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ABSTRACT

A method for on-line SSME anomaly detection and fault typing using a feedforward
neural network is described. The method involves the computation of features
representing time-variance of SSME sensor parameters, using historical test case data.
The network is trained, using backpropagation, to recognize a set of fault cases. The

network is then able to diagnose new fault cases correctly. An essential element of the
training technique is the inclusion of r_ndomly generated data along with the real data,
in order to span the entire input space o_' votential non-nominal data.
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Netrologic SSME Fault Detection

1. Introduction

NETROLOGIC has devised a new system that uses neural networks for on-line

detection of fault conditions in the Space Shuttle Main Engine (SSME). In order to

recognize danger signs early enough to shut down the rocket engine and minimize

damage resulting from unforeseen malfunctions, an SSME fault detection system needs

to be faster and more accurate than existing systems. Even with the current failure

response systems which utilize automatic redlining, redundant sensor and controller

voting logic, and human monitoring, post test analysis shows the emergence of

anomalous engine behavior well before a shutdown sequence is initiated. Neural

networks can provide improved test-stand SSME fault detection with natural extensions

to in-flight monitoring.

A fast SSME diagnostic method is essential since a large number of simultaneous

sensor measurements (over 200 are available) are input to a test shutdown decision

module at a high sampling rate. Sensor data fusion and evaluation are complicated

issues since clues to engine performance may involve subtle combinations of sensor

measurements varying through time. There is a high cost associated with unnecessary

shut-downs (false alarms) as well as missed detections (failure to detect an impending

catastrophe).

A detection system should not alter the current engine or control system and

should utilize all existing data. Since the SSME's major components are line replaceable

units, ideally a fault detection system should be independent of engine-to-engine

performance variation and of older engine failure signatures.

Neural networks can contribute to an effective solution since they are

1) fast, especially if implemented on parallel hardware;

2) capable of discovering subtle patterns of input data without

being explicitly taught what combinations are significant;

3) capable of generalizing based on previously learned examples; and

" 4) robust --- relatively insensitive to noisy data.

2. Data Source an i Description

We used the well-known backpropagation to train our three layer feedforward

network with training examples from sensor data from actual SSME test cases (see

Figure 1), conducted between 1981 and 1989. Most of the data resulted from recordings

of cases in which faulty engine performance occurred. We restricted our attention to

time periods after the SSME reached full power, since steady-state fault diagnosis is a

sufficiently difficult and important problem, and the use of data from periods of
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transient SSME operation would introduce considerable complications. We will

investigate the application of neural nets to failure detection during the transient phase

in the near future. Neural nets can recognize distinctive time series such as temperature

transients, and will be useful for rocket engine transient analysis.

The six fault cases that we have used represent failures of various types, caused

by malfunctions in different hardware components, such as a fuel leak in the main
combustion chamber outlet neck in one case, and a cracked liquid oxygen post in

another. Although this provides a variety of data for training and testing, it also means

that there is not enough fault data to generalize about any particular failure type.

In each of the fault cases we observed that there was a relatively long period

during which the SSME functioned normally prior to malfunctioning, consequently, there
was an abundance of nominal sensor data. However, there was a very limited amount

of fault data in three cases, because the interval between the fault-declare time and the

time of the last sensor measurements was very short (as short as 0.2 seconds).

The fault-declare time for each of the fault cases was based on an analysis of

failure investigation reports which showed the time when sensors started to indicate

signs of problems or faulty performance. We determined the time when a fault-

detection system should have been able to declare that something was wrong enough to

warrant shutting down the SSME. Sensor samples taken before the fault-declare time

are considered nominal, and samples taken after that time are considered fault data.

We only used a subset of the total number of different sensor measurements,

referred to as Parameter Identifiers (PIDs). These PIDs were sampled 25 times per

second. We selected twelve PIDs (see Figure 2) for use in our current study. Selection
of this subset of data was based on two factors:

1) Availability for all cases under investigation. Different test cases were

inconsistent in which sensors were installed and functioning. Since a fundamental

objective is to combine data from different test cases, and generalize to other cases, data

must have the same format for all cases. Therefore we only chose a PID if it was

available for nearly all of the cases used in our study. However, this is not an absolute

restriction: if a particular PID is missing from a particular test case, it is possible to use
null values for that PID in that case. In. fact, it is essential that our method should

accommodate missing, faulty, or "dead" sensors.

2) Significance for diagnosis. Analysis of fault case profiles shows that, for a

given case, some sensors show strong early symptoms of faulty operation, while other

sensors appear to have less value for diagnosis. Naturally we chose PIDs which were

significant in the cases under investigation.
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3. Pre-Processing of Data

The inputs to the network were derived from PID values. Each sample fed into

the network corresponded to a particular point in time. However, the input values were
not simply the raw values for each PID at that time. The nature of the variation in PID
values over time may be more indicative of faulty performance than the value of the
PIDs at any isolated moment. For example, in case 901-331, fault symptoms included an
increasing HPOT discharge temperature concurrent with a decreasing MCC pressure.
Therefore, for each point in time, three features were calculated for each PID, which

take into account the medium, long, or short-term history of that PID leading up to that
time. These features are described in Figure 3.

Thus, the total number of simultaneous inputs to the network for each point in
time was three times the number of PIDs. We have used twelve PIDs and 36 input

units. In future studies, more features will be computed for each sample, to provide

more detailed input of time-variation of PIDs, or to explicitly input features which code
relationships between other features. In theory, the network is capable of performing

any computation on the inputs, so such compound features would be superfluous. In
practice, however, it might prove to be useful to input such features explicitly in order to
encourage the network to learn in a way that will lead to better generalization. The
three features currently used are minimal, yet appear to be sufficient for the tasks

attempted so far.

4. Network Architecture

We used a feedforward neural network model consisting of a layer of input units,

plus one or more layers of hidden units, plus a layer of output units. Units are
analogous to neurons. The connections between them are analogous to synapses. In the

feedforward model, each of the input units is connected to each of the hidden units, and
each of the hidden units is connected to each of the output units. Each of the
connections is characterized by a weight, which is the strength of the connection. In the

basic operation of the network, connections are one-way, going from inputs to outputs
(hence the name feedforward). Each unit attains a level of activation by taking the

weighted sum of its inputs. It then produces its own output, which is a function of its
activation. We have used the logistic function given by f(x) = 1 / (1 + exp(-x)).

