GUIDANCE FOR HUMAN INTERFACE WITH ARTIFICIAL INTELLIGENCE SYSTEMS

Scott S. Potter and David D. Woods

Cognitive Systems Engineering Laboratory
Department of Industrial and Systems Engineering
The Ohio State University
Columbus, Ohio 43210

Research and experience with artificial intelligence (AI) systems has shown that the interaction of the intelligent system with human users and problem solvers is a critical element in the success and effectiveness of AI system development for real-world applications. Performance breakdowns can occur, for example, in situations where the intelligent system interface does not support the problem-solving approach of the human operator. Thus, there is a need to integrate human and machine problem solvers into an effective cooperative system. This requires serious consideration of the human interface to AI systems during the design of intelligent systems.

A body of knowledge and guidance about how to integrate intelligent computer power and human practitioners has recently begun to accumulate. Empirical studies of human-human cooperative problem solving, empirical studies of human-intelligent computer cooperation, new research concepts for intelligent support systems, empirical studies of human-human cooperative problem solving, and new research concepts related to actual cases of AI system development. Once integrated, this knowledge base will prove to be immature. There are gaps, ambiguities, and contradictions in the literature and practical experience. Thus, third, there is a need to conduct empirical studies that examine specific concepts related to actual cases of AI system development.

Second, there are cases of intelligent system development where designers and users are trying out new ideas about the human interface to AI systems, especially within NASA. Examining specific cases of both successful and unsuccessful AI system development with respect to human interface capabilities is a critical activity. Collecting and assessing this experience will help expand and clarify the research base on what is effective human-intelligent computer cooperation.

Fourth, one of the fundamental points of research on human-machine cooperative problem solving is that the concepts for how the machine will assist the person can strongly constrain the architecture and design of the machine itself. In the typical design paradigm, one first develops an autonomous machine problem solver and, only then, one thinks about how the person will use the machine to achieve better performance. Generally, the result has been that the design of the machine has not made allowances for features that turn out to be critical for people to make effective use of the system's capabilities. It is critical, at the design concept stage, to consider how the person will use the machine to achieve better performance. Generally, the result has been that the design of the machine has not made allowances for features that turn out to be critical for people to make effective use of the system's capabilities. It is critical, at the design concept stage, to consider how the person will use the machine to achieve better performance so that the inter-constraints between human interface design requirements and intelligent system design requirements can both be satisfied.

This means that a dialogue is needed between researchers in AI (whose research question is how...
to build better performing machines) and researchers in human-intelligent computer interaction (whose research question is how to use machine power to assist human problem solving). Understanding effective human-intelligent computer interaction is incomplete if it cannot be achieved through practical AI techniques and tools that are available for the development of real world systems which include AI. Consequently, there is a need to consider the interaction between concepts for more effective human-intelligent computer interaction, their implications about aspects of AI systems, and current techniques for building real world AI systems.

Fifth, research results alone do not constitute good advice for designers. The problem of preparing effective guidelines for designers and delivering that guidance in a form that can be used by designers (aiding design) is a substantive problem regardless of the topic of the guidance. One has only to look at existing guideline documents in the area of human-computer interaction to find many examples that have proven less than satisfactory. Thus, there is the need to examine how AI systems are designed in order to deliver the right kind of knowledge in a form that designers can really use.

We are beginning a research effort to collect and integrate existing research findings about how to combine computer power and people, including problems and pitfalls as well as desirable features. The goal of this research project is to develop guidance for the design of human interfaces with intelligent systems. Fault management tasks in NASA domains are the focus of the investigation. Research is being conducted to support the development of guidance for designers that will enable them to take human interface considerations into account during the creation of intelligent systems.

The research will examine previous results, NASA cases of AI system development, and conduct new studies of human-intelligent system cooperation focusing on issues such as: (1) how to achieve effective advice, (2) how to create a shared representation of the problem domain, (3) how to provide support for problem solving in situations requiring adaptation to unanticipated events, (4) what are appropriate levels of supervisory control, (5) the need for reasoning strategies consistent with those of the human operator and (6) what kinds and forms of explanation will support human-intelligent system cooperation.

The body of results on what interface and AI system capabilities support effective human-AI system cooperation in fault management tasks will be used to develop guidance for designers. The goal is to help designers take human interface considerations into account during the creation of intelligent systems. The results will provide advice about what kinds of information produced by an intelligent system should be made available to its human partners and advice about how to organize and display the intelligent system's situation assessment and response plan as well as information on the underlying process itself.

References


