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Symbols

D1

Dl-.8

Do

D_

Do/D_

Do/F

no/ Fc_

D_/F

nr./

F

MATMULURunl

MATMULU(U_41 Runj)

MATMULNRunl

MATMULN(N}41Runj)

N1

N1/Do

N,/F

N1/F 

NE/Dz

gr./F

/

faults detected after the first program iteration of LINCON

(including those in local memory)

faults detected in any of the first eight program iterations of

LINCON (local random access memory (RAM) only)

faults visible at an output after the first program iteration of

LINCON

faults detectable anywhere in RAM

proportion of detectable faults visible at an output after the

first program iteration

proportion of faults detectable at an output port after the

first program iteration

proportion of distinguishable faults detectable at an output

port after the first program iteration

simulated faults detectable anywhere in RAM

distinguishable faults detectable anywhere in

proportion of

proportion of
RAM

total number of simulated faults (same for each run), 1741

number of simulated faults corrected for known indistinguish-

able faults, 1558

faults detected by MATMUL or by LINCON run 1

faults detected by MATMUL or by any of the 14 LINCON

runs

faults detected by MATMUL and by LINCON run number 1

faults detected by MATMUL and by all 14 LINCON runs

number of faults that failed to produce an answer in the first

program iteration of LINCON

proportion of faults detected in the first iteration that failed

to produce an answer

proportion of faults that failed to produce an answer in the

first program iteration

proportion of distinguishable faults that failed to produce an

answer in the first program iteration

number of faults that failed to produce an answer for all

program iterations

proportion to detectable faults that failed to produce an
answer for all program iterations

proportion of faults that failed to produce an answer for all

program iterations

proportion of distinguishable faults that failed to produce an
answer for all program iterations

V
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14
[J_=l Runj

14
('lj=l Runj

coincident error as defined in Swern et al. (ref. 6); given that
two faults (one latent) exist in distinct redundant channels of
a fault-tolerant digital system, $ is the probability that they
produce identical errors

faults detected in any of the 14 LINCON runs

faults detected in all 14 LINCON runs
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Introduction

Focus of This Study

This paper discusses the results of the initial test-

ing of the Generalized Gate Logic System Simulator

(GGLOSS). The simulator is a special-purpose fault

simulator designed to assist in the analysis of the ef-
fects of random hardware failures on fault-tolerant

digital computer systems. The testing of the simu-

lator covers two main areas. First, the simulation
results are compared with data obtained by moni-

toring the behavior of hardware. The circuit used

for these comparisons is an incomplete microproces-

sor design based upon the MIL-STD-1750A Instruc-

tion Set Architecture. In the second area of testing,

current simulation results are compared with experi-

mental data obtained using precursors of the current

tool. In each case, a portion of the earlier experi-
ment is confirmed. The new results are then viewed

from a different perspective in order to evaluate the

usefulness of this simulation strategy.

The structure of the report is as follows. The

remainder of this introductory section gives a brief

historical perspective of the simulator, a description
of the salient features of the GGLOSS simulation

strategy, and a description of the microprocessor
design. The following section describes the results of

comparing the simulation results with data obtained

from the laboratory prototype. The final section

consists of a comparison of current data with the

results from two earlier fault simulation experiments.

The first of these is an attempt to estimate the fault

coverage of a comparison monitoring fault-tolerant

system. The second study attempted to estimate

the percentage of coexisting faults that can defeat

a comparison monitoring system. In each case, a
portion of the earlier study is recreated, and then a

different interpretation of the results is given.

Historical Background

There have been a series of studies sponsored by

Langley Research Center that have explored the dy-
namics of gate-level fault behavior in fault-tolerant

digital computer systems. In a 1978 study address-

ing the use of a compaxator/voter as a means for de-
tecting faults, Nagel (ref. 1) reported that, for the

six sample programs, only _50 percent of the in-

jected faults produced observable errors after eight

program iterations. If the comparator/voter were

the only means of fault detection, this would allow

multiple faults to accumulate in redundant channels,

creating the potential for defeating redundancy man-

agement logic. McGough and Swern (refs. 2 and 3)

then performed a series of gate-level simulations of

a Bendix BDX-930 "avionic mini processor" in or-

der to corroborate Nagel's results by using a realistic

digital avionic system. That study measured similar

detection probabilities for the six algorithms used by

Nagel. In addition, a three-axis flight control com-

putation was simulated. Once again, a significant
number of the simulated faults failed to produce an
observable error. The BDX-930 simulation was also

used to demonstrate a methodology for designing and

validating built-in self-test routines. In 1982, Mc-

Gough performed a feasibility study to identify the
salient features of the BDX-930 Gate Logic Software

Simulator (BGLOSS) and to determine if a gener-
alized simulator could be developed (ref. 4). The

feasibility study concluded that a generalized ver-

sion could be written, and a prototype generalized

simulator was developed. This simulator was called

the Interim Generalized GLOSS (IGGLOSS) (ref. 5).

Due to limitations in the original IGGLOSS, Lang-

ley opted to develop a production grade version of

the simulator (GGLOSS). Concurrently, Swern et al.

(ref. 6) used an extended version of IGGLOSS (called

S-GGLOSS) to simulate a simple 300-gate processor

in order to estimate the probability of coincident er-

ror in a redundant computing system. The ultimate
intent of these studies was to provide some means to

estimate fault coverage for the reliability analysis of

fault-tolerant digital computer systems.

Description of Simulator

GGLOSS was designed specifically to be a high-

speed fault simulator. As such, it lacks features

such as circuit timing analysis and multivalued logic,

which are common in commercially available design

verification simulators. It depends upon the assump-
tion that the simulated circuit is a verified design.