Feedforward networks can be trained to associate arbitrary input patterns with

arbitrary output patterns, and they have the ability to categorize and generalize, so that
similar inputs are mapped to similar outputs, and new input parterre (different from
those on which the network has been trained) will be mapped to outputs based on their

similarity to training patterns. Training is accomplished by the generalized delta rule

(backpropagation of error). After each input sample is fed forward through the
network, the output is compared with the desired output. The weights are then adjusted
iteratively to reduce any discrepancies (for a detailed description of backpropagation,

please see [6])
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The choice of how many hidden layers to use, and how many units to have in

each layer, is dictated by two opposing factors. On the one hand, it is generally easier

for a network to perform an exact mapping from a set of inputs to a desired set of

outputs, if there are more hidden units. On the other hand, if there are too many
hidden units, the network is liable to "over-learn" the training data, and may be less

successful at generalizing to new data. We have found that a single hidden layer of

three to six units is sufficient for the network mappings we have attempted so far.

5. Assignment of roles to output units

The output of the network represents its evaluation of the input data. The

activations of the output units are all floating-point numbers, which take on values

anywhere between zero and one. We currently use three output units, each of which

represents a different diagnosis category. The three categories are:

1) Nominal

2) Fault (of a type previously witnessed)

3) Deviant (anything that departs from nominal).

For each output unit, activation levels near 1.0 mean "yes", and levels near 0.0 mean

"no". Intermediate levels of activation may be regarded as the degree of confidence in

that diagnosis.

The first priority of an SSME fault detection method must be to decide when to

shut down the engine to minimize damage Ieading to a potential catastrophe. To the

extent that this is a yes-or-no decision, we only need to know whether or not the

engine's performance is nominal. This may be described as anomaly detection. Beyond

this, however, it may be necessary to distinguish between different failure types. This

will be true if different shut-down or safety procedures are employed depending on

failure type. Also, if the neural network forms a part of a larger fault detection system,

it may be of value for the network to report what failure type it perceives, thus

providing a more useful input to the rest of the system.

Fault detection should involve the notification of a failure, the isolation of the

type of failure, and the estimation of the severity. The detection of a failure which

would warrant a shutdown sequence was emphasized, the isolation and estimation

functions were secondary. Further study for isolation and estimation will also be

pursued, however, a system which emphasizes detection during testing would alleviate

some of the complexity or computational burden associated with pursuing all three goals

of fault detection simultaneously.

Under the constraint of limited fault data, and keeping in mind the primary
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importance of shut-down decision making, we focused on anomaly detection rather than
fault-typing, and employed only a single output unit for the "fault" category. In the
future, when more fault data (real or simulated) becomes available, our method may be

extended with no fundamental changes to incorporate more output units for individual

failure types.

Using only historical nominal and fault data, the network can be trained to
distinguish nominal and fault data that it is trained on, but when we ask it to generalize
to new cases (cases that have not been used for. training), the results may be
disappointing. Unless a new case is very similar to one of the training cases, this new
fault data will not resemble the old fault data any more than it resembles the old

nominal data. In our experience, the network output "nominal" for all samples in the
new faault cases, both before and after the fault-declare time. Evidently the problem

was that the fault data in the training cases were too limited, involving only particular
PIDs with specific lime profiles. A network trained to recognize a particular small set
of fault cases cannot be expected to recognize a new fault case, which is likely to involve

different PIDs indicating degraded performance with completely new behavior.

In order to train a network to distinguish nominal data from all possible non-
nominal data, we needed a source of non-nominal data. Fault data from real fault cases

were insufficient for this purpose since, even if we used all the fault data currently
available, it would still not span the entire space of potential non-nominal data.
Therefore, we experimented with using random data evenly distributed throughout the
total input space of the network. We called these data "deviant." The network was

given a combination of nominal, fault, and deviant data, and trained to recognize each

type. The extra task of recognizing deviant data forced the network to learn the
boundaries of the nominal data.

6. Training Method and Initial Results

Our usual method was to train a network on data from several SSME test cases

shuffled together with randomly generated "deviant" data, test the network on the

training cases, and also test on new cases. In three of the cases there were very low
proportions of fault data. Therefore, in order to train the network on a balanced set of

samples, the fault samples in those cases were duplicated a hundred times in the training
data file before it was shuffled.

When we trained and verified the network on actual fault cases, we found that

the network was capable of learning the training data with very high accuracy. It would
output "nominal" when fed nominal data, and "fault" when fed fault data. When learning

was not quite perfect, the incorrect outputs always occurred for data immediately before
or after the fault-declare time. This showed that the transition period around the fault-

declare time was the most difficult to learn, as it should be if the network was using
criteria involving the continuous progression of PID values through time.
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The only case which presented some difficulty was case 249. It is not clear from

post-test analysis what fault-declare time is appropriate for this case. Proposed times
range from as early as 320 seconds to as late as 405 seconds after start-up. When we
used an early declare time and combined case 249 with other cases for training, the net
had difficulty reconciling this with the other cases used during training. Apparently, the

data in the middle period of 249 is too similar to other data which is nominal, so that it

could only be learned as a fault through overlearning, that is, by paying too much
attention to distinguishing details with no relevance to fault symptoms.

Our initial results with generalizing to new cases were very promising. The

network was able to diagnose new fault cases correctly without training. As expected for
these cases, none of the data was evaluated as faulty. Data before the fault-declare time

was classified by the network as nominal, and data after the fault-declare time was

classified as deviant. The fault-declare times for untrained fault cases determined by the
networks have been remarkably consistent with the fault-declare times established on the

basis of expert post-test analysis. In case 249, mentioned above, a network (which had
been trained on cases 259, 331, 436, and random data) diagnosed the data as deviant

after 331 seconds; our proposed fault-declare times ranged between 320 and 405
seconds. The same network, when tested on case 340, output strongly deviant after 283
seconds. Our fault-declare times ranged between 280.3 and 290 seconds.

7. Other Failure Detection Systems

A typical tradeoff consideration for failure detection is detection performance
versus filter behavior under normal conditions. A design specific to certain failures may
provide failure isolation at the expense of performance in detecting nominal data.
Certain detection filters take into account such a tradeoff. Under normal or nominal

conditions, the bandwidths of the Kalman filters used in detection filters will be

increased to be sensitive to the failure isolation designs, yet this increase makes the
system more susceptible to sensor noise. With the incorporation of the deviant output,
neural nets do not have to be trained to detect specific failures and detection
performance will not be hindered under normal conditions. Normal operation should
not degrade, since neural nets can be insensitive to sensor noise.

Another failure detection system involves voting schemes. Such schemes can
efficiently rule out faulty sensors and are very useful for false alarms, but often pay the
price of hardware redundancy for a reliable means of failure detection. Failures such as'
thermal effects and power failures can also affect the "like" sensors utilized by voting
systems in the same way. Since failure detection involves voting between these like

sensors, a problem which affects all the sensors will not be detected.

