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Abstract

Aeroelastie analysis is multi-disciplinary and computationally expensive. Hence, it can
greatly benefit from parallel processing. As part of an effort to develop an aeroelastic
analysis capability on a distributed memory transputer network, a parallel algorithm for the

computation of aerodynamic influence coefficients is implemented on a network of 32
transputers. The aerodynamic influence coefficients are calculated using a 3-dimensional
unsteady aerodynamic model and a panel discretization. Efficiencies up to 85 percent were
demonstrated using 32 processors. The effects of subtask ordering, problem size and net-
work topology are presented. A comparison to results on a shared memory computer in-
dicates that higher speedup is achieved on the distributed memory system.

Nomenclature

A

B

c U

C

D

L
K

m, t_

M

P, Po
Q
r

W

8

area on blade surface

proportionality constant defined in eq. (1)

i, j-th element of C

aerodynamic influence coefficient matrix

area of the j -th panel

defined in eq. (6)

generalized motion-independent aerodynamic force

kernel function

assumed mode shape indices
Mach number

points on the blade surface

generalized motion-dependent aerodynamic force
radial coordinate

normalized normal velocity on blade surface

normal displacement
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Subscripts

normalized unsteady pressure disturbance

vibration frequency

rotational speed

azimuthal coordinate

0 dummy variable

i, j panel indices

LE leading edge

TE trailing edge

Introduction

The demands of light structural weight, extreme flexibility and high flight dynamic
pressure on modern high-performance atmospheric vehicles lead to several undesirable
phenomena of aeroelastic nature. In addition to wings and propellers, compressor and

turbine blades, fan blades, flow guide vanes and civil engineering structures like bridges and

buildings are also subject to aeroelastic phenomena. Thus, aeroelastic analysis is of great

importance in aeronautical, mechanical and civil engineering. It is the topic of many books
and research papers.

Undesirable aeroelastie phenomena are generally classified into three categories:
static aeroelastic phenomena, flutter and forced response. The first, static aeroelastic

phenomena, lead to failure by divergence and control surface reversal. The other two
encompass dynamic phenomena and lead to failure by flow-induced vibration. Flutter
failure occurs when such vibrations are self-excited and thus unstable. Flutter is a result

of the motion-dependent unsteady aerodynamic forces which are out of phase with structural

motion. On the other hand, aeroelastic forced response could induce flow-induced fatigue

failure due to stable but significantly high amplitude vibrations. Such vibrations are a

result of the dynamic response of the structure modified by the presence of motion-indepen-

dent unsteady aerodynamic forces.

Aeroelastic analysis is by definition multi-disciplinary in nature and involves the

coupling of dynamic structural analysis and unsteady aerodynamic analysis. For all but the

simplest models, both the components of the analysis are computationally expensive and

require state-of-the-art computational resources to obtain results in a reasonable amount of

time. Current sequential processing computers are inadequate for routine aeroelastic
analysis of high-performance propellers and turbomachinery blades using advanced

structural and aerodynamic models. The computational burden is particularly large if the

aeroelastic analysis is to be performed many times, such as inside a design iteration loop

2



or an optimization program. The computational power of the new parallel processing
computer systems offers the aeroelastician an opportunity to reduce the computational times
so that the aeroelastic analysis can be more fruitfully used by the designers. As part of an

effort in this direction, a research program at NASA Lewis Research Center involves the

concurrent processing adaptation of advanced aeroelastic analysis codes for rotating

systems.

There is already a large body of literature regarding the parallelization of structural

dynamic analysis using finite element methods (e.g. see references in Noor and Atluri,

1987; Noor and Venneri, 1990). The present study is only concerned with the paralleliza-

tion of the unsteady aerodynamic analysis. A previous paper presented the results of the
concurrent adaptation of the aeroelastic analysis on a shared memory system with a small

number of processors. The proposed paper will present the results of our experience with
a distributed memory system having more processors.

Parallel Processing System

In terms of processor interconnections, there are two extreme possibilities. The first
is a shared memory architecture where all the processors have access to a common global
memory. All inter-processor communication takes place via the common global memory.
The second is a distributed memory architecture that generally has a larger number of
processors with attached local memories and there is no shared memory. Here, the
inter-processor communication takes place through a network of communication links

joining selected processors. A hybrid architecture of having some shared memory along

with the local memories is also possible but is beyond the ability of the hardware available

for the present investigation.

On a shared memory system, implementation of inter-processor communication is
trivial to the application programmer because one processor can write data into a location

in global memory and another processor can read the data from the same location in
memory. While algorithm design is simplified, a penalty is paid in terms of longer memory

access times because of the memory contention problem when several processors need to

access the shared memory simultaneously.

In a distributed memory architecture, memory contention by the separate processors

is absent because each processor has its own local memory. However, inter-processor
communication protocol must be explicitly specified by the programmer and excessive
delays in communication may degrade the performance of the computational task. In
addition, the programmer must decide the manner in which processors are to be connected

together, i.e., select a network topology ................... of aeroelastic analysis of
propfans on a shared memory system was previously presented (Murthy and Janetzke,

1990). In the present paper, the implementation of the aerodynamic analysis portion on a

much less expensive distributed memory system is presented. The speedups achieved on
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the distributed mcmo___system are compared to those achieved on the shared memory
system.

The distributed memory system used in this study is a network of transputer

processors. The transputer is a high performance Reduced Instruction Set Computer (RISC)

and is made possible by advances in VLSI microcircuit technology that have allowed the

placement of an entire computer with memory and communication channels on a single

chip. The word transputer was derived from the words 'transistor' and 'computer'
suggesting that the processor can be used as an element of a network. One of the chief

attractions of a transputer network system is its low cost relative to computers of
comparable performance.