Fhrthermore, since it was designed to be able to

simulate processing elements executing application

programs, a key development issue was simulation

speed. To achieve this, GGLOSS is limited to 2-

value logic, which allows the parallel simulation of
32 copies of the circuit on a VAX host. GGLOSS

maintains 1 unfaulted copy of the circuit for easy

comparison, while allowing the user to inject faults
in any of the other 31 copies. The user has the op-

tion of injecting single or multiple faults in each of

the 31 faultable copies of the circuit. Injected faults

may be permanent or intermittent. GGLOSS uses

bit masking to inject stuck-at-l, stuck-at-0, and in-

vert faults at any input or output node of any gate

in the circuit. A user can monitor the propagation of

a fault at any point in the circuit because any loca-
tion within the simulated circuit can be designated

as a test point. GGLOSS compiles the circuit from
a netiist description into an internal representation



o_primitivefunctionsthat areevaluatedin an in-
variant,predeterminedorder.Thiseliminatesmuch
of the overhead required by an event-driven simula-

tor. The compiled circuit representation implements

a combination of zero-delay and unit-delay simula-

tion techniques in order to model combinatorial and

sequential circuit elements, respectively. This set of

characteristics gives GGLOSS the ability to simulate

approximately 106 gate evaluations per MicroVAX II

cpu-second, while allowing the user the ability to
monitor the effects of the simulated faults. In order

to simulate a large number of faults, GGLOSS allows

the creation of several independent simulations, each
consisting of 31 different fault scenarios. These inde-

pendent simulations can be easily distributed among

the nodes of a local area network, achieving perfor-
mance gains nearly linear with respect to the number
of available nodes.

Description of Microprocessor Design

The circuit used in the initial evaluation of

GGLOSS is a self-testing microprocessor design

based upon the MIL-STD-1750A Instruction Set Ar-

chitecture (ISA). Reasons for selecting this circuit
include the availability of gate-level schematics, doc-

umented microcode, and a laboratory prototype cir-

cuit. The laboratory prototype implementation was

constructed using special chips that allow for the

gate-level injection of faults. This feature provided

a means for comparing the results of fault simula-

tions in GGLOSS with those obtained by injecting

faults in the hardware. The laboratory prototype
hardware and documentation were delivered "as is"

at the end of the second stage of a three-stage project,

and the third stage was not funded. Thus, comments

concerning the lack of features within the processor

do not imply a criticism of the design, but rather a

recognition of the difficulties encountered when work-

ing with an unfinished project.

Among the limitations of the hardware design was
the lack of a significant portion of microcode. There

were no branch instructions, no single precision inte-

ger compare, no floating-point operations, no stack

operations, and no subroutine calls3 Furthermore,

the interrupt logic, while present, was not functional.

There was a surplus of unused bits in the microcon-

trol store, but none of these had been assigned to

the necessary control signals for the interrupt hard-

ware. While these limitations hampered the simula-
tion effort, it was still possible to use this circuit as

a means of testing the simulator. One caveat should

1 Microcode for some of the missing instructions was developed

by the author in order to perform this study.

be stressed as a result of these limitations; that is,
while useful information was gained about the sim-
ulator, it is not reasonable to treat the results ob-

tained as typical of production microprocessors. Nei-

ther should the results be construed as being relevant
to any commercially available MIL-STD-1750A ISA

microprocessor, since the processor in question does

not meet the full Notice 1 specification. Henceforth,
the processor used in this study will be referred to as

the "SS-1750A," since it implements a subset of the

MIL-STD-1750A Notice 1 specification.

The laboratory prototype design also had features

useful to this study. The microcode was stored in a

writable control store and thus was easily modified

through control of the PC host. Furthermore, the de-

sign was implemented using custom SSI (small scale
integration) chips, making many of the locations in

the design readily accessible to logic analyzer probes.

These custom chips allowed for simple injection of

faults into the combinatorial logic of the arithmetic

logic unit (ALU).

Comparison Between Simulation and

Hardware

Unfaulted Testing of Simulator

The initial testing of GGLOSS was performed us-

ing partial schematics of the SS-1750A prior to de-

livery of the laboratory prototype hardware. The

schematics had been developed using a computer-

aided design (CAD) system, so a machine readable

circuit description (netlist) could be generated au-

tomatically. Individual netlists were generated of

various functional components, including the arith-
metic logic unit (ALU), microsequencer, general pur-

pose register file, and the I/O (input/output) regis-
ters. After several iterations of modifications to the

schematics _ and to the part mapping definitions for

the GGLOSS Circuit Ingest environment, 3 a valid in-
ternal representation of each of these subcircuits was
obtained. These were each simulated for a few test

cases in order to check for errors in the netlists. Ulti-

mately, the schematics were combined, and a netlist

corresponding to the usable portion of the design was
produced .4

The effort required to verify correct unfaulted

simulation of the microprocessor was compounded by

2 For example, the most common modification was the addition
of part attributes to the symbols in order to generate a valid
netlist.

3 The Circuit Ingest environment consists of the set of pro-
grams that map external circuit descriptions to the appropriate
internal primitive representations.

4 The interrupt logic was not included in the simulation.
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thefactthat thedocumentationof theprocessorwas
incomplete,therewereerrorsin the schematic,and
the simulatorwasstill beingdeveloped.Thus,any
discrepancybetweenexecutionof the simulatorand
the prototypehardwarecouldbecausedby aner-
ror in anyof theseareas.Severaldifferenceswere
foundbetweenthebehaviorof the initial simulation
attemptandthebehaviorofthehardware.A fewdis-
crepanciesweretracedto flawsin theimplementation
of thesimulator.Theseflawswereimmediatelycor-
rectedby theGGLOSSdevelopmentteam.Manyof
thediscrepancieswerecausedbymisinterpretationof
theprocessordocumentation,whilesomeweredueto
incorrector incompletedocumentation.Eventually
a workingsimulationof the processor was obtained.