Multiple hypothesis filter-detectors can be too complex for a practical failure
detection system [8], [9]. Multiple hypothesis filter-detectors are considered to yield the
best performance in the widest class of field for detection, isolation, and estimation, but
the complexity can be of major concern. These filters involve the computation of
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probabilities of all the types of failures under consideration, which may require much

time and storage capabilities. Neural nets, on the other hand, are not considered very

complex in terms of what the network or implementor has to do. Storage and time

considerations are not a problem with neural nets either. When implemented in massive

parallelism or by an accelerator board, neural nets are able to respond quickly. Very

little computational overhead exists since nets require only two matrix multiplication and

two activation applications. The matrices involved in the computation to determine the

output are the interconnection matrix between the input and hidden layer and the

interconnection matrix between the hidden and output layer. Since only two layers are

needed for a successful neural network, only two activation applications are required

also. Moreover, neural nets should be able to perform well for SSME fault detection.

Some other failure sensitive filters can also become oblivious to new sensor outputs by

learning the data too well. In these cases, the Kalman filter and the precomputed

covarianee utilized become too small and, therefore, oblivious to new data.

Innovations-based detection systems, such as the generalized likelihood ratio

(GLR) test, can be sensitive to modeling errors [5], [9]. The GLR test may provide fast
failure recovery, but it is imperative for a good estimation of failure parameters that the

model is accurate. Neural nets are not considered very complex and the creation of
accurate models is not difficult.

The key issues to be addressed in discussing the merits of one system compared

to another are complexity in implementation, performance with respect to false alarms

and delays in detection, and robustness, such as modeling errors and sensitivity concerns.

Our initial results indicate that neural nets do very well in resolving these issues in
comparison with other methods.
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Figure 1: $SME (Space.Shuttle Main Engine) TEST CASES

Slx Fault Cases

Case 901-331 July 15, 1981

LOX Post Fractures, Erosion-Met

Time 152 - 233.48; Fault-Declare 232.3

2010 nominal, 28 fault, 2038 total samples

Case 902-249 September 21, 1981

Power Transfer Failure, Turblne Blades

Time 261.96 - 450.56; Fault-Declare 320

1451 nominal, 3265 fault, 4716 total samples

Case 90_-340 October 15, 1981

Turn Around Duct Cracked�Torn

Time 201.96 - 300; Fault-Declare 280.6

1966 nominal, 486 fault, 2452 total samples

Case 901-364 Aprll 7, 1982

Hot Gas Intrusion to Rotor Cooling

Time 131.96 - 230; Fault-Declare 210

1951 nominal, 501 fault, 2452 total samples

_s9__901-436 February 14, 1984

Coolant Liner Buckle

Time 551.96 611.08; Fault-Declare 610.55

1471 nominal, 8 fault, 1479 total samples

Case 750-259 March 27, 1985
MCC Outlet Manifold Neck, Fuel Leak

Time 41.96 - 101.50; Fault-Declare 101.3

1485 nominal, 4 fault, 1489 total samples

Two Nominal Cases

Ca$e 902-457 November 1988

Time 100 - 250

3751 nominal samples

Case 902-465 February 1989

Time 101.96 238.16

3405 nominal samples

123



Netrologic SSME Fault Detection

Figure 2:

PIDs (Parameter ID's) for SSME (Space Shuttle Main Engine)

18 (566) MCC CLNT DS T

Main Combustion Chamber Coolant Discharge Temperature B

24 (371) MCC FU IHJ PR (MCC HG IN PR)

Main Combustion Chamber Hot Gas Injector Pressure A

40 OPOV ACT POS

Oxidizer-Preburner Oxidizer Valve Actuator Position A

42 FPOV ACT POS

Fuel Preburner Oxidizer Valve Actuator Position A

52 (459) HPFP DS PR

High Pressure Fuel Pump Discharge Pressure A

63 MCC PC

Main Combustion Chamber Pressure Average

209 (302) LPOP DS PR

High Pressure Oxidizer Pump Inlet Pressure A

231 (663) HPFT DS T1A

High Pressure Fuel Turbine Discharge Temperature A

232 (664) HPFT DS T1B

High Pressure Fuel Turbine Discharge Temperature B

233 HPOT DS T1

High Pressure Oxidizer Turbine Discharge Temperature A

234 HPOT DS T2

High Pressure Oxidizer Turbine Discharge Temperature B

261 ('764) HPFP SPEED

High Pressure Fuel Turbopump Shaft Speed

These are all CADS sensor measurements taken 25 times per second.

Numbers in parentheses are corresponding facility measurements.
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Figure 3: Features computed for each p,ID for each sample

(1)

(2)

(3)

Wh ere,

(AVG2(t) - AVGI(0 ) / s

( AVG2(0 - AVG2(t0) ) / s

(X(t) - AVGI(t- .08) ) / s

AVG2(t) is the mean value of the PID for the 2 seconds

(50 samples) leading up to time t.

AVGI(t) is the mean value of the PID for the 0.08 seconds

(3 samples) leading up to time t.

s is the standard deviation of the PID value.

tO is time soon after SSME reaches steady-state operation.

X(t) is the value of the PID at time t.

These three features are intended to encode the essential history

of each PID value, providing sufficient information for the neural

network to perform fault diagnosis. They represent the degree of

change (positive or negative) over medium, long, and short periods

of time.

The time tO is used to calculate a base average value for each

PID, to provide an unchanging reference point for measuring the

long-term change in the PID value. We have simply used the first

2 seconds of data in the time-slice used for each test case to

compute AVG2(tO).

In order to make all of the network inputs fall within the same

range, all three features are sealed according to the standard

deviation of the PID. The standard deviation does not depend on

the particular test case; for each PID, a standard deviation is

calculsted on the basis of all available test cases combined.
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Fibre 4: Conceptual Diagram

This is a computer-screen image of our demonstration program.