The transputer system used in this study consists of one root transputer and 32

network transputers. Each transputer is mounted on a module along with a fixed amount
of memory. Each transputer is a IMS T800-20 with a 32-bit central processing unit, 4
kbytes of one cycle (50 ns) on-chip RAM, a floating point computation unit, and four
bi-directional serial links. The transputers operate at 20 MHz and are capable of 10 MIPS

and 1.5 Mflops. The serial links transmit data at 20 Mbits/sec.

The root transputer module has 8 Mbytes of 5 cycle DRAM and is mounted on an

IMS B008 mother board. The B008 board is plugged into a card slot of an IBM PC/AT
compatible personal computer which acts as the host to the transputer network. The B008

board contains hardware to interface the root transputer with the PC system.

The network transputer modules each have 1 Mbyte of 3 cycle DRAM. Four
network transputer modules _ire mounted on a B008 board which provides interconneetion

between modules and power. Eight B008 boards are plugged into the card slots of a PC/AT
expansion box. Twisted wire pairs link the root transputer and the network motherboards.

Transputers can be programmed in high-level languages such as C, FORTRAN and
Pascal. However, when concurrency is required in a program, OCCAM language Cdoare,
1988) must be used to create parallel processes. OCCAM combines the advantages of a
high-level language while allowing efficient, straightforward access to the special hardware

features available on the transputer. OCCAM was designed from the start as a program-
ruing language to be used in multiprocessor environments.

Several operating systems exist for running programs on transputer systems. Not
all of them can handle mixed language programs. Because of its ability to handle compiled
FORTRAN programs, an INMOS software system called D705 OCCAM toolset was used.

The OCCAM toolset consists of an OCCAM compiler, linker, configurer, file server, and
libraries for arithmetic, input/output, and board support functions. Additionally, a

FORTRAN compiler by Lattice Logic Ltd.(3L) was used. The 3L FORTRAN compiler
provides extra functions to send and receive messages across channels to other concurrently
executing processes.
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The compilers, the linker andthe configurer run on the host PC. The compilers and
the linker produce executable modules from the OCCAM and FORTRAN source programs.
The configurer is used to generate a loadable file which contains all the executable modules

and the network location for each module. This loadable file, called the configured
program, is loaded by the file server on the network. The file server also runs on the host
PC but concurrently with the network. It also provides keyboard, screen, and magnetic
storage disk services for the root transputer.

Since transputer processors have four communication links, it is possible in principle

to connect each processor to four other processors. Hence, several possibilities exist in
respect to the choice of network topology. Some possible choices are pipeline, tree, ring,
grid and torus. In a pipeline topology, all the processors are linked in a one-dimensional
chain, as shown in Figure 1. The pipeline topology is the easiest to implement because of
its simple inter-processor communication. In this investigation, pipeline topology was used
as the primary network topology.

Numerical Procedure

The aeroelastic analysis procedure used in this study was developed at NASA Lewis
Research Center for rotating blades (Kaza et al, 1989; Kaza et al 1988). This procedure
is implemented in a FORTRAN program called ASTROP3. This program performs flutter
and forced response analysis of propfans. The unsteady aerodynamic model neglects
thickness effects. In the following, the unsteady aerodynamic model used in ASTROP3 is
briefly reviewed to aid in the understanding of the concurrent processing implementation.

The propfan is assumed to have identical groups of blades symmetrically distributed

about a rigid disk rotating at a fixed speed t] in an axial flow of Mach number M. The
unsteady aerodynamic forces are calculated by integrating the unsteady pressure disturbance
over the blade surface. The unsteady pressure disturbances and the normal velocity over
a thin blade are related by an integral equation. Assuming simple harmonic motion with

a frequency ca in a three-dimensional potential flow, this integral equation can be written,
after appropriate linearization, as (Williams, 1990)

A

where P and P0 represent points on the blade surface, A represents the blade surface, ca

is the frequency of blade vibration, B is a constant dependent on flow conditions and K is

a kernel function. W and A/7 are proportional tothenormal velocity and unsteady pressure
disturbance respectively.

Equation (1) was discretized by splitting the blade into np quadrilateral panels within

each of which A/_ is assumed constant. (See Figure 2). This discretization results in the



algebraic system of equations given by

{_ = [c] {A_} Or, la_! = [el -_ [_
(2)

where { IV} is a vector of the values of W at chosen control points on each of the panels, {AtT}

is a vector of the values of A/7 on each of the panels, and [6"] is a matrix of aerodynamic

influence coefficients given by

c¢ = _ f __[K(pi,po)] dAo (3)

where the subscripts i and j refer to the control panel and pressure panel respectively. In

terms of radial coordinate r and chordwise azimuthal coordinate 0, (Figure 2), eq. (3) can
be rewritten as

c°=- f f O__[K(g_go,r,¢o)]rodgodro (4)

The subscripts jLE and jTE refer to the leading and trailing edges, and the subscripts

lj and 2j to the inner and outer edges, of the j -th panel respectively. The definition of
m

the quantities, rv, r2j, 0jzz and 0iTe is shown in Figure 1. The chordwise integration in eq.

(4) can be performed analytically, so that

(5)
c O = DOL_-DoT E

where

%

DOLE/TE = f

r V

m i

K(O,-OoL_=, r_, ro) dro
(6)

Thus, the evaluation of the influence coefficient co requires numerical integration of the

kernel function K in the radial direction only. The kernel function must itself be evaluated

by numerical integration. We refer to r i as the control panel row radius and r 0 as the

pressure panel row radius. Because of the analytical integration in the chordwise direction,

the computational effort is nearly independent of the number of chordwise panels and is

approximately proportional to the square of the number of radial panel rows.