Self-Test Fault Simulation

Description of self-test. In the initial phase of

the GGLOSS evaluation, the self-test mechanism of

the SS-1750A processor was exercised. The self-test

hardware for the data path of the processor consists

of a linear feedback shift register (LFSR) for generat-

ing pseudorandom test patterns, and a multiple input

signature register (MISR) for compressing the resul-
tant signature. 5 The data path test is controlled by

the microcode. Two different algorithms are used for

testing registers, with the results of each test shifted

into the MISR. The data path test also checks the

ALU logic by using the LFSR to generate input pat-

terns. For each test pattern, several ALU functions

are exercised, and all intermediate results are shifted
into the MISR.

On the SS-1750A there are two modes for exe-
cution of the self-test microcode. The first mode is

used to generate a "good-machine" signature, which

is required to evaluate the results of subsequent tests.

In this mode, the microcode loop that generates the
pseudorandom test patterns and exercises the ALU

logic is repeated for exactly 1024 patterns. After the

loop terminates, the contents of the MISR are stored

into the good-machine signature register. This is the

only situation in which it is possible to write into

this register, at any other time it can only be read.

Thus the first mode consists of generating the good-
machine signature necessary for comparison during

subsequent self-test execution.

The second mode consists of testing for the pres-

ence-of faults. In this mode, the test loop is repeated

until the contents of the MISR are equal to the pre-

viously generated good-machine signature. In other
words, the loop is now nonterminating if the circuit

5 See P. K. Lala's text for discussion of how to implement a
LFSR/MISR combination (ref. 7, p. 229-30).

fails the test. However, it is possible for a fault to

alter the execution of the test such that a valid signa-

ture is generated in a different number of iterations

than required to produce a "good" signature. In this

case, the fault is actively causing erroneous behav-

ior, but is undetected by the test. The fact that a

failed test is nonterminating is unfortunate because

the only way to recognize that a component has failed

is if it does not claim to be good within a fixed time
interval.

Results and analysis. Once a few discrepan-

cies caused by errors in the processor documentation

were resolved, the good-machine signature generated

by the GGLOSS simulation was identical to the sig-

nature generated by the SS-1750A hardware. It was

then possible to make comparisons of the faulted be-

havior. The laboratory prototype processor allows

for the injection of 1312 distinct stuck-at faults in
the gates of the arithmetic logic unit. The faults can

be inserted only in the combinatorial logic. Table I

shows the class of faults injected for each combina-

torial gate type. All these faults were injected in the

hardware prototype. For each fault, the self-test was

executed for a fixed number of clock cycles, and the
results contained in the MISR at the end of that in-

terval were saved. Additionally, the contents of the

MISR were compared with the previously generated

good-machine signature in order to measure coverage
of the test.

Table I. Fault Set--Self-Test

Gate Input pins Output pins

And Stuck-at- 1 Stuck-at-0

Or Stuck-at-0 Stuck-at- 1

Nand Stuck-at-1 Stuck-at-1
Nor Stuck-at-0 Stuck-at-0

In the GGLOSS simulation, it was not necessary

to initialize the good-machine signature register, as

the unfaulted scenario s would always generate the

appropriate signature value in time for the intended

comparison. By not initializing the good-machine
signature, the termination condition for the self-test

loop in the GGLOSS simulation was different from

that on the hardware, but only in the case where
the fault caused a good-machine signature at an

inappropriate time. Remember that the structure

of the self-test is such that it is possible for a fault to

6 Remember that in GGLOSS there is always one fault-free
copy of the circuit maintained.

3



gelnerate a valid signature, which causes early exit

from the test. Setting up the simulation in this

manner not only allowed for reduced simulation time,
but raised the possibility of identifying faults that

defeat the self-test algorithm.

Of the 1312 stuck-at faults, 1300 were detected by

this test, both in the hardware prototype and in the

GGLOSS simulation. However, when the signatures

generated on the prototype hardware were compared
with those generated by the GGLOSS simulation,

9 of the 1300 detected faults had signatures that
disagreed. Either there was an error in the simulation

or these nine faults actually defeated the test. On

the hardware, the presence of these faults had been

observed by the PC host that was monitoring the

test, but they had not actually been detected by the

self-test. Subsequent executions on the laboratory
prototype demonstrated that these 9 faults exited

the self-test with a good-machine status prior to the

1024th pass through the test loop. Even though
the SS-1750A documentation recorded these nine

faults as being detected by the self-test, the results

of this study indicate that they were undetected

by the test and returned control to the processor. T

Thus, the GGLOSS simulation revealed a previously

undocumented error in the design of the self-test.

Comparison With Previous Experiments

Comparison Monitoring Coverage

Description. A suitable reference point for de-

termining the applicability of GGLOSS is an inves-

tigation of the results of the BGLOSS simulation of

the BDX-930 (refs. 2 and 3). It will be shown that re-
sults generated from the simulation of the SS-1750A

correspond closely to those produced in the BDX-930
study. However, the results will also be viewed from

a different perspective. Both the Nagel study and

the BDX-930 studies demonstrate that comparison
monitoring systems s fail to detect all possible faults

(refs. 1, 2, and 3). Similar results can be shown using
the SS-1750A.