The windows at the Cop of the picture are Eraphs of the twelve PID

values varying with time. The schematic diagram conceptually

portrays the neural network units and connections. Twelve inputs,

three hidden units, and a single output unit are shown (note Chat

our current approach actually employs 36 Input, 6 hidden and 3

output units)•
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Figure 5: Graph of Neural Network Output

This shows the results of training the neural net on a case

where the primar 7 and secondary faceplates burned causing a

problem in the main combustion chamber (901-331), a case where

cracks were found in the high pressure fuel turbopump (901-340),

and a case where a hotgas intrusion to rotor coolin E occurred from

a breach in a kaiser helmet (901-36_). After training, the

network was tested on case 901-_36, where the high pressure fuel

turbopump was massively damaged. The graph shows that the neural

neC provided earlier fault detection than Chat of the SAFD results

provided in the UFailure Control Techniques Report For The SSME,"

by Rocketdyne. The graph of the third output unit, which

indicates nominal data, is not shown. The nominal output is

simply the reflection of the deviant output around the horizonta!

axis labelled 0.5.
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GOALS AND NATURE OF PROBLEM

USE TRAINABLE PATTERN CLASSIFIERS FOR SPACE SHUTTLE MAIN ENGINE
ANOMALY DETECTION

PROVIDE EARLIER AND HORE ACCURATE 0N-LINE ANOMALY DETECTION
(PREVIOUS DETECTION SYSTEMS - REDLINES_ HUMAN MONITORING - HISSED

EARLY SIGNS OF ENGINE FAILURE)

• IMPROVE TEST STAND MONITORING, EXTEND TO IN-FLIGHT MONITORING

SHUTDOWN DECISION MODULE MUST INTEGRATE AND EVALUATE LARGE NUMBER
OF SIHULTANEOUS SENSOR HEASUREHENTS AT HIGH RATE

HIGH PENALTY FOR

FAILURE TO DETECT IMPENDING CATASTROPHE

(TEST-STAND DAMAGE AS HIGH AS $26 MILLION FOR A SINGLE

FAILURE; FAILURE IN FLZGHTf IF IT EVER OCCURSr MAY CAUSE LOSS

OF HUMAN LIFE)

UNNECESSARY SHUT-DOWN (FALSE ALARM)

(COSTS THOUSANDS OF DOLLARS ON TEST STAND; IN FLIGHTI

EMERGENCY LANDING WITH ENGINE SHUT DOWN UNNECESSARILY MAY

ENDANGER LIFE)
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AS SHUTTLE ENGINE FIRING IN PROGRESS, "RAW".INPUT TO ANOMALY DETECTION
SYSTEM IS SEOUENCE OF VECTORS

P(T i) i : 0, 1, ..., s-1

(S = # SAMPLES TAKEN SO FAR)

TIME STARTS FROM LAUNCH: TO = 0

SAMPLES TAKEN AT REGULAR RATE

(TYPICAL SAMPLING RATE 25 PER SECOND,

OR ONE SAMPLE EVERY 0.04 SECONDS)

FOR EACH POINT IN TIME T, EACH COMPONENT OF P(T) IS THE VALUE OF A
PARTICULAR SENSOR MEASUREMENT

P(T) = (PI(T), P2(T), ..., Pw(T))

(N = # SENSORS EMPLOYED)

SENSORS PI, P2, "-" , Pw REFERRED TO BY PARAMETER IDENTIFICATION

NUMBERS, OR "PIDS"
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OVER 200 PIDS AVAILABLE

TEST FIRING DATA NOT CONSISTENT:

FOR MOST TEST FIRINGS, SOME PIDS NOT PRESENT OR NOT VALID
(SENSORS NOT BUILT INTO EARLY VERSIONS OF ENGINES OR FAILED SENSORS)

CRITERIA FOR INITIAL CHOICE OF PIDS

• SUBSET OF PIDS USED IN ROCKETDYNE'S SAFD ALOGORITHM

• SIGNIFICANT FOR DIAGNOSIS IN ANOMALOUS FIRINGS UNDER INVESTIGATION

• AVAILABLE FOR MOST TEST FIRINGS UNDER INVESTIGATION

(DESIRABLE FOR GENERALIZING FROM ONE FIRING TO ANOTHER, BUT NOT

ABSOLUTE REQUIREMENT - MISSING OR FAILED SENSORS MUST BE TAKEN

INTO ACCOUNT ANYWAY)

• METHOD ALLOWS FOR USING MORE PIDS IN FUTURE
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TWELVE PIDS USED IN CURRENT STUDY

P1B : MCC CLNT DS T

(MAIN COMBUSTION CHAMBER-COOLANT DISCHARGE TEMPERATURE B)
I

P24 = MCC FU INJ PR

(MAIN COMBUSTION CHAMBER HOT GAS IN3ECTOR PRESSURE A)

P40 = OPOV ACT POS

(OXIDIZER-PREBURNER OXIDIZER VALVE ACTUATOR POSITION A)

P42 = FPOV ACT POS

(FUEL PREBURNER OXIDIZER VALVE ACTUATOR POSITION A)

Psi = HPFP DS PR

(HIGH PRESSURE FUEL PUMP DISCHARGE PRESSURE A)

P6s = MCC PC

(MAIN COMBUSTION CHAMBER PRESSURE AVERAGE)

P2o9 = LPOP DS PR

(HIGH PRESSURE OXIDIZER PUMP INLET PRESSURE A)

Put = HPFT DS T1 A

(HIGH PRESSURE FUEL TURBINE DISCHARGE TEMPERATURE A)

HPFT DS TI B

(HIGH PRESSURE FUEL TURBINE DISCHARGE TEMPERATURE B)

P233 = HPOT DS T1

(HIGH PRESSURE OXIDIZER TURBINE DISCHARGE TEMPERATURE A)

P_T,4 "- HPOT DS T2

(HIGH PRESSURE OXIDIZER TURBINE DISCHARGE TEMPERATURE B)

HPFP SPEED

(HIGH PRESSURE FUEL TURBOPUMP SHAFT SPEED)
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TEST FIRING MAY LAST OVER TEN MINUTES, SO NUMBER OF SAMPLES s MAY REACH
TENS OF THOUSANDS

• VECTORS P(Ti), | = O, 2, ,.., s-1 FORM s x N MATRIX (N = # PIDS)

O THIS POTENTIALLY HUGE MATRIX MUST BE EVALUATED OUICKLY
(PREFERABLY BEFORE NEXT SAMPLE) PROVIDING STRONG MOTIVATION FOR

EXTRACTING MANAGEABLE (AND CONSTANT) NUMBER OF FEATURES FROM MATRIX,
USING FAST CLASSIFICATION ALGORITHMS AND MACHINERY, ESPECIALLY PARALLEL
PROCESSING

IDEALLY, SSME PERFECTLY UNDERSTOOD, HEALTH STATUS DETERMINED FROM
SENSOR MEASUREMENTS BY APPLICATION OF THEORETICALLY DEDUCED RULES

• BUT SSME IS COMPLICATED, ITS BEHAVIOR NOT ENTIRELY PREDICTABLE

MAIN RESOURCES FOR CREATING DIAGNOSTIC SYSTEM ARE

• EXPERT KNOWLEDGE
(MUCH OF THIS IN FAILURE INVESTIGATION SUMMARIES)