Once the influence coefficients are evaluated, the generalized motion-dependent force

matrix is determined by numerical integration over the blade surface

" (7)
a..= E apj.8, dAj

jffil

where Ap m is the pressure differential across the j-th panel, with area dAy, due to motion
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in the m-th assumed mode shape, and 5in is the normal displacement of the blade surface

at the control point of the j-th panel in the n-th mode shape. The motion-independent
aerodynamic force vector is similarly calculated by

, (8)
/,=]E:Apj, %

j-I

where the subscript F represents the assumed forcing distribution.

The results presented in this paper were obtained using the SR3C-X2 propfan rotor
with eight identical blades for flutter analysis. This rotor design was earlier analyzed using
ASTROP3 (Kaza et al 1989; Kaza et al 1988). The rotational speed was set at 5280 rpm.
The blade surface was discretized such that there were 8 panels in the chordwise direction
in each radial row. The number of panel rows in the radial direction was either 9 or 18.
Thus the total number of panels was 72 or 144 respectively. The results presented are for

the inter-group phase angle at flutter, which was 225 ° at the given rotational speed. For

Mach number and frequency, the values M=0.5 and co=310 Hz are used.

Computer Implementation

$¢10¢tion of Parall01 Subtasks

The determination of the aerodynamic influence coefficient matrix [CI requires the
evaluation of the kernel function and its radial integration (eq. (6)) for all combinations of

control panel rows and pressure panel rows on the blade surface. In both flutter and forced
response problems, the computation of the kernel function is very expensive as it involves
wake integration which requires the numerical evaluation of an integral with an infinite
limit. Thus, the kernel function computation and hence the evaluation of the aerodynamic
influence coefficients is the dominant contributor to the calculation time required to

compute the generalized unsteady aerodynamic forces. For example, in a typical case, the

sequential computation of the aerodynamic influence coefficients was found to consume
97.1 percent of the time required for the calculation of the critical Mach number and
frequency (see Murthy and Janetzke, 1990).

Fortunately, the computation of the influence coefficients possesses a high degree
of independence so that an aeroelastic analysis program using a parallel processing computer
would greatly benefit from concurrentization of their computation. Simply put, the kernel

function K([ A0--_.},ri,r0) is evaluated by interpolation after constructing a table of values for

K at various values of {A0i} and fixed values of r_ and r0. The number of values of

r_ and r0 is given by the number of panel rows used along the radial direction in the

discretization of the planform. Once the blade geometry, motion and the flow conditions
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are given, the table of values of K({A0_},ri,r 0) at various values of {A0_} for fixed values

of r_ and r o can be computed independently of the value of the kernel function at other

values of r_ and ro. Thus, the kernel function K({A0_},ri,r 0) can be evaluated completely

in parallel for different values of r_ and r0. The radial integration of eq. (6) can also be

performed in parallel for different values of r_ and r o. Because of the complete

independence of the computations for different values of r i and ro, these computations can

be performed asynchronously.

Communication Software

The computation of the influence coefficients for given values of pressure and control

panel radii is selected as an independent subtask. This task is performed by a subtask

FORTRAN program which runs on the network processors. A main FORTRAN program

executing on the root processor handles the computation required for setting up the panel

discretization. A supporting OCCAM program, described below, executes concurrently with

this main FORTRAN program and handles the input/output operations and directs the

initiation and shutdown of network computations.

With the INMOS Standalone D705 OCCAM toolset software system, mentioned

previously, concurrent operation of a FORTRAN program on a transputer system requires

an OCCAM program called a harness. An OCCAM harness program enables the

FORTRAN program to internally send and receive data with other processes operating on

the same transputer and running in parallel. An OCCAM harness also provides the means

for a transputer to send and receive data through its four external links with other

transputers in the network and with the host computer.

Two OCCAM harness programs were written to implement the program on the

transputer network. One harness program resides on the root transputer and the other on

each of the network transputers. The root harness program provides data transfer for

input/output functions in the main FORTRAN program to the keyboard, screen, and

magnetic disks of the host PC. It also directs data to and from the network links.

Similarly, the network harness program passes data to and from the FORTRAN subtask

program and other network processors. An abridged listing of the OCCAM and FORTRAN

source codes is given in the Appendix.

The root OCCAM harness program, after some routine setup operations, has three

processes running in parallel: the main FORTRAN program, a network data handler and

an i/o handler. The main FORTRAN program prepares the required data and calls special

3L FORTRAN routines (CHANOUTMESSAOE and CHANINMESSAGE) that send data

to and receive data from the network data handler process. The i/o handler is a standard

INMOS toolset process which multiplexes read/write requests from the main FORTRAN

program to a standard file server program which runs concurrently on the host PC. The
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network handler process receives global input data from the main FORTRAN process and

sends it to the network processes. After sending the global input data, the network handler

process executes two relay processes in parallel. One of these processes relays requests

from the main FORTRAN process to the network for specific transputers to compute the

coefficients for a specific pressure/control panel row ordered pair. The other process relays

the computed influence coefficients from the network to the main FORTRAN process.

The network OCCAM harness program initially does some standard setup and then

has two processes running in parallel: the subtask FORTRAN process and a network

handler. The subtask FORTRAN process receives the global input data sent from the main

FORTRAN process and then receives the requests for computation of specific influence

coefficients. It sends back the results and then waits for the next request for more

computation or shutdown. The network handler process in the network harness is similar

to that in the root harness. It initially receives the global input data from the root

(generally via a neighboring network transputer) and passes it to the other neighboring

transputer, if it exists, and also to the subtask FORTRAN process. After relaying the

global input data, the network handler executes two relay processes in parallel. One of

these processes relays requests from the root to the rest of the network and also to the

subtask FORTRAN process if appropriate. The other process relays results in the opposite

direction, i.e., from either the subtask FORTRAN process or the rest of the network to the

root.

In addition to the two harness programs, another OCCAM program, called a

configuration program, is also used. The configuration program places the root and

network processes on the root and the network transputers, as appropriate. It also assigns

physical transputer links to process communication channels. It is this program that defines

the topology of the network.