There may exist faults that will remain unde-

tected by a comparison monitor and then subse-

quently exhibit malicious behavior. 9 Experiments

7 With the addition of a counter these faults could also be

detected, asone could ignore anygood'machine signals until after
execution for a fixed number of clock cycles.

8 A comparison monitoring system is one that uses tests for
equivalence between redundant systems in order to detect a faulty
channel.

9 For example, consider a fault that can only exhibit erroneous
behavior when the system attempts to reconfignre. The effects of

to date have not provided a better understanding
of these potentially malicious latent faults. All that

has been determined is that the majority of stuck-
at faults do not exhibit malicious behavior. In other

words, these studies have provided a better under-
standing of the behavior of nonlatent or short-term

latent faults. None of the studies were able to deter-

mine if any of the undetected faults (possibly long-
term latents) could exhibit malicious behavior.

There were two simple 1750A programs used in

this part of the study. The code is given in the ap-

pendix. The first implements the LINCON 1° (refs. 2
and 3) algorithm from the BGLOSS simulations of

the BDX-930. The second is a matrix multiplication
(MATMUL) routine that squares a 2 × 2 matrix of

floating-point data. Eight program iterations of LIN-

CON require approximately 20000 clock cycles to
complete on the SS-1750A processor. MATMUL re-

quires approximately 10 000 clock cycles to complete

(worst-case estimate). Assuming a 10 MHz clock rate

for the processor, these programs require 2 ms and

1 ms of real time, respectively, to complete. There

were 14 sets of input data generated randomly for
the LINCON program. Each input set was selected
in accordance with the criteria used in the BDX-930

study. Only one set of data was required for the com-

parison monitoring experiment. The multiple sets of
data were required for the section on coincident error.

The MATMUL program was executed using a single
set of floating-point data consisting of all nonzero en-

tries. Both positive and negative values were used in

order to fully exercise the floating-point operations.

Using these two programs, many of the capabilities
of GGLOSS were exercised.

The set of faults (F) for the SS-1750A simula-

tion were selected from the microsequencer and the

ALU. Faults were injected in the combinatorial logic

only and were selected according to the criteria pre-

sented in table I. A total of 1741 faults was se!ected,
including the 1312 used in the evaluation of the self-
test. These faults were simulated for each of the 14

LINCON executions, as well as for the execution of
MATMUL.

such a fault cannot appear until a system is attempting to recover
from a second fault. Such a fault could prevent the system from
reconflgnring, even if sufficient hardware was available.

10 A simple program performing arithmetic operations on inte-

ger data which is similar in structure to control programs. This
program was chosen because, of all the programs simple enough
to implement on the SS-1750A, the observed fault behavior for
this program was closest to that of the flight control computation
simulated in the BDX-930 study.



Results. Table II presents initial detection re-
sults from the SS-1750A simulation for each of the 14

distinct LINCON runs. For this table, Di represents
the number of faults detected in the ith iteration that

were not detected in any previous iteration. The de-

tectability criteria for this table include only those

errors observable at the single output of the program

or at the memory location for internal feedback data.
Errors observable elsewhere were not counted. Col-

umn D1--.8 represents those faults detected in any of

the eight program iterations. As was shown in the
previous studies, the majority of faults detected were

detected in the first iteration. Also, while a majority
of faults were detected, a significant percentage re-

mained undetected after eight iterations of the pro-

gram. These results are similar to those presented for

the BDX-930 simulation of the LINCON algorithm.

In that study (refs. 2 and 3), the LINCON program

was executed for eight iterations using a single set

of randomly generated input data. Of 807 injected

gate-level 11 faults, 547 were detected for a coverage
estimate of 0.678. Of the 547 detected faults, 529

caused an error in the first iteration of the program

with the remaining faults detected in the 2nd through
8th iterations.

Table II. Detection by Iteration--LINCON

LINCON DI-s D1 D2 /])3 D4 /95 /96 Dz Ds

Run1 1331 1227 54 16 15 9 8 2 0

Run2 1302 1130 76 37 17 10 16 16 0

Run 3 1319 1072 134 30 21 39 3 8 12

Run4 1321 1178 71 21 18 23 8 1 i

Run5 1311 1211 53 28 9 4 0 6 0

Run 6 1284 1176 47 28 15 10 8 0 0

Run7 1292 1151 83 20 17 17 1 3 0

Run s 1320 1090 143 28 20 25 12 2 0
Run9 1306 1184 49 35 6 12 10 6 4

Runl0 1328 1198 57 41 15 12 3 2 0

Runll 1310 1074 138 52 9 8 15 8 6

Run12 1325 1168 71 12 22 15 17 19 1

Runl3 1289 1191 36 30 11 3 16 2 0

Run14 1328 1250 36 24 17 0 0 0 1

Departing from the earlier results, table III gives

various coverage factors for the 14 executions of the

LINCON program. The criteria used for detection in

this table are slightly different from those used in ta-

ble II; Dr_ represents the set of faults that corrupted

11 Although the BDX-930 study included PROM bit faults, they

are excluded from this summary, since this study did not consider

memory faults.

any location of memory (e.g., the entire contents of

RAM were compared) and Do represents only those
errors that would be visible at an output port after

the first iteration of the program. Except for runs 6
and 7, the set of faults detectable anywhere were de-

tectable in the memory local to the process. Only in

LINCON runs 6 and 7 did a fault corrupt memory

outside the local memory space of the program. The
final two rows in table III give results that explore de-

tection across multiple runs. Of the 1342 faults that

were detected by at least one run (LJl41 Runj), 1306
had at least one externally visible detection in the

first iteration. Similarly 1267 faults were detectable

in every run (N_41Runj).