• DATA ACCUMULATED FROM PREVIOUS NOMINAL & ANOMALOUS SSME FIRINGS

USE TRAINABLE PATTERN CLASSIFICATION SOFTWARE TO LEARN TO CLASSIFY

TRAINING DATA, ATTEMPT TO GENERALIZE CORRECTLY TO NOVEL DATA

NEURAL NETWORKS OFFER

• SPEED, ESPECIALLY IF IMPLEMENTED ON PARALLEL HARDWARE

• AUTOMATIC LEARNING OF SUBTLE FEATURES IN LARGE QUANTITIES OF DATA

• CAPABILITY OF GENERALIZING BASED ON PREVIOUSLY LEARNED EXAMPLES
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SSME TEST FIRING DATA EMPLOYED FOR CLASSIFIER TRAINING AND TESTING

(FIRINGS CONDUCTED ON GROUND BETWEEN 1981 AND 1989)

TWO NOMINAL FIRINGS (902-457, 902-463)

SIX ANOMALOUS FIRINGS REPRESENTING VARIOUS FAILURE TYPES

O

O

(901-331) CRACKED LIQUID OXYGEN POST

(902-249) POWER TRANSFER FAILURE, TURBINE BLADES

(901-340) TURN AROUND DUCT CRACKED/TORN

(901-364) HOT GAS INTRUSION TO ROTOR COOLING

(901-436) HIGH PRESSURE FUEL TURBOPUMP COOLANT LINER BUCKLE

(750-259) FUEL LEAK IN MAIN COMBUSTION CHAMBER OUTLET NECK

(MORE TEST FIRINGS TO BE ADDED IN FUTURE)

135



FAULT-DECLARE TIMES BASED ON FAILURE INVESTIGATION REPORTS FOR EACH FIRING,
PLUS AS OUR OWN ANALYSIS OF SENSOR DATA

FAULT-DECLARE TIME iS TIME WHEN SENSORS FIRST SHOW SYMPTOMS OF

FAULTY ENGINE PERFORMANCE, SO THAT AN ANOMALY DETECTION SYSTEM
IDEALLY SHOULD HAVE BEEN ABLE TO INITIATE SSME SHUT-DOWN

FOR NETWORK TRAINING, SENSOR SAMPLES TAKEN BEFORE FAULT-DECLARE
TIME CONSIDERED NOMINAL DATA, SAMPLES TAKEN AFTER THAT TIME
CONSIDERED ANOMALOUS DATA (HOWEVER SOME SAMPLES MAY BE LEFT OUT OF
THE TRAINING SET IF IN DOUBT WHETHER TO CONSIDER ANOMALOUS)

WHEN TESTING NETWORK PERFORMANCE, FAULT-DECLARE TIMES USED FOR

COMPARISON
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ATTENTION INITIALLY RESTRICTED TO PERIODS OF STEADY-STATEOPERATION

EXPLANATION FOR NON-ROCKET EXPERTS: THE SSME OPERATES AT VARIOUS POWER

(THRUST) LEVELS, MEASURED BY THE MAIN COMBUSTION CHAMBER PRESSURE, P63.

NORMALLY A FIRING HAS A SCHEDULED SEOUENCE OF POWER LEVELS. PERIODS

DURING WHICH THE POWER LEVEL IS HELD APPROXIMATELY CONSTANT ARE CALLED

"STEADY-STATE", AND MAY LAST A FEW SECONDS OR A FEW MINUTES. IN BETWEEN

THE STEADY-STATE PERIODS ARE INTERVALS OF THROTTLING, KNOWN AS

"TRANSIENTS". "TRANSIENTS USUALLY LAST ONLY A FEW SECONDS.

• MOST MAJOR FAILURES OCCURRED DURING STEADY-STATE

• TAILORING METHOD TO STEADY-STATE DATA ALLOWS USEFUL ASSUMPTIONS:

SENSOR VALUES NOT EXPECTED TO CHANGE SIGNIFICANTLY
(ALTHOUGH IN PRACTICE THEY CHANGE CONSIDERABLY)

• UNCHANGING VALUES CAN BE CONSIDERED NOMINAL

SAME CRITERIA FOR ENGINE HEALTH SHOULD APPLY REGARDLESS OF
AMOUNT OF TIME ELAPSED IN STEADY-STATE PERIOD

• TRANSIENT ANOMALY DETECTION INHERENTLY MORE DIFFICULT:

• SENSOR DATA CHANGE IN COMPLICATED WAYS

PATTERNS OF CHANGE MAY DEPEND ON EXACT NATURE OF TRANSIENT

(START & FINISH POWER LEVELS, RATE OF THROTTLING, ETC)

NOT APPROPRIATE TO GENERALIZE ACCROSS SAMPLES TAKEN AT DIFFERENT
TIMES DURING TRANSIENTS

IN FUTURE, MOST TECHNIQUES WE EMPLOY FOR STEADY-STATE COULD BE
EXTENDED TO APPLY TO TRANSIENT ANOMALY DETECTION
(RECURRENT NEURAL NETWORKS PARTICULARLY PROMISING)
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AT-EACH TIME Ti, MOST RECENT SAMPLE P(T i) IS KEY DATA.FOR DIAGNOSIS

SAMPLES P(Ti), j < i, ALSO PROVIDE IMPORTANT INFORMATION

• FOR DETECTING SIGNIFICANT CHANGES OR RECOGNIZABLE "FAULT
SIGNATURES" IN THE GRAPHSOF PID VALUES AS FUNCTIONS OF TIME

• FOR MEASURING DURATIONS OR COUNTING REPETITIONS OF POSSIBLY
ANOMALOUS CONDITIONS

• FOR COMPUTING MOVING AVERAGES, TO SMOOTH OUT "NOISE"

• IN ORDER TO CONSTRUCT AN ANOMALY DETECTION SYSTEM WHICH IS GENERAL
ENOUGH TO WORK ON VARIOUS ENGINES AT VARIOUS POWER LEVELS, IT MAY
BE DESIRABLE TO USE DATA FROM ONE TIME INTERVAL IN A GIVEN FIRING
AS A POINT OF REFERENCE FOR EVALUATING DATA FROM LATER TIME

INTERVALS IN THE SAME FIRING

PRE-PROCESSING OF PID .VALUES: CALCULATION OF FEATURES

• CONSOLIDATE RAW DATA FROM HUGE s x N MATRIX

(S = # SAMPLES P(Ti), i = 0, ..., s-l)

(N = # PIDS IN EACH SAMPLE)

• ENCODE ESSENTIAL TIME INFORMATION

• COMPOUND FEATURES MAY ALSO BE FORMED FROM PIDS BY CALCULATING

DIFFERENCES BETWEEN PIDS, AVERAGES OF PIDS, SPECIAL FORMULAS TO
COMBINE REDUNDANT PIDS, ETC
(SOME OF THE PIDS ARE IN FACT ALREADY COMBINATIONS OF THIS TYPE,
BUT WE HAVE NOT CREATED ANY NEW FEATURES IN THIS WAY)