Note that the configuration program and the network handler programs are topology-

dependent and would need to be significantly altered for network topologies other than a

pipeline.

processor Idle Time and Its Reduction

Processor idle time is the time a processor is not doing any computation while at

least one other processor is. If processors are fully utilized, processor idle time will be

zero. This ideal condition exists when the parallel subtasks are known to be of equal

computational time and their number is an integral multiple of the number of processors

used. In these circumstances, the subtasks could be allocated among the available proces-

sors in equal numbers and no processor would be left idle during the computational task.

This is simple to implement because network communications are required only at the

initiation and the termination of the computation.

In general, however, the number of subtasks is not an integral multiple of the
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number of processors. Also, the computation times for subtasks generally are neither equal

nor known a priori. Any one of these conditions usually results in some processors being
idle for a significant part of the computation time. For example, in the calculation of the
aerodynamic influence coefficients, the computation time for coincident control and
pressure panel rows is approximately twice that otherwise (Murthy and Janetzke, 1990).
Also, these computation times, being dependent on the flow conditions and blade geometry,
cannot be known a priori. Consequently, equal allocation of subtasks, as described above,
results in significant processor idle time or under'uti]izati0n of the processors.

In order to obtain better processor utilization in the present investigation, the
subtasks were sequentially allocated to processors as they became available for computation.
In such an asynchronous operation, the processors become idle only towards the end of the
parallel computational phase when no subtasks remain for execution.

Significant processor idle time is still possible if a combination of subtasks, having
large differences in computational times among them, is executing near the end of the

parallel computational phase. This occurs, for example, if the standard order of looping
over the control panel rows and pressure panel rows from hub to tip is used because the last

subtask has coincident control and pressure panel rows. By appropriately ordering the
sequence of computation of the parallel subtasks, this processor idle time is reduced. For
one such ordering, all subtasks having coincident pressure and control panel rows are

started before those having non-coincident pressure and control panel rows. This ordering
scheme is referred to as the diagonal ordering scheme. A more detailed discussion of
subtask ordering is given by Murthy and Janetzke (1990). Unless otherwise mentioned, all

the results reported were obtained by the diagonal ordering scheme.

Results

For all the results reported in this paper, the root processor and one or more network
processors are used. The root processor is used for file input and screen output and for
directing the network operation. The processing time on the root processor for non-i/o
operations is negligible and no i/o operations are included in the measurement of calculation

times reported in this paper. In this report, speedup is the ratio of the computational time
using one network processor to that using one or more network processors. Efficiency is
defined as the speedup divided by the number of processors. Speedup is a measure of the
reduction in the effective calculation time achieved by the parallel algorithm whereas
efficiency is a measure of the processor utilization.

Figure 3 shows the total time for the computation of unsteady aerodynamic influence
coefficients as a function of the number of network processors used. The results are for
9 radial panel rows. The total time decreases rapidly as the number of processors is
increased from one. As the number of processors is increased, the total time decreases
much less rapidly. Hence, it requires only a few processors to effect a large reduction in
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the computational time compared to the sequential processing time. This is a direct
consequence of the natural parallelism in the algorithm and the near-linear speedup
achieved.

Figure 4 and Figure 5 respectively show the speedup and processor efficiency

achieved as a function of the number of processors. The solid lines indicate the ideal condi-
tions of linear speedup and 100 percent processor efficiency. The speedup improves and

efficiency generally degrades as more processors are used. Speedup improves because the

computation is divided among more and more processors. The efficiency degrades because

more processors become idle towards the end of the computation and increased communica-
tion times result as more processors are used. It is presumed that communication time is

of lesser significance because the it is much smaller than the computation time of a subtask
for this application. However, the relative importance of these two factors has not been

investigated at the present time.

Also noted in Figure 4 and Figure 5, the speedup and efficiency improve in jumps
at certain points. These jumps are most noticeable when the number of processors are 23

and 30. These jumps occur when the subtasks become better balanced among the processors

as one more processor is added to the network. The points at which the jumps occur

depend on the number, execution order and the execution times of the subtasks.

Eff_t of Subtask Ordering

Changing the ordering of subtasks from the standard scheme to the diagonal scheme

results in a reduction in the processor idle time. For a given problem, this reduction is

nearly independent of the number of processors used. When the number of processors used
is small, the total computation time is large and the percent reduction in total time is small.
As the total computation time decreases due to a larger number of processors, the percent
reduction generally becomes larger. Thus the beneficial effect of diagonal subtask ordering

is significant only for a large number of processors. The influence of the ordering scheme

on the speedup is illustrated in Figure 6. Due to the reduction in processor idle time, the

diagonal ordering scheme brings the speedup closer to linear speedup. The processor

efficiency, although not shown, is also improved significantly as the number of processors

used becomes larger.

Effect of Problem size

To study the effect of problem size, the calculations were repeated for 18 radial row
panels. This doubles the number of panels and thus quadruples the number of parallel

subtasks to be executed. The variation of the total time for 18 and 9 radial row panels is

shown in Figure 7. The results are qualitatively similar. The additional computational time

due to a bigger problem size decreases as the number of processors is increased. A com-

parison of the variation of speedup for 9 and 18 radial panel rows is shown in Figure 8.

The jumps in speedup, earlier referred to in the discussion of Figure 4, are less severe for
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the bigger problem. The speedup is slightly higher for the bigger problem. However, this
is not necessarily a general trend.