Table III. Coverage Factors--LINCON

LINCON I DE Do DE/F D_/Fo Do/F Do/Fa Do/D E

Run 1 1331 1227 0.765 0.854 0.705 0.788 0.922

Run 2 1302 1074 .748 .836 .617 .689 .823

Run 3 1319 1029 .758 .847 .591 .660 .780

Run 4 '1321 1103 .759 .848 .634 .708 .835

Run 5 1311 1182 .753 .841 .679 .759 .902

Run 6 1290 1097 .741 .828 .630 .704 .850

Run 7 1298 1110 .746 .833 .638 .712 .855

Run s 1320 1056 .758 .847 .607 .678 .800

Run 9 1306 1184 .750 .838 .680 .760 .907

RUnl0 1328 1183 .763 .852 .679 .759 .891

RUnll 1310 1062 .752 .841 .610 .682 .811

Runl2 1325 1155 .761 .850 .663 .741 .872

Runl3 1289 1160 .743 .830 .666 .745 .900

Run14 1328 1249 .763 .852 .717 .802 .941

U 4=IRu. 134213o60.771 0.861 0.750 0.838 0.973

''.7=O141Runj 1267 914 .728 .813 .525 .587 .721

As in the BDX-930 study, an attempt was made

to remove the set of indistinguishable 12 faults from

consideration in the coverage factors; Fa consists of
the 1558 faults that were not identified as indistin-

guishable. Of the 1741 simulated faults F, 204 never

produced observable erroneous behavior (determined
by combining results from the self-test and the LIN-

CON and MATMUL simulations). Thus, 1537 of the

faults in F are clearly detectable and therefore in Fa.

The remaining 204 faults were analyzed to determine

why they were not detected. Faults were identified

as undetectable based upon analysis of the circuit

12 "A fault that has no affect [sic] on the computational process

is indistinguishable .... a distinguishable fault has the property

that there exists a software program the output of which differs

from that of the same program executed by an identical but non-

faulted processor." (ref. 2, p. 16).
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an'_lmicrocode.Sincethe circuit beingsimulated
wasstill in thedesignphase,therewasa significant
proportionof unusedlogicpresentfor anticipated
changesin thedesign.Furthermore,giventhenature
of themicrocode,therewerea numberof faultsthat
couldneverbedetectedwith the currentmicrocode
but wouldpossiblybe detectableusinga different
implementation.Additionally,somefaultswereiden-
tifiedasbeingin redundantlogic,andhencenotde-
tectable.Of the204undetectedfaults,183wereclas-
siftedas indistinguishable.The21 remainingfaults
werenotprovento bedetectable,but therewasinsuf-
ficientevidenceto classifythemasneverdetectable,
thereforetheywerealsoincludedin Fa.

Table IV gives the coverage factors for the MAT-

MUL program and also combines the results with

those of LINCON in order to get a better feel for

coverage during a typical voting frame. Individu-

ally, each program detected _75 percent of the in-

jected faults; however, the two programs combined
detected over 80 percent of the injected faults. Fur-

thermore, 1193 of 1741 faults produced errors in ev-

ery execution.

Table IV. Coverage Factors--MATMUL

Dn DE/ F D_I Fa
MATMUL 1336 0.767 0.858

14

MATMULU(Uj= 1Runj) 1439 .827 ,924
MATMULURunl 1429 .821 .917

14

MATMULN(Nj= 1Run j) 1193 .685 .766
MATMULNRunl 1238 .711 .795

Discussion. Recognizing that these two pro-

grams do not fully exercise the hardware, and that

their execution time in real terms is approximately

2 ins, if the experiment were expanded to incorporate

a complete voting frame including operating system

overhead, it is likely that the detection probabilities
would increase further. However, the amount of com-

putation time required for this small sample was pro-

hibitive. Each of the 14 runs of the LINCON program

required _100 hours of MicroVAX II cpu time. The

MATMUL simulation (for fault set F) required _25
cpu hours on a MicroVAX 3200. Fortunately, it was

possible to distribute the computation requirements

across a 16-node network in a batch environment,

thus allowing for near linear speedup of the computa-

tion time required. Submitting the simulation tasks

in low-priority batch mode also allowed potential for

completing much of the simulation during periods of
low resource utilization.

6

Another limiting factor is that the simulated pro-

cessor is small by today's standards. The SS-1750A

used in this study consisted of approximately 3500

gates. Current generation microprocessors consist of

hundreds of thousands of gates. Thus it is impracti-

cal to use this simulation strategy to estimate com-

parison monitoring coverage parameters.

Coincident Error Measurement

The results of the LINCON simulation were an-

alyzed again, this time in an attempt to corrobo-
rate results from the S-GGLOSS experiment measur-

ing coincident error. The LINCON program is more

complicated than the simple program used in the S-

GGLOSS study, but it does have a similar structure.

The program used for the S-GGLOSS study was a

simple loop consisting of 10 instructions. There were

no branch instructions within the body of the loop,

thus every instruction in the program was executed

in each iteration. The LINCON program, while still

a simple example, exhibits more characteristics of
a typical program. Within its main loop are con-

ditional branches and internal loops. The section

of code executed in any given iteration is more de-

pendent upon the data than was the case in the S-

GGLOSS study. However, as can be seen by referring
back to table III, typically 85 percent of the faults

detected by this program were detected in the first

iteration (Do/DE). Thus, irrespective of the data,
the majority of faults detectable by a given program

will produce erroneous behavior in the first iteration.