• SCALE AND TRANSLATE FEATURES SO

• ALL CENTERED AROUND SAME VALUE (E.G. ZERO)

o ALL VARY WITHIN SAME APPROXIMATE RANGE (E.G. BY SCALING

ACCORDING TO STANDARD DEVIATIONS)
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WE CURRENTLY CALCULATE TWO FEATURES FOR EACH PID

• RECENT CHANGE

avgl(t)-Avg2(t)

LONG-TERM SMOOTHED CHANGE

Avg2(t)-Avg2(t,)

WHERE

Avg1(O MEAN PID VALUE FOR 0.12 SECONDS (3 SAMPLES)

Avg2(0 = MEAN PID VALUE FOR 2 SECONDS (50 SAMPLES)

(AVERAGES CALCULATED OVER TIME INTERVAL ENDING AT TIME t )

O = STANDARD DEVIATION OF PID VALUE

(MEASURED OVER ALL STEADY-STATE DATA FROM ALL AVAILABLE FIRINGS)

= TIME 3 SECONDS AFTER START OF CURRENT STEADY-STATE INTERVAL

THESE FEATURES RESEMBLE CALCULATIONS USED IN ROCKETDYNE'S SAFD

ALGORITHM
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RESULT OF PRE-PROCESSING IS D-DIMENSIONAL FEATURE VECTOR

X(T i) = (Xl(Ti) , Xz(Ti), ..., Xd(Ti))

WHICH IS FUNCTION OF PID SAMPLES P(Ti), i = O, 1, ..., S

I FEATURE VECTORS X HAVE FOLLOWING PROPERTY: THE ORIGIN OF D-DIMENSIONAL
FEATURE SPACE

0= (0, 0, ..., 0)

WHERE ALL D FEATURES ARE ZERO, IS "MOST NOMINAL" OF ALL POSSIBLE
SAMPLES, SINCE IT INDICATES ALL SENSORS REMAINING AT CONSTANT LEVEL
DURING STEADY-STATE OPERATION

I NON-ZERO VALUES OF FEATURES INDICATE DEVIATIONS FROM CONSTANT VALUE

TWELVE PIDS, WITH TWO FEATURES EACH, YIELD TWENTY-FOUR INPUTS TO
PATTERN CLASSIFICATION SOFTWARE
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NEURAL NETWORK ARCHITECTURE:

THREE LAYER FEEDFORWARD NETWORK TRAINED BY BACKPROPAGATION

BIOLOGICAL ANALOGY: UNIT = NEURON, CONNECTION = SYNAPSE

LAYER OF INPUT UNITS

(ONE FOR EACH FEATURE = 24 INPUT UNITS IN CURRENT MODEL)

LAYER OF HIDDEN UNITS

(8 - 12 UNITS IN A SINGLE LAYER FOUND TO BE SUFFICIENT SO FAR)

LAYER OF OUTPUT UNITS

(ONE FOR NOMINAL-VS-ANOMALOUS DIAGNOSIS, OTHERS FOR FAULT TYPING)

EACH INPUT UNIT CONNECTS TO EACH HIDDEN UNIT, AND EACH HIDDEN UNIT
CONNECTS TO EACH OUTPUT UNIT

CONNECTIONS BETWEEN UNITS CHARACTERIZED BY WEIGHTS
(CONNECTION STRENGTHS): EXCITATORY OR INHIBITORY

CAPABLE OF PERFORMING ANY MAPPING FROM INPUTS TO OUTPUTS

TRAINING ACCOMPLISHED BY BACKPROPAGATION OF ERROR
(WEIGHTS CHANGED AFTER EACH TRAINING PASS ACCORDING TO GENERALIZED
DELTA RULE)

NOTE: CHOICE OF HOW MANY HIDDEN UNITS DETERMINED BY

• NOT ENOUGH HIDDEN UNITS: IMPOSSIBLE FOR NETWORK TO PERFORM DESIRED
MAPPING ON TRAINING DATA

• TOO MANY HIDDEN UNITS: NETWORK MAY OVER-SPECIALIZE ON

IDIOSYNCRACIES OF TRAINING DATA, FAILING TO FIND MORE GENERAL
FEATURES DISTINGUISHING DATA CATEGORIES
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NETWORK OUTPUT = CLASSIFICATION OF INPUT DATA

• SINCE FIRST PRIORITY OF DIAGNOSTIC SYSTEM IS SHUT-DOWN DECISION

MAKING, ESSENTIAL CLASSIFIER OUTPUT HAS ONLY TWO VALUES:

• ANOMALOUS (RECOMMEND SHUTTING DOWN ENGINE) OR

• NOMINAL (RECOMMEND PROCEEDING AS USUAL)

• MORE COMPLEX FORMS OF EVALUATION MAY PROVIDE

• DESCRIPTION OF ANOMALY, WHETHER OF KNOWN FAILURE TYPE

• WHICH ENGINE PARTS ARE INVOLVED

• ESTIMATE OF SEVERITY

• SIMILARITY TO DATA FROM PREVIOUS FAILURES

• DEGREE OF CONFIDENCE IN DIAGNOSIS

• ANOMALY DETECTION VS. FAULT TYPING

• FAULT TYPING REQUIRED IF SHUT-DOWN PROCEDURES DEPEND ON

FAILURE TYPE, OR NETWORK FORMS PART OF LARGER DIAGNOSTIC
SYSTEM (WHICH CALLS FOR MORE SPECIFIC DIAGNOSIS BY NETWORK)

• WE HAVE EXPERIMENTED WITH FAULT-TYPING, TREATING EACH
ANOMALOUS TEST FIRING IN TRAINING SET AS REPRESENTING ONE

FAULT TYPE

• CURRENT NETWORK CONFIGURATION HAS

• AN OUTPUT UNIT TRAINED TO FIRE LOW IF NOMINAL AND HIGH IF

ANOMALOUS

• ADDITIONAL OUTPUT UNITS FOR EACH FAULT TYPE

(I.E., ONE FOR EACH ANOMALOUS TEST FIRING IN TRAINING SET)

• THUS WHEN TRAINING ON DATA INCLUDING FIVE ANOMALOUS FIRINGS,
WE EMPLOY SIX OUTPUT UNITS IN FEEDFORWARD NETWORK
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AVAILABLE NOMINAL AND ANOMALOUS DATA CURRENTLY VERY LIMITED

ONLY A HANDFUL OF TEST FIRINGS TO USE FOR TRAINING

(MORE NOMINAL DATA CAN EVENTUALLY BE OBTAINED FROM NASA, BUT

ANOMALOUS FIRINGS ARE RARE -- FORTUNATELY!)