Effect of Network Topolo_

To study the effect of network topology, the calculations were repeated after
replacing the pipeline with a binary tree. The binary tree topology used is shown in
Figure 9. Since only 32 network transputers were available, a four-level binary tree

topology, which uses 30 transputers, was implemented. At the tree root, the root transputer
is connected to two branch transputers. Note that the binary tree topology uses three of the

four communication links on each branch transputer, whereas the pipeline topology uses

only two. As a result, the average number of steps for processor communication to the root
is much less for the binary tree. It was found that the effect of changing the network
topology on speedup is very small for the case of 9 radial panel rows. For the bigger
problem of 18 radial panel rows, the effect was significant and is shown in Figure 10. For
this case, the speedup variation was closer to linear speedup with the tree topology than

with the pipeline topology.

Shared Memory vs. Distributed Memory_

The present results using a distributed memory computer are compared to those using
a shared memory computer. The shared memory implementation is described in Murthy
and Janetzke (1990). The shared memory computer used, an Alliant FX/80, has a
maximum of eight processors. The speedup obtained on both these computers is shown in
Figure 11 as a function of the number of processors. It is clear that the distributed memory

implementation is capable of achieving a speedup closer to the ideal of linear speedup,
indicating that, for the present algorithm, memory contention imposes a more severe
penalty than inter-processor communication. However, the processors on the FXI80 are
significantly faster than the transputers used in the distributed memory computer. The
actual time of computation on the transputer system with 32 processors is comparable to

that on the FX/80 using eight processors.

Conclusions

The interest in this study lies in the demonstration of a relatively inexpensive
transputer-based parallel processing system as a viable alternative to shared memory
systems for practical aeroelastic analysis. The demonstration was through an actual
implementation of distributed memory parallel computation of the unsteady aerodynamic
analysis portion required in typical aeroelasticity applications, using two network
topologies. It was found that speedups close to linear speedup can be achieved for this

portion of analysis, indicating the overhead resulting from parallelization is low. The actual
speedup achieved depends on the number of processors, the scheduling algorithm, the

problem size and the network topology. The effects of all these factors has been examined.
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For distributed memory systems, where the number of processors is typically large,

the dynamic scheduling of the independent subtasks plays an important role in achieving

high speedup. Efficiencies up to 86 percent using 32 processors are demonstrated.

When the problem size is increased by quadrupling the number of parallel subtasks,

the speedup remained high. While this is not a general observation, it indicates that bigger

problems would benefit more from parallelization.

Also, speedup is virtually unaffected by the network topology except when the

problem size is big. This indicates that the simplest network topology, in which the inter-

processor communication is easy to manage, can be chosen without a substantial penalty.

One limitation of the present investigation is that conclusions drawn may not

necessarily be applicable to aeroelastic analysis, since only a potion of the complete analysis

has been investigated. However, this is a portion involving a large computational effort.

Thus the conclusions are preliminary in nature and the significant question remains: what

is the potential of the present implementation to produce high speedups in the context of

a complete aeroelastic analysis 7 An investigation of this question is in progress.
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Appendix

The listings given in this section are presented to show how the sequential

FORTRAN program was modified for parallel execution on a pipeline transputer network.

Also given are the specially written OCCAM programs which provide the interface for link

communications on the transputer network. Although a knowledge of OCCAM and

FORTRAN programming is necessary to fully understand the procedures, the listings are

fairly readable and comments are interspersed throughout to help the reader.

The first listing is that of the configuration program. This program, written in

OCCAM, defines the network topology. It specifies which communication links are being

used and how they are interconnected. It assigns the executable processes and the

communication channels required to specific transputers on the network.

The second set of listings encompasses all the processes that run on the root

transputer. The main OCCAM harness program has three processes which are active

concurrently: a root transputer-to-PC communication interface, a root-to-network transputer

interface, and a FORTRAN main program. The root/PC interface process, called

io.handler, is a standard INMOS Toolset process and not listed herein. It multiplexes

read/write data for the FORTRAN main program between the root transputer and the host

PC. The root/network interface process, called network.handler, relays data for the

FORTRAN main program between the root transputer and the first network transputer.

The details of the network.handler process are given within the OCCAM listing. The main

FORTRAN process, called PROGRAM aeroco, is shown in an abridged listing which shows

the flow of the program and the special subroutine calls for data communication with the

OCCAM network.handler process. The data communication subroutines used, CHANOUT-

MESSAGE and CHANINMESSAGE, are special routines supplied by the 3L FORTRAN

runtime library. The three arguments for these subroutines are: a channel index (always

2), variable name, and message size in number of bytes.

The third set of listings encompasses all the processes that run on each of the

network transputers. The network OCCAM harness program has only two concurrent

processes: a transputer-to-transputer interface and a FORTRAN subtask program. The

interface process, also called network.handler as on the root transputer, similarly relays

data for the network and the local FORTRAN subtask program. The listing of the network

FORTRAN is abridged to show only the flow of the program and the special data com-

munication subroutine calls.
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¢onfi_ration proffam

#SC "acoef.lsc"

#SC "inflpr. isc"

-- executable on the root processor

-- executable on each network processor

VAL B008quads IS 8 :

VAL no.of.netw.prcrs IS 4*B008quads :

VAL no.of.t8s IS no.of.netw.prcrs+l :
VAL root IS 0 :

--( channel addresses

-- for the 4 communication links on any transputer

VAL link0.in IS 4 :

VAL linkl.in IS 5 :

VAL link2.in IS 6 :

VAL link3.in IS 7 :

VAL link0.out IS 0 :

VAL linkl.out IS 1 :

VAL link2.out IS 2 :

VAL link3.out IS 3 :

----)

--{ CHAN definitions

[no.of.tSs]CHAN OF ANY to, from :

CHAN OF ANY to.server, from.server :

----)

-- Define pipeline architecture

PLACED PAR

PLACED PAR

-- Root processor

PROCESSOR root T8

PLACE from.server AT link0.in :

PLACE to.server AT link0.out :

PLACE from[0] AT link2.out :

PLACE to[0] AT link2.in :

acoef(from.server, to.server,

from[0], to[0], root, no.of.netw.prcrs)