Discussion of prior results. S-GGLOSS was

used to simulate a 300-gate "mini-microcomputer"
configured in a simple triplex fault-tolerant architec-

ture (ref. 6). The simulated system was configured as

a simple flight controller. The inputs are assumed to
be uncorrelated variations in flight path due to mild

turbulence. Each identical channel outputs its com-

puted values to an assumed perfect voter/monitor
that in turn drives a control surface actuator. The

voter/monitor has the capability of detecting and

isolating all single-channel errors while masking the
failure with the voter. The monitor can also detect

three different channel values and transfer control to

a backup unit. Thus the only way the monitor can
be defeated is when it receives two identical incorrect

channel values. Given that two faults (one latent) ex-
ist in distinct redundant channels of a fault-tolerant

digital system, _ is the probability that they produce
identical errors. The S-GGLOSS method for deter-

mining coincident error _ is described in Swern et al.

(ref. 6).

This factor _ was combined with an average

latency measure to determine the contribution of



coincidentlatentfaultsto systemunreliability.This
averagelatencymeasurewasestimatedto be4.2it-
erations,whereaniterationcorrespondedto asingle
passthroughthe simulatedprogram.An iteration
of a typical flight controlprogramwasassumedto
last100ms,foranaveragelatencyof420ms.Using
thesevalues,the estimatedcontributionto proba-
bility of systemfailurewas_10-11 for a 1-hrflight
(ref. 6, p. 1004).However,consideringthat a sin-
gleiterationconsistedof 10 instructions,with each
instructionrequiring5 clockcyclesto complete,an
iterationin theS-GGLOSSstudyrepresents50clock
cycles.If weassumea clockrateof 1MHz,thetime
requiredfor a singleiterationis 50ps. Thus, while

the average latency time was measured to be 4.2 it-

erations in the S-GGLOSS study, the extrapolation
to an iteration duration of 100 ms is unrealistic, as

this assumes that a 50 #s task is the only application

in a 100 ms voting frame. In more realistic settings,

several applications run consecutively in each voting
frame. Therefore, the average latency time for a fault

will be much reduced. The only valid conclusion con-

cerning latency would be that for multiple consecu-

tive executions of this 50 #s task, the average latency

time would be 4.2 x 50 ps = 210 _s. Thus, these

results tell us nothing about the behavior of longer
term latent faults. One common thread among all of

these studies is that for a sufficiently complex pro-

gram, a significant majority of the faults observed to

be excitable by that program are detectable following
the first execution of the program.

Results and analysis. The S-GGLOSS study
estimated that coincident error _ occurred in 7 per-

cent of the cases. The data generated by the simula-

tions of the LINCON program were analyzed in order
to make a similar measurement. In order to be as

consistent as possible with the previous study, only
the results of the first iteration were considered in

measuring _. The sets of detected faults correspond

to Do from table III. Of the 1306 faults ever detected

in the first iteration of the program (column Do, row

(.j141 Runj), 392 were sometimes latent. Computing
in the same fashion as done in the S-GGLOSS study,

was measured to be 11 percent. This result is con-

sistent with the 7 percent reported in the S-GGLOSS

study.

However, upon analysis of the errors produced, it

was observed that one error pattern was significantly

more frequent than any other. Analysis of the SS-
1750A architecture revealed that the dominant error

pattern corresponds to the inability of the processor

to produce an answer (i.e., the fault causes the

processor to lose control).

The interesting point is that a nonanswer does

not require a comparison monitor for detection. It

can be detected simply by determining if the output

register has been written. For example, when the

comparison monitoring system gets data, it clears a

bit in an output-status register. When a processing

element produces new data to place in the output

register, it resets this bit. In the next voting frame,

if the comparison monitor executive sees that this bit
has not been reset, it knows the data in the register
are invalid.

Although it was not practical to alter the sim-
ulation of the SS-1750A in this fashion, the effect

on _ can be measured by excluding the nonanswers

from the analysis. Table V shows the proportion of

nonanswers N1 produced during the first iteration

of the LINCON program. In each of the 14 runs, at

least one of the latent faults produced a nonanswer in
the first iteration of a different run. Thus, included

in the computation for _ were several instances of

faults that produced errors coincident with _70 per-
cent of the faults detected in the first iteration. If

these faults are excluded from consideration, the es-

timate for _ becomes 1.1 percent.

Table V. Proportion of Nonanswers--LINCON
(First Iteration)

LINCON Do N1

Run1 1227 811

Run2 1074 783

Run3 1029 785

Run4 1103 807

Run5 1182 790

Run6 1097 794

Run7 1110 781
Runs 1056 772

Run9 1184 787

Run10 1183 786

Run11 1062 794

RUnl2 1155 813

Run13 1160 791

Run14 1249 797

N1/Do N1/F

0.661 O.466

.729 .450

.763 .451

.732 .464

.668 .454

.724 .456

.704 .449

.731 .443

.665 .452

.664 .451

.748 .456

.704 .467

.682 .454

.638 .458

Yl/Fo
0.521

.503

.504

.518

.507

.510

.501

.496

.505

.504

.510

.522

.508

.512

Another potential source for error in the estimate
of _ is that the measurement only considers a single

word of voted data. In a typical control system,
several different functions are computed within a

voting frame, thus more than a single word of data
is voted in each frame. If we treat the eight passes

through the LINCON program as a single function

that produces 16 words of data (the primary output

for each pass through the program and an additional

7



8 words of scratch pad space), the vote can be treated
as a block vote of 16 words. The proportion of

nonanswers in this scenario is given in table VI.