EACH FIRING PROVIDES MANY DATA SAMPLES. HOWEVER SAMPLES FROM A

GIVEN FIRING TEND TO LIE ON A TRAJECTORY, EACH SAMPLE BEING CLOSE
TO PREVIOUS SAMPLE

IMPOSSIBLE FOR THIS LIMITED QUANTITY OF DATA TO COME CLOSE TO SPANNING
ENTIRE 24-DIMENSIONAL POTENTIAL INPUT SPACE

(IN 24-DIMENSIONAL SPACE M_ST POINTS ARE VERY FAR APART. THE NUMBER OF
QUADRANTS IN 24-SPACE IS 2_ = 16,777,216)

o GENERALIZATION TO NEW DATA REQUIRES BOTH INTERPOLATION AND
EXTRAPOLATION

COMPLETE DECISION BOUNDARY BETWEEN NOMINAL AND ANOMALOUS REGIONS
CANNOT BE UNIQUELY DETERMINED FROM ANY FINITE AMOUNT OF TRAINING
DATA

NETWORK MUST BE TRAINED APPROPRIATE RESPONSE TO UNPRECEDENTED
INPUT DATA

UNLESS NEW ANOMALOUS FIRING VERY SIMILAR TO ONE OF TRAINING

FIRINGS, NEW ANOMALOUS DATA WILL NOT RESEMBLE OLD ANOMALOUS DATA
ANY MORE THAN IT RESEMBLES OLD NOMINAL DATA

NEED TO MAKE ASSUMPTIONS ABOUT SHAPE OF NOMINAL REGION TO BE

MAPPED OUT BY ANOMALY DETECTION SYSTEM, IMPOSE THESE ASSUMPTIONS
ON TRAINABLE CLASSIFIER

A BASIC ASSUMPTION WILL LEAD TO DETECTION OF NEW FAULT TYPES:

ANY NEW DATA SUFFICIENTLY DIFFERENT FROM ALL PREVIOUSLY
ENCOUNTERED NOMINAL DATA TO BE CONSIDERED ANOMALOUS

TO FORCE FEEDFORWARD NEURAL NETWORK TO CATEGORIZE NEW DATA IN

ACCORDANCE THIS ASSUMPTION, IT HAS BEEN FOUND ADVANTAGEOUS TO ADD
I M I T A T I 0 N NOMINAL AND ANOMALOUS TRAINING DATA TO
TRAINING DATA FROM ACTUAL SSME FIRINGS
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GENERATE IMITATION DATA RANDOMLY DISTRIBUTED THROUGHOUT SUITABLE PART

OF INPUT SPACE

IMITATION ANOMALOUS DATA EITHER RANDOMLY DISTRIBUTED (WHICH PLACES
IT GENERALLY FAR OUT IN INPUT SPACE) OR WITH VALUES OF SOME
COMPONENTS NEAR KNOWN FAULT READINGS)

IMITATION NOMINAL DATA WITHIN EXPECTED RANGES OF NOMINAL FEATURES
(CURRENTLY LIMITED EXPERIENCE WITH ADDING GENERATED NOMINAL DATA)

COMBINE RANDOM DATA WITH GENUINE NOMINAL AND ANOMALOUS DATA FOR
TRAINING

TRAIN NETWORK TO CATEGORIZE GENERATED ANOMALOUS DATA AS ANOMALOUS,

GENERATED NOMINAL DATA AS NOMINAL

TASK OF RECOGNIZING GENERATED DATA FORCES NETWORK TO LEARN

BOUNDARIES OF EXPECTED NOMINAL REGION
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SOME FINDINGS AT INTERMEDIATE STAGE IN OUR RESEARCH

NEURAL NETWORK CLASSIFIER IS ALWAYS CAPABLE OF LEARNING TRAINING
DATA WITH VIRTUALLY 1009 ACCURACY, OUTPUTTING "NOMINAL" WHEN FED
NOMINAL DATA, AND "ANOMALOUS" WHEN FED ANOMALOUS DATA

GENERALIZING TO NEW (UN-TRAINED) ANOMALOUS FIRINGS HAS BEEN
SYSTEMATICALLY UNDERTAKEN ACCORDING TO SINGLE HOLD-OUT PRINCIPLE:

TRAIN NETWORK ON ALL TRAINING DATA (TO INCLUDE GENUINE DATA
FROM NOMINAL AND ANOMALOUS TEST FIRINGS AS WELL AS SOME

IMITATION ANOMALOUS DATA), EXCEPT FOR DATA FROM ONE TEST
FIRING DELIBERATELY WITHELD

TEST SAME NETWORK ON DATA FROM FIRING WHICH WAS WITHELD FROM
TRAINING

NETWORK HAS DEMONSTRATED ABILITY TO CORRECTLY CLASSIFY THIS DATA
THAT IS NEW TO IT AS NOMINAL UP UNTIL FAULT-DECLARE TIME, AND
ANOMALOUS THEREAFTER

POSITIVE RESULT OF GENERALIZATION IS CONTINGENT ON TRAINING WITH
RANDOM IMITATION ANOMALOUS DATA (OTHERWISE NEW DATA IS ALWAYS
CLASSIFIED AS NOMINAL)

FAULT-TYPING (AC!IVATIONS OF ADDITIONAL OUTPUT UNITS) IS LEARNED
CORRECTLY FOR TRAINING DATA, BUT NEW DATA IS NEVER CLASSIFIED AS
BELONGING TO ANY PREVIOUS FAULT-TYPE

NOW WHEN GENERALIZATION IS NOT SUCCESSFUL, CHIEF PROBLEM IS FALSE
ALARMS (CLASSIFICATION OF NEW NOMINAL DATA AS ANOMALOUS)
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AN APPROACH HAS BEEN FOUND FOR RECOGNIZING WHEN A FALSE-ALARM IS
DEPENDENT ON FEATURES CORRESPONDING TO SINGLE PID, AND IMMEDIATELY
DETERMINING WHICH PID IS RESPONSIBLE:

MULTIPLE COPIES (ONE FOR EACH PID) OF EACH FEATURE VECTOR ARE
SEPERATELY FED THROUGH NETWORK

EACH COPY IS ALTERED BY HAVING FEATURES CORRESPONDING TO ONE OF
PIDS REPLACED WITH ZEROS (REMEMBER THAT FOR CURRENT FEATURES, ZERO
MEANS NO-CHANGE, AND NON-ZERO INDICATES DEVIATION FROM CONSTANT
STEADY-STATE VALUE)