-- Network B008quad pipeline

PLACED PAR i = 1 FOR no.of.netw.prcrs

PLACED PAR

-- Network processor (i)

PROCESSOR i T8

PLACE from[i-l] AT linkl.in :

PLACE to[i-l] AT linkl.out :

PLACE from[i] AT link2.out :

PLACE to[i] AT link2.in :

influc.process(from[i-l], to[i-l], from[i], to[i], i)
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Root processor Droqr_m

Root OCCAM harness program

PROC acoef(CHAN OF ANY from.server, to.server,

to.network, from.network,

VAL INT process.id, VAL INT no.of.netw.prcrs)

#USE "c:\toolset\realio,, -- occam i/o primitives library

#USE "c:\toolsetkflibs,, -- File server library

#USE "c:\toolset\boardlib,, -- Board support library

#IMPORT "acoef.main (INT dummy, VAL INT flag, []INT wsl, in,

out, ws2) = 1" -- FORTRAN main program

-- Network handler process for root

PROC network.handler (CHAN OF ANY from.main, to.main,

from.network, to.network)

--pass data from main process to network, and vice versa
[208]INT buffer :

[3]INT request :

INT array.size : -- number of return values

BOOL running, runnin2 :

CHAN OF BOOL done :

VAL INT input IS 207 : -- number of global input values

SEQ

-- send number of processors available

to.main ! no.of.netw.prcrs

-- read global input data

from.main ? buffer[0]

from.main ? [buffer FROM 1 FOR 33]

from.main ? [buffer FROM 34 FOR i]

from.main ? [buffer FROM 35 FOR 20]

from.main ? [buffer FROM 55 FOR 20]

from.main ? [buffer FROM 75 FOR 20]

from.main ? [buffer FROM 95 FOR 20]

from.main ? [buffer FROM 115 FOR 20]

from.main ? [buffer FROM 135 FOR 20]

from.main ? [buffer FROM 155 FOR 20]

from.main ? [buffer FROM 175 FOR 12]

from.main ? [buffer FROM 187 FOR 20]

-- send global input data to network

to.network ! [buffer FROM 0 FOR input]

array.size := (2*buffer[5])*(buffer[ll]*buffer[ll])
-- array.size := 2*ND*NXP*NXP
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running := TRUE
runnin2 := TRUE

PAR

WHILE running -- relay requests from main program

SEQ

from.main ? [request FROM 0 FOR 3]

to.network ! [request FROM 0 FOR 3]

IF

request[0] <= 0

SEQ

running := FALSE

done ! running

TRUE

SKIP

WHILE runnin2 -- relay results to main program

ALT

from.network ? [buffer FROM 0 FOR array.size+3]

SEQ

to.main ! buffer[0]

to.main ! buffer[l]

to.main ! buffer[2]

to.main ! [buffer FROM 3 FOR array.size]
done ? runnin2

SKIP

from.main ? buffer[0] -- all normal output finished

-- end of network handler process

VAL flag IS I: -- use combined work space

[3]INT out.pointer, in.pointer :

[2]CHAN OF ANY reserved.out, reserved.in :

CHAN OF ANY from.acoef.main, to.acoef.main :

INT d :

[200000]INT wsl :

[I]INT dummy.ws :

SEQ

-- connect pointers from FORTRAN program

-- to occam I/O channels

SEQ i = 0 FOR 2

SEQ

LOAD.OUTPUT.CHANNEL(out.pointer[!], reserved.out[i])

LOAD. INPUT.CHANNEL(in.pointer[!], reserved.in[i])

LOAD.OUTPUT.CHANNEL(out.pointer[2], from.acoef.main)

LOAD.INPUT.CHANNEL(in.pointer[2], to.acoef.main)

SEQ

PAR

io. handler (from. server,L to. server,

reserved, out, reserved, in)
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network.handler(from.acoef.main, to.acoef.main,

from.network, to.network)

acoef.main(d, flag, wsl,

in.pointer, out.pointer, dummy.ws)

terminate.filer(from.server, to.server, result)

C

i0

12

C

Main FORTRAN Process

X

PROGRAM acoef.main

: declaration statements

GET NUMBER OF PROCESSORS AVAILABLE ON NETWORK

CALL CHANINMESSAGE(2, navprs, 4)

READ (5,*) IJOB, NPROCS, IOPT

IF (NPROCS .GT. NAVPRS) THEN
NPROCS = NAVPRS

WRITE(6,12) NPROCS

FORMAT(' NPROCS INPUT EXCEEDS THE AVAILABLE NUMBER OF',

' PROCESSORS'/' NPROCS RESET TO ',I3)
ENDIF

LET NETWORK KNOW HOW MANY PROCESSORS ARE TO BE USED

CALL CHANOUTMESSAGE(2,NPROCS,4)

READ(5,100) TITLE

: read input data

CALL FLUTAT(NPMX)

CALL CHANOUTMESSAGE(2,NPMX,4)

print*,' message sent to indicate end of main program '
STOP

END

x

x

SUBROUTINE FLUTAT(NPMX)

: declaration and initialization statements

CALL PRPANT (IPRNT,NBLD,MAX,S,NRT0,RT,XT,THTB,XL,

THLB,NXP0,TSE,PMX,NMODE,NMDMX,NPH,IPH,

NOM,OM,CAC,WA,CQ)

RETURN

END

SUBROUTINE PRPANT (IPRNT,NBLD,MAX,S,NRT0,RT,XT,THTB,XL,

x THLB,NXP0,TSE,PMX,NMODE,NMDMX,NPH, IPH,
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C

C

C

C

C

C

C

C

x NOM,OM,CAC,WA,CQ)

: declaration and initialization statements

COMPUTE INFLUENCE COEFFICIENT MATRICES

CALL INFLUC(NPMX,IPH,RT,SIGT,ALF,THT,THL,CHD,TSE,MOT,CAC)

RETURN

END

SUBROUTINE INFLUC(NPMX,IPH,RT,SIGT,ALF,

x THT,THL, CHD,TSE,MOT,CAC)

Special routine for interfacing with OCCAM process

This routine sends out requests for computation on the
network andd then receives and stores the results.