None of the faults that produced a nonanswer were

considered latent by the above definition, so no steps

were required to account for them in the estimate of
$. In this scenario the estimate for _ was measured

to be 0.36 percent. This implies that coincident
error becomes less of a concern if the vote function

encompasses a large enough set of data and is also

capable of detecting a nonanswer.

Table VI. Proportion of Nonanswers--LINCON

LINCON

Run 1

Run2

Run3

Run4

Run5

Run6
Runt

Runs

Run9

Run10

Runll

Run12

Run13

Runl4

D_ NE N_/DE N_/F

1331 779 0.585 0.447

1302 755 .580 .434

1319 767 .582 .441

1321 787 .596 .452

1311 744 .568 .427

1290 762 .593 .438

1298 743 .575 .427
1320 756 .573 .434

1306 741 .567 .426

1328 751 .566 .431

1310 766 .585 .440

1325 786 .593 .451

1289 756 .587 .434

1328 773 .582 .444

N_/F.
0.500

.485

.492

.505

.478

.489

.477

.485

.476

.482

.492

.504

.485

.496

Concluding Remarks

The initial test of GGLOSS proceeded in two

distinct phases. The first phase compares results
obtained from GGLOSS simulations with those ob-

served in hardware. In the first few comparisons of
fault-free behavior there were several observed dis-

crepancies. However, most were caused by misin-

terpretation of the processor documentation. There
were also some difficulties encountered by inadver-

tently violating some of GGLOSS's underlying as-

sumptions. Similarly, the incomplete microprocessor

design caused additional problems. These were all

resolved and a good fault-free simulation was even-

tuaily obtained.

This made it possible to compare self-test results

while injecting stuck-at faults in the combinatorial
logic of the microprocessor's ALU. It was possible

to exploit GGLOSS's simulation strategy to reveal

a previously undocumented error in the design of

the microcoded self-test routine. Furthermore, com-

parison to results from the hardware fault insertion

demonstrated that GGLOSS correctly models stuck-

at faults in combinatorial Iogic.

While the code implementing the GCLOSS tool
was well written, it is not clear that GGLOSS is capa-

ble of performing one of its desired functions, namely,

that of capturing the behavior of latent faults and

their effects on fault-tolerant computing systems. It

was possible to recreate results of earlier studies that

attempted to capture characteristics of fault behav-

ior in comparison monitoring systems. However, the

limited amount of real time simulated in these exper-

iments restricts the conclusions concerning the be-
havior of latent faults. None of the studies to date

have simulated more than a few milliseconds of real

time, thus any observed fault behavior corresponds
to either nonlatent faults or faults with very short av-

erage latency periods. Because of the computational

burden required for fault simulation, it is perhaps

questionable that one would want to try to capture

the behavior of latent faults by simulation.

While the results concerning the behavior of la-

tent faults are less than promising, there are other

ways to approach the problem. The most interest-
ing result of the BGLOSS BDX-930 study was the

demonstration of a reasonably fast (_1 ms) high-

coverage (97.4 percent) self-test program: 3 This sug-

gests that for analysis of fault-tolerant systems, one

need not depend upon coverage factors based upon
an estimate of the effectiveness of comparison mon-

itoring, but rather incorporate an effective periodic

background self-test as part of the system overhead.

This is not to say that comparison monitoring should

not be used. In fact, these studies all indicate that

a majority of faults propagate quickly, and thus we

depend upon the comparison monitoring system to

mask any error. Therein lies the key: Compari-

son monitoring is not a fault detection strategy, but

rather an error detection strategy. It is best used to

prevent propagation of errors. In order to ensure
an appropriate level of fault detection, diagnostic

routines are a necessity. Furthermore, microproces-

sor faults may not be the dominant source of latent

faults. It is much more likely that latent faults will be

found in memory systems or possibly in redundancy
management logic) 4 Therefore, it is probably wiser

to focus efforts on developing efficient on-line diag-
nostics to detect faults in critical circuit locations.

NASA Langley Research Center
Hampton, VA 23665-5225
February 12, 1991

13 Again excluding bit faults in the PROM.

14 A possible scenario is given in footnote 9.



Appendix
Application Programs

Code for the LINCON Program

•NAME LINCON

;VARIABLE DECLARATION

XARRAY: .EQU X'AO

YARRAY: .EQU X'A9

MARRAY: .EQU X'B2

RESULT: .EQU RIO

TEMPX: .EQU RII

TEMPM: .EQU K12

K: .EQU R13

TEMPK: .EQU R14

;END VARIABLE DECLARATION

;INITIALIZE VARIABLES

LIM K,O

LIM TEMPX,O

L TEMPM,MARRAY

;END INITIALIZATION OF VARIABLES

J

;BEGIN MAIN PROGRAM LINCON

MAIN:

LOOP1:

CIM K,8

BEZ END

LR TEMPK,K

AIM TEMPK,1

L TEMPX,XAKKAY,TEMPK

S TEHPX,XARKAY,K

LR RESULT, TEMPX

MSR RESULT, TEMPM

A RESULT, YARRAY, K

;BEGIN IF THEN ELSE STATEMENT

CIM RESULT,O

BGE DO_RIGHT_HALF

BB DO_LEFT_HALF

;FOR K=O TO 7 DO

;ELSE DONE AND GOTO END LABEL

;LOAD RI4 TEMPK WITH LOOP COUNT

;SO THAT K+I CAN BE ADDRESSED

;LOAD X(K+I) INTO TEMPX (K13)

;TEMPX := X(K+I) - X(K)

;EVALUATION OF

;EQUATION

;TEHPX * TEMPM + Y(K) = RESULT

;IF RESULT _ O THEN

;GOTO DO_RIGHT_HALF

;ELSE GOTO DO_LEFT_HALF



RETURN:

;END OF IF THEN ELSE STATEMENT

L TEMPM,MARRAY,TEMPK

MSIM TEMPM, -i

AIM K,I

BR LOOP1

;RETURN POINT FROM SUBROUTINES

END:

BR END ;INFINITE LOOP TO STOP EXECUTION

J

.COMMENT %
THIS SUBROUTINE IMPLEMENTS THE RIGHT HALF OF THE LINCON

FLOWCHART AS GIVEN IN THE BENDIX REPORT %

DO_RIGHT_HALF:

LOOP_RIGHT:

LR RO,TEMPM

SIM RO,1

ClM RO, -9

BEZ R_EXlT_I

;LOAD TEMPM INTO REG.O

;RO _ TEMPM -I

;IF TEMPM -I = -9 THEN

;GOTO LABEL R_EXlT_I

;ELSE BEGIN

SR RESULT, TEMPX ;RESULT = RESULT - TEMPX

CIM RESULT,O

BGE RI_ELSE

L RO,YARRAY,K

ClM RO,O

BGE R EXlT_2

BR R_EXlT_I

;IF RESULT < 0 THEN BEGIN

;ELSE GOTO LABEL RI_ELSE

;BEGIN IF

;GET YARRAY(K) MOVE INT0 RO

;IF YARRAY(K) > 0THEN

;GOT0 LABEL R_EXIT_2

;ELSE GOT0 LABEL R_EXIT_I

RI_ELSE:

SIM

BR

R_EXlT_I:

AR

R_EXIT_IA:

ST

ST

BR

R_EXIT_2:

ST

SIM

ST

BR

TEMPM,1

LOOP_RIGHT

RESULT, TEMPX

RESULT, YARRAY, TEMPK

TEMPM, MARRAY, TEMP K

RETURN

RESULT, YARRAY, TEMPK

TEMPM, I

TEMPM,MARRAY,TEMPK

RETURN

lO



D0_LEFT_HALF:

LOOPLEFT:

LR

AIM

ClM

BEZ

AR

CIM

BLT

L

ClM

BLT

BR

LI_ELSE:

AIM

BR

L_EXIT_I:

SR

L_EXlT_IA:

ST

ST

BR

L_EXIT_2:

ST

AIM

ST

BR

R0,TEMPM

RO,I

RO,9

L_EKIT_IA

RESULT, TEMPX

RESULT, 0

LI_ELSE

R0,YARP_Y,K

RO,O

L_EXlT_2

L_EXlT_I

TEMPM, 1

LOOP_LEFT

RESULT,TEMPX

RESULT,YARRAY,TEMPK

TEMPM,MARRAY,TEMPK

RETURN

RESULT,YARRAY,TEMPK

TEMPM,I

TEMPM,MARRAY,TEMPK

RETURN

;IF TEMPM +i = 9 THEN

;GOTO L_EXIT_I

;ELSE BEGIN

;IF RESULT < 0 THEN

;GOT0 LI_ELSE

;ELSE BEGIN

J

•END

ll



Code for the MATNIUL Program

•COMMENT %

1750-A NIL

MATRIX SQUARED (WAS MULTIPLY). ASSUMES THE ARRAY BEING

PROCESSED IS 2 X 2

NOTE MATMUL USES

KO

R1

K2

R3

H4

K5

K6,7 -

R8,9

RIO

Rll

RI2

R13

THE FOLLOWING REGISTERS

POINTER TO ARRAY A

ROW INCREMENT FOR A

COUNTER FOR OUTER LOOP(M)

COLUMN INDEX FOR ARRAY B

COUNTER FOR INNER LOOP(P)

OFFSET INTO ARRAY A

REGISTERS CONTAINING SUM DURING INNER

PRODUCT CALCULATION

RESULT OF MULTIPLICATION DURING

INNER PRODUCT CALCULATION

INCRF_T FOR ARRAY B OFFSET

OFFSET INTO ARRAY B

OFFSET INT0 ARRAY C

COUNTER FOR SUROUTINE L00P(N)

AUTHOR:

CREATED :

MODIFIED BY:

DATE:

WILLIAM F. INGOGLY

7 SEPTEMBER 1985

KAREN T. LOONEY

27 AUGUST 1987

THEN SUBSEQUENTLY MANGLED FOR THIS STUDY

BY PAUL MINER --- LAST CHANGE: 24 JULY 1989%

•NAME MATRIX_SQUARED

MATMUL:

LIM R15,X' OOAO'

LIM RO, 0

LIM R1,2

MIM RI, 2

LR R1 ,R2

LIM R2,0

LIM R10,2

MIM RIO, 2

LR RIO,RII

LIM RI2,0

;LOAD POINTER TO ARRAY

;INCREMENT FOR ROW

12



LOOPI:

LOOP2:

INPROD:

LOOP:

•end

LIM

LIM

SJS

AIM

AIM

CIM

BNZ

AR

AIM

CIM

BNZ

BR

PSHM

LR

LIM

LIM

LIM

LR

DL

FM

FAR

AIM

AR

AIM

CIM

BNZ

DST

AIM

POPM

URS

R3,0

R4,0

RI5, INPROD

R3,2

R4,1

R4,2

LOOP2

RO,RI

R2, I

R2,2

LOOPI

HERE ;END MATMUL

R2,R2

R5,RO

R13,0

R6,0

RT,O

R11,R3

R8,X'OO43',IL5

R8,X'OO4B',RII

R6,R8

R5,2

RII,RIO

R13,1

R13,2

LOOP

R6,X'OO53',R12

R12,2

R2,R2

RI5

13
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