NETWORK OUTPUTS FOR EACH COPY SHOW WHAT CLASSIFICATIONS WOULD BE
IF EACH.PID IN TURN INDICATED NO CHANGE

ZEROING OUT PID RESPONSIBLE FOR FALSE ALARM RESULTS IN CORRECT
CLASSIFICATION AS NOMINAL UP UNTIL FAULT-DECLARE TIME, AND
ANOMALOUS THEREAFTER

SUCH RESULTS SUGGEST POSSIBILITY OF INCORPORATING VOTING SCHEME
INTO MAKING CLASSIFIER OUTPUT MORE ROBUST WITH RESPECT TO FALSE
ALARMS CAUSED BY ANY SINGLE FEATURE, IF IT IS FOUND APPROPRIATE TO
REOUIRE MORE THAN ONE PID TO MANIFEST SYMPTOMS BEFORE MAKING AN

ANOMALOUS CLASSIFICATION, OR SIMPLY AS AID TO ISOLATING POSSIBLE
SENSOR FAILURES
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WORK IN PROGRESS

FURTHER TRAINING AND TESTING OF FEEDFORWARD NEURAL NETWORKS,
EMPLOYING SEVERAL NEW KINDS OF SIMULATED OR MODIFIED SUPPLEMENTARY

TRAINING DATA:

GENERATE SIMULATED / MODIFIED DATA DYNAMICALLY DURING

TRAINING, RATHER THAN PUTTING INTO TRAINING DATA FILE AND
USING REPEATEDLY (MUCH MORE EVEN COVERAGE OF FEATURE SPACE)

RESTRICT RANDOM SIMULATED ANOMALOUS DATA TO STAY OUTSIDE OF
REGIONS ASSUMED TO BE NOMINAL (REOUIRE MINIMUM LENGTH FOR

ANOMALOUS FEATURE VECTORS, ETC --- MAY DECREASE FALSE-ALARMS)

USE RANDOMLY GENERATED NOMINAL DATA CLOSE TO ORIGIN
(JUSTIFICATION: NO GENUINE ANOMALOUS FEATURE VECTORS HAVE

BEEN OBSERVED WITHIN A CERTAIN RADIUS OF ORIGIN, BUT FALSE
ALARMS HAVE OCCURRED THERE)

MODIFY GENUINE NOMINAL FEATURE VECTORS BY REPLACING SOME
COMPONENTS WITH ZERO VALUES (TO PREVENT FALSE ALARMS DUE TO

MISSING SENSORS, AND TO FILL OUT NOMINAL REGION IN ACCORDANCE
WITH ASSUMPTION THAT IN STEADY-STATE CONTEXT, UNCHANGING
SENSOR VALUE SHOULD NOT CAUSE FEATURE VECTOR TO BE REGARDED
AS ANOMALOUS)

MODIFY GENUINE ANOMALOUS FEATURE VECTORS IN SAME WAY (TO MAKE

ANOMALY DETECTION MORE ROBUST, NOT DEPENDENT ON ANY SINGLE

PID, TO GUARANTEE DETECTION EVEN USING TESTING METHOD
SUGGESTED ABOVE IN WHICH APPARENT ANOMALY DUE TO ONLY ONE PID

MAY NOT BE ENOUGH TO WARRANT ENGINE SHUT-DOWN)
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EXPERIMENTING WITH VARIATIONS IN TRAINING TECHNIOUE AND NETWORK
ARCHITECTURE, ESPECIALLY RECURRENT NETWORKS:

• RECURRENT NETWORKS DESIGNED TO CLASSIFY TIME SERIES DATA

ACTIVATIONS OF HIDDEN UNITS FEED BACK TO RETAIN MEMORY FOR
CLASSIFYING SUBSEOUENT INPUTS IN.TIME SERIES CONTEXT

O AUTOMATICALLY LEARNED INTERNAL FEATURES OF RECURRENT NETS MAY
BE USEFUL ADDITION OR ALTERNATIVE TO OUR EXPLICITLY COMPUTED
CHANGE-MEASURING FEATURES
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USING SOME GEOMETRICAL PERSPECTIVES ON THE PROBLEM, EXPERIMENTING
WITH PLAUSIBLE ALTERNATIVE METHODS FOR EXTRAPOLATING FROM TRAINING
DATA TO DETERMINE BOUNDARIES OF NOMINAL REGION IN 24-DIMENSIONAL
VECTOR SPACE:

LENGTHS OF FEATURE VECTORS (I.E. DISTANCE FROM ORIGIN) FOUND
TO BE GOOD INDICATORS OF TRANSITIONS FROM NOMINAL TO
ANOMALOUS DATA

NOMINAL REGION COULD BE CHARACTERIZED BY ESTABLISHING MAXIMUM
LENGTH FOR NOMINAL FEATURE VECTORS IN ANY GIVEN DIRECTION

DETERMINE THESE MAXIMUM LENGTHS FOR TRAINING DATA, GENERALIZE
TO NOVEL DATA BY VARIATION ON NEAREST NEIGHBOR PRINCIPLE,
DEFINING NEARNESS ACCORDING TO ANGLES BETWEEN VECTORS

INITIAL IMPLEMENTION OF THIS APPROACH USES SEQUENTIAL
ALGORITHMS, COULD BE IMPLEMENTED IN PARALLEL (ALONG SIMILAR
LINES AS THE PROBABILISTIC NEURAL NETWORK, WHICH ALSO
RESEMBLES NEAREST NEIGHBOR CLASSIFIER)
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Graph of Neural Network Output for Novel Data

A neura._ network was trained on data from all test firings sxcep*, 90!-249, plus randomly

generated anomalous data. The graph shows the activation of the nominal-versus-

anomalous output unit when the network was tested on firing 901-249.

The network clearly begins to detect an anomaly around 328 seconds, a few seconds after

symptoms began to occur according to Failure Investigation Summary. The SSME was

not actually shut down until 450.58 seconds, after massive damage had occurred.
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Example of a "False-Alarm" in Generalization to Novel Data

Network was trained by holding out only the anomalous firing 901-436, and te_1e.d,on
_%, ¢ ..,,,a- firing. The e.ctual .,"ault di_ oot occur u_til 6!0 se=ond3, an-! ea..'ly warv.d:,_ ... _.ariy

as shown on this graph does not appear to be realistic. Therefore this must bs re_ard_.d
as a false alarm.
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Result of zeroing out features for PID 24

in the same "False Alarm" case

The time at which the graph of the "deviant" output unit finally goes above .6 is now

precisely the fault-declare time determined by analysis for the novel ancma_ouc firi.'_g

9133-43,3. (2ID 24, and the two features calculated were in fact out of range for the
training firings.)
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