IMPLICIT REAL(A-H,L-M,O-Z)

LOGICAL RUNNIN

DIMENSION RT(1), SIGT(1) ,ALF (i) ,MOT(1) ,THT(1),

x CHD(1) ,TSE (i) ,THL(1) ,IPH(1)

DIMENS ION IREQST (3 )

COMPLEX CBUF(144), CAC(NPMX,NPMX,I)

COMMON/time/NPROCS,IOPT

COMMON /COMP/ MX,MX2,NB,MT,ND,OMB,

x ALPH,ALPH0,DSIG,EP,NXP,NRP, IRPI(20),IBPC

SEND OUT COMMON/COMP/ VALUES

CALL CHANOUTMESSAGE (2 ,MX, 132)
C SEND OUT CALL ARGUMENTS DATA

CALL CHANOUTMESSAGE (2, NPMX, 4 )

CALL CHANOUTMESSAGE (2, IPH, 80)

CALL CHANOUTMESSAGE (2 ,RT, 80 )

CALL CHANOUTMESSAGE (2, SIGT, 80)

CALL CHANOUTMESSAGE (2 ,ALF, 80 )

CALL CHANOUTMESSAGE (2 ,THT, 80 )

CALL CHANOUTMESSAGE (2, THL, 80)

CALL CHANOUTMESSAGE (2, CHD, 80)

CALL CHANOUTMESSAGE (2 ,TSE, 48 )

CALL CHANOUTMESSAGE (2, MOT, 80 )
NUMBYT = 8*NXP*NXP*ND

ICPMAX = NRP*NRP

IF (NPROCS.GT. ICPMAX) NPROCS = ICPMAX

C Send requests to all processors being used

DO K = I,NPROCS

IPRCS = K

CALL INDICE (IPRCS, NRP, IRC, IRP, IOPT)
IDPRCR = NPROCS - K + 1

IREQST(1) = IDPRCR

IREQST(2) = IRC

IREQST(3) = IRP

CALL CHANOUTMESSAGE (2, IREQST, 12 )
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END DO

ICP = 1

RUNNIN = .TRUE.

DO WHILE (RUNNIN)

C Receive results from a processor on the network

CALL CHANINMESSAGE(2, IDPRCR, 4)

CALL CHANINMESSAGE(2, IRC, 4)

CALL CHANINMESSAGE(2, IRP, 4)

CALL CHANINMESSAGE(2, CBUF, NUMBYT)

C Store results

I = 0

II0 = (IRC-I)*NXP

JJO = (IRP-I)*NXP

DO i0 IXC=I,NXP

II=IXC+IIO

DO i0 IXP=I,NXP

I=I+l

JJ=IXP+JJ0

CAC (II, JJ, i) =CBUF (I)

i0 CONTINUE

C Send out next request for that processor

IF (IPRCS.LT.ICPMAX) THEN

IPRCS = IPRCS+I

CALL INDICE(IPRCS,NRP,IRC,IRP, IOPT)

IREQST(1) = IDPRCR

IREQST(2) = IRC

IREQST(3) = IRP

CALL CHANOUTMESSAGE(2,IREQST,12)

END IF

ICP = ICP+I

IF (ICP.GT.ICPMAX) RUNNIN = .FALSE.

END DO

C Send signal to shutdown all processes

IREQST(1) = -I

CALL CHANOUTMESSAGE(2,IREQST,12)

print*,' message sent to shut down network '

RETURN

END

SUBROUTINE INDICE(IRCP,NRP,IRC,IRP,IOPT)

GO TO (I,2,3),IOPT

C Standard order: IRC incremented after cycle of IRP

1 irc = (ircp-l)/nrp + 1

irp = ircp - (irc-l)*nrp

RETURN

: other ordering option

C Diagonal order: Main diagonal done first

3 ircpl = (ircp-l)*(NRP+l)

ircpm = MOD(ircpI,NRP*NRP) + 1
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irc = (ircpm-l)/nrp + 1

irp = ircpm - (irc-l)*nrp

RETURN

END

Network Drocessor Droaram

Network OCCAM Harness Program

PROC influc.process(CHAN OF ANY from.host, to.host,

to.network, from.network,

VAL INT process.id)

#IMPORT "influc.routine(INT dummy, VAL INT flag,[]INT wsl, in,

out, ws2) = i" -- Network FORTRAN Subtask

-- Network network handler process

PROC network.handler (CHAN OF ANY from.host, to.host,

from.process, to.process,

from.pipe, to.pipe,

VAL INT process.id)

--pass data from host to local process and pipeline,
-- and vice versa

[208]INT buffer :

[3]INT request :

INT array.size : -- number of return values

BOOL pipe.segment, end.of.pipe, running, runnin2 :
CHAN OF BOOL done :

VAL INT input IS 207 : -- number of global input values

SEQ

-- read global input data

from.host ? [buffer FROM 0 FOR input]

