning environment, desired knowledge outcome, and learner styles. It is believed that interactions among these dimensions influence outcome performance. For example, it is misleading to generalize that one type of learning environment (e.g., exploratory) is best for all persons. Rather, aptitude-treatment interactions (Cronbach & Snow, 1977) are believed to occur where certain learner characteristics (aptitudes and styles) are better suited to certain learning environments for optimal outcome performance. Controlled studies using the taxonomy are needed in order to test various combinations of interactive dimensions in ITS designs. Then controlled studies comparing ITSs versus traditional instruction are needed to calculate effect size measures and be related back to Bloom's "2 sigma problem". The taxonomy provides a useful metric for comparing and evaluating tutors.

In conclusion, the evaluation results are, overall, encouraging. This is rather surprising given the enormous differences among the four tutors in design structure as well as evaluation methods. The findings indicate these four tutors do accelerate learning with no degradation in final outcome. In addition to measuring the reduction in range of learning outcome (as indicated by the second promise), it was suggested that a supplemental criterion would be the attenuation of correlation between outcome score with incoming aptitude measures.

Obviously, further basic research is needed to add more "psychology" and control into ITS designs. Rather than continuing to build tutors randomly, a more efficient route to the goal of optimizing ITSs is to systematically alter the design of existing ones and evaluate the results of those changes in accordance with a principled approach (as is possible with the learning skills taxonomy). Many outstanding questions continue to beg for answers: What types of learners do better in what types of environments? Are certain domains better suited for specific instructional methods? When should feedback be provided, what should it say, and how is it best presented? How much learner control should be allowed? In conclusion, a principled approach to the design and evaluation of ITSs is badly needed before we can begin to obtain answers to these questions. Only then...
can we reassess the "verdict" of ITS success. Right now, ITSs are like rosebuds, as yet unopened, but foreshadowing beautiful flowers.

REFERENCES

Shute, V.J., “Who is likely to acquire programming skills?,”