INT number.of.processors IS buffer[0] :
IF

process.id = number.of.processors

SEQ

pipe.segment := FALSE

end.of.pipe := TRUE
TRUE

SEQ

pipe.segment := TRUE

end.of.pipe := FALSE
IF

pipe.segment

SEQ -- send global input to next processor

to.pipe ! [buffer FROM 0 FOR input]
TRUE

SKIP
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-- send global input data to local INFLUC routine

to.process ! process.id

to.process ! buffer[O]

to.process ! [buffer FROM 1 FOR 33]

to.process ! [buffer FROM 34 FOR i]

to.process ! [buffer FROM 35 FOR 20]

to.process ! [buffer FROM 55 FOR 20]

to.process ! [buffer FROM 75 FOR 20]

to.process ! [buffer FROM 95 FOR 20]

to.process ! [buffer FROM 115 FOR 20]

to.process J [buffer FROM 135 FOR 20]

to.process ! [buffer FROM 155 FOR 20]

to.process ! [buffer FROM 175 FOR 12]

to.process ! [buffer FROM 187 FOR 20]

array.size := (2*buffer[5])*(buffer[ll]*buffer[ll])
-- 2*ND*NXP*NXP

running := TRUE

runnin2 := TRUE

PAR

WHILE running

-- relay input data from root processor
SEQ

-- receive computation request from host processor

from.host ? [request FROM 0 FOR 3]
IF

pipe. segment

-- relay request to next processor

to.pipe ! [request FROM 0 FOR 3]
TRUE

SKIP

IF

request[0] = process, id

-- send request to local INFLUC routine

SEQ

to. process ! request[l]

to. process ! request[2]

request[O] <= 0

-- relay shutdown signal to local processes
SEQ

to.process ! request[0]
running := FALSE

done ! running
TRUE

SKIP

WHILE runnin2

-- relay results to root processor
ALT

pipe.segment & from.pipe ? [buffer FROM 0 FOR

array, size+3 ]
SEQ
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-- relay results to root processor from network

to.host ! [buffer FROM 0 FOR array.size+3]

from.process ? buffer[0]

SEQ

-- relay results from local routine

from.process ? buffer[l]

from.process ? buffer[2]

from.process ? [buffer FROM 3 FOR array.size]

to.host ! [buffer FROM 0 FOR array.size+3]

done ? runnin2

SKIP

[3]INT out.pointer, in.pointer :

[2]CHAN OF ANY reserved.out, reserved.in :

CHAN OF ANY from.influc, to.influc :

INT dummy :

VAL INT flag IS 1 : -- for combined work space

[20000]INT wsl :

[I]INT ws2 :

SEQ

-- connect pointers from FORTRAN program

-- to occam I/O channels

LOAD.OUTPUT.CHANNEL(out.pointer[2], from. influc)

LOAD. INPUT.CHANNEL(in.pointer[2], to.influc)

PRI PAR

network.handler(from.host ,to.host,

from.influc, to.influc,

from.network, to.network,

process.id)

influc.routine(dummy, flag, wsl,

in.pointer, out.pointer, ws2)

C

C

Network FORTRAN Process

PROGRAM influc.routine

Special routine to relay data with OCCAM harness progam
and call subroutine INFLUC

IMPLICIT REAL(A-H,L-M,O-Z)

LOGICAL RUNNIN

DIMENSION RT (20) ,SIGT(20) ,ALF(20) ,MOT(20) ,THT (20) ,CHD(20)

C ,TSE (12) ,THL(20) ,IPH(8)

COMPLEX CAC(144)

COMMON/COMP/MX,MX2,NB,MT,ND,OMB,ALPH,ALPH0,DSIG,EP,

C NXP,NRP, IRPI(20),IBPC
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C

C

C

C

C

C

C

C

read in this processor ID

CALL CHANINMESSAGE (2, IDPRCR, 4 )

read in how many processors are to be used

CALL CHANINMESSAGE (2 ,NPRCSR, 4 )

READ IN COMMON/COMP/ DATA

CALL CHANINMESSAGE (2 ,MX, 132 )

READ IN CALL ARGUMENTS DATA

CALL CHANINMESSAGE (2 ,NPMX, 4 )

CALL CHANINMESSAGE (2, IPH, 80)

CALL CHANINMESSAGE (2 ,RT, 80)

CALL CHANINMESSAGE (2, SIGT, 80)

CALL CHANINMESSAGE (2 ,ALF, 80)

CALL CHANINMESSAGE (2, THT, 80)

CALL C_INMESSAGE (2, THL, 80)

CALL CHANINMESSAGE (2, CHD, 80)

CALL CHANINMESSAGE (2, TSE, 48 )

CALL CHANINMESSAGE (2, MOT, 80)

X

NUMBYT = 8*NXP*NXP*ND

RESET DIMENSION PARAMETER FOR CAC

NPMX = NXP

RUNNIN = .TRUE.

DO WHILE (RUNNIN)

CALL CHANINMESSAGE(2,IRC,4)

IF (IRC.GT.0) THEN

CALL CHANINMESSAGE(2,IRP,4)

COMPUTE INFLUENCE COEFFICIENT MATRICES

CALL INFLUC(IRC,IRP,NPMX,IPH,RT,SIGT,ALF,

THT,THL, CHD,TSE,MOT,CAC)

SEND OUT COEFFICIENT DATA

CALL CHANOUTMESSAGE(2, IDPRCR, 4)

CALL CHANOUTMESSAGE(2, IRC, 4)

CALL CHANOUTMESSAGE(2, IRP, 4)

CALL CHANOUTMESSAGE(2, CAC, NUMBYT)

ELSE

RUNNIN = .FALSE.

STOP

ENDIF

END DO

STOP

END

C

CCCC

SUBROUTINE INFLUC (IRC,IRP, NPMX,IPH,RT,SIGT,ALF,

C THT,THL, CHD,TSE,MOT,CAC)

: declaration statements

********** SET CONTROL PT. ROW

DO I01 IRC=I,NRP

: a few variables dependent only on IRC
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C ********** SET PANEL ROW

CCCC DO i01 IRP=I,NRP

JRP=IRPI (IRP)

: computation of a set of influence coefficients

i01 CONTINUE

RETURN

END

ROOT

Figure 1. - Pipeline topology of transputer network.
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Figure 9. - Binary tree network topology.